mycobacterium avium complex: biology of an environmental pathogen

18
Mycobacterium avium complex: Biology of an environmental pathogen Jerry Cangelosi Seattle Biomedical Research Institute Dept. of Pathobiology, School of Public Health University of Washington SYMPOSIUM IN HONOR OF DR. GEORGE KENNY

Upload: lucia

Post on 11-Jan-2016

81 views

Category:

Documents


1 download

DESCRIPTION

SYMPOSIUM IN HONOR OF DR. GEORGE KENNY. Mycobacterium avium complex: Biology of an environmental pathogen. Jerry Cangelosi Seattle Biomedical Research Institute Dept. of Pathobiology, School of Public Health University of Washington. Mycobacterium tuberculosis. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Mycobacterium avium  complex: Biology of an environmental pathogen

Mycobacterium avium complex:Biology of an environmental pathogen

Jerry CangelosiSeattle Biomedical Research Institute

Dept. of Pathobiology, School of Public Health University of Washington

SYMPOSIUM IN HONOR OF DR. GEORGE KENNY

Page 2: Mycobacterium avium  complex: Biology of an environmental pathogen

Mycobacterium tuberculosis

Mycobacterium avium complex (MAC)

Page 3: Mycobacterium avium  complex: Biology of an environmental pathogen

• Slow-growing mycobacteria, related to M. tuberculosis

• M. avium ssp. avium

• M. avium ssp. paratuberculosis

• M. intracellulare

• Environmental, drinking water, biofilms

• Growth within phagocytic protozoa and human cells

• Opportunistic pathogens

• Chronic, intrinsic drug resistance

• Genetic, phenotypic instability

Mycobacterium avium complex (MAC)

Page 4: Mycobacterium avium  complex: Biology of an environmental pathogen

A research and teaching centre affiliated with UBC Courtesy of Kevin Elwood, BC-CDC

Annual frequency of isolation of M. tuberculosis and M. avium complex (MAC)

0

200

400

600

800

1000

1200

1400

Years

83-84

85/86

87/88

89/90

91/92

93/94

95/96

97/981999

TB

MAC

Page 5: Mycobacterium avium  complex: Biology of an environmental pathogen

Predictions for MAA:

• Larger coding capacity

• Greater heterogeneity

• Horizontally acquired genes?

Comparing the genomes of M. avium subsp. avium and M. tuberculosis:

Predictions based on ecological niche

Ecological niche

M. tuberculosis:•Mammalian tissues

M. avium:•Water•Soil•Plants•Biofilms•Tissues of diverse animals•Etc.

Page 6: Mycobacterium avium  complex: Biology of an environmental pathogen

Mycobacterium genome sizes

Approximate genome size

Environmental speciesM. smegmatis: ~7 mbM. marinum: 6.5 mbM. avium subsp. avium: 5.5 mb

Professional pathogensM. avium subsp. paratuberculosis: 4.8 mbM. tuberculosis: 4.4 mbM. leprae: 3.3 mb

M. avium ssp. avium104 genome

5.48 mB(www.tigr.org)

0

IS1245

IS999

ssGPL gene

cluster

Page 7: Mycobacterium avium  complex: Biology of an environmental pathogen

Genome of M. avium ssp. avium (MAA) strain 104

• Sequence in “minor editing” stage (TIGR)

• Annotation by Semret and Behr, McGill Univ.

• MAC vs. M. tuberculosis

– TB: 4.4 mB, ~65.6% G+C, ~3900 ORFs

– MAC: 5.5 mB, ~68.5% G+C, ~5100 ORFs

• Extra coding capacity in MAA:

– Repeating elements

– Unique cell wall structures, e.g. ssGPL

– Capacity to live in the environment

– Horizontally acquired genes (MAP)

Page 8: Mycobacterium avium  complex: Biology of an environmental pathogen

M. tuberculosis (4.4 mb genome, ~3900 genes)

•Deletions in 19 clinical isolates relative to H37Rv

•Kato-Maeda et al., Genome Res. 11:547-554, 2001

No. of deletions: Mean 2.9, range 0-6

No. of deleted ORFs: Mean 17.2, range 0-38 (<1% of genome)

M. avium ssp. avium (5.5 mb genome, ~5100 genes)

•Deletions in 1 clinical isolate, HMC02, relative to strain 104

•Criteria: Z-value >2.0, >2 contiguous ORFs, quadruplicate

•Confirmation by PCR

•Preliminary results

No. of deletions: ~33

No. of deleted ORFs: ~520 (~10% of genome)

Genomic diversity of MAA:Comparison to M. tuberculosis

Page 9: Mycobacterium avium  complex: Biology of an environmental pathogen

Total size (bp) 8,667,507 5,475,491 4,411,532

G + C (%) 72.12 68.99 65.61

Coding sequences

7825 4480 3959

Predicted lipid metabolism genes

436 (9.7%)2 233 (5.8%)2

  S. coelicolor A3(2)

MAA 104 M. tuberculosis H37Rv

1Bentle

y e

t al., 2

00

22S

em

ret e

t al., su

bm

itted

~4,800,000

~69

~~4030

MAP K10

Predicted virulence genes

148 (3.3%)2 99 (2.5%)2

PE/PPE 53 (1.2%)2 170 (4.3%)2

Cell wall and cell processes

662 (14.8%)2 710 (17.9%)2

unknown 280 (7.1%)2 93 (2.1%)2

Predicted regulatory genes (% of total)

265 (5.9%)2 191 (4.8%)2 965 (12.3%)1

Page 10: Mycobacterium avium  complex: Biology of an environmental pathogen

How do people get MAC disease?

• Water (sometimes)• Not known (usually)• Models

1. Colonized early in life, immunocompromised later

2. Immunocompromised first, then infected

• Genomic variability a challenge

IS999-RFLP

N 15 6 24 1 3 9 1 1

Page 11: Mycobacterium avium  complex: Biology of an environmental pathogen

Strain Site DA21 DA71 HSD1 RFLP clade (>60% similarity)2

Rep-PCR clade (>90% similarity)2

101 UCLA-MC + + - B 4B 103 UCLA-MC + + - B 4B 104 UCLA-MC + + - B 4B 503 UCLA-MC + + - G 4B 504 UCLA-MC + + - G unique 505 UCLA-MC + + - G unique 501 UCLA-MC + + - unique 4A 105 UCLA-MC + + - unique 4A 502 UCLA-MC + + - unique 4B 506 UCLA-MC + + - unique unique MVH14 Little Rock + + + unique ND 102 UCLA-MC + - + D unique 110 UCLA-MC + - + D 1B 113 UCLA-MC + - + unique 1A W2008 Boston - - + unique 1A 100 UCLA-MC - - + unique 3A 107 UCLA-MC - - + A 3A 108 UCLA-MC - - + A 3A HMC02 Seattle-HMC - - + A 3A HMC34 Seattle-HMC - - + A ND W2001 Boston - - + unique 5A NWH201 Seattle-NWH na - + unique 5A MVH21 Little Rock - - + unique 1B HMC04 Seattle-HMC - - + unique ND HMC36 Seattle-HMC - - + unique ND MVH20 Little Rock - - + unique ND MVH15 Little Rock na + na unique unique 23 additional isolates of MAA from Washington, Quebec, the Netherlands, and Australia3

- - ND ND ND

Making sense of MAC epidemiology: Deligotyping identifies a hospital-based cluster

Page 12: Mycobacterium avium  complex: Biology of an environmental pathogen

Hypotheses

1. UCLA-MC AIDS patients were infected from a shared environmental source

• RFLP patterns diverged during and after infection

2. UCLA-MC AIDS patients were infected from diverse point sources, all of which were colonized members of a “regional” clade

• RFLP patterns diverged prior to infection

Next steps

1. Analysis of additional isolates (SoCal & elsewhere)

2. Identification of additional genomic markers

3. Molecular epidemiology

Page 13: Mycobacterium avium  complex: Biology of an environmental pathogen

• Are all environmental isolates virulent to humans?

• If heterogeneous, we need “virulence markers”

Diversity of MAC: Implications for risk assessment

or

Homogeneous, moderate virulence Heterogeneous

Page 14: Mycobacterium avium  complex: Biology of an environmental pathogen

How do we identify “virulence markers”?

• Comparative genomics• Mutational analysis

Page 15: Mycobacterium avium  complex: Biology of an environmental pathogen

Mutational analysis of virulence

1. Shotgun mutagenesis with EZ::TN transposonLaurent et al., J. Bacteriol. 185:5003-5006, 2003

2. Screen for alterations in phenotypes that correlate with virulence

– White colony type on Congo red plates

– Multi-drug resistance

– BSA independence

Mukherjee et al., J. Infec. Dis. 184:1480-1484, 2001

Cangelosi et al., Microbiology 147:527-533, 2001

3. Identify disrupted gene

4. Test in disease models (THP1 cells, mice)

Page 16: Mycobacterium avium  complex: Biology of an environmental pathogen

Rough

R W

W R

M. avium 1045.48 mB

0RW-A

RRg3

RRg5

RW-I

RRg4RRg1, RRg2, RRg6, RRg-B, RRg-D, RRg-G, WRg1, WRg2

RW1, RW2

RW-F

RW-J

RW-E WR2.58

WR2.55

EZ::TN transposon mutagenesis

Page 17: Mycobacterium avium  complex: Biology of an environmental pathogen

Example (affected gene)

Parent morpho-type

Mutant morpho-type

Drug suscep-tibility

Growth in THP1 cells

Genetic confir-mation

Red wild type Red - S No -

White wild type

White - R Yes -

WRg(pstA)

White Rough(no ssGPL)

R Yes Yes

WR2.55(PKS)

White Red R No Not yet

WR2.58 (PPIase, STPKase)

White Red S No Not yet

RW1 Red White S N/D Yes

Page 18: Mycobacterium avium  complex: Biology of an environmental pathogen

Elsewhere– Luiz Bermudez, Kuzell

Institute, Oregon State– Carolyn Wallis, HMC– Tim Ford, Montana State

Univ.– David Sherman, UW– Delphi Chatterjee & Julie

Inamine, Colorado State University

– Makeda Semret and Marcel Behr, McGill University

SBRI– Chad Austin– Kellie Burnside– Richard Eastman– Shawn Faske – Kirsten Hauge– Jean-Pierre Laurent– Devon Livingston-Rosanoff– Joy Milan– Anneliese Millones – Sandeep Mukherjee– Christine Palermo– Kambiz Yaraei

Thank you– NIAID– EPA– Murdock Charitable Trust