mws com sle ppt seidel

Upload: alma-araceli-alvarez-arzate

Post on 03-Jun-2018

239 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Mws Com Sle Ppt Seidel

    1/36

    1/10/2010 http://numericalmethods.eng.usf.edu 1

    Gauss-Siedel Method

    Computer Engineering Majors

    Authors: Autar Kaw

    http://numericalmethods.eng.usf.eduTransforming Numerical Methods Education for STEM

    Undergraduates

    http://numericalmethods.eng.usf.edu/http://numericalmethods.eng.usf.edu/
  • 8/12/2019 Mws Com Sle Ppt Seidel

    2/36

    Gauss-Seidel Method

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/http://numericalmethods.eng.usf.edu/
  • 8/12/2019 Mws Com Sle Ppt Seidel

    3/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodAn iterative method.

    Basic Procedure:

    -Algebraically solve each linear equation for xi

    -Assume an initial guess solution array

    -Solve for each xi and repeat

    -Use absolute relative approximate error after each iterationto check if error is within a pre-specified tolerance.

  • 8/12/2019 Mws Com Sle Ppt Seidel

    4/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodWhy?

    The Gauss-Seidel Method allows the user to control round-off error.

    Elimination methods such as Gaussian Elimination and LU

    Decomposition are prone to prone to round-off error.

    Also: If the physics of the problem are understood, a close initialguess can be made, decreasing the number of iterations needed.

  • 8/12/2019 Mws Com Sle Ppt Seidel

    5/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodAlgorithmA set of n equations and n unknowns:

    11313212111 ... bxaxaxaxa nn =++++

    2323222121 ... bxaxaxaxa n2n =++++

    nnnnnnn bxaxaxaxa =++++ ...332211

    . .

    . .

    . .

    If: the diagonal elements arenon-zero

    Rewrite each equation solvingfor the corresponding unknown

    ex:

    First equation, solve for x1

    Second equation, solve for x2

  • 8/12/2019 Mws Com Sle Ppt Seidel

    6/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodAlgorithmRewriting each equation

    11

    13132121

    1a

    xaxaxacx nn

    =

    nn

    nnnnnn

    n

    nn

    nnnnnnnnnn

    nn

    a

    xaxaxacx

    axaxaxaxacx

    a

    xaxaxacx

    11,2211

    1,1

    ,122,122,111,111

    22

    232312122

    =

    =

    =

    From Equation 1

    From equation 2

    From equation n-1

    From equation n

  • 8/12/2019 Mws Com Sle Ppt Seidel

    7/36http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodAlgorithmGeneral Form of each equation

    11

    11

    11

    1a

    xac

    x

    n

    jj

    jj=

    =

    22

    21

    22

    2a

    xac

    x

    j

    n

    jj

    j

    ==

    1,1

    11

    ,11

    1

    =

    =nn

    n

    njj

    jjnn

    na

    xac

    x

    nn

    n

    njj

    jnjn

    na

    xac

    x

    =

    =1

  • 8/12/2019 Mws Com Sle Ppt Seidel

    8/36http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodAlgorithm

    General Form for any row i

    .,,2,1,1

    nia

    xac

    xii

    n

    ijj

    jiji

    i =

    =

    =

    How or where can this equation be used?

  • 8/12/2019 Mws Com Sle Ppt Seidel

    9/36http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodSolve for the unknownsAssume an initial guess for [X]

    n

    -n

    2

    x

    x

    x

    x

    1

    1

    Use rewritten equations to solve for

    each value of xi.

    Important: Remember to use themost recent value of xi. Which

    means to apply values calculated to

    the calculations remaining in the

    current iteration.

  • 8/12/2019 Mws Com Sle Ppt Seidel

    10/36http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodCalculate the Absolute Relative Approximate Error

    100

    =

    newi

    old

    i

    new

    i

    ia x

    xx

    So when has the answer been found?

    The iterations are stopped when the absolute relative

    approximate error is less than a prespecified tolerance for all

    unknowns.

  • 8/12/2019 Mws Com Sle Ppt Seidel

    11/36

    Example: Surface Shape DetectionTo infer the surface shape of an object from images taken of a surfacefrom three different directions, one needs to solve the following set ofequations

    =

    239

    248

    247

    9428.02357.02357.0

    9701.02425.00

    9701.002425.0

    3

    2

    1

    x

    x

    x

    The right hand side values are the light intensities from the middle ofthe images, while the coefficient matrix is dependent on the light

    source directions with respect to the camera. The unknowns are theincident intensities that will determine the shape of the object.

    Find the values of x1, x2, and x3 use the Gauss-Seidel method.

  • 8/12/2019 Mws Com Sle Ppt Seidel

    12/36

    Example: Surface Shape DetectionThe system of equations is:

    Initial Guess:Assume an initial guess of

    =

    239

    248

    247

    9428.02357.02357.0

    9701.02425.00

    9701.002425.0

    3

    2

    1

    x

    x

    x

    =

    10

    1010

    3

    2

    1

    x

    xx

  • 8/12/2019 Mws Com Sle Ppt Seidel

    13/36

    Example: Surface Shape DetectionRewriting each equation

    2425.0

    )9701.0(0247 321

    xxx

    =

    2425.0

    )9701.0(0248 312

    xxx

    =

    9428.0

    )2357.0()2357.0(239 213

    =

    xxx

    =

    239248

    247

    9428.02357.02357.09701.02425.00

    9701.002425.0

    3

    2

    1

    xx

    x

  • 8/12/2019 Mws Com Sle Ppt Seidel

    14/36

    Example: Surface Shape DetectionIteration 1Substituting initial guesses into the equations

    =

    10

    10

    10

    3

    2

    1

    x

    x

    x

    ( ) 6105824250

    10970101002471 ..

    .x ==

    ( )71062

    24250

    10970106105802482 .

    .

    ..x =

    =

    ( ) ( )81783

    94280

    710622357061058235702393 .

    .

    ....x =

    =

  • 8/12/2019 Mws Com Sle Ppt Seidel

    15/36

    Example: Surface Shape DetectionFinding the absolute relative approximate error

    ( )%.

    .

    .

    %..

    .

    %..

    .

    x

    xx

    a

    a

    a

    new

    i

    old

    i

    new

    i

    ia

    2810110081783

    1081783

    0599910071062

    1071062

    0559910061058

    1061058

    100

    3

    2

    1

    =

    =

    =

    =

    =

    =

    =

    At the end of the first iteration

    The maximum absolute

    relative approximate error is101.28%

    =

    81783

    71062561058

    3

    2

    1

    .

    ..

    x

    xx

  • 8/12/2019 Mws Com Sle Ppt Seidel

    16/36

    Example: Surface Shape DetectionIteration 2Using

    =

    81.783

    7.1062

    6.1058

    x

    x

    x

    3

    2

    1

    ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( ) ( )98803

    94280

    92112235700211723570239

    9211224250

    8178397010021170248

    0211724250

    8178397010710620247

    3

    2

    1

    ..

    ....x

    ..

    ...x

    ..

    ...x

    =

    =

    ==

    =

    =

  • 8/12/2019 Mws Com Sle Ppt Seidel

    17/36

    Example: Surface Shape DetectionFinding the absolute relative approximate error for the second iteration

    ( )

    ( )

    ( ) %..

    ..

    %..

    ..

    %.

    .

    ..

    a

    a

    a

    4919710098803

    8178398803

    3015010092112

    7106292112

    0015010002117

    6105802117

    3

    2

    1

    ==

    =

    =

    =

    = At the end of the first

    iteration

    The maximum absoluterelative approximate error is

    197.49%

    =

    98.803

    9.2112

    0.2117

    3

    2

    1

    x

    x

    x

  • 8/12/2019 Mws Com Sle Ppt Seidel

    18/36

    Iteration x1

    x2

    x3

    1

    2

    3

    4

    5

    6

    1058.6

    2117.0

    4234.8

    8470.1

    16942

    33888

    99.055

    150.00

    149.99

    150.00

    149.99

    150.00

    1062.7

    2112.9

    4238.9

    8466.0

    16946

    33884

    99.059

    150.30

    149.85

    150.07

    149.96

    150.01

    783.81

    803.98

    2371.9

    3980.5

    8725.7

    16689

    101.28

    197.49

    133.90

    159.59

    145.62

    152.28

    Example: Surface Shape DetectionRepeating more iterations, the following values are obtained%

    1a %

    2a %

    3a

    Notice: The absolute relative approximate errors are not decreasing.

  • 8/12/2019 Mws Com Sle Ppt Seidel

    19/36http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: PitfallWhat went wrong?Even though done correctly, the answer is not converging to the

    correct answer

    This example illustrates a pitfall of the Gauss-Siedel method: not allsystems of equations will converge.

    Is there a fix?

    One class of system of equations always converges: One with a diagonally

    dominant coefficient matrix.

    Diagonally dominant: [A] in [A] [X] = [C] is diagonally dominant if:

    =

    n

    j

    j

    ijaa

    i

    1

    ii

    =

    >n

    ij

    j

    ijii aa1

    for all i and for at least one i

  • 8/12/2019 Mws Com Sle Ppt Seidel

    20/36

    Gauss-Seidel Method: PitfallDiagonally Dominant: In other words.

    For every row: the element on the diagonal needs to be equal than orgreater than the sum of the other elements of the coefficient matrix

    For at least one row: The element on the diagonal needs to be greaterthan the sum of the elements.

    What can be done? If the coefficient matrix is not originally diagonallydominant, the rows can be rearranged to make it diagonally dominant.

  • 8/12/2019 Mws Com Sle Ppt Seidel

    21/36

    Example: Surface Shape DetectionExamination of the coefficient matrix reveals that it is not diagonallydominant and cannot be rearranged to become diagonally dominant

    This particular problem is an example of a system of linear

    equations that cannot be solved using the Gauss-Seidel method.

    Other methods that would work:

    1. Gaussian elimination 2. LU Decomposition

    9428.02357.02357.0

    9701.02425.009701.002425.0

  • 8/12/2019 Mws Com Sle Ppt Seidel

    22/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2Given the system of equations

    15312321

    x-xx =+

    2835 321 xxx =++

    761373 321 =++ xxx

    =

    1

    01

    3

    2

    1

    x

    x

    x

    With an initial guess of

    The coefficient matrix is:

    [ ]

    =

    1373

    351

    5312

    A

    Will the solution converge using the

    Gauss-Siedel method?

  • 8/12/2019 Mws Com Sle Ppt Seidel

    23/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2

    [ ]

    =1373

    351

    5312

    A

    Checking if the coefficient matrix is diagonally dominant

    43155 232122 =+=+== aaa

    10731313 323133 =+=+== aaa

    8531212 131211 =+=+== aaa

    The inequalities are all true and at least one row is strictly greater than:

    Therefore: The solution should converge using the Gauss-Siedel Method

  • 8/12/2019 Mws Com Sle Ppt Seidel

    24/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2

    =

    76

    28

    1

    1373

    351

    5312

    3

    2

    1

    a

    a

    a

    Rewriting each equation

    12

    531 321

    xxx

    +=

    5328 312 xxx =

    13

    7376 213

    xxx

    =

    With an initial guess of

    =

    1

    0

    1

    3

    2

    1

    x

    x

    x

    ( ) ( )50000.0

    12

    150311 =

    +=x

    ( ) ( ) 9000.45 135.0282 =

    =x

    ( ) ( )0923.3

    13

    9000.4750000.03763 =

    =x

  • 8/12/2019 Mws Com Sle Ppt Seidel

    25/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2The absolute relative approximate error

    %00.10010050000.0

    0000.150000.01

    =

    =a

    %00.1001009000.4

    09000.42a

    =

    =

    %662.671000923.3

    0000.10923.33a

    ==

    The maximum absolute relative error after the first iteration is 100%

  • 8/12/2019 Mws Com Sle Ppt Seidel

    26/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2

    =

    8118.3

    7153.3

    14679.0

    3

    2

    1

    x

    x

    x

    After Iteration #1

    ( ) ( )14679.0

    12

    0923.359000.4311 =

    +=x

    ( ) ( )7153.3

    5

    0923.3314679.0282 =

    =x

    ( ) ( )8118.3

    13

    900.4714679.03763 =

    =x

    Substituting the x values into the

    equationsAfter Iteration #2

    =

    0923.3

    9000.4

    5000.0

    3

    2

    1

    x

    x

    x

  • 8/12/2019 Mws Com Sle Ppt Seidel

    27/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2Iteration 2 absolute relative approximate error

    %61.24010014679.0

    50000.014679.01a

    =

    =

    %889.311007153.3

    9000.47153.32a

    =

    =

    %874.18100

    8118.3

    0923.38118.33a

    =

    =

    The maximum absolute relative error after the first iteration is 240.61%

    This is much larger than the maximum absolute relative error obtained in

    iteration #1. Is this a problem?

  • 8/12/2019 Mws Com Sle Ppt Seidel

    28/36

    Iteration a1

    a2

    a3

    1

    2

    3

    4

    5

    6

    0.50000

    0.14679

    0.74275

    0.94675

    0.99177

    0.99919

    100.00

    240.61

    80.236

    21.546

    4.5391

    0.74307

    4.9000

    3.7153

    3.1644

    3.0281

    3.0034

    3.0001

    100.00

    31.889

    17.408

    4.4996

    0.82499

    0.10856

    3.0923

    3.8118

    3.9708

    3.9971

    4.0001

    4.0001

    67.662

    18.876

    4.0042

    0.65772

    0.074383

    0.00101

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2Repeating more iterations, the following values are obtained%

    1a %

    2a %

    3a

    =

    4

    3

    1

    3

    2

    1

    x

    x

    x

    =

    0001.4

    0001.3

    99919.0

    3

    2

    1

    x

    x

    x

    The solution obtained is close to the exact solution of .

  • 8/12/2019 Mws Com Sle Ppt Seidel

    29/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 3Given the system of equations

    761373 321 =++ xxx

    2835 321 =++ xxx15312 321 =+ xxx

    With an initial guess of

    =

    1

    0

    1

    3

    2

    1

    x

    x

    x

    Rewriting the equations

    313776 321 xxx =

    5

    328 312

    xxx

    =

    5

    3121 213

    =

    xxx

  • 8/12/2019 Mws Com Sle Ppt Seidel

    30/36

    Iteration a1

    A2

    a3

    1

    2

    3

    4

    5

    6

    21.000

    196.15

    1995.0

    20149

    2.0364 105

    2.0579 105

    95.238

    110.71

    109.83

    109.90

    109.89

    109.89

    0.80000

    14.421

    116.02

    1204.6

    12140

    1.2272 105

    100.00

    94.453

    112.43

    109.63

    109.92

    109.89

    50.680

    462.30

    4718.1

    47636

    4.8144 105

    4.8653 106

    98.027

    110.96

    109.80

    109.90

    109.89

    109.89

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 3Conducting six iterations, the following values are obtained%

    1a %

    2a %

    3a

    The values are not converging.

    Does this mean that the Gauss-Seidel method cannot be used?

  • 8/12/2019 Mws Com Sle Ppt Seidel

    31/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodThe Gauss-Seidel Method can still be used

    The coefficient matrix is not

    diagonally dominant

    [ ]

    =

    5312

    351

    1373

    A

    But this is the same set of

    equations used in example #2,

    which did converge. [ ]

    =

    1373

    351

    5312

    A

    If a system of linear equations is not diagonally dominant, check to see if

    rearranging the equations can form a diagonally dominant matrix.

  • 8/12/2019 Mws Com Sle Ppt Seidel

    32/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodNot every system of equations can be rearranged to have a

    diagonally dominant coefficient matrix.

    Observe the set of equations

    3321 =++ xxx

    9432321

    =++ xxx

    97 321 =++ xxx

    Which equation(s) prevents this set of equation from having a

    diagonally dominant coefficient matrix?

  • 8/12/2019 Mws Com Sle Ppt Seidel

    33/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodSummary

    -Advantages of the Gauss-Seidel Method

    -Algorithm for the Gauss-Seidel Method

    -Pitfalls of the Gauss-Seidel Method

  • 8/12/2019 Mws Com Sle Ppt Seidel

    34/36

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method

    Questions?

  • 8/12/2019 Mws Com Sle Ppt Seidel

    35/36

    Additional ResourcesFor all resources on this topic such as digital audiovisuallectures, primers, textbook chapters, multiple-choicetests, worksheets in MATLAB, MATHEMATICA, MathCad

    and MAPLE, blogs, related physical problems, pleasevisit

    http://numericalmethods.eng.usf.edu/topics/gauss_seid

    el.html

    http://numericalmethods.eng.usf.edu/topics/gauss_seidel.htmlhttp://numericalmethods.eng.usf.edu/topics/gauss_seidel.htmlhttp://numericalmethods.eng.usf.edu/topics/gauss_seidel.htmlhttp://numericalmethods.eng.usf.edu/topics/gauss_seidel.htmlhttp://numericalmethods.eng.usf.edu/topics/gauss_seidel.html
  • 8/12/2019 Mws Com Sle Ppt Seidel

    36/36

    THE END

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/http://numericalmethods.eng.usf.edu/