n93. - nasa · solids composite solid propellantj -- fuel + oxidizer ai pb htpb b + mg pban pu ap...

18
N93..22102 HYBRID ROCKET PROPULSION Allen L. Holzman UNITED TECHNOLOGIES/CHEMICAL SYSTEMS SAN JOSE, CALIFORNIA _ UNITED TECHNOLOGIES 303 https://ntrs.nasa.gov/search.jsp?R=19930012913 2019-05-10T23:01:45+00:00Z

Upload: dohuong

Post on 11-May-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

N93..22102

HYBRID ROCKET PROPULSION

Allen L. Holzman

UNITED TECHNOLOGIES/CHEMICAL SYSTEMS

SAN JOSE, CALIFORNIA

_ UNITEDTECHNOLOGIES

303

https://ntrs.nasa.gov/search.jsp?R=19930012913 2019-05-10T23:01:45+00:00Z

SOLIDS

Composite solid propellant -- Fuel + Oxidizer

JAI PB

HTPBB +

Mg PBANPU

AP

AN

+

Catalyst

LIQUIDS

Oxidizer

Fuel

ff.°'o,- IRFNA

HzOz

1)"_''""-- Hz MAF

CHz Nail4

CH4 NH,z

304

ue_ wll_'_°u _

HzO_

Ft..OY,.

14V8,¢,10gKOINg OPg'_AI"ION

'0,_ Ag_,_rlv,gNOI_r_ _

_5

COMPARISONOF THE THEORETICALSPECIFIC IMPULSESATTAINABLEWITH SOLID, LIQUID AND HYBRID PROPELLANTSYSTEMS

400

_ (cH,),.eeH,.AP

300 _ PBAa, AIH=, NP --

DB, Be, AP

I -De, HMX, AI, AP

PBAN, AI, AP

Solids

20O

Demonslrated by

Operational _] experimental

systems measurement

_/////:F////J o_,,u, el.

_ NaF4, Bell=OF2, BeHz

OFz, (CH=) z

_ N=F4, LiN=H4, NOzCIO4, Be

CIF=, LI

m

OF=, HIFz, H=

_LOX, Hz

OF=, BaHIOF=, N=H4

LOX, BjHe

__/"//'_////] LOX, HTPB ._1_

r_/'//////////,_ H.O,. PBAA. AI _N_.;.:.:.:,w.._ zH,o. CIF=

_///////////////_ Nail,, NH4CIO4, AI __

l NaO4, NzH4

_UDMH HNO=

Hybrids Liquids

Cryogenic, standard

Potential systems _ Cryogenic _ conditions storable,

under investigation some space conditions

COMPARISONOF THE DENSITY-SPECIFICIMPULSESATTAINABLEWITH SOLID, LIQUID AND HYBRID PROPELLANTSYSTEMS

600 _//_ Zr, NH4CIO4, (CHz)x

500 _.////////./j Be, NH4CIO4, DB

AI0 NH4CIO4, PBAN

m

m

m

Solids

400

%w

300

200

_lFs, B, AP,PBAA

_ N=F,, NaH4, Be

N=H,, AI, AP

OF=, Li, LiH

OFa, (CH,)=

_ Nail4, NOz Cl04

N=Oq, At, PE

N2F4, LI

CIF=, Lt

_///_/////j LOX, HTPB

100

Demonstrated by

_ Operational <_ experimental

systems measurement

-- _ OFz, NzH4

ClF_, NzF+

_'_iii':::_==========================================RFNA, RP.1

--_ OF=, BIHI

NzO_, NaH,

-- _ LOX, JP

Hybrids -- Liquids

H=, Fm

Cryogenic, standard

_J Potential systems <_ Cryogenic <_ conditions storab,e,under investigation some space conditions

306

o 1930's

o 19_O's - 50's

o 1950's - 60's

o 1960's - 70's

o 1980's

o 1990's

BISTORY

California Rocket Society - static tests

Pacific Rocket Society - 1,0X/I_ouglas fir fuelflight tested to 30,000 ft.

G£ - evaluated E_0a/P£ engine

APL - reverse hybrid NB_NOs/Jp

CSD - fundamental regression/combustion studies

- supersonic target drones, flight tests(Sandpiper/BAST/Pirebolt)

- High energy FLOXILilLiHIHTPB tests

380-sec I,p @ 40/1 expansion ratio- 50K-lb thrust Na0,/AI/PBAN

OHERA/SNEC_/SEp - HNO)lamtne fuel, soundingrockets, flight tests

AMROC - 50K-Ib thrust LOXIPB

ANXOC - 75K-lb thrust LOXIPB

HPIAG

GENERALPROPULSIONSYSTEMFEATURESCOMPARISON

Feature Solid

DOT classification Class B

Explosive classification 1.3

Sensitivity to grain cracks/voids Yes

Launch abort capability No(propulsion termination)

Handling costs Highest

Isp Low

P Isp High

Exhaust HCI 20%

Exhaust particulate High

Liquid ClassicalLOX-JP Hybrid

Inert when-MT Inert

60% TNT equiv. NAwhen full

NA No

Yes Yes

Medium Lowest

High High

Low Medium

0 0

Low Either

307

HYBRIDCOMBUSTIONBOUNDARYLAYER

/-- Flame zone.... /- Combustion port / /- Post-combustion

Gas and/or J.__.- ..... -' ...................... _ Jliquid injection J _ ......... "7 ...................... 7--.,_ I

Boundary layer edge _j _ Mixing region

Oxidizer spray Velocity profile I Temperature profilet

_,_ - .............. >_ / i _ edge..---_- ...... ___

". " ._ • _ Heat flow

onei!

BASICHYBRIDBURNINGRATELAWS

Elementary pipe flow

(_w = mfhv = (h/Cp)/_h c

.._. _1 (h/Cp) (Ahc/h ,)

Pfcp G °'s

with hoc__ (turbulent pipe flow)

D0.2

Good working equation

i" = a Go n

Refined relation

f = _0.036/_ 0"2 Ue Ahc I + QR_R._

O w = heat flux to wall (fuel)

mF = fuel flow rate

h v -- effective heat of vaporization

Ah c = heat of combustion of fuel

G = mass flux in port

U -- gas velocity

308

WHY AREN'T HYBRIDS OPERATIONAL?

Operational success of liquid F-I engines and SRM boosters forthe shuttle and Titan Ill caused interest in hybrids to wane.

Early emphasis was only for high density impulse systems,

Cost, safety, environmental and reliability issues were of

second order.

All the 1960s and 70s work in hybrids was done by primarily

liquid and solid propulsion companies. In any selection

process for upcoming systems, hybrids were always perceivedsecond best.

Customer liquid and solid propulsion communities (incumbents)

are not interested in sharing funding.

It is difficult to generate funding for an order of magnitude

scale increase to 750K and larger thrust engines.

"Political factors interfere with technical factors."

HPIAGI

HYBRID SYSTEMS

BOOSTER APPLICATIONS

309

ATLAS BOOSTER DEVELOPMENT AND QUALIFICATION

1. Fuel formulation studies

2. Sub-scale port lasts

3, Inlet=or davalopmenl

4, Analytical modelling

S, Trade studies

|._

16, Full.scale motor lest=

|___

I7. Nozzle dsvalopmenl I

II

8. Throttling teals

J

9, Process develop & varlL

10,Full scale ciuallflcallon lasting

Year

I I I I JI t t 2 13 I 4 ISI I __1 I ]1 I t ! Ix_x 1 I II I t I JI I I 1 Ix----x I I I] .... J.__ I I 1I I 1 1 II x ,x II 1 I I [I I I t IX-. X

J L_ __ _ A_ Il I I I Ix -x I

I [ J I1 1 I iI x...... -x I1 l l II ] I It t x_xI 1 I It I l II. I I x--x[ 1,= ! II I I II x..... x II I I ]1 I I It 1 I x_xI i J I I

Ie I

IIIIIII

II

IIIIIIIII

HYBRID SYSTEM ADVANTAGES

BOOSTER APPLICATIONS

Hybrids Solids

Explosive hlzerd none hlgh

HCI In txhaull none high

Specific Impulse high low

Denllly Impulse high hlghe=l

Throlllaablllty yes no

On pad COltS low high

System coal low/medium medium

Aborl capability yes no

Understanding of b=slc

analytical regression/ yes no

I:ombu=llon modal

Llqulda

high

nonl

hlghest

lowell

yea

high

high

yes

no

310

COMPARISON OF THROAT BETAS

T_ Bela l,p_,c C" m.f Al_O 3sac IlIsec @ lhfoal

Solid propellantASRM TP-H.1233 6411 0,096 287, 5178 0.096

LOX/Hydrogen 5.0 6110 0.626 433, 7961

LOX/100% HC 237 6698 026g 323, 5830

LOXI35% aluminum/65% HC 136 7149 O130 321. 5786

LOXI45% Aluminum/55% :'IC 1,17 7377 0083 319, 5716

All values lheoretlcal for Pc " 1000 psla. nozzle area rallo - 10.0

OfF

,#_

Nozzle erollon

Residual luellox

Accumulated dltu

HYBRID SYSTEM DISADVANTAGES

NON-METALLIZED FLOW

BOOSTER APPLICATIONS

Hybrlda Solidi

high low

6_/1% < < 1%

low high

Liquids

n.a.(regenerellvolycooled)

< I%

hlgh

311

HYBRID SYSTEMS

UPPER STAGE PROPULSION APPLICATIONS

UPPER STAGE HYBRID MOTOR DEVELOPMENT

I1 ] 2J I II I

1. Fuel formulation studies X_X

I II I I

2. Sub-scale port tests X'------X I

I I , I

AND QUALIFICATION

Year

13 14 I s I e iI I I I

I I I I II I I I II I I I J

I I I II I I II [ I [

I I I I I I I3. InJeclor development

4, Anllytlcat modelling

S, Trade studies

6, Full-scale motor tests

7. Nozzle development

J X................. X J1 I I I__1I t t I 1X, X

I II II II II II II II IIII

8. Throttling lesls

g. Process develop & varlf.

tt

_ J___

11().Full scale qualification testing 1

I

j 1__.1 [ .I1 I I I Ix.............. x I I1 I I I I1 I I I t1 I x--_x iI___ I I II I I II I x_x II I I I

I I I I

I II IJ l

II I I x_x

___J_ I I I lI I I I Ii x.... x I IL I I l JI I I I II I I x_--xI I l I I I

312

HYBRID PROPULSION INDUSTRY ACTION GROUP

AeroJel LockheedAMROC Marlin Marlells

AIlanllc Research RockeldyneBoeing Aerospace Thlokol

General Dynamics United TechnologlelHerculee

HPIAG SUPPORTS HYBRID PROPULSIONDEVELOPMENT AND DEMONSTRATION

Presentations

HPIAG Program Planning PresentationsDate

NASA/MSFC (W. Littles) ..................................... 12/89

NASA HQ (Dr. Rosen, G. Reck) ................................ 1/11/90

NASA/MSFC (J. Lee, J. McCarty) .............................. 7/24/90

NASA HQ (A. Aldrich, G. Reck) ................................ 8/10/90

National Space Council (1. Bekey) ............................... 8/29/90

NASA HQ (J. R. Thompson) .................................. 8129190

Space Systems & Technology Advisory Committee ................... 9/13/90

NASA HQ (J. R. Thompson) .................................. 9/20/90

NASA/MSFC--Progrem Development* ........................... 10/25/90

AF Space Division (Col. Colgrove)* ............................ 10/29/90

Aerospace Safety Advisory Panel .............................. 10131190

Stafford Group ......................................... 11/16/90

NASA/MSFC (J. Lee, J. McCarty) .............................. 12/5/90

NASA/Code R (A. Aldrich) .................................. 12/18/90

NASA HQ (J. R. Thompson) ................................. 12119190

AF Space Division* ....................................... 3/14/91

NASA/MSFC--Research and Technology (J. MoseslJ. Redus)* ....... . ..... 6/20/91

*Full HPIAG noX present

313

Augustine Report Excerpts on the

Future of the U.S. Space Program

"Over the longer term, the nation must turn to new and revolutionary

technologies..."

• More capable end significantly less costly means to launch manned

and unmanned spacecraft

• Architecture studies now underway will define capable, low-cost

launch vehicles

• Maintain vigorous advanced launch system technology program

• Enhancement of current fleet

• Basis for revolutionary launch systems

Hybrid Propulsion Positively Addresses OAST'sCivil Space Transportation Requirements

NASA Transportation TechnologyPlanning Objectives •

TRANSPORTATION TECHNOLOGY

. ¢MEIr

TECHk_ O_iill 7'_(A¥IIUIIffAk'nALLY IJ_RF.AU O_XUUM.iTY, IMfflOVE

. i,i_ _ an,_| i_m"r,,.E

. _ TEa•4_OGY _ F(Xq NEW MAM4_ IylmWII_.UIT ¢OMI_EJ4T 1_[ Ir_,'_tl[ AXD _ _J[ I*[Xlr __--a_AA'l_O_ _CL|B _ I_ 11JRNA.q_JN DANDLOW OPE_TI_

_LO41_WMT OF i_[Wl' LOW-_ S_'Hr.AYV

. DI_tELOpA_iO_LI_M-COS'TTIEOHI4KX_TOIKIPPORT --_..._

COI4_ERCIAL ELY'* AND UPPEd I;TAGE$

IPACll "/I_&NSP¢_R_AI"_ INCL_ NUCLEAR PRO_S_N

nl

* 13 May 19_1, Integrated _logy Plan

Planning Revlew/D.R. Slone

Hybrid Propulsion Attributes

_ • Expanded mission abort modes• Inert VABoperations ....

• Booster operation verlfleopnor to launcn commit

• Reduced Infrastructure costs

• All hybrid vehicle options

• High thrust minimizes number of boosters required• Reduced system complexity• Modular apptlcatlon of boosters for vehicle

growth options* No pad detonation concern

• Applications Identified for At/as end Titan

• Highest leverage technology Identified byMM/SDV study

314

An Industry Consensus on the Hybrid Potential

I Radically improves safety in all phases of manufacture, vehicle

stacking/assembly, and flight, and reduces environmental concerns

Offers a reasonable design alternative to large clusters of LO2/LH 2

engines for heavy-lift boost propulsion

• May enable major reduction in booster life cycle costs

I The United States aerospace community cannotafford to overlook the hybrid propulsion option

Review of Initial NASA Hybrid PropulsionTechnology Program

Phased technology acquisition end demonstratl0n

• Initial approach to technology acquisition resulting from formuleUonofNASA-HPT program

• Address technology deficiencies In series of graduated =ubscale motor tests (Phase II)

• Demonstrate technology at 1.5 Mlbf thrust level (Phase III)

Calendar Year 88 89 90

HPT Phase I

Identify the Necessary Technology _ _

(four contracts)

HPT Phase II Aw_atd

¥|Acquire the Technology

(two contracts) No_

HPT Phase III

Demonstrate the Technology In aLarge Subscale System

91 92 93 94

Compete_7

iMay

CBDv

!

May I

95 96 97 SM

2.1

16

Complete1_7 25

iI I IJan

Total Funding Commitment Required Is $41MProblems

• Technology development does not demonstrate large-scale feasibility In time framerequired for heavy-lift (SEI) applications

• Does not utilize national aerospace assets (HPIAG)

315

An Alternative Development Approach Provides A FastTrack Large-Scale Hybrid Demonstration

• Focused technology acquisition and demonstration

• Approach suggested by J. R. Thompson based on successes of F-1 engine and large solidrocket motor development

• Define speclftc technical Issues for large booster development via early testing of Shuttle

SRM-scale hybrid

ProgramElement

0,75M Ibf

Mt 0 Tell

1.5M Ibf

Mfg Test

3.2M Ibl

and

Mfg Test

1.5M Ibf

3.2M Ibf

Monihl After ATP

,,.,,,,,, I_I_,,H,slt,lt,J.I=ol.I,=l.H.p_,_=

PDR CDR TRR

Clmn|cel TRR

_" _- HDWR Avail

PDR CDR GG HDWR Avail

CleIIslcel

HDWR Avail _.__

PDR CDR GG HDWR Aveil TRR

Avatleble

V....... _7

Funding Required

(one en_lno concept/two engine concepts)

$13M/$2§M

$27M/$47M

$45M/$7fM

Problems

• Effort Includes a large-scale feasibility demonstration only--subsequent mix of aubacaleand full-scale demonstrations to address point design problems requires definition

Final HPT Development Approach Recommendedto J. R. Thompson in December 1991

Now- 1991 1992- 1994

Verification and Technology /_

TestlngNASAat Development I/• 20 klbf • 20 klbf/lO0 klbf/750 klbf v

• 8 months = 30 months• HPIAG sponsored = $25M for large scale

feasibility• Up to $15M for optional

technology

2000 - 2005

I Full-ScaleEngineering

Development

• 750 Klbf and/or 3.2 Mlbf

1994- 1999

Full-Scale Development an_

] e 750 k::°:sMt:2:l°n /

= Not more than 78 months= STBD M

316

Recommended HPT Program Was Included in BudgetRequest From MSFC and LeRC for GFY 93

Start--Subsequently Pushed to GFY 95

Thrust: TRABbPORTATION-AUGMENTATION NEW START Date: =/=I/Qx

Key Technology Objective: 3+o Provide Techno]ol_Jes to Support the Development ot a Robust j_ Coat Effective

Heavy-Lift Capability

Specific Objective: 3,7 Develop Technologies 1'or Achieving LOW Cost Booster Options and

Demonstrate at an AppTopr|ate Sca]o

C_nt__r_ WB__

MSFC 590-21-XX

LeRC 590-21-XX

TASK TITLE: TRANSPORTATION-HYBRID

1993 Authority to release NASA Research Announcement for Hybrid BoosterTechnolbgy Program

1993 Award contracts to begin development and testing of both Gas Generatorand "Classical" Hybrid test motors

1994 Complete 100 klbf testing

1994 I.nitiat.edevelopment of 750 klbf test motors for both "Classical" anduas L_enerator concepts

1996 Test both Hybrid Booster concepts at 750 klbf testing

1996 Complete analysls of performanca data and validation of analytJcal models1996 Complete documentation

1993 Begin development of analytical models and materiaJs data base1995 Validate models at 100 klbf level

1996 Validate models at 750 klbf level and extrapolation of Hybrid uniquescaling data

Near-Term HPIAG Initiative Provides Program Bridge

to GFY 95 HPT New Start

Program concept: Combine industry discretionary resources

with NASA R&T funds to begin near-term HPT development

* Initiate basic technology studies at JPL

• Explore technical feasibility of hybrid propulsion for space launch applications via

subscale and small-scale hybrid motor tests:

* Both classical and aft injection cycles

• 5OO-Ibf, 15-klbf, 150-klbf motors (typical thrust levels)

• Begin limited hybrid propulsion launch vehicle infrastructure studies:

• Operability issues

* Reliability evaluation

• Cost

• Develop program bridge to $40M CSTI effort

317

Multiple Motor Scales Provide Initial FeasibilityEvaluation and Hardware Basis for NRA Follow-on Work

Motor

Thrust Level Classical Objectives Aft Injection Objectives

500 Ibf • Fuel regression rate characteristics • GG propellant ballistic characteristics

• Effects of defects • Effects of defect,,

• Throttle response characteristics • Initial concept throttling

characteristics

15 klbf , Fuel regression scale-up • GG propellant scala-up characteristics

characteristics

150 klbf

• Multiple-port grain retention and

fuel utilization

Combustion stability and efficiency

• LO z Injector feasibility verification

• Combustion stability and efficiency

Initial HPT demonstrations It thrust level of significance for potential launch

• vehicle application

Recommended NASAJHPIA G Organizationto Accomplish Goal

• Create two consortium= to pursue development of both classical and gasgenerator englne cycles

• Companies and NASA Initially linked by MOU

General Dynamics HMartin Marietta

i AMROC

! Hercules

I Thlokol

I UTCICSD

I NASA !

JJ 1

il HClassical Leader Gas Generator Leader

p-

i----'-I Rocketdyne I

!---I uTc/p_wi

p-

AeroJet [

ARC [

Lockheed I

318

Bridge Program Elements

Program duration 24 months

Program total cost $5.6M

• $1.1M industry discretionary

• $4.5M NASA R&T funds

Three basic program tasks include both classical and aft

injection cycles

• Task O--JPL Fundamental Studies (Hybrid Rocket

Technology Program)

• Task 1--Launch Vehicle Infrastructure Studies

• Task 2--Motor Evaluation and Demonstration

Program Master Schedule

Months Following ATP

Memorandum of Understanding_

Program Plan

Task 0--JPL Technology Program

Task I--Infrastructure Studies

Booster Definition-

Mission Model Definition

Operability Evaluation __

Reliability Assessment-

LCC Delta Study__

Task II--Motor Evaluation and

Demonstration

O.5-klbf Motor Testing __

15-klbf Motor Development

and Testing

150-klb Motor

Development and

Testing

319

9.4.2 Reliability of Solid Rocket Motor Cases and Nozzles

by J.G. Crose

iI

320