nano-leds for optical interconnects › wp-content › uploads › ...nov 18, 2010  · erwin lau 5...

54
Erwin Lau 1 Integrated Photonics Laboratory, UC Berkeley Nano-LEDs for Optical Interconnects Erwin K. Lau E3S Seminar November 18, 2010

Upload: others

Post on 26-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Erwin Lau 1 Integrated Photonics Laboratory, UC Berkeley

    Nano-LEDs for Optical

    Interconnects

    Erwin K. Lau

    E3S Seminar

    November 18, 2010

  • Erwin Lau 2 Integrated Photonics Laboratory, UC Berkeley

    Outline

    • Motivation

    • Classical lasers: modulation limit

    – Gain compression effects

    • nanoLED

    – Why nanoLEDs over lasers?

    – Bandwidth enhancement

    – nanoLED design

    • Summary

  • Erwin Lau 3 Integrated Photonics Laboratory, UC Berkeley

    Optical Communication Over the Ages

    year

    0 A.D. 1800’s 1900’s 2000’s

  • Erwin Lau 4 Integrated Photonics Laboratory, UC Berkeley

    Internet Traffic Forecast

    source: www.cisco.com

    Approaching the Zettabyte Era: Global Internet Traffic

    • There is an immediate and global need for more bandwidth capability.

  • Erwin Lau 5 Integrated Photonics Laboratory, UC Berkeley

    Comparison of Electrical and Optical

    Interconnects

    • Electrial interconnects (@ 10 GHz) are > 80 dB worse than optical interconnects.

    • 2009 Nobel Prize: Charles Kao for development of moder optical fiber

    • But optical interconnects are harder to implement and E/O/E process is inefficient.

    Loss/length of coaxial cable

    Lo

    ss (

    dB

    /100 f

    t.)

    Frequency (GHz)

    Lo

    ss (

    dB

    /km

    )

    > 10 THz

    Wavelength (μm)

    Loss/length of optical fiber

  • Erwin Lau 6 Integrated Photonics Laboratory, UC Berkeley

    Evolution of Optical Interconnects

    -Lee, et al., CLEO, May 2010.

    Distance 10’s-100’s km 100 m - 2 km

  • Erwin Lau 7 Integrated Photonics Laboratory, UC Berkeley

    Evolution of Optical Interconnects

    -Lee, et al., CLEO, May 2010.

    Distance 10’s-100’s km 100 m - 2 km

  • Erwin Lau 8 Integrated Photonics Laboratory, UC Berkeley

    Computercom Copper Displacement

    IBM Supercomputers

  • Erwin Lau 9 Integrated Photonics Laboratory, UC Berkeley

    Evolution of Optical Interconnects

    -Lee, et al., CLEO, May 2010.

    Distance 10’s-100’s km 100 m - 2 km

  • Erwin Lau 10 Integrated Photonics Laboratory, UC Berkeley

    Microprocessor Bandwidth

    and Power Projections

    - D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,”

    Proc. IEEE, 97, 2009, pp. 1166-1185.

    The End to Moore’s Law?

    ITRS Specs

  • Erwin Lau 11 Integrated Photonics Laboratory, UC Berkeley

    Global Carbon Footprint of Information

    and Communications Technology (ICT)

    1.25%

    2.7%

    Carbon footprint

  • Erwin Lau 12 Integrated Photonics Laboratory, UC Berkeley

    Inter- and Intra-chip Optical

    Interconnects

    Size Energy/bit

    • There are no electrical solutions to extend Moore’s Law.

    • How do we solve this problem?

    - D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE, 97, 2009, pp. 1166-1185.

  • Erwin Lau 13 Integrated Photonics Laboratory, UC Berkeley

    ITRS Future Interconnect Technologies

    – Source: 2009 International Technology

    Roadmap for Semiconductors (ITRS)

  • Erwin Lau 14 Integrated Photonics Laboratory, UC Berkeley

    Interconnects: Optical vs. Electrical

    Advantages

    • Higher bandwidth

    • Reduced latency

    • Low loss

    • Minimum crosstalk

    • Wavelength division multiplexing (WDM)

    Disadvantages

    • Cost (wires are cheap)

    • Complexity (on-chip integration or III-V carrier chip)

    – Further reference: D.A.B. Miller, “Device Requirements for Optical Interconnects to

    Silicon Chips,” Proc. IEEE, 97, 2009, pp. 1166-1185.

  • Erwin Lau 15 Integrated Photonics Laboratory, UC Berkeley

    Optical

    Interconnects:

    Lasers vs.

    LEDs

  • Erwin Lau 16 Integrated Photonics Laboratory, UC Berkeley

    Laser: Analogy to Mechanical Systems

    j

    MsH

    R

    22

    MHzkHzm

    kR

    m

    b

    k

    GHzR of s'10

    Frequency Response

    Kinetic E. Potential E. photon electron

    Mass-Spring-Dashpot Laser

    2-pole damped oscillator

    a b c

    mirrors

  • Erwin Lau 17 Integrated Photonics Laboratory, UC Berkeley

    What Makes a Laser Fast?

    • Definition: Efficient conversion of electrical modulation to

    optical modulation over a large bandwidth

    • Figure-of-merits:

    – High 3-dB bandwidth: f3dB

    – High resonance frequency: fR

    • Increasing the resonance frequency (fR) can

    increase the bandwidth (f3dB).

    0 20 40 60 80 100-20

    -10

    0

    10

    20

    Frequency [GHz]

    Resp

    on

    se [

    dB

    ]

    f3dB = 15GHz

    fR = 10GHz

    0 20 40 60 80 100-20

    -10

    0

    10

    20

    Frequency [GHz]

    Resp

    on

    se [

    dB

    ]

    0 20 40 60 80 100-20

    -10

    0

    10

    20

    Frequency [GHz]

    Resp

    on

    se [

    dB

    ]

    0 20 40 60 80 100-20

    -10

    0

    10

    20

    Frequency [GHz]

    Resp

    on

    se [

    dB

    ]

    0 20 40 60 80 100-20

    -10

    0

    10

    20

    Frequency [GHz]

    Resp

    on

    se [

    dB

    ]

    f3dB = 75GHz

    fR = 50GHz

  • Erwin Lau 18 Integrated Photonics Laboratory, UC Berkeley

    1980 1990 2000 20100

    20

    40

    60

    80

    100

    120

    Year

    Reso

    nan

    ce F

    req

    uen

    cy [

    GH

    z]

    GaAs

    Evolution of Semiconductor Laser

    Resonance Frequency

    1980 1990 2000 20100

    20

    40

    60

    80

    100

    120

    Year

    Reso

    nan

    ce F

    req

    uen

    cy [

    GH

    z]

    GaAs

    InP

    1980 1990 2000 20100

    20

    40

    60

    80

    100

    120

    Year

    Reso

    nan

    ce F

    req

    uen

    cy [

    GH

    z]

    GaAs

    InP

    VCSEL

    GaAs InP

    VCSEL

    Limit of Direct Mod. Lasers1

    2

    3

    1 Weisser, et al. PTL, 1996.

    2 Matsui, et al. PTL, 1997.

    3 Anan, et al. OFC, 2008.

  • Erwin Lau 19 Integrated Photonics Laboratory, UC Berkeley

    Frequency Response of Free-Running

    Lasers

    • Relaxation oscillation frequency

    increases with laser power. Bad for

    interconnects!

    • 3-dB bandwidth is fundamentally limited

    by damping, thermal effects, and

    nonlinear gain compression, which is a

    stimulated emission effect 0 10 20 30 40 500

    10

    20

    30

    40

    50

    60

    Resonance Frequency [GHz]

    Fre

    qu

    en

    cy [

    GH

    z]

    Damping

    Relaxation

    Oscillation

    Frequency

    f3dB

    Kf dB

    1

    2

    2max,3

    108

    109

    1010

    1011

    -20

    -10

    0

    10

    20

    Frequency

    Resp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -20

    -10

    0

    10

    20

    Frequency

    Resp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -20

    -10

    0

    10

    20

    Frequency

    Resp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -20

    -10

    0

    10

    20

    Frequency

    Resp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -20

    -10

    0

    10

    20

    Frequency

    Resp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -20

    -10

    0

    10

    20

    Frequency

    Resp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -20

    -10

    0

    10

    20

    Frequency

    Resp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -20

    -10

    0

    10

    20

    Frequency

    Resp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -20

    -10

    0

    10

    20

    Frequency

    Resp

    on

    se [

    dB

    ]

    Increasing optical power

    ncompressioGain :ε ;εΓ

    factor Damping :γωγ

    Freq. Osc. Relaxation :τ

    ω

    ω

    γω

    ω

    ω1

    02

    0

    2

    2

    g

    GK

    K

    gS

    j

    H

    p

    R

    pR

    RR

    3 dB

  • Erwin Lau 20 Integrated Photonics Laboratory, UC Berkeley

    Examples of Laser Dimensions

    Photonic CrystalsMicrodisks

    VCSELsEdge-emitters

    • There exists a large size mismatch between transistor and photonic devices

  • Erwin Lau 21 Integrated Photonics Laboratory, UC Berkeley

    Conventional LED: Modulation Speed

    Frequency-Domain Response

    Conventional LED:

    Spontaneous Emission

    (1-pole system)

    a b c

    Time-Domain Response

  • Erwin Lau 22 Integrated Photonics Laboratory, UC Berkeley

    Conventional LED: Efficiency

    • External Quantum Efficiency (EQE): how many carriers convert to

    “useful” light

    • EQE limited by emission into a continuum of modes in all

    directions & total internal refraction

    EQE ~ 2%le

    ns

  • Erwin Lau 23 Integrated Photonics Laboratory, UC Berkeley

    Conventional LED: Efficiency

    External Quantum Efficiency (EQE): how many carriers convert to “useful” light

    – Schnitzer, Yablonovitch, et al., APL, 63(16), 1993.

    EQE ~ 30%

    EQE ~ 9%

    This is EQE for escaping light. What about coupling to waveguide?

  • Erwin Lau 24 Integrated Photonics Laboratory, UC Berkeley

    1980 1990 2000 20100

    20

    40

    60

    80

    100

    Year

    3-d

    B B

    and

    wid

    th [

    GH

    z]

    Evolution of Semiconductor Laser

    3-dB Bandwidth

    LED modulation speed

    (< 1-2 GHz)

    Limit of Direct Mod. Lasers

    GaAsInP

    VCSEL

  • Erwin Lau 25 Integrated Photonics Laboratory, UC Berkeley

    Nano Light Emitting

    Devices

  • Erwin Lau 26 Integrated Photonics Laboratory, UC Berkeley

    Enhanced Spontaneous Emission

    • The spontaneous emission rate is enhanced by the Purcell effect (Phys. Rev., 1946).

    • As laser cavity volumes become smaller, the enhanced spontaneous emission rate can increase the modulation bandwidth.

    nV

    QF

    2

    6

    Purcell factor:

    Quality factor

    Normalized mode volume

    (cubic half-wavelengths)

    a b ca b cLED Cavity-Enhanced LEDa b ca b c

    mirrors

  • Erwin Lau 27 Integrated Photonics Laboratory, UC Berkeley

    Cavity LED Model

    ns 10 sp

    Typical LED

    0

    1

    spτ

    0p

    LED inside cavity

    1

    0sp

    F

    Fsp /0Spontaneous

    Emission lifetime

    0p Photon lifetime

  • Erwin Lau 28 Integrated Photonics Laboratory, UC Berkeley

    Rate Equations Including Purcell Effect

    0

    0

    sp N

    sp p

    dN N NJ GS F

    dt

    dS N SGS F

    dt

    Carrier rate equation:

    Photon rate equation:

    Pump

    Stimulated emission

    Spontaneous emission

    damping rateresonance frequency

    j

    M

    dJ

    dS

    R

    22current Pump

    densityPhoton J pump current

    spontaneous

    lifetime0sp

    spontaneous

    coupling factor

    S photon density

    G gain

    N carrier density

    E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, "Enhanced modulation bandwidth of nanocavity

    light emitting devices," Opt. Express, vol. 17, pp. 7790-7799, 2009

    Non-radiative

    carrier lifetime

    photon lifetime

    F

    F

    Purcell Factor

  • Erwin Lau 29 Integrated Photonics Laboratory, UC Berkeley

    Simplified Analysis and Physical Picture

    for Nanocavity LED

    N

    S

    Current

    Output

    Carrier

    Photon

    p

    0sp

    spF

    • This dynamic process does not

    involve stimulated emission.

    • Therefore, it is not limited by

    gain compression.

  • Erwin Lau 30 Integrated Photonics Laboratory, UC Berkeley

    108

    109

    1010

    1011

    -10

    -5

    0

    5

    10

    Modulation Frequency [Hz]

    Fre

    qu

    en

    cy R

    esp

    on

    se [

    dB

    ]

    Classical Laser Frequency Response

    Maximum bandwidth when response is critically damped

    45×

    100×

    J = 2×J1

    10×

    -3 dB

    Q = 1000

    Veff = 3000(λ/2n)3

    Maximum

    3-dB Frequency

    f3dB,max = 37 GHz

    @ J = 45×J1

    * J1: net stimulated emission = spontaneous emission

  • Erwin Lau 31 Integrated Photonics Laboratory, UC Berkeley

    108

    109

    1010

    1011

    -10

    -8

    -6

    -4

    -2

    0

    2

    4

    Modulation Frequency [Hz]

    Fre

    qu

    en

    cy R

    esp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -10

    -8

    -6

    -4

    -2

    0

    2

    4

    Modulation Frequency [Hz]

    Fre

    qu

    en

    cy R

    esp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -10

    -8

    -6

    -4

    -2

    0

    2

    4

    Modulation Frequency [Hz]

    Fre

    qu

    en

    cy R

    esp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -10

    -8

    -6

    -4

    -2

    0

    2

    4

    Modulation Frequency [Hz]

    Fre

    qu

    en

    cy R

    esp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -10

    -8

    -6

    -4

    -2

    0

    2

    4

    Modulation Frequency [Hz]

    Fre

    qu

    en

    cy R

    esp

    on

    se [

    dB

    ]

    108

    109

    1010

    1011

    -10

    -8

    -6

    -4

    -2

    0

    2

    4

    Modulation Frequency [Hz]

    Fre

    qu

    en

    cy R

    esp

    on

    se [

    dB

    ]

    10×3×

    30×

    100×

    10-3

    10-2

    10-1

    100

    101

    102

    0

    100

    200

    Pump Current, J/J1

    3-d

    B F

    req

    uen

    cy [

    GH

    z]

    ✖✖ ✖ ✖

    J = 0.2×J1

    Q = 400

    Veff= 0.2(λ/2n)3

    F = 1,216

    * J1: net stimulated emission

    = spontaneous emission

    nano-LED Frequency Response

    Below threshold

    Maximum

    3-dB Frequency

    = 210 GHz

    • Maximum bandwidth is below threshold.

    -3 dB

  • Erwin Lau 32 Integrated Photonics Laboratory, UC Berkeley

    0.001 0.01 0.1 1 10 100 1000 1

    3

    10

    30

    100

    300

    1000

    3000

    Normalized Modal Volume, Vn

    Qualit

    y F

    acto

    r, Q

    LED

    ConventionalLasers

    20

    40

    40

    Maximum 3-dB Bandwidth

    Classical

    regime

    (Rst > Rsp)

    Purcell-enhancedregime

    (Rst < Rsp)

    f3dB,opt

    Modal Volume, Veff/(λ/2n)3Normalized Modal Volume, Veff/(λ/2n)

    3

  • Erwin Lau 33 Integrated Photonics Laboratory, UC Berkeley

    0.001 0.01 0.1 1 10 100 1000

    1011

    1012

    Norm. Modal Volume, Vn

    Optim

    al 3-d

    B F

    requency [

    Hz]

    Optimal 3-dB BandwidthO

    ptim

    al 3

    -dB

    Bandw

    idth

    f 3dB

    ,opt[H

    z]

    n

    optdBV

    f1

    ~,3

    -1/2

    0.001 0.01 0.1 1 10 100 1000 1

    3

    10

    30

    100

    300

    1000

    3000

    Normalized Modal Volume, Vn

    Qualit

    y F

    acto

    r, Q

    0.001 0.01 0.1 1 10 100 1000 1

    3

    10

    30

    100

    300

    1000

    3000

    Normalized Modal Volume, Vn

    Qualit

    y F

    acto

    r, Q

    f3dB,opt

    Normalized Modal Volume, Veff/(λ/2n)3

    • We desire small cavities for fast nanoLEDs.

  • Erwin Lau 34 Integrated Photonics Laboratory, UC Berkeley

    Scaling of Optimum 3-dB Frequency

    0.001 0.01 0.1 1 10 100 1000 1

    3

    10

    30

    100

    300

    1000

    3000

    Normalized Modal Volume, Vn

    Qualit

    y F

    acto

    r, Q

    a

    0.001 0.01 0.1 1 10 100 1000 10

    9

    1010

    1011

    1012

    1013

    Normalized Modal Volume Vn

    Optim

    um

    3-d

    B B

    andw

    idth

    , f

    3d

    B,o

    pt [H

    z]

    0.001 0.01 0.1 1 10 100 1000 10

    1

    102

    103

    104

    105

    Optim

    um

    Qualit

    y F

    acto

    r, Q

    op

    t

    b

    Normalized Modal Volume, Veff/(λ/2n)3 Normalized Modal Volume, Veff/(λ/2n)

    3

    • We desire small Q (~10’s) for fast devices.

  • Erwin Lau 35 Integrated Photonics Laboratory, UC Berkeley

    Structure Design

  • Erwin Lau 36 Integrated Photonics Laboratory, UC Berkeley

    Dielectric Confinement of Light

    |E|2

    x

    zy

  • Erwin Lau 37 Integrated Photonics Laboratory, UC Berkeley

    Dispersion in a Surface Plasmon

    z

    Semiconductor, εs

    Metal, εm

    y

    β • At optical frequencies, the real part

    of the dielectric constant for metal

    is negative.

    • When εm = -εs, the wave number

    increases dramatically.

    • In other words, the wavelength

    decreases.

  • Erwin Lau 38 Integrated Photonics Laboratory, UC Berkeley

    Plasmonic Dispersion Curve

    – M. Staffaroni, “A Plasmonic Transducer for Near-Field Recording,” 2008.

  • Erwin Lau 39 Integrated Photonics Laboratory, UC Berkeley

    Surface plasmon mode volume

    GOLD

    lsp/2

    Diffraction limit

    Lakhani 39/41

    No

    rmal

    ized

    Mo

    de

    Vo

    lum

    e (l

    /2n

    )3

    Wavelength (nm)

    Qu

    ality Facto

    r

    n=1

    n=3.5

  • Erwin Lau 40 Integrated Photonics Laboratory, UC Berkeley

    Overview of Nanolasers

    -Oulton, et al. Nature, 2009.

    -Noginov, et al. Nature, 460, 2009, pp. 1110-1112.

    -Hill, et al. Opt. Exp., 17, 2009, pp. 11107–11112.

    -Hill, et al. Nat. Phot., 1, 2007, pp. 589-594.

    Veff > 1.64×(λ/2n)3

    Veff > 11.4×(λ/2n)3

    Veff > 0.38×(λ/2n)3

    Veff ~ 0.0075×(λ/2n)3

  • Erwin Lau 41 Integrated Photonics Laboratory, UC Berkeley

    The Nanopatch Laser

    micropatch

    cavity to

    nanocavity

    Gold

    Active Gain Region

    (InGaAsP)

    Gold

    Theoretical simulation: Manolatou, C. & Rana,

    F. ,IEEE J. Quantum Electron 44, 435–447

    (2008).

    Lakhani 41/41

  • Erwin Lau 42 Integrated Photonics Laboratory, UC Berkeley

    Cavity Modes for the Nanopatch

    Resonator

    1st mode

    Electric Dipole (TM111) mode

    2nd mode

    Magnetic Dipole (TE011) mode

    Simulated

    parameters

    Electric

    dipole mode

    Qtotal 65

    Qrad ~1600

    Γe 0.84

    Veff (λ/2n)3 0.54

    Vphys (λ/2n)3 6.5

    radius @

    λ0=1425nm

    203

    Gold

    InGaAsP

    Gold

    InP

    ~ λ

    / 2

    radius

    Simulated

    parameters

    Electric

    dipole mode

    Magnetic

    dipole mode

    Qtotal 65 80

    Qrad ~1600 205

    Γe 0.84 0.91

    Veff (λ/2n)3 0.54 3

    Vphys (λ/2n)3 6.5 11

    radius @

    λ0=1425nm

    203 290

    Lakhani 42/41

  • Erwin Lau 43 Integrated Photonics Laboratory, UC Berkeley

    Lasing Characteristics

    1300 1350 1400 1450 15000.0

    2.0x103

    4.0x103

    6.0x103

    8.0x103

    1.0x104

    Inte

    ns

    ity

    (A

    .U.)

    Wavelength (nm)

    20.4 mW

    4.2 mW

    2.6 mW

    1.0 mW

    0.5 mW

    1300 1350 1400 1450 15000.0

    2.0x103

    4.0x103

    6.0x103

    8.0x103

    1.0x104

    Wavelength (nm)

    In

    ten

    sit

    y (

    A.U

    .)

    22 mW

    4.2 mW

    2.6 mW

    1.0 mW

    1300 1350 1400 1450 150010

    2

    103

    104

    105

    106

    Inte

    ns

    ity

    (A

    .U.)

    Wavelength (nm)

    1300 1350 1400 1450 1500

    102

    103

    104

    Wavelength (nm)

    In

    ten

    sit

    y (

    A.U

    .)

    Magnetic DipoleElectric Dipole

    Optical pumping

    (78K) with

    1060nm, 100ns

    pulse @ 5 kHz

    Wavelength (nm)Wavelength (nm)

    Inte

    nsi

    ty (

    A.U

    .)

    Inte

    nsi

    ty (

    A.U

    .)

    Lakhani 43/41

  • Erwin Lau 44 Integrated Photonics Laboratory, UC Berkeley

    Lasing Characteristics

    Fβ=10

    0.1

    1.1

    Fβ=10

    0.1

    1.2

    Pthresh~60kW/cm2 Pthresh~90 kW/cm

    2

    Peak Pump Power (mW)

    Inte

    nsi

    ty (

    A.U

    .)

    Magnetic Dipole

    F=11.4

    β=0.105

    Peak Pump Power (mW)

    Electric Dipole

    F=49.5

    β=0.022

    F=Purcell Enhancement

    β=Spontaneous emission

    coupling factor

    Lakhani 44/41

  • Erwin Lau 45 Integrated Photonics Laboratory, UC Berkeley

    Nanopatch: Process Flow

    Legend

    InP SubstrateEpilayer

    GoldSapphireBonding LayerE-beam Resist

    InGaAsP epilayer growth Dielectric deposition (5nm)

    Flipchip bond to sapphire Substrate removal; dielectric deposition Litho and Metal Evap

    RIE Etch/Wet EtchLiftoff

    Metal Evaporation

    Dielectric

    Lakhani 45/41

  • Erwin Lau 46 Integrated Photonics Laboratory, UC Berkeley

    .001 .01 .1 110

    9

    1010

    1011

    1012

    Vn/(l/2n)

    3

    3-d

    B B

    and

    wid

    th [

    Hz]

    Cavity Volume vs. Bandwidth, Qcav = 10

    • We desire a sub-wavelength cavity for both speed and footprint.

  • Erwin Lau 47 Integrated Photonics Laboratory, UC Berkeley

    Nano-LED: Design

    Oxide

    30 nm

    30 nm

    200 nm

    40 nm

  • Erwin Lau 48 Integrated Photonics Laboratory, UC Berkeley

    Nano-LED: Electric Energy Density

    Confinement Factor: 17% Mode Volume: 0.03 (λ/2n)3

    Qloss: 12 , Qrad: 33, Qtotal : ~10

    Gold Antenna

    InGaAsP (1.55um)

    Gold Ground Plane

  • Erwin Lau 49 Integrated Photonics Laboratory, UC Berkeley

    Normalized Modal Volume, Vn

    Qualit

    y F

    acto

    r, Q

    0.001 0.01 0.1 1 10 100 1000 1

    3

    10

    30

    100

    300

    1000

    3000

    StE

    SpE

    20

    20030

    40

    40100

    120160

    2500

    Modulation Bandwidth Versus Cavity-Q and

    Modal Volume [in GHz]

    Gold Antenna

    InGaAsP (1.55um)

    Gold Ground Plane

    Vn = 0.03 (λ/2n)3

    Q = 10

    f3dB = 40 GHz

  • Erwin Lau 50 Integrated Photonics Laboratory, UC Berkeley

    Nano-LED: Efficiency

    • Unlike lasers, Γrad can be engineered without

    significant impact to performance

  • Erwin Lau 51 Integrated Photonics Laboratory, UC Berkeley

    LegendInP SubstrateEpilayerDielectric

    GoldCMOS

    E-beam Resist

    P-side metal contact Flipchip bond to CMOS Remove InP substrate

    Lithography and Etch Dielectric Deposition Planarization and Selective RIE

    Gold Deposition and Etch

    Nano-LED: Fabrication on CMOS

  • Erwin Lau 52 Integrated Photonics Laboratory, UC Berkeley

    Nano-LEDs as Optical Interconnects

    Figure-of-Merit Hybrid Si

    Evanescent Laser

    nanoLED Improvement

    Factor

    Modulation

    Speed

    External Mod.,

    ~ 10 Gbps?

    Direct Mod.,

    > 100 Gbps

    ×~10

    Size ~ 2000 μm2 ~ 0.008 μm2 ×100,000

    Electrical Power

    Consumption

    50 mW @ threshold 80 μW @ 100 Gbps ×1,000

    Current Usage 25 mA @ threshold 100 μA @ 100 Gbps > ×100

    Quantum

    Efficiency

    ~ 10% ~ 10-50% Comparable*

    * nanoLED QE can be engineered

  • Erwin Lau 53 Integrated Photonics Laboratory, UC Berkeley

    Summary of Advantages for nano-LED

  • Erwin Lau 54 Integrated Photonics Laboratory, UC Berkeley

    Acknowledgement

    • UC Berkeley

    – Amit Lakhani

    – Michael Eggleston

    – Kyoungsik Yu

    – Prof. Ming C. Wu

    – Integrated Photonics Lab

    • University of Melbourne

    – Prof. Rodney S. Tucker

    • Funding:

    – DARPA

    – Australian Research Council