nanoengineered reactive materials and their combustion and synthesis revised

109
Nanoengineered Reactive Materials dth i C b ti dS th i and their Combus tion andS ynthesis Richard A Yetter Richard A. Yetter Penn State University 2012 PrincetonCEFRC Summer School On Combustion C L th 3 h Course Length: 3 hrs June 25 – 29, 2012

Upload: mhmtmtl

Post on 07-Sep-2015

34 views

Category:

Documents


10 download

DESCRIPTION

Presenation

TRANSCRIPT

  • Nanoengineered ReactiveMaterialsd th i C b ti d S th iandtheirCombustionandSynthesis

    Richard A YetterRichardA.YetterPennStateUniversity

    2012PrincetonCEFRCSummerSchoolOnCombustionC L th 3 hCourseLength:3hrsJune25 29,2012

  • AbstractIn the nanotechnology community, there has been

    tremendous progress in the molecular sciences toward thetotal command of chemistry at all length scales. This progressy g p ghas been inspired by advances in the structural determinationof biological systems. Similar advancements in assembly ofmolecular and nanoscale elements have been made in thepharmaceutical and microelectronics fields as well. Thesedevelopments make it clear that in the foreseeable future itwill be possible to synthesize any desired macroscopict t ith i l ti f t Thistructure with precise location of every atom. This courseexamines how nanotechnology methodologies are currentlybeing applied to develop multifunctional smart reactivematerials for combustion applications and the combustionmaterials for combustion applications and the combustionmethods for materials synthesis.

  • Outline

    IntroductionIntroduction BasicsS h i d bl SynthesisandAssembly

    Combustion Applications

  • Howsmallissmall?

    Micrometerandnanometer Bothareinvisiblysmall

    Micrometer Sizeofredbloodcell

    NanometerNanometer SizeofsmallmoleculeFive times the size of the hydrogen atom Fivetimesthesizeofthehydrogenatom

    S.F.SonandR.A.Yetter,Nanoenergetics,2012

  • ReasonsforNanotechnologyNoSmallMatter,byFrankelandWhitesides

    InformationTechnology Smallestpartsoftransistorsarenanoscale Connecting wires are < 40 nm (less than 100 gold atoms laid end to end!)Connectingwiresare

  • ReasonsforNanotechnology continued Materials

    Nanoscale phenomenacontrolgrainboundaries,behaviorofcracktips,voids,andotherinterfaces

    Wecanalsomakenewmaterialswithnewproperties Selfassembledmonolayers,rodsorothershapes,tubes,etc. THISISBECOMINGMOREIMPORTANTINNANOENERGETICSANDNANOREACTIVEMATERIALS

    Q t Ph QuantumPhenomena Nano isatthescalewherequantumeffectsbegintoemerge

    Medicine Nanostructuresandnanoscience shouldbeusefulinselectingspecific

    cellstodestroyorprotect,inprecisedeliveryofdrugstotissues,etc. EnergyandtheEnvironment

    Nanoscale catalystsareusedtoconvertcrudeoiltousablefuels Nanoscale particlesnaturallyformedareimportantincloudformation NANOENERGETICSCANAPPLYTOENERGYAPPLICATIONS

    e.g.,ultrahighsurfaceareametalfoamsmadeviacombustionsynthesisforcatalystsorhydrogenstorage

    Risks?Certainly.Safetyisacurrentareaofresearch.FrankelandWhitesides,NoSmallMatter,Belknap/Harvard,2009 S.F.SonandR.A.Yetter,Nanoenergetics,2012

  • WhatNanotechnologyIsNOT Itisnotapanacea

    ItdoesNOTsolveallmaterialsproblemsF ti d ti t i l it t ti ll b Forenergeticandreactivematerials,itcanpotentiallybeagamechangerwithrespecttokinetics(ignitionandreactiontimes)

    It ll ill t h th t t b t ld ll Itgenerallywillnotchangetheenergycontent,butcouldallowsomereactives thatcouldnotbeconsideredotherwise(nSi isanexample)

    Nano is sexy but micro still pays many of the bills Nano issexy,butmicrostillpaysmanyofthebills. FrankelandWhitesides

    Nanotechnologyisnew,right? Romancup,Mayanpaint,cartires,stoplights,etc.,alluse(d)nanomaterials

    SEMs, TEMs, AFM, etc. make difference today! WeveSEMs,TEMs,AFM,etc.makedifferencetoday!We veonlybeenabletoimagenanomaterials forafewdecades

    S.F.SonandR.A.Yetter,Nanoenergetics,2012

  • TheLycurgusCup ARomanNanotechnology

    Whenilluminatedfromoutside,itappearsgreen

    However,whenilluminatedfromwithinthecup,itglowsred

    Colloidsofgoldandsilveralloyg ynanoparticles (~50100nm)withaAg/Auratioof7:3scatter/absorb lightyieldingthedichroic effects.

    Thetransmittedredcolorisduetotinygoldparticlesembeddedintheglass,whichhaveanabsorptionpeakataround520nm.Thereflectedgreenishcolorresultsfromthesilverparticles.

    TEMofsilvergoldalloyparticle within glass

    TEMofsodiumchlorideparticles within glass

    Freestone,I.,Meeks,N.,Sax,M.,Higgitt,C.,GoldBulletin,40,4,270,2007

    particlewithinglass particleswithinglass

    S.F.SonandR.A.Yetter,Nanoenergetics,2012

  • Why Combustion andWhyCombustionandNanotechnology?

  • CombustionandNanotechnology

    140 160

    Wherearetheybeingstudied?Numberofpublicationsdevotedtofuelsandenergeticmaterials

    100

    120

    140

    120

    140

    160

    60

    80

    100

    60

    80

    100

    20

    40

    0

    20

    40

    01995 2000 2005 2010

    Year

    0

    Country

    Numberofpublicationsbyyearandcountryforthesearchtermsnano AND(fuelORpropellant ORenergeticmaterial ORexplosive)from19962010.

  • SurfacetoBulkAtomRatioforSphericalIronCrystalsCrystals

    100

    60

    80 bulk atoms

    40

    60

    0

    20 surface atoms

    00 5 10 15 20 25 30

    particle size (nm)

    K.J.Klabunde,J.Stark,O.Koper,C.Mohs,D.G.Park,S.Decker,Y.Jiang,I.LagadicandD.J.Zhang,J.Phys.Chem.100,(1996)1214212153.

  • MeltingPointandNormalizedHeatofFusion for Tin NanoparticlesFusionforTinNanoparticles

    480

    500

    4050

    60

    440

    460

    2030

    40

    4200 20 40 60 80 100

    particle diameter (nm)

    100 20 40 60 80 100

    particle diameter (nm)

    S.L.Lai,J.Y.Guo,V.Petrova,G.Ramanath,andL.H.Allen,Phys.Rev.Lett.77(1996)99102.

    Foraluminumparticles:Al i S d Th D L JPC A 110 1518 2006Alavi,S.andThompson,D.L.,JPCA 110,1518,2006.Puri,P.andYang,V.,JPCC110,11776,2007.AlsoAIAA2008938andAIAA20071429.

  • OtherFeaturesofNanoparticles

    Increased specific surface area Increasedspecificsurfacearea Increasedreactivity Increased catalytic activity Increasedcatalyticactivity Lowermeltingtemperatures Lower sintering temperatures Lowersinteringtemperatures Superparamagneticbehavior Superplasticity Superplasticity

  • StructureoftheAbaloneShell

    Structureofthenacre:95 wt.% inorganic material95wt.%inorganicmaterial5wt.%organicmaterial

    inorganiclayers:CaCO3 aragonite

    organiclayers:

    A.LinandA.Meyers,Mat.Sci.Eng.A390,2741,2005.

  • Nanoparticle SelfAssembly

    Sanders,J.V.,Murray,M.J.,Naturev275,1978.

    Shevchenko,E.V.,Talapin,D.V.,Kotov,N.A.,OBrien,S.,Murray,C.B.,Naturev439,2006

    Kalsin,A.M.,Fialkowski,M.,Paszewski,M.,Smoukov,S.K.,Bishop,K.J.,Grzybowski,B.A.,Science v312,2006

  • Multiscale StructuresGeckofoothairmicro/nanostructures Climbrapidlyupsmoothverticalsurfaces Footstickingandreleasingmechanismcritical Compliantmicro andnanoscale highaspectratiobetakeratinstructuresattheirfeettoadheretoanysurfacewithapressurecontrolledcontactarea

    Adhesionisduemainlytomolecularforces(vander Waalsforces)

    Setae

    Rowsofsetaefromatoe

    Geckofoot Singleseta Finestterminalbranchofsetacalledspatulae Foothairsstartfromthemicrometerscale(stalksorseta)andgodownto100200nmdiameter

    Autumn,K.,etal.,Nature,405,681684,2000

    ( ) g(spatular stalks)bybranching.

    Eachfoothas~500ksetae,each30130mlongwith100sofspatular stalks. Attheendsofthespatular stalksareorientedcaps(spatulae)withdiametersof300500nm.

  • OrganizationandAssemblyattheNanoscale:Example of an Energetic MaterialExampleofanEnergeticMaterial

  • ProbingQuestions

    Limited fundamental understanding of which type ofsupramolecular structures provide desirable performance incombustion mechanical and hazard characteristicscombustion, mechanical, and hazard characteristics.

    How do we systematically prepare fuel nanostructures withcontrolled shapes and sizes?

    What are the desirable shapes and sizes of thesenanostructures?

    What kind of synthetic passivation layers are needed toWhat kind of synthetic passivation layers are needed toproduce rugged systems resisting oxidation during storage,while decreasing sensitivity?

    What sorts of oxidizer nanostructures can be synthesized? What sorts of oxidizer nanostructures can be synthesized? Given fuel nanostructure, what are the best forms for theoxidizer: fuel coatings, oxidizer nanostructures, or polymermatrix oxidizer?

  • ProbingQuestions contd At what length scales do chemical reaction dynamics becomesignificant/dominant?

    What structures allow us to control the rate of energy releaseWhat structures allow us to control the rate of energy releaseover a wide range of conditions: passivation layers, 3Darchitectures, or concentration gradients?

    What structures lead to focused or directional energy release? What structures lead to focused or directional energy release? What structures lead to reduced sensitivity? What are the fundamental mechanisms of initiation? How dothermal and shock initiation differ?

    What structures lead to detonation? Can the structures be made smart? Can the structures be made smart? How best to couple the output of nanoenergetics to usablefunctions (e.g., power, mechanical force, desired chemicals)

  • EnergyContentasaFunctionofParticleDiameterDiameter

    1

    0.8

    0.6 2 nm

    3

    0 2

    0.4 3 nm

    0

    0.2

    9 8 7 610-9 10-8 10-7 10-6

    particle diameter (m)

  • SomeBasics

  • HeatsofOxidationofSeveralMaterials

    120

    140Gravimetric (kJ/gm

    fuel)

    80

    100

    120 fuelVolumetric (kJ/cm3

    fuel)

    i

    d

    a

    t

    i

    o

    n

    40

    60

    H

    e

    a

    t

    o

    f

    O

    x

    0

    20

    A

    l

    )

    B

    )

    e

    )

    C

    )

    e

    )

    L

    i

    )

    g

    )

    S

    i

    )

    T

    i

    )

    W

    )

    Z

    r

    )

    l

    u

    m

    i

    n

    u

    m

    (

    A

    B

    o

    r

    o

    n

    (

    B

    B

    e

    r

    y

    l

    i

    u

    m

    (

    B

    e

    C

    a

    r

    b

    o

    n

    (

    C

    I

    r

    o

    n

    (

    F

    L

    i

    t

    h

    i

    u

    m

    (

    L

    g

    n

    e

    s

    i

    u

    m

    (

    M

    g

    S

    i

    l

    i

    c

    o

    n

    (

    S

    T

    i

    t

    a

    n

    i

    u

    m

    (

    T

    T

    u

    n

    g

    s

    t

    e

    n

    (

    W

    i

    r

    c

    o

    n

    i

    u

    m

    (

    Z

    A

    B

    M

    a

    g

    T

    Z

    i

  • ThermodynamicConsiderations

    Foroxygencontainingenvironments,earlystudies (Glassman Von Grosse and Conway)studies(Glassman,VonGrosseandConway)recognized

    The importance of the volatility of the metal vs Theimportanceofthevolatilityofthemetalvsthemetaloxide

    The relationship between the energy required to Therelationshipbetweentheenergyrequiredtogasifythemetalormetaloxideandtheoverallenergyavailablefromtheoxidationreaction agylimitingflametemperature

    H > Q (Ho Ho ) HHvapdissoc >QR (HoT,vol Ho298)=HavailGlassman,Combustion,AcademicPress,3rd Edition,1996

  • ThermodynamicConsiderations Contd

    Metal Tbp(K)

    Oxide Tvol(K)

    Hf,298(kJ/mol)

    Hvol(kJ/mol)

    HTvol-H298 + Hvol(kJ/mol)(kJ/mol)

    Al 2791 Al2O3 4000 -1676 1860 2550B 4139 B2O3 2340 -1272 360 640Be 2741 BeO 4200 -608 740 1060Cr 2952 Cr2O3 3280 -1135 1160 1700Fe 3133 FeO 3400 -272 610 830Hf 4876 HfO2 5050 -1088 1014 1420Li 1620 Li2O 2710 -599 400 680

    Mg 1366 MgO 3430 -601 670 920Si 3173 SiO2 2860 -904 606 838Ti 3631 Ti3O5 4000 -2459 1890 2970Zr 4703 ZrO2 4280 -1097 920 1320

    Glassman,Combustion,AcademicPress,3rd Edition,1996

  • ClassificationofMetalCombustion

    I VolatileProduct NonvolatileproductII Volatile metal Nonvolatile metal Volatile Metal Nonvolatile MetalII Volatilemetal

    Gasphasecombustion

    NonvolatilemetalSurfacecombustion

    VolatileMetalGasphasecombustion

    NonvolatileMetalSurfaceorcondensedphasecombustion

    III Soluble Nonsoluble Soluble Nonsoluble Soluble Nonsoluble Soluble Nonsoluble

    Productmaydilutemetalduring

    Nofluxofproducttometal

    Productmaybuildupinmetalduring

    Noproductpenetrationintometal

    Ifproductreturnstometalitmay

    Disruptionstronglyfavoredifproduct

    Metalmaydiffusethrough

    Productcoatingmakesignitiondifficult

    burningandcausedisruptionifitsboilingpoint

    d th t

    burning diluteitandcausedisruption

    returnstometal growingproductlayer,purelycondensedphase

    b tiexceedsthatofmetal

    combustionpossible

    F.A.Williams,"SomeAspectsofMetalParticleCombustion,"PhysicalandChemicalAspectsofCombustion:ATributetoIrvGlassman,F.L.DryerandR.F.Sawyer,eds.,GordonandBreach,TheNetherlands,1997,pp.267289.

  • ThermodynamicConsiderations EffectofPressure and OxidizerPressureandOxidizer

    6000

    2Al+1.5O2

    (

    K

    )

    5000

    2Al 1.5O2

    2Al+1.5(O2+3.76N2)

    p

    e

    r

    a

    t

    u

    r

    e

    4000

    2Al+3CO2,Reactants at 298K

    T

    e

    m

    p

    30002Al+3H2O(g),

    0 1 1 10 1002000

    Al vaporization2Al+3H2O(l),Reactants at 298K

    2 (g),Reactants at 398K

    Pressure (atm)0.1 1 10 100

    GlassmanandYetter,Combustion,AcademicPress,4th Edition,2008

  • MicronAluminumParticleCombustionOxidizerEffects PressureEffects

    Air

    60 t2 t 60 atm2 atm1 atm

    R.A.YetterandF.L.Dryer,inFireinFreeFall:MicrogravityCombustion,H.Ross,Ed.,AcademicPress,Chapter6,2001.

  • EquilibriumProductCompositionandTemperature vs Input EnthalpyTemperaturevs.InputEnthalpy

    1 4500

    Stoichiometric MixtureofAlandO2 at298Kand1atm

    0.8

    1

    4000

    4500

    T

    TAl2O

    3(l)

    0.63500

    4000

    F

    r

    a

    c

    t

    i

    o

    n

    Tempera

    O

    0 2

    0.4

    3000

    M

    o

    l

    e

    F

    ture (K)

    Al

    AlO

    O

    0

    0.2

    2500-15 -10 -5 0 5 10 15

    O2

    Al2O

    -15 -10 -5 0 5 10 15

    Assigned Enthalpy (kJ/g)Glassman,Combustion,AcademicPress,3rd Edition,1996

  • FlameStructureofMicronAluminumParticle Burning in AirParticleBurninginAir

    c

    t

    i

    o

    n

    s

    1 0 ]

    NaturalLuminosity

    M

    o

    l

    e

    F

    r

    a

    c

    0.60.81.0

    e

    r

    a

    t

    u

    r

    e

    [

    K

    ]

    3500

    4000

    T AlO

    Simulated

    AlO PLIF

    Al2O3 EPMA

    r

    m

    a

    l

    i

    z

    e

    d

    M

    0 00.20.4

    T

    e

    m

    p

    e

    2000

    2500

    3000

    Al2O3

    T PLIF

    AlO PLIF

    r / rp

    1 2 3 4 5 6 7 8 9 10No

    r 0.0 2000AlOPLIF

    Burninterruptedparticleon silicon waferr / rp onsiliconwafer

    Bucher,P.,etal.Proc.Combust.Inst.,27,2421,1998.

    EPMA

  • ThermodynamicsofCombustionSynthesisHeatsofFormationofChlorides

    Chloride Hfo,298K(kJ/mol)

    PerClatom

    HeatsofFormationofNitrides

    Nitride Hfo,298K(kJ/mol)

    PerNatom

    CsCl 443 443

    KCl 437 437

    BaCl2 859 430

    HfN 369 369

    ZrN 365 365

    TiN 338 3382RbCl 430 430

    SrCl2 829 415

    NaCl 411 411

    AlN 318 318

    BN 251 251

    Mg3N2 461 231

    LiCl 408 408

    CaCl2 796 398

    CeCl3 1088 362

    g3 2Si3N4 745 186

    Li3N 165 165

    N2 0 0CeCl3 1088 362

    AlCl3 706 235

    TiCl4 815 204

    SiCl4 663 166

    N2 0 0

    NaN3 22 7

    MClx +xNa +(y/2)N2 xNaCl +MNySiCl4 663 166 MClx +nMCly +(x+ny)Na

    (x+ny)NaCl +MMnMClx +xNaxNaCl +M

    Glassman,Combustion,AcademicPress,3rd Edition,1996

  • ExamplesofEnergyContentofThermite andIntermetallic ReactionsIntermetallic Reactions

    Reactants HeatofReaction Reactants HeatofReaction

    cal/g cal/cm3 cal/g cal/cm3

    TNT 649 1073 TNT 649 1073

    l l2Al+3CuO 974 4976 Al+Ni 330 1706

    2Al+MoO3 1124 4279 Al+Pd 327 2890

    2Al + 3NiO 822 4288 2B + Hf 401 33032Al+3NiO 822 4288 2B+Hf 401 3303

    Si+2CuO 762 4354 B+Ti 670 2558

    3Si +2MoO3 720 3000 3Si+5Ti 428 1590

    Si+2NiO 569 3420 C+Ti 736 2760

    C +2CuO 11 66 C+Zr 455 2400

    Fischer,S.H.andGrubelich,M.C.,32nd AIAA/ASME/SAE/ASEEJointPropulsionConference,LakeBuenaVista,Fl,July13,1996.

  • ModesofParticleCombustion

    11

    DiffusionControlledwithEnvelopeFlame

    DiffusionControlledwithoutEnvelopeFlame

    KineticallyControlled

    T/T

    T/T

    fuel

    1T/T

    fuel

    products

    1 T/T1

    oxidizerproducts

    s0oxidizer

    products

    s0oxidizer

    fuelproducts

    s0ss

  • Diffusionvs KineticControl

    B)1(D8d

    t20p

    b,diff = l )iY1(D8d

    t20p

    b,diff = l

    Diffusioncontrolledcombustionwithvaporizationorsurfacereaction

    B)1(D8b,diff +ln )iY1(D8 O,b,diff +ln

    dKineticcontrolledsurfacereaction

    =

    O,p

    0pb,kin kPXMW2

    dt

    As particle size is decreased two conditions defined by Da =1 and Kn =1 arise

    XkPdMWtDa O,0pb,diff ==

    Asparticlesizeisdecreased,twoconditionsdefinedbyDa=1andKn=1arise

    )iY1(D4tDa

    O,b,kin +ln

    d2Kn = 1 2= 21

    2 /

    =pd N2

    2 21

    RTMW8P

    /

  • ShrinkingCoreModelforSphericalParticlesofUnchanging Size

    Product Unreactedcore

    Low HighUnreacted

    core

    UnchangingSizeDiffusionthroughProductLayerControls

    t

    i

    o

    n

    o

    f

    r

    e

    a

    c

    t

    a

    n

    t Typicalpositionindiffusionregion

    Lowconversion conversion

    Time Time

    Product

    Reactionzone

    R Rrc rc0

    C

    o

    n

    c

    e

    n

    t

    r

    a

    t

    g

    a

    s

    p

    h

    a

    s

    e

    r

    CAg

    CA

    0 r

    region

    n

    t

    r

    a

    t

    i

    o

    n

    o

    f

    r

    e

    a

    c

    t

    a

    n

    t

    Product Unreactedcore

    Radialposition

    R R R R R R00 0

    C

    o

    n

    c

    e

    n

    s

    o

    l

    i

    d

    ChemicalReactionControls

    e

    n

    t

    r

    a

    t

    i

    o

    n

    o

    f

    a

    s

    e

    r

    e

    a

    c

    t

    a

    n

    t

    CAg

    Radialposition

    R R R R R R00 0

    RadialpositionR Rrc rc0

    C

    o

    n

    c

    e

    g

    a

    s

    p

    h

    a

    Seeforexample,Levenspiel,O.,ChemicalReactionEngineering,ThirdEdition,J.WileyandSons,1999

  • ShrinkingCoreModelforSphericalParticlesofUnchanging Size

    2pR = pR =

    DiffusionthroughProductLayerControls ChemicalReactionControls

    UnchangingSize

    Ag2 3

    2 / 3

    6bDCt r r1 3 2

    R Rt

    = +

    Ag

    1/ 3

    bkCt r1

    Rt 1 (1 X)

    = =

    1 1 0

    2 / 3t 1 3(1 X) 2(1 X)= + 1 (1 X)=

    Radiusvs.Time Conversionvs.TimeRateofChangeof

    Conversionvs.Conversion

    0.6

    0.8

    R

    0.6

    0.8

    X

    -0.4

    -0.2

    /

    d

    (

    t

    /

    )

    Diff i

    Diffusioncontrolled

    Kineticcontrolled

    Kineticcontrolled

    0.2

    0.4

    r

    /

    R

    0.2

    0.4

    1

    -

    X

    -0.8

    -0.6

    d

    (

    1

    -

    X

    )

    /Diffusioncontrolled

    Diffusioncontrolled

    Kineticcontrolled

    00 0.2 0.4 0.6 0.8 1

    t/0

    0 0.2 0.4 0.6 0.8 1t/

    -10 0.2 0.4 0.6 0.8 1

    X

    Seeforexample,Levenspiel,O.,Chemical ReactionEngineering,ThirdEdition,J.WileyandSons,1999

  • EffectofParticleDiameteronAlBurningTimeTime

    100000Wilson and Williams [7]Wong and Turns [2]P ti [4]

    Davis [8]Parr et al. [9] (T=1500 K)P t l [9] (T 2000 K)

    1000

    10000Prentice [4]Olsen and Beckstead [1]Hartman [3]Friedman and Macek [5,6]

    Parr et al. [9] (T=2000 K)Park et al. [10] (T=1173 K)Eisenreich et al. [11] (T=900 K)

    e

    [

    m

    s

    ]

    100

    1000

    r

    n

    i

    n

    g

    T

    i

    m

    e

    1

    10

    B

    u d1.8T=1500K

    0.10.01 0.1 1 10 100 1000

    Diameter [m]

    T=2000K

    [ ]T.Bazyn,H.Krier,andN.Glumac,ProcCombust.Inst.31(2007)2021&Combust.Flame 145(2006)703.Y.L.Shoshin andE.L.Dreizin,Combust.Flame145(2006)714.

  • EffectofParticleDiameteronAlIgnitionTemperatureTemperature

    3500Parr et al. [20]

    3500Derevyaga et al. [34]

    e

    ,

    K

    3000

    [ ]Bulian et al. [38]Assovskiy et al. [40]Yusasa e tal. [37,39]Brossard et al. [36]Ermakove tal. [35]

    e

    ,

    K

    3000

    y g [ ]Merzhanov et al. [33]Friedman et al. [31,32]Trunov et al. [26]CurveFit

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    2000

    2500

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    2000

    2500

    I

    g

    n

    i

    t

    i

    o

    n

    T

    1000

    1500

    I

    g

    n

    i

    t

    i

    o

    n

    T

    1000

    1500

    i l i10-2 10-1 100 101 102 103 104

    500

    1000

    i l i10-2 10-1 100 101 102 103 104

    500

    1000

    Particle Diameter, mParticle Diameter, m

  • ThermalGravimetricAnalysisofNanoaluminum with CONanoaluminum withCO2

    1 6

    1.8 7

    38nm

    1.2

    1.4

    1.6

    5

    6

    M

    a

    s

    s

    (

    T

    G

    )

    10m3m

    108nm

    45nm(2.5nm)45nm(3.6nm)

    1.0

    3

    4

    45nm(2.5nmoxide)38nm

    10m

    1

    2

    n

    e

    r

    g

    y

    (

    D

    S

    C

    )

    3m108nm

    45nm(3.6nmoxide)

    ( )

    250 450 650 850 1050 12500

    1

    E

    n10m

    Temperature(oC)

    K.Brandstadt,D.L.Frost,andJ.A.Kozinski,inAdvancementsinEnergeticMaterialsandChemicalPropulsion,ed.K.K.KuoandJ.deDiosRivera,BegallHouse,2007.IlinAP,GromovAA,andYablunovskiiGV(2001)Combustion,explosion,andshockwaves,37n.4:418422.

  • PolymorphicPhaseTransformationsinAl2O3 LayerAl2O3 Layer

    M.A.Trunov,M.SchoenitzandE.L.Dreizin,CombustionTheoryandModelling,10,2006,603623

  • AluminumNanoparticle OxidationwithSingleParticle Mass Spectrometry

    2

    ParticleMassSpectrometryIncreasedrateconstantwith

    decreasingparticlesize Shrinkingcoremodel

    0.5

    0.6

    0.7

    r

    s

    i

    o

    n

    ,

    s

    T = 700oC0

    2

    s

    e

    c

    )

    < 50 nmE ~ 32kJ/ l

    0 2

    0.3

    0.4

    f

    o

    r

    h

    a

    l

    f

    c

    o

    n

    v

    e

    r

    t ~ r1.58-4

    -2

    (

    K

    c

    o

    n

    v

    )

    ,

    L

    n

    (

    1

    /

    s

    50 - 100 nm

    Ea~32kJ/mol

    0

    0.1

    0.2

    0 5 10 15 20 25 30 35

    T

    i

    m

    e

    f

    time(s) = 0.0025r(nm)1.582

    -8

    -6

    L

    n

    (

    Ln(Kconv

    ) = 17.8 - 21000(1/T)

    Ln(Kconv

    ) = 5.2 - 6847(1/T)

    Ln(Kconv

    ) = 3.2 - 3824(1/T)100 -150 nm

    Ea~95kJ/mol

    radius, nm-80.0008 0.0009 0.001 0.0011 0.0012

    1/T (1/K)

    Effectivediffusioncoefficient(De)ofoxygeninashlayer=109 ~108 cm2/sfor

  • OxidationofanAlNanoparticle byMultimillion Atom MD SimulationsMultimillionAtomMDSimulations

    35

    (

    )

    15

    25T

    h

    i

    c

    k

    n

    e

    s

    s

    95

    105

    115

    Inner Radius

    s

    (

    )

    5

    15

    0 100 200

    O

    x

    i

    d

    e

    T

    75

    85

    95 Outer Radius

    R

    a

    d

    i

    u

    s

    1-1 0Pressure (GPa)

    0 100 200Time (ps)

    P.Vashishta,R.K.Kalia,andA.Nakano,J.Phys.Chem.B2006,110,37273733

  • S h i d A bl ?SynthesisandAssembly?

  • HowareNanoenergetics Made? Thecreationofnanoenergeticsisstilla

    Nitrated Carbon

    currentresearcharea Manyapproachestaken

    l l d

    100 nm

    Nano-CrystallineExplosives Nitrated Carbon

    Tube Structures Forexample,NanoAlmadevia:

    exploding wires

    Explosives Encapsulated

    explodingwires condensationtechnique plasmamethods wetchemistryapproaches

    S.F.SonandR.A.Yetter,Nanoenergetics,2012

  • SynthesisMethodsS h i G I G h d i b d h i f d i SynthesisGroupI:Gasphasecondensationbasedtechniquesforproductionofnanosized metalparticles,e.g.,wireexplosion,PVD(PhysicalVaporDeposition;e.g.,usingvacuum),CVC(ChemicalVaporDeposition),supercriticalprocessingp p g

    SunX.K,Xu J.,.ChenW.D,WeiW.D.,Nanostruct.material ,4,337(1994) Tohno S.,Itoh M.,andTakanoH.,J.AerosolSci.25,839(1994) MagnussonM.H.,Deppert K.,Malm J.O.,Svensson S.,SamuelsonL.,JAerosolSci 28(Suppl1),S471,(1997) MurataT.,Itatani K.,HowellFS,Kishioka A.,andKinosita M.,JAmCeramSoc 76,2909(1993) Danen,W.C.,Martin,J.A.,USPatent5266132(1993);USPatent5606146(1997) B.H.Kear andG.Skandan,Nanostruct.Mater.8,765(1997) HahnH.,Nanostruct.Mater.9,3(1997). Ivanov G.V.,andTepper,F.,.InKuo,K.K.,etal.,Eds.,ChallengesinPropellantsandCombustion100YearsafterAfter Nobel,

    Begell House,NewYork,(1997),p.636. Jiang,W.,Yatsui,K.,IEEETransactionsonPlasmaScience,26(5):14981501(1998)

    SynthesisGroupII:Plasma,arc,andflamesynthesis FineParticles:synthesis,characterization,andmechanismofgrowth,SugimotoT.,Ed.NewYork,MarcelDekker,Inc.,pp.114,

    404(2000) Tomita,S.,Hikita,M.,Fujii,M.,Hayashi,S.,andYamamoto,K., ChemicalPhysicsLetters316:361364(2000) ChopraN.G.,Luicken R.J.,Cherrey K.,Crespi V.H.,CohenM.L.,LouieS.G.,andZettl A.,Science 266,966(1995) Loiseau A.,Willaime F.,Demoncy N.,Hug,G.,andPascard H.,Phys.Rev.Lett.76,4737(1996) Ruoff R.S.,Lorents D.S.,ChanB.,Malhotra R.,andSubramoney S.,Science 259,346(1993) Hwang,J.H.,Dravid,V.P.,Teng,M.H.,Host,J.J.,Elliott,B.R.,Johnson,andD.L.,MasonT.O.,J.Mater.Res.12,1076(1997). SunX.,GutierrezA.,Yacaman M.J.,DongX.,andJinS.,MaterialsScienceandEngineering A286,157(2000). Pratsinis S E Progress in Energy and Combustion Science 24 197 (1998) Pratsinis S.E.ProgressinEnergyandCombustionScience,24,197(1998) Balabanova E.,Vacuum 69,207212(2002) Keil,D.G.,Calcote,H.F.andGill,R.J.,MaterialsResearchSocietySymposiumProceedings 410,167(1996). Axelbaum R.L.,Lottes C.R.,Huertas J.I.,andRosenL.J.,TwentySixthSymposium(International)onCombustion,TheCombustion

    Institute,Pittsburgh,(1996),p.1891.S.F.SonandR.A.Yetter,Nanoenergetics,2012

  • SynthesisMethodscontinued SynthesisGroupIII:Wetchemistry,SolGel,etc.

    HyeonLee,J.,Beaucage,G.,Pratsinis,S.E.,ChemMatter,9:24002403(1997) Tillotson,T.M.,Hrubesh,L.W.,Simpson,R.L.,Lee,R.S.,Swansiger,R.W.,Simpson,L.R.,JournalofNon

    CrystallineSolids 225:358363(1998)Till t TM G h A E Si R L H b h LW S t h J H J P J F J l f N C t lli Tillotson,T.M.,Gash,A.E.,Simpson,R.L.,Hrubesh,L.W.,Satcher,J.H.,Jr.,Poco,J.F.,JournalofNonCrystallineSolids 285:338345(2001)

    SynthesisGroupIV:Mechanicalalloying/activation Suryanarayana C Progress in Materials Science 46 (1 2): 1 184 (2001) Suryanarayana C.,ProgressinMaterialsScience,46(12):1184(2001) Wen,C.E.,Kobayashi,K.,Sugiyama,A.,Nishio,T.,andMatsumoto,A.,JournalofMaterialsScience 35:2099

    2105(2000)

    Shoshin,Y.L.,Mudryy,R.,S.,andDreizin,E.L.,CombustionandFlame 128:259269(2002) Lu,L.,Lai,M.O.,MechanicalAlloying.Kluwer AcademicPubl.,Boston,1998 ElEskandarany,M.S.,MechanicalAlloying.NoyesPublications.,Norwich,NY,2001

    SynthesisGroupV: SoftLithographicPatterning,DecalTransferLithography, PhotolithographyLithography,Photolithography

    S.F.SonandR.A.Yetter,Nanoenergetics,2012

  • Nanosized ReactiveMaterials Nanoscale powders

    Availableinlargequantitiesnow Potentialingredientinpropellants,pyrotechnics,and

    explosives

    Smallersizemeanslargersurfacearea Greaterreactivity Fasterburning

    Good for combustion efficiency

    ThecolorofAlisstronglyrelatedtoparticlesize.Typically200nmpowderisgray(left)and40nmpowderisblack(right),fromPesiri etal.,JournalofPyrotechnics,19,192004 Goodforcombustionefficiency

    OriginalnAl wasALEX(EXploded ALuminum) Explodingwires Still sold good value

    50 nm; 44 m2/g

    Stillsold,goodvalue Consistencynotgoodandsizedistributionbroadandincludes

    largeparticles(extremelysphericalparticles,sizerangesfrom50to250nm,oxidelayerthickness~3.1nm)

    However some original claims of excess surface energy

    40nm

    However,someoriginalclaimsofexcesssurfaceenergy Itistruethatatverysmalldiametersthereisasurfaceenergy Notsignificantinparticles>10nm KuoandothersshowedtherewasnoexcessenergyinALEX

    aluminumusingcalorimetry

    10 m, 0.22 m2/g

    10m

    S.F.SonandR.A.Yetter,Nanoenergetics,2012

  • AgeingandCoatingofParticles

    Ageing test with Alex (air saturated 60 C)

    AcceleratedAgeing,RoomTemperature,SaturatedHumidity AgeingtestwithAlex (air,saturated,60 C)y

    1

    1.2H-15 (Al, 38m)

    0.6

    0.8

    t=0hr t=5hrs t=24hrs0.2

    0.4

    ALEX (nAl)0

    0 5 10 15 20 25Time (days)

    C.Dubois,P.G.Lafleur,C.Roy,P.BrousseauandR.A.Stowe,JPPVol.23,No.4,JulyAugust2007

  • SurfacePassivation ofBareAlNanoparticles UsingPerfluoroalkyl CarboxylicAcids(C13F27COOH)y y ( 13 27 )

    FTIRSpectrum

    C=O

    OH

    100nmSEM(225000magnification)ofAlC13F27COOH

    R.J.Jouet,A.D.Warren,D.M.Rosenberg,V.J.Bellitto,K.Park,andM.R.Zachariah,Chem.Mater.17(2005)29872996.R.J.Jouet,J.R.Carney,R.H.Granholm,Sandusky,H.W.andA.D.Warren,Mater.Sci.Technol.22(2006)422429.

  • LowTemperatureStabilityandHighTemperatureReactivityofIronBasedCoreShellNanoparticlesy p

    Ironnanoparticles madefromsonochemical methodSelfassembledmonolayerofdioctyl sulfosuccinate sodiumsalt(AOT)oroleicacidHexanesolutionofnanoparticles (withandwithoutSAM),airsaturated,andwithpyrene

    Fluorescene lifetimeofpyrene usedasanindicationofpresenceofoxygen~450 ns => no oxygen450ns=>nooxygen~20ns=>oxygen(bimolecularquenchingreaction)

    TEMofFe0AOT

    C.E.BunkerandJ.J.Karnes,JACS126,10852,2004

  • SelfAssembledNanoscale Thermite Microspheres

    60nm 100nm

    nAl(38nm) nCuO(33nm)Kalsinetal.,Science, v312,2006

    CreateSelfAssembledMonolayer(SAM)onsurfaceofindividualparticles

    Monolayers contain a functionalized group atMonolayerscontainafunctionalizedgroupattailend(either+or charged)

    Whenmixedinadilutedandslightlyelevatedtemperaturetheyformmacroscalestructureswithnanoscaleconstituents

    ~4mnAlTMA(trimethyl(11mercaptoundecyl)

    nCuOMUA(11 t d i id )(trimethyl(11 mercaptoundecyl)

    ammoniumchloride(11mercaptoundecanoicacid)

    Malchi,J.,Foley,T.,Yetter,R.A.,ACSAPPLIEDMATERIALS&INTERFACES,1,11,2420,2009

  • Nanoenergetic CompositesofCuO Nanorods,Nanowires,andAlNanoparticlesp

    R.Shendeetal.,Propellants,Explosives,Pyrotechnics33,No.2(2008)

  • FabricationofReactiveMultilayerFoils Ni/Al,Monel/Al,andNb/Si MagnetronSputterDeposited FreestandingFoils(10150mThick)

    &

    Stepper

    Motor

    Bilayer Thicknesses 25to600nm DepositionTemperature~75C

    18"SubstrateCarousel

    Water&Power

    Ni/Al Foil as depositedSputterGuns

    34"(5"x12")

    Ni/AlFoilasdeposited

    Ni/AlRapidReacted

    AsDepositedCuOx/AlMultilayerFoilElementalDistributions

    FromTimWeihs,TheJohnsHopkinsUniversityCu Al O Cu+O

  • NanoPatterning ofNanosized Thermites onaChip

    PVDbasedprocesstogrownanoscale thermites (Al/CuO andAl/NiO)onaSi/glasschip

    EvaporatedCu

    C O/Al450C,5hair

    Zhang,Rossietal,Applied Physics Letters,2007,2008Petrantoni etal.,J.Phys Chem.OfSolids,2010

    Diam.:40 80nm Al/CuO ~150250nm

    Al/CuO onsetT=500oCH 2 9 kJ/ 693 l/

    CuO/Al

    H=2.9kJ/g=693cal/g

    Evaporated

    xsec tiltedview

    h i l l d h

    Al/NiO onsetT=400oCH=2.2kJ/g=526cal/g

    450C,2h, underaN2/O2 gasflow

    NiO/AlNi

    30oC,5x106 mbar

    Zhang,Rossietal,Applied Physics A94,2009/g /g

    Benefits:(1)Enhancedinterfacialcontactandreactivity,(2)impuritiesandAloxidationduringfabricationsmall,(3)sincedimensionsofCuO nanowires canbetailored,theoxidizerfueldimensionscanbecontrolledatthenanoscale,(4)processusesstandardmicrofabrication techniquesformassproductionandintegrationintofunctionaldevices.

  • TheSolgelMethodology

    Condense Super-criticalextraction

    Non-supercriticalextraction of

    Sola colloid

    Gela 3D structure

    AerogelLow density / high porosity

    extraction ofliquid phase

    Inexpensive homogeneity on nanoscale type and amount of

    Xerogel

    type and amount of components easily varied

    Cast complex shapes Low temp. processing g

    Low porosity / high densityLow temp. processing

    FromGash,LLNLS.F.SonandR.A.Yetter,Nanoenergetics,2012

  • LLNLDevelopedFourClassesofMaterialsandProcesses

    Crystallites grownin pores may beenergetic

    Solid skeleton may be energetic

    Energetic powdersare added by a gelmending method

    1. Solution crystallization 3. Skeletal Synthesis2. Powder addition

    This may be a fuel or oxidizer

    This may containan oxidizer or fuel

    Can be straight-forward to dope with materials

    4. Nano-compositesFromGash,LLNL

    S.F.SonandR.A.Yetter,Nanoenergetics,2012

  • ArrestedReactiveMillingNanocomposites Top down approach to composite designStarting Materials Topdown approachtocompositedesign

    vs.bottomupapproachofsolgelmethodsoruseofnanoparticles

    Micronsized,nanocompositepowdersprepared

    Starting Materials

    byArrestedReactiveMilling:ahighenergyballmillingprocess

    Eachindividualparticle is subjected to pressures as high as 5 GPaARM issubjectedtopressuresashighas5GPa

    duringcollisions hasthesamecompositionasbulk hasneartheoreticalmaximumdensity

    Milling is arrested before the self-Milling is arrested before the selfsustaining reaction is triggered Cross-sectioned starting

    mixture: 2Al + MoO3 ARM nanocomposite

    Nanocomposite A range of highly reactive materials produced; B/Ti, B/Mg, B/Zr,

    Al/Fe2O3, Al/MoO3, Al/CuO, Al/Bi2O3, MgH2/CuO, Al/SrO2, Al/NaNO3, Mg/MoO3, Si/CuO, Zr/Bi2O3, MgH2/MoO3, Mg/CuO

    Backscattered electron SEM ImagesFalse color maps: Al: green; MoO3: red

    FromDreizen,NJIT

    Liquid surfactant (hexane, kerosene) and type of grinding media are selected to adjust the powder size and the degree of refinement at which the reaction is triggered

    Batch sizes: 2 g 400 g; batch synthesis time: 20 200 min

  • HighVelocityParticleConsolidation(Cold Spray)(ColdSpray)

    Particlesareinjectedintoaninertgasstream(N2 orHe),thenacceleratedthroughadeLavalnozzletohighspeed.

    Void

    Particlesimpactsubstrateorpreviouslydepositedmaterialandmechanicallybondwithit.

    Nearfullydense(

  • SiliconReactives CanAlsoBeUsedWh ili f l ?Whysiliconfuels? Theoxidelayerisonly12nmnaturally Aging(oxidation)likelybetterthanAl Generally less sensitive than Al GenerallylesssensitivethanAl Reactives couldbeintimatelyincorporatedinsiliconbasedmicroscale devices

    Tuning and switching possibilities (doping/eTuningandswitchingpossibilities(doping/efield/electrowetting)

    Somesystemsproducehighertemperatures Nanoporous Si(PSi)vs.NanoSiliconpowder(nSi)p ( ) p ( ) Surfacepropertiescanbemanipulated

    Selfassembledmonolayers areappliedtothesurfaceofsilicon,oneithernanoporous substratesorsilicon

    i lExamplesofsurfacesproducedth h hit li ht t dparticles

    OxidelayerisstrippedoffwithHFleavingahydrogenterminatedsurface.

    Fluorocarbonligands arethenattachedtothesurfaceby

    throughwhitelightpromotedhydrosilylation reaction.M.StewartandJ.Buriak (2001).

    g yThermallyInducedHydrosilylation producingareactivecompositedevoidofunreactive oxide.

  • Nanoporous SiliconFabrication

    ElectrochemicalEtching Typicaletchdepthsof100200mwithreporteddepthsofover500m(thicknessofwafer)

    Dopant TypeandConcentration

    PoreMorphology(CrossSection)

    PlanView TypicalPoreDimensions

    nSi 101000nm

    wafer). Porediametersand%porositycanverydramaticallydependingontheHFconcentrationandcurrent.

    p,p+,n+ Si 101000nm

    310nmp Si

    HF BathOxidizerLoadingTechniques

    Schematicdiagramillustratingthecharacteristicporemorphologiesandtypicaldimensionsasafunctionofdopant typeandconcentration.Searson andMacaulay(1992)

    g q Dropcastmethod fillPSi byplacingthePSi inanoxidizersolventsolutionandallowthesolventtoevaporate(canbedoneunderlowpressuretominimize voids and with surfactant additives)

    Cross-section SEM image of PSi etched 60mA/cm2 at x35k magnification.

    minimizevoidsandwithsurfactantadditives) Meltcasting(e.g.,sulfur) Supercriticalfluidfilling

  • FunctionalizedGraphene SheetsasCatalystsSupports

    SA~850m2/gbyBET&>1800m2/gbymethylene blueadsorptioninsolventsp

    TheC/Oratioisadjustablefrom2to500,i.e.,FGS2 toFGS500. GObyStaudenmaier Method(1898) 4foldvolumeexpansion

    H.C.Schniepp,etal.,J.Phys.Chem.B (2006)

    Theedgescanbecarboxylated.

    Additionalfunctionalgroups can be attached

    Withfunctionalgroups,thicknessofgraphene sheet~0.78nm

    pThermalexpansion(>500fold)at1050C Bhm(1962)

    groupscanbeattached.Latticedefectscanfunctionasradicalsites.

    FGSisanideal2Dmacromolecularcarrierfornanoparticles.

    Exothermicsurfacereactions

    a: epoxide ongraphene,b: hydroxideongraphenec,d: inplaneandoverheadviewofaFGS

    reactionsTheparticlesizeisbelow1m.

    Aksay, I., Princeton 2010.

  • MetalDecoratedGraphene Sheets

    Graphene asatemplatefornanoparticlel i

    DFTcalculationsshowthestabilizationofPtnanoparticles attheITOgraphene junctions.

    nucleation.

    Indiumtinoxide (ITO)nanoparticles arestabilizedonFGSatlatticedefectsites.

    Pt ti l t bili d t th ITO Ptnanoparticles arestabilizedattheITOgraphene junctions.

    Coarsening/sinteringofPtnanoparticlesis arrested due to their pinning at the ITOisarrestedduetotheirpinningattheITOgraphene junctions.

    Theapproachissuitableforotheroxide/metaljunctionsongraphene/ j g ptemplates.

    Aksay, I., Princeton and PNNL 2010.

  • PolymericNitrogenChainsinaGraphene MatrixandConfinedinsideaCarbonNanotube

    LargeenergydifferencebetweensingleNNordoubleN=NandtripleNNbonds.Nitrogenbondenthalpies

    NN 159kJ/molN=N 419kJ/molNN 946kJ/mol

    (N=N)i159+419

    |NN|946

    368

    ab initioelectronicstructureandmoleculardynamicscalculationsdemonstratestabilityofthei h bi d h i l d i l ilnitrogenphaseatambienttemperatureandpressurewhenintercalatedinamultilayer

    graphene matrixorusingcarbonnanotube confinement. Thechargetransferfromthegraphene matrixtothenitrogenchainstabilizestheentirethree

    dimensionalstructure.The hybridizationbetweenthenanotube andtheNchainconductionybandsleadstothestabilityofthepolymericnitrogen.

    Timoshevskii et al., Phys Review B 80, 115409, 2009; Abou-Rachid, H., et al., Phys. Review Letters, 100, 196401, 2008. Christe, K.O., PEP 32, 3, 2007, 194.

  • UltraHighPressureSupercriticalFluidProcessing of Reactive MaterialsProcessingofReactiveMaterials

    RapidExpansionofaSupercriticalSolution(RESS) RapidExpansionofaSupercriticalSolutionintoanAqueousSolution(RESSAS)

    S t ti V l Expansion Nozzle C ll ti S tSupercriticalSolution

    Controlledat

    RapidExpansionforParticleFormationbyHomogeneous

    NanosizedParticleRecovery

    SaturationVessel ExpansionNozzle CollectionSystem

    SelectedTandPHomogeneousNucleation

    Recovery

    SCF Solute

    FESEMimagesof(a)RESSproducedRDXparticlesand(b)militarygradeRDX

    ParticleDistributionofRESSRDXParticles FESEMimagesofRDX

    coatedALEXnAl particlesfromtheRESSNprocess

    Essel,J.,andKuo,K.,PennState,2012

  • Aluminum clusters have been studied and consist of metallic Al cores surrounded by a monolayer of a

    ClusterAssembledReactiveMaterials

    AlI + LiN(SiMe ) Al [N(SiMe ) ] 2-

    AluminumclustershavebeenstudiedandconsistofmetallicAlcoressurroundedbyamonolayerofaprotectiveshell.

    Particles/clustershavebetween10and100aluminumatomsanddiametersbetween0.5and1.3nm.

    AlI + LiN(SiMe3)2 Al77[N(SiMe3)2]202

    ThreedimensionalperiodicTableofcluster elements. Castleman, A. W., Jr.;

    Al cluster (far right) consists of nested shells containing (from left

    clusterelements.Castleman,A.W.,Jr.;Khanna,S.N.J.Phys.Chem.C2009,113,26642675.

    Alcluster(farright)consistsofnestedshellscontaining(fromlefttoright)13,44,and20Alatoms,A. Ecker,E. Weckert,and H. Schnckel Nature 1997,387,379.

    Metalhalidecocondensationreactor(MHCR)andmetalhalidechemistryenablescreationofotherlowvalent metalclusters(e.g.i f Si) ( i hh i i f l d 20 )Ti,Hf,Si) (B.Eichhorn,UniversityofMaryland,2011).

    Reactionsofmetalclusterswithsmallmoleculesoftendependonclustersize andvarydiscontinuously withthenumberofatomsandcomposition,ratherthanscalelinearlywithsize,i.e.,oneatommakesadifference.

    Clusterscanactasbuildingblocksfornewmaterials.Selfassembledmonolayers (SAMs)forclusterpassivation andsizecontrol.Liganddirectedassociationforaggregateformation.

  • Some Examples of NanoenergeticsSomeExamplesofNanoenergeticsCombustion

  • Nanoscale Thermite Combustion

    Nanoscale thermites arepreparedviasonication inasolvent(hexanes)( )

    Combustionpropagationtestedininstrumentedburntube

    AlCuO

    S.F.SonandR.A.Yetter,Nanoenergetics,2012

  • Nanothermite CombustionEff t f E i l R ti Eff t f Ch l Si

    1000

    104

    FuelRichPropagationLimit600

    700

    nAl/nMoO3

    EffectofEquivalenceRatio EffectofChannelSize

    10

    100

    000

    e

    r

    a

    t

    i

    n

    g

    F

    r

    o

    n

    t

    300

    400

    500

    nAl/nMoO3

    0.1

    1

    FuelLeanPropagationLimit

    A

    c

    c

    e

    l

    e

    100

    200

    300/ 3

    0.010 20 40 60 80 100

    Mass Weight Percent nAl

    p g

    00 100 200 300 400 500 600 700 800

    Channel Hydraulic Diameter ( m)

    Dutro,G.M.,Son,S.F.,Risha,G.,R.A.Yetter,ProceedingsoftheCombustionSymposium,2009

  • Nanothermites

    42 5

    3Al/M O

    EffectofPackingDensity EffectofParticleDiameteronIgnitionDelay

    2 5

    3

    3.5

    11.5

    22.5 nanoAl/MoO3

    micronAl/MoO3Al/MoO3

    1 5

    2

    2.5

    0 50

    0.51

    1

    1.5

    1 1.5 2 2.5 3 3.5 4 4.5log (d) [nm]

    -1-0.5

    0 0.5 1 1.5 2 2.5 3density [g/cm3] g ( ) [ ]y [g ]

    J.J.GranierandM.L.Pantoya,Combust.Flame138(2004)373383.M.L.PantoyaandJ.J.Granier,PropellantsExplosivesPyrotechnics30(2005)5362.V.E.Sanders,B.W.Asay,T.J.Foley,B.C.Tappan,A.N.Pacheco,andS.F.Son,J.Propul.Power23(2007)707714.

  • PropagationMechanismsofNanothermite Reactions

    P Pressure Gradient drives gases forwardP Pressure Gradient drives gases forwardConvectionwave

    Whenignitedinaburntube,fastnanothermites( l/ l/ l/ )

    Pressuregradientdrivesreactionforward

    (Al/CuO,Al/MoO3,Al/Bi2O3)reactthroughaconvectivemechanism

    Convective burning is driven

    Heat Conduction

    Convectiveburningisdrivenbythecreationofalargepressuregradientintheporousmixture,andnotbya temperature gradient

    Hot gases penetrate the granular mixtureFlame Zone

    Temp= Tf

    Porous Reactants

    atemperaturegradient

    PressureTransducers

    FiberOpticCables

    Conduction waveTemperature gradient drives reaction forward

    ConductionwaveTemperaturegradientdrivesreactionforward

    ThT0

    PowderFilledTube

  • EffectofPressureonthePropagationRateinaAl/CuONanothermite

    /

    s

    )

    V

    e

    l

    o

    c

    i

    t

    y

    t

    i

    n

    g

    i

    n

    g

    V

    e

    l

    o

    c

    i

    t

    y

    m

    /

    s

    /

    s

    /

    s

    NanoaluminumfromNovacentrix (avg.dp=38nm) Nano CuO fromSigmaAldrich(avg.dp=33nm) Studiesconductedinanopticalstrandburner(V=23liters)

    V

    f

    (

    m

    /

    Aspressureisincreased,severaldifferentmodesofpropagationareobservedP t hi h ti d h d d

    F

    a

    s

    t

    C

    o

    n

    s

    t

    a

    n

    t

    V

    A

    c

    c

    e

    l

    e

    r

    a

    t

    O

    s

    c

    i

    l

    l

    a

    t

    S

    l

    o

    w

    C

    o

    n

    s

    t

    a

    n

    t

    1

    0

    0

    s

    m

    ~

    1

    k

    m

    ~

    1

    m

    / Pressurizedwith3differentgases(Ar,He,orN2)

    Pressure(MPa)

    Pressureatwhichpropagationmodechangesdependsonpressurizinggas;Hehasahighthermalconductivity

    1000 10002 32 3 3+ +Al CuO Al O Cu

    100

    1000

    ]

    100

    1000

    ]

    Ar He

    10

    100

    o

    o

    t

    [

    M

    P

    a

    ]

    10

    V

    f

    [

    m

    /

    s

    ]

    a

    t

    i

    n

    g

    e

    r

    a

    t

    i

    n

    g 10

    V

    f

    [

    m

    /

    s

    ]

    l

    l

    a

    t

    i

    n

    g

    1

    s

    s

    u

    r

    e

    O

    v

    e

    r

    s

    h

    o

    s

    c

    i

    l

    l

    a

    t

    i

    n

    g

    10 5 10 15

    Pa

    [MPa]

    O

    s

    c

    i

    l

    l

    A

    c

    c

    e

    l

    e

    10 5 10 15

    Pa[MPa]

    O

    s

    c

    i

    l

    0.10 5 10 15P

    r

    e

    s

    Pa[MPa]

    O

    s

  • TemperatureMeasurementsSuggestthattheFinalProductsarenotGasified

    2500

    3000

    3500

    [

    K

    ]

    e

    r

    a

    t

    u

    r

    e

    r

    e t

    o

    i

    n

    t

    t

    2 32 3 3+ +Al CuO Al O CuBurnTubePropagationRate~1km/s

    u

    m

    P

    r

    e

    (

    K

    )

    Al/CuO

    0

    500

    1000

    1500

    2000

    Al/CuO

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    E

    q

    u

    i

    l

    i

    b

    r

    u

    m

    T

    e

    m

    p

    e

    M

    e

    a

    s

    u

    r

    e

    d

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    C

    u

    b

    o

    i

    l

    i

    n

    g

    P

    o

    i

    n

    A

    l

    2

    O

    3

    b

    o

    i

    l

    i

    n

    g

    p

    A

    l

    b

    o

    i

    l

    i

    n

    g

    p

    o

    i

    n

    t

    p g /CombustionTemperature~2350150K

    E

    q

    u

    i

    l

    i

    b

    r

    i

    u

    M

    e

    a

    s

    u

    r

    e

    d

    C

    u

    B

    P

    A

    l

    2

    O

    3

    B

    P

    A

    l

    B

    P

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    2500

    3000

    3500

    4000

    4500

    5000

    e

    r

    a

    t

    u

    r

    e

    [

    K

    ]

    m

    u

    r

    e

    o

    i

    l

    i

    n

    g

    P

    o

    i

    n

    t

    i

    n

    t

    n

    t

    3 2 32 + +Al MoO Al O MoAl/CuO

    BurnTubePropagationRate~1km/sCombustionTemperature~2150150K

    u

    m

    B

    P

    P

    r

    a

    t

    u

    r

    e

    (

    K

    )

    Al/MoO3

    0

    500

    1000

    1500

    2000

    Al/MoO3

    T

    e

    m

    p

    e

    E

    q

    u

    i

    l

    i

    b

    r

    u

    m

    T

    e

    m

    p

    e

    r

    a

    t

    u

    M

    e

    a

    s

    u

    r

    e

    d

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    M

    o

    b

    o

    A

    l

    2

    O

    3

    b

    o

    i

    l

    i

    n

    g

    p

    o

    i

    A

    l

    b

    o

    i

    l

    i

    n

    g

    p

    o

    i

    n

    35002 3 2 32 2+ +Al Fe O Al O Fe

    p

    E

    q

    u

    i

    l

    i

    b

    r

    i

    u

    M

    e

    a

    s

    .

    M

    o

    A

    l

    2

    O

    3

    B

    A

    l

    B

    P

    T

    e

    m

    p

    e

    Al/F O

    1500

    2000

    2500

    3000

    3500

    p

    e

    r

    a

    t

    u

    r

    e

    [

    K

    ]

    r

    u

    m

    a

    t

    u

    r

    e

    l

    i

    n

    g

    P

    o

    i

    n

    t

    b

    o

    i

    l

    i

    n

    g

    p

    o

    i

    n

    t

    i

    n

    g

    p

    o

    i

    n

    t

    2 3 2 32 2+ +Al Fe O Al O FeBurnTubePropagationRate~0.1m/sCombustionTemperature~1700150K

    u

    m

    B

    P

    O

    3

    B

    P

    B

    P

    e

    r

    a

    t

    u

    r

    e

    (

    K

    )

    Al/Fe2O3

    0

    500

    1000

    1500

    Al/Fe2O3

    T

    e

    m

    p

    E

    q

    u

    i

    l

    i

    b

    r

    T

    e

    m

    p

    e

    r

    a

    M

    e

    a

    s

    u

    r

    e

    d

    T

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    F

    e

    b

    o

    i

    l

    A

    l

    2

    O

    3

    A

    l

    b

    o

    i

    l

    E

    q

    u

    i

    l

    i

    b

    r

    i

    M

    e

    a

    s

    .

    F

    e

    A

    l

    2

    O

    A

    l

    B

    T

    e

    m

    p

    e

  • MetalOxidesVaporizeorDecomposeatLowTemperatures

    2 212 +CuO Cu O O

    Compound Tmp(K)

    Tbp(K)

    Tvol(K)

    Al 1687 3013 n/a 2 22 2 +CuO Cu O O

    2 3 3 4 213 22

    +Fe O Fe O O

    Al 1687 3013 n/a

    Al2O3 2345 3253 n/a

    CuO 1500 decomposes 1400

    14 8000 14 1 104

    2Fe2O3 1855 decomposes 1750

    MoO3 1075 1428 n/a

    8

    10

    12

    5000

    6000

    7000

    n

    [

    m

    o

    l

    /

    k

    g

    ]

    V

    Volume

    Cu

    O

    Cu2O (l)

    8

    10

    12

    6000

    8000

    n

    [

    m

    o

    l

    /

    k

    g

    ]

    V [Fe2O

    3 (s)

    FeO (l)

    4

    6

    8

    2000

    3000

    4000

    C

    o

    n

    c

    e

    n

    t

    r

    a

    t

    i

    o

    n

    [cm3/g]

    OCu2O (s)

    O2 4

    6

    8

    2000

    4000

    C

    o

    n

    c

    e

    n

    t

    r

    a

    t

    i

    o

    n

    [cm3/g]

    2 3

    O

    Fe3O

    4 (s) O

    2

    Volume

    0

    2

    0

    1000

    0 1000 2000 3000 4000 5000

    C

    Temperature [K]

    Cu2 CuO

    0

    2

    00 1000 2000 3000

    C

    Temperature [K]

    O2

  • EffectsofOxidizervs FuelParticleSizeAl min m nanoparticles (38nm) from Technanog micron particles (2 m) from Valimet

    Linear Burning Mass Burning Energetic Mass Burning Rate Avg. mass per

    Aluminum:nanoparticles (38nm)fromTechnanogy,micronparticles(2m)fromValimetCopperOxide:nanoparticles (33nm)andmicronparticles(3m)fromSigmaAldrich

    Rate [m/s] Rate [kg/s] [kg/s] run [g] % mass Al2O3Nano Al/ Nano CuO 977 3.79 3.14 0.31 17.1Micron Al/Nano CuO 658 4.77 4.72 0.58 1.0Nano Al/Micron CuO 197 1.31 1.08 0.53 17.1

    Micron Al/Micron CuO 182 2.02 2.00 0.89 1.0

    Linear propagation micron Al - micron CuO20

    30

    e

    [

    M

    P

    a

    ]

    1 82 [MPa/s]

    microAl/nanoCuO

    Linearpropagationratewasmore

    dependantontheCuO particlessize

    micron Al micron CuO

    nm Al - micron CuO

    micron Al - nm CuO

    nm Al nm CuO

    micronAl/micronCuO

    nmAl/micronCuO

    micron Al / nm CuO

    0

    10

    0 0.0005 0.001

    P

    r

    e

    s

    s

    u

    r

    e

    Time [s]

    1.82[MPa/s]

    nm Al-nm CuOmicronAl/nmCuO

    nmAl/nmCuO20

    30

    u

    r

    e

    [

    M

    P

    a

    ]

    Time [s]

    0.50[MPa/s]

    nanoAl/microCuO

    22 212 OOCuCuO +

    0 200 400 600 800 1000Linear Burn Rate [m/s]LinearBurningrate[m/s]

    0

    10

    0 0.0005 0.001

    P

    r

    e

    s

    s

    u

    Time [s]

    Evidencethattheoxidedecompositiondrivesconvectiveburning

  • SiliconReactives Backgroundk Previouswork:

    Siliconpowdershavebeenusedinpyrotechnicformulationssincethe19thcentury,howeveritscombustionhasbeenrelatively unstudiedrelativelyunstudied

    Thefastreactionofnanoporous siliconfirstreportedin1992byMcCordetal

    In 2002 Mikulec et al reported the first solidstate explosive In2002Mikulec etalreportedthefirstsolidstateexplosiveusingporoussiliconandaGd(NO3)3x6H2O

    Clment andcoworkersdevelopedanairbagigniterusingoxidizerfillednanoporous siliconwafersp

    Examplesofporefillers:NaClO4 x1H2O,Ca(ClO4)2 x4H2O,MagnesiumPerchlorate,Sulfur,PFPE

    Thecombustionofsiliconbasedcompositeshasnotbeenpadequatelystudied

    PrototypeofPorousSibasedAirbagyp gIgniter(Clment etal.,2007)

    S.F.SonandR.A.Yetter,Nanoenergetics,2012

  • PsiNaClO4 BurningRates>3000m/s Poroussiliconfilms6590mthickwerefabricatedusinggalvanicetchingapproachthatdoesnotrequireanexternalpowersupplyaswell as electrochemical etch

    PsiNaClO4 reactionusedtodriveflyerplate:

    Plateforce~67mN,wellaselectrochemicaletch. 3.2MsolutionofNaClO4inmethanoldropcastonthechip

    HR =9.9kJ/ginN2 and27.3kJ/gO2.

    ,Equivalentpressureonplatearea~3.4kPa

    BeckerC.R.,Apperson,S.,Morris,C.J.,Gangopadhyay,S.,Currano,L.J.,Churaman,W.A.,andStoldt,C.R.,NanoLetters,2011

    EnergyoutputandinitiationaredependentonthehydrogenterminationofthePsi.

    Currano andChuraman,J.MEMs,18,2009.

    Propertiesandflamepropagationvelocities

    Electrolyte Thickness Poresize Porosity Surface Velocity Velocityy(HF;EtOH) (m) (nm)

    y(%) area

    (m2/g)

    yfromvideo

    (m/s)

    yfromwires

    (m/s)

    20:1 6595 2 42 5 6567 830850 3050 310020:1 6595 2.42.5 6567 830850 3050 3100

    3:1 6595 2.82.9 7983 890910 2170 2150

  • ReactionTuningusingOrderedMultiscaleStructureswithnPS:TheReferenceCase

    Degeneratelydoped(1 5mcm)substrateswereusedforreferenceSi Substrateswithlowerdopant concentrationsyieldfragileporouslayers Equivalenceratioofthecompositecannotbeaccuratelydetermined

    Experimentalprocedure:p p Porouslayerswereetchedon4wafersusingelectrochemicalprocess Theprocesswastunedtoyieldmechanicallystablethickporouslayerswhosesurfacescanbecleanedevenafterimpregnationwiththeoxidizer

    Porosity determined gravimetrically by dissolving porous layers in aqueous NaOHPorositydeterminedgravimetricallybydissolvingporouslayersinaqueousNaOH 5mmwidesampleswerescribedsoakedinMg(ClO4)2 methanolsolutions Variedcompositionswerepreparedusingsolutionsofdifferentconcentrations. Equivalenceratiowasdeterminedgravimetricallyaftercleaningthesurfaces

    TopviewSideview

    5020nm

    FESEMimagesofporouslayersetchedondegeneratelydopedsubstrates.BETmeasurementsindicateasurfacearea~350m2/g

    50m 300nm

    V.K.Parimi,S.A.Tadigadapa,andR.A.Yetter

  • PropagationRatesandTemperaturesforDegeneratelyDopedSubstrates

    Samplesignitedwith10mspulsefrom200WCO2 laser. Propagationrateobtainedfromxtplotsusinghighspeedvideo Reactiontemperatureestimatedusingmultiwavelengthpyrometry witha

    t t d l th b t 475 615

    No. th measured Speed (m/s)

    Temperature (K) = const ~ 1/ ~ 1/2

    spectrometerandwavelengthsbetween475615nm.

    1 3.8* 1.2-1.24 5-7.7 2044 1897 17692 4.6* 1.2-3.8 2.6-7.7 1869-2184 1747-2018 1639-18763 5 6 3 3-4 6 4 1-4 53 5.6 3.3 4.6 4.1 4.54 6.7 2.4-3.4 2.5-3.3 1844-1930 1723-1798 1617-16835 8.3 4.7-5.1 3.9-4.9 1706-2043 1824-1897 1647-17716 13.5 3.9-5.2 2.4-2.8 1792-1870 1677-1746 1577-16377 16.5 10.3-19.5 3.2-4 2002 1862 17408 33.1 20.4-20.8 2.6 -3 1886-1993 1760-1853 1650-1732

    Fuelrichflameextinctionlimit: Samples soaked in 0 1 M solution ( = 80) did not ignite Samplessoakedin0.1Msolution(th =80)didnotignite Samplessoakedin0.15Msolution(th =56,measured =39)ignitedbutdidnotpropagate

    V.K.Parimi,S.A.Tadigadapa,andR.A.Yetter

  • ElectrochemicalEtchofSiliconWaferswithDifferentDopingProducesDifferentStructures

    Higherspeedsreportedwithmoderatelydopedptypesubstrates(1 20cm) Moderately doped (25 cm boron) substrates were tested to verify higher ratesModeratelydoped(2 5 cmboron)substratesweretestedtoverifyhigherrates Reactionfrontpropagationsbetween3001,000m/swereobservedforthesesubstrates Micrometerscalecrackswereobservedintheporouslayer Porosityandequivalenceratioestimatesarebelievedtobeincorrect(P0.54,th 9.6)

    b d d ll d h h h Porositycannotbedeterminedgravimetricallyduetothehighsensitivity

    25cmnPS (topview) 120cmnPS25cmnPS (sideview)

    (fromPhysicalOpticsCorporation)V.K.Parimi,S.A.Tadigadapa,andR.A.Yetter

  • OrderedStructuresFabricatedonDegeneratelyDopedSubstrates

    Siwafers(highlydoped0.0010.005cm)werephotolithographically patternedusingthicklayersofphotoresist(KMPRorSPR2207)

    AnRFRIEprocesswasusedtoetchpillaredstructuresH i h f h i li i d 35 b id ll fil d h i i Heightofthestructuresislimitedto~35mbysidewallprofileandphotoresistproperties

    Usingthickerphotoresistlayersaffectsfeaturesizes Thephotoresistwasstrippedandnanopores wereetchedusingtheelectrochemicalprocess

    Topview Sideview SurfaceofPillars

    p Thickporouslayersareetchedbelowthesurfaces

    Thepillarsare~35mtallandhave8msquarebasesseparatedby~8m.Theporediametersonthepillarsandthesubstrateare~20nm.

    V.K.Parimi,S.A.Tadigadapa,andR.A.Yetter

  • ReactionPropagationthroughPatternednPS/Mg(ClO4)2 Composite

    PatternednPS

    r

    o

    p

    a

    g

    a

    t

    i

    o

    n

    .................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    D

    i

    r

    e

    c

    t

    i

    o

    n

    o

    f

    P

    r

    4

    0

    m

    m

    ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    D

    =

    4

    1

    8

    5

    sTopView SideView

    =

    8

    9

    2

    4

    s

    =

    5

    9

    0

    0

    s

    =

    9

    8

    6

    9

    s

    =

    9

    8

    8

    2

    s

    =

    9

    8

    9

    6

    s

    Thepillarsare~35mtallandhave8msquarebasesseparatedby~8m.Theporediametersonthepillarsandthesubstrateare~20nm.

    V.K.Parimi,S.A.Tadigadapa,andR.A.Yetter

  • EffectofDopingSiliconReactives? Why could doping make a difference? Whycoulddopingmakeadifference?

    Oxidation-reduction reaction needs the transfer of electrons,likenp semiconductor

    Reducing agent is the electron donor oxidizer is the electron acceptorReducingagentistheelectrondonor,oxidizeristheelectronacceptor Therefore,ann-type reducing agent andp-type oxidizer shouldbe

    morereactive(McClain(1982)) Schwab & Gerlach (1967) demonstrated this with the thermiteSchwab&Gerlach (1967)demonstrated this with the thermite

    reaction,

    3 2 22 2Ge MoO GeO MoO+ + ntypeGe acceleratedreaction,ptypeGe slowedreaction EffectonoxidizerdopingalsoshownbyMcClain&Schwabtoimprove

    oxidizerreactivity

    ExtraElectron

    G.M.Schwab,J.Gerlach.TheReactionofGermaniumwithMolybdenum(VI)OxideintheSolidState,Z.PhysikChem.,56:121,1967.

    Phos.

  • DopedSiPowders ProductionandCharacterizationD d d d d b illi ili

    D d Si W f D d Si P d

    Dopedpowderswereproducedbymillingsiliconwafersinaplanetaryballmillfor3hours

    PowderDesignation

    Dopant SSA(m2/g)

    www.retsch.com

    DopedSiWafer DopedSiPowder intrinsic N/A 10.1

    lowpdoped boron 10.6

    ndoped arsenic 8.9

    highpdoped boron 10.2

    Powder Type Dopant Resistivity (-cm)

    Conductivity (S/m)

    wt% dopant

    intrinsic N/A 80 1.25 N/Alow p-doped boron 0.015 6.67103 7.910-5 2.1310-4

    BETanalysisshowsSSAshouldnotaffectburningrates

    SEM images show that all

    ParticlesizingcarriedoutbylaserdiffractionuniformparticlesizesweremeasuredbyMalvern

    o p doped bo o 0 0 5 6 6 0 9 0 3 0n-doped arsenic 510-3 2.0104 6.5410-2high p-doped boron 3.510-3 2.86104 1.5510-2 4.3510-2

    SEMimagesshowthatallpowdershavesimilarmorphologies

    Agreewellwithparticlesizinglmastersizer 2000

    XRDanalysisperformedwithBruker D8xraydiffractometer Nocrystallineimpuritiesdetected

    results Fracturesurfacesonallparticles

    S.F.Son,Purdue,2011

  • DopedPowders ReactionCharacterization BurningratesofpressedpelletsofdopedSi/PTFEat200psiwereanalyzed DopinghasalargeapparenteffectThe effect contradicts the theory Theeffectcontradictsthetheory

    Differentialthermalanalysissupportsburningratedata Apparentactivationenergymeasuredbythe dopedSi/PTFEburningratespp gy yKissingermethod

    Higherburningratesamplescorrelatewithloweractivationenergysamples

    The effect may be kinetic but not according toTheeffectmaybekinetic,butnotaccordingtotheoriginalhypothesis!

    ThermalpropertiesverifiedbyTPSmethodtobenearlyidentical

    C ld th ll t f d t h

    dopedSi/PTFEapparentactivationenergies

    Couldtheverysmallamountofdopant havethesameeffectasdopingoftheSicrystals? Thermodynamicallytheamountofdopant hasanegligibleeffectonenergyortemperature

    Couldtherebeacatalyticeffect?

    S.F.Son,Purdue,2011

  • DopedPowders Summary

    S ll t f b d dd d t SmallamountofboronpowderaddedtointrinsicSi/PTFEduringprocessing

    Nanoborondidnotaffectburningrates Howcanobservedresultsbeexplained?Newhypotheses latticedefectsorelectronmobilityaffectskinetics:

    Si/PTFE/Bburningrates

    Electronmobility Proportionaltodopantconcentration Substitutional impurity

    h l [ ] Latticedefectandstrainenergyduetosubstitutionalimpurities

    Proportionaltodopant

    enthalpy[20]

    concentration

    GedopedSineededtoeliminateoneoftheabove

    20T.Yoshikawa,K.Morita,S.Kawanishi,andT.Tanaka,ThermodynamicsofImpurityElementsinSolidSilicon,JournalofAlloysandCompounds,Vol.490,2010,pp.3141.S.F.Son,Purdue,2011

  • LikeCarbonNanotubes andNanothermites,Nanosilicon canbeLightActivatedforIgnitiong g

    N.Wang,*B.D.Yao,Y.F.Chan,andX.Y.Zhang,NanoLetters,2003,3,475n

  • CoalDirectChemicalLoopingProcess:ReactionMechanismsofSolidFuelswithMetalOxides

    ReductionIndirectreductionwithaidofgaseousintermediates

    CO+MO CO2 +MCO2 +C 2CO

    Withcoal,volatilesmayinitiatethereactionC l l l til (CO H t ) CO H O

    SpentAirforPower GenerationCoal coalvolatiles(CO,H2,etc)

    ChemicalloopingoxygenuncouplingprocessMO M+O2C + O CO Reducer/Fuel Oxidizer/

    MOCO2,H2O

    Coal

    PowerGeneration

    C+O2 CO2Directsolidsolidreactions

    C+2MO CO2 +2MFuel

    ReactorAirReactor

    M

    Ai

    OxidationHeterogeneousversusvaporphasecombustion

    M + O2 MO

    EnhancerGas Air

    M O2 MOM+H2O MO+H2

  • IgnitionandFlamePropagationofCarbonCopperOxideMixtures

    8

    FingeringRegime

    ContinuousRegimeTemperatureControlled

    TubeFurnace0.8cmIDquartztube Embeddedfine

    5

    6

    7 nCuOCuO

    e

    e

    d

    [

    m

    m

    /

    s

    ]

    DirectSolid

    ~

    5

    4

    0

    o

    C

    CWCO2 Laser(10.6m)70W

    for 0.5 s

    wireTC

    PC/DAQ

    2

    3

    4

    p

    a

    g

    a

    t

    i

    o

    n

    S

    p

    e

    SolidReactionUncoupledReaction

    A

    u

    t

    o

    i

    g

    n

    i

    t

    i

    o

    n

    ~

    for0.5s

    C/CuOpowder

    Quartzwool(usedforfilling)

    HighSpeed

    0

    1

    0 100 200 300 400 500 600

    P

    r

    o

    Preheat Temperature [oC]

    CuO mixturedidnotselfpropagateat400oC

    Camera

    800

    900

    C

    )

    ContinuousRegime700

    800

    C

    )

    FingeringRegime p [ ]

    400

    500

    600

    700

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    (

    o

    C

    150C,video1/10th speed 300C,video1/10th speed

    300400500600

    e

    m

    p

    e

    r

    a

    t

    u

    r

    e

    (

    o

    C

    u = 2 0 mm/s

    300

    400

    0 1 2 3 4 5 6

    T

    e

    Time (s)

    u = 5.9 mm/s

    WeismillerandYetter,PSU

    100200

    0 1 2 3 4 5 6

    T

    e

    Time (s)

    u100

    = 2.0 mm/s

    u150

    = 2.3 mm/s

  • How are nano reactive systems beingHowarenano reactivesystemsbeingapplied?

  • SomeExamplesofNanoenergeticsApplicationsApplications

    Ingredientsinpropellantsandexplosives Insitu soldering and weldingIn situsolderingandwelding Gunprimers,detonators,electricmatches Airbags MicroactuatorsMicro actuators Micropumps Microthrusters Micro switches Microswitches Microvalves Dispersedcatalysts Drug injection Druginjection Visiblelightemission Activedenial Chemical looping particles Chemicalloopingparticles and,manyothers

  • N Al i ( Al) h b

    ApplicationsofNano Aluminum(nAl)

    2

    Nano Aluminum(nAl)hasbeenusedinpropellants,explosives,andpyrotechnics

    Propellants

    1

    1.5 rb = 2.538P0.618

    Propellants Alcouldignitenear/onthesurface Wouldimproveheatfeedback

    fasterburningE l i

    0.5

    1

    0 390

    Explosives Reactinthereactionzoneand

    affectdetonation Mixedresults

    00 0.5 1 1.5 2

    log (P) [MPa]

    rb = 2.092P0.390

    PropellantInitialtemperature=25oC Pyrotechnics

    Canpossiblyextendapplicationsofcomposites,suchasthermites(metal/metaloxidereaction,redoxlog (P) [MPa]

    Compositepropellantwith18%Al Compositepropellantwith9%nAl (ALEX)/9%Al

    ( / ,reactions)orintermetalic (suchasAl+NiAlNi)

    Reactivestructures

    Mench,M.M.,Yeh,C.L.,andKuo,K.K.,PropellantBurningRateEnhancementandThermalBehaviorofUltrafineAluminumPowders(ALEX),inProc.ofthe29thAnnualConferenceofICT,1998,pp.301 3015.G.V.Ivanov,andF.Tepper,ChallengesinPropellantsandCombustion100YearsafterNobel,pp.636645,(Ed.K.K.Kuoetal.,Begell House,1997).

  • NanoAluminum/IcePropellantsforReplacementofCryogenicHydrogen

    Motivation Cyro-propellant performance without cryo shortcomings Nanotechnology for designing and assembling future propellants Multi-functionality for both propulsion and power applications

    y g y g1.5dia.x1.5longcenterperforated80nAlicegrain

    2Al+3H2OAl2O3 +3H2

    Research nAlH2OcompositesarestudiedasameanstogeneratehydrogenathightemperaturesandatfastratesC it h hi h d it d l iti it Compositeshavehighenergydensityandlowsensitivity

    Combustionoccurswithoutheatreleasinggasphasereactions&thusmanyflamespreadingandinstabilityproblemsofconventionalpropellantsareeliminated.

    10 rb [cm/s] = 4.5*(P[MPa])0.47

    Burningratesof38nAl&liq.H2O

    nAlicegraininphenolic tube

    80

    100

    EfficiencyofH2production

    1

    n

    i

    n

    g

    R

    a

    t

    e

    [

    c

    m

    /

    s

    ]

    ADN* CL-20*

    HNF*

    20

    40

    60

    80

    Dp = 38 nm

    0.1

    0.1 1 10

    B

    u

    r

    n

    Pressure [MPa]

    JA2# HMX* * Altwood, 1999# Kopicz, 1997

    0

    20

    0 20 40 60 80 100 120 140Pressure [atm]

    p

    = 1.0Risha,G.A.,Son,S.F.,Yang,V.,&Yetter,R.A.,2008

  • FGSColloidsforEnhancedCombustionLiquid Strand Burner: NM gas-phase chemistry well understood; liquid-phase chemistry not important at low pressures

    ab-initio molecular dynamics simulations show that only vacancies functionalized with groups, such as hydroxyls, ethers, and carbonyls greatly accelerate thermal greatly accelerate thermal decomposition of nitromethanethrough reaction pathways in which protons or oxygens are exchanged between the functional groups and nitromethane or its products

    CatalysisatVacancies

    DecreasingOcontent

    Solids loading ~ 0.05 wt% More reduced FGS is a better accelerant than carbon black or FGS of low C/O (mol/mol). Lower deflagration pressure-limit with carbon additives. Reduced performance of carbon black and FGS19 at ~0.2wt% may be due to particle aggregation at liquid/vapor interface, preventing passage of particles into vapor phase. p p p At low FGS concentrations, the loss of surface defects/surface area lowers the burning rate.

    (a)and(b)initialconfiguration;(c)and(d)after10 ps;(e)and(f)finalconfiguration

    LM.Liu,R.Car,A.Selloni,D.M.Dabbs,I.A.Aksay,andR.A.Yetter,2012.

    J.Sabourin,R.A.Yetter,D.M.Dabbs,I.A.Aksay,andF.L.Dryer,2010.

  • FGSColloidsforEnhancedFuelDecompositionLiquid Sub/Supercritical Reactor

    R t T t 820 K (T 1 4)

    Liquid Fuel/Particles Mixtures: 0.005wt% FGS in methylcyclohexane (MCH)

    Reactor Temperature 820 K (Tr = 1.4)

    Reactor Pressure 4.7 Mpa (Pr = 1.3)

    Reactor Coil Length 6.4 m

    Pump flow rate 0.5 mL/min

    Reynolds Number 844

    Residence time 14.9 sec

    MCH was ~20 % more decomposed with 0.005wt% FGS than without FGS at above conditions. Gaseous products increased by ~ 20%.

    4

    5

    p y Identified components in gaseous products and condensed phase: similar to those without FGS; however, methane (32% increase), ethane (39% increase), ethylene (18% increase), propane (38% 1

    2

    3

    without FGSwith FGS

    ), y ( ), p p (increase), propylene (25% increase) all increased.

    16 8 10 12 14 16

    time (s)

  • Disperable NanocatalystsBoehmite Particle Carboxylatoalumane Particle

    + +

    y

    M1/Al2O3 CatalystM1nanocatalystFlowreactor

    5000ppmi t l

    100ppm ind d

    SurrogateJP5 =35ms

    O2=20%inN2Fuel=0.24vol.%

    experiments

    intoluene 1000ppm inndodecane

    ndodecane

    [

    C

    O

    2

    ]

    (

    %

    )

    50ppm 5ppm

    0 5 ppmMetalexchangereactiontoreplace aluminum cations (in 0.5ppm

    NoCatalyst

    ~300oC

    replacealuminumcations (intheboehmite particle)withmetalcations ofacetylacetonates,e.g.,Pd,Pt,lanthanum cerium etc

    Wickman, D.T. et al., J. Russ. Laser Res., 27, 6, 2006T(oC)

    ylanthanum,cerium,etc.

  • ReactiveFoilsforSolderingandBrazingNanoFoil(IndiumCorporation formerlyReactiveNanocomposites)isanewclassofnanoengineeredmaterial.Itisfabricatedbyvapordepositingthousandsofalternatingnanoscale layersofAluminum(Al)andNickel(Ni).Whenactivatedbyasmallpulseoflocalenergyfromelectrical,opticalorthermalsources,thefoilreactstodeliverlocalizedheatuptotemperaturesof1500Cinfractions(thousandths)ofasecond.Today,thislocalized heat is used in many bonding applications ranging from the bonding of sputter targets to backinglocalizedheatisusedinmanybondingapplicationsrangingfromthebondingofsputtertargetstobackingplates,totheattachingofacomponentsuchasanLEDtoacircuitboard.http://www.indium.com/nanofoil/#ixzz1xQC55sjcNanoFoilProperties

    Size thickness40150minfreestandingfforms

    CompositionBeforeReaction AlternatinglayersofNiandAlCompositionAfterReaction Ni50Al50FoilDensity 5.66.0g/cm3

    HeatofReaction 10501250J/gReaction Velocity 6 58 meters/secondReactionVelocity 6.5 8meters/secondMaximumReactionTemperature

    13501500C(24602730F)

    ThermalConductivity 3550W/mKRoHS Compliant Pbfree

  • ThermalBatteries Advantages:Higherheatofreactionthanpyrotechnicheatpellets,Flamefrontvelocityof9m/sisconsiderably

    Schematic of NanoFoil heated

    fasterthanheatpaper;TheNiAlfoilsareelectricallyconductivebothbeforeandafterinitiation;NanoFoil generatesasignificantlysteepertemperaturerisethanpyrotechnicpellets.

    Issues:Uponinitiation,thefoilstendtoflowunderpressure;Appliedloaddropsuponinitiation,whichleadstoanincreaseinthebatteryinternalresistance.

    Compression

    SchematicofNanoFoilheated2cellthermalbattery

    Name Composition

    Electrolyte LiBrLiClLiF eutectic(435oC)

    Electrolytepellet

    MgO/E:47/53

    Cathode FeS2Cathode pellet C/Fe/E:78/2/20

    C th d

    MicrothermHeatpaper

    Fusestrip

    Cathodepellet C/Fe/E:78/2/20

    Anode Li/Al:20/80

    Anodepellet A/E:90/10

    Heatpaper Zr/BaCrO4fibermix

    CathodeElectrodeAnode

    NanoFoilBuffer

    PhotoofNanoFoilheated2cellthermalbattery

    TC

    Dischargecablescables

    Poret,J.C.,Ding,M.,Krieger,F.,Swank,J.,Chen,G.,McMullan,C.,NANOFOILHEATINGELEMENTSFORTHERMALBATTERIES,ProceedingsoftheArmyScienceConference(26th),Orlando,Floridaon14,December2008

  • DigitalMicrothruster

    15-Thruster Unit(Flown on Shuttle)

    Three-layer sandwich of silicon and glass

    1024-Thruster Component(Silicon Array Nozzle)(Silicon Array Nozzle)

    Silicon nitride rupture diaphragms

    Divergingnozzles Lead Styphnate

    C6H3N3O8PbC6H3N3O8Pb

    0.1 mNs of impulse bit 5-100 mN of p100W of power thrust

    Lewisetal.,SensorsandActuators80,143154,2000

  • MEMSbasedPyrotechnicalMicrothrusters

    100 addressable microthrusters with 3 main micromachined layers

    Combustion chamber 1.5 x 1.5 x 1 mm

    3 3 Th t fil ith th t

    glycidyle azide polymer (GAP) mixed with AP and Zr particles propellant

    zirconium perchlorate potassium primer

    3.3

    2.8

    2.3

    Thrustprofilewithathroatdia.of500m

    (

    m

    N

    )

    1.6

    1.3

    0.8

    T

    h

    r

    u

    s

    t

    (

    Polysilicon resistor igniter at nozzle Insulating groves to eliminate cross-talk

    M i i i t d d0.3

    0.2300 500 700 900

    Time (ms) /

    Main grain was screen printed under vacuum

    100% ignition success with 250 mW Thrusts ~0.3-2.3 mN

    Time(ms)ZPPIgniterpeaks Flamepassesthrough

    intermediarychamber

    GAP/APcombustioninchamber

    Rossietal.,SensorsandActuatorsA,121,508514,2005,SensorsandActuatorsA,126,241252,2006.JournalofMEMs,15,6,18051815,2006.

  • MEMSDevice Integrating Nanothermite Al/CuO

    Microinitiator/Micodetonator CuO/Alnanothermite onigniterchip(1mm)Ignitionofapropellant hasbeendemonstrated

    Au/Pt/Crthinfilmheater

    PatternedSiO2&Cufilms

    CuO nano wiresAl/CuO nEM

    Zhang,etal,Nanotechnology 18(2007)Zhang,etal,J.ofMicroElectroMechanical Systems,2008

    ~1W i iti~1Wignitionpower,0.1msignitiondelay,0.12mJ ignitionenergy60mJ outputenergy

    1cm3 MEMSSafe ArmFireMEMSintegratesensors,circuitry,actuator,electricalprotections(pyrotechnicalswitches),highlyenergeticmaterial([Co(NH3)6]2[Mn(NO3)4]3 , Al/CuO nanothermite), moving barrier.([Co(NH3)6]2[Mn(NO3)4]3,Al/CuO nanothermite),movingbarrier.

    Pezous etalJ.Phys &Chem.Solids 71,(2010)Pezouset al,Sensors andActuatorsA159 2010

    Gas generator EMthin layerChipsize1cm

    IntegratedNanothermite

    A159,2010

  • JumpingSensorbasedonMEMsFabricationandNanonergetic PorousSilicon

    Ignitionofnanoporousenergeticsiliconviaspark

    nanoporoussiliconenergetic

    resistor

    siliconchipIntegratednanoenergeticsiliconandMEMssensor

    Churamanetal.,J.MEMs,21,1,198,2012.

  • CombustionbasedActuatorsA bi i b t it il (AIBN) Azobisiobutyronitrile (AIBN)decompositionasthesolidchemicalpropellant

    Successfullypumpeddeionizedwaterthrougha70mmlongchannelwithacrosssectionof100m*50mataflowrateof17ml/minwhileconsumingonly189mJofelectricpowerdecomposed

    (Hongetal.,2003)

  • DrugInjection

  • Microenergetic Valve

    AppliedonARIAN5LaunchVehicle. Designedtoisolate,priorto

    actuation, the gaseous fluid presentactuation,thegaseousfluidpresentintheupstreamhighpressuretank(400bar)orpassivation ofthedownstream pressure tankdownstreampressuretank.

    Reacttime

  • What are new directions forWhatarenewdirectionsfornanotechnologyandcombustion?

  • d ll d f l d

    DirectionsForward Towards atomicallypreciseandfunctionalizednanoenergetic material.

    D l t ti t i l t f Developsmartnanoenergetic materialstoperformadesiredfunctioninsteadofsimplyreactinginanuncontrolled fashionuncontrolledfashion. ActivatedbyT,P,thepresenceofaparticularchemicalcompound,orexternalstimuli,suchasanelectricalfieldorlight,e.g.,initiateareactionataparticularT,releaseaparticularcompoundataparticularT,transitionfromadeflagration to a detonation at a particular instant in time,deflagrationtoadetonationataparticularinstantintime,turnonorturnoffareaction,oraccelerateorslowareactionwithtimeorlocation.

    Developmultifunctionalnanoenergetic systems.

  • Nanoengineered EnergeticMaterials Atthemicroscale:engineerthenanoenergetic directlyona

    MEMSchip

    Heat (200 3000C) pressure (kPa Gpa) specific gases Heat(200 3000 C),pressure(kPaGpa),specificgases(neutralgas,ionizedgas)ondemand=>propulsion,power,actuation,instrumentcalibration,pumping,switches,initiators

    MEMsfabricationmethodology:softlithography,screenandinkjet printing PVD etc 102inkjetprinting,PVD,etc.

    Newfuelsandoxidizers:poroussilicon,nanothermites, 100

    101

    10

    s

    i

    t

    y

    (

    M

    J

    /

    k

    g

    )

    F

    u

    e

    l

    C

    e

    l

    l

    NanoEnergetics

    andintermetallics

    Scaleuptothemacroscale3

    102

    101E

    n

    e

    r

    g

    y

    D

    e

    n

    s

    F

    Ultracapacitor

    Capacitor

    103

    102 103 104 106 107105PowerDensity (W/kg)

  • ChallengesandIssuesf d Scientificoriented

    Thermalquenching NewEMformulation Structuralmaterialdevelopment

    Engineeringoriented Selection of EM and structural material SelectionofEMandstructuralmaterial Fabricationandintegrationofthedevice IgnitionP l Pressurecontrol

    Filling Sealing(Supergluesofar!)

    Publicperception,safety,andregulationsaffectthingsalso

  • Summary Nanoenergetics havenumerouscharacteristicsthatmakethemattractiveforuseinfuelsandenergeticmaterials.F i iti d b ti ti h t Fromanignitionandcombustionperspective,heterogeneousandcondensedphaseprocessesbecomesignificantlymoreimportant.

    Fabricationandassemblyofenergeticcompositematerials(byvarioustechniques,selfassembly,coldspraying,ballmilling,solgel gasphase processes etc) are research directionsgel,gas phaseprocesses,etc)areresearchdirections.

    CurrentresearchisemphasizingmanipulationofindividualatomsandmoleculestoproduceorganizedMEMsembedded

    ltif ti l ti t i l f ti fmultifunctionalnano energeticmaterialsforgenerationofgaspressure(kPaGpa),heat(200 3000C),andchemicalspecies(Neutralgas,Ionizedgas)withhighlycontrollableperformances(rateofheatrelease,)andproperties(sensitivity,stability).

  • Thank youThankyouQuestions?