nanomaterials and fabrication: atomic force microscopy ii · interaction forces, surface potential...

22
Vertiefungsvorlesung Nanomaterials and Fabrication: Atomic Force Microscopy II PD Dr. André Schirmeisen Physikalisches Institut, WWU Münster www.CeNTech.de/nanoMechanics 4-Quadranten- Photodiode Laser Cantilever Probe Spitze x-, y-, z-Raster- einheit (“Scanner”) Typische Parameter: Cantilever: Länge: 125 ... 450 μm Breite: 15 ... 50 μm Dicke: 0.3 ... 5 μm Federkonstanten: Kontaktmodus: 0.005 ... 0.5 N/m Dynamischer Modus: 5 ... 50 N/m Raster-Kraft-Mikroskop (engl. Atomic Force Microscope, AFM)

Upload: nguyennguyet

Post on 10-Aug-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Vertiefungsvorlesung

Nanomaterials and Fabrication:Atomic Force Microscopy II

PD Dr. André SchirmeisenPhysikalisches Institut, WWU Münster

www.CeNTech.de/nanoMechanics

4-Quadranten-Photodiode Laser

Cantilever

Probe Spitze

x-, y-, z-Raster-einheit (“Scanner”)

Typische Parameter:

Cantilever:

Länge: 125 ... 450 µmBreite: 15 ... 50 µm

Dicke: 0.3 ... 5 µm

Federkonstanten:

Kontaktmodus:

0.005 ... 0.5 N/m

Dynamischer Modus:

5 ... 50 N/m

Raster-Kraft-Mikroskop(engl. Atomic Force Microscope, AFM)

interaction forces,surface potential

tip-sampledistance

repulsiveforces

attractiveforces

F(z)=-dV/dz

V(z)

1 Å

contact

non-contact

intermittent contact / tapping

Spitzen-Proben-Kräfte/Potential

image: B. Anczykowski, nanoAnalytics GmbH

FM-AFM - Prinzip

FM-AFM - PrinzipKenngrößen:

ω = ωresonanz : Federbalken wird genau

an der Resonanz angeregt

(Selbsterregung)

Aexc : Anregung der Schwingung mit

variablem Anregungssignal, so dass

die Schwingungsamplitude konstant

bleibt

A: Schwingungsamplitude wird

konstant gehalten

φ : Phase ist immer genau 90°, da

Anregung immer in Resonanz

ω0 ω

A0

ω1

∆ω

z = Spitze-Probe Abstand : Abstand wird über Z-Piezo geregelt, so daß die

Frequenzverschiebung (Abweichung der momentanen Resonanzfrequenz von der

Resonanzfrequenz der freien Schwingung) konstant bleibt. Dies bestimmt die

Bildinformation!

Signal

f0 = 160 kHz, ∆f = -63 HzA = 12.7 nm, T = 14 K

Einheitszelle:4.27 Å x 6.04 Å

10 nm

[001]

[110]

0 1 2 3 4

-10

0

10

z [

pm

]

lateral position [nm]laterale Position [nm]

z[p

m]

RMS-Rauschen in z-Richtung < 2 pm

⇒ Auflösung vergleichbar mit Tieftemperatur-STMs!

Atomare Auflösung auf InAs(110)dynamische Rasterkraftmikroskopie (NC-AFM)

Bildkontrastmechanismus

am Beispiel Ag(110)

Case Study – Theory & Experiment Ag(110)

Top layeratoms2nd layer

atoms

rows

ncAFM on Ag(110), UHV, room temperature

0.290 nm 0.409 nm

Ag(110)

Ab initio calculation - Top layer, top of atom

Vasile Caciuc and Hendrik Hölscher, University of Münster

=> stable, until ~ 0.35 nm

Site A

A

Ab initio calculation – 2nd layer, top of atom

=> always stable

Site B

Vasile Caciuc and Hendrik Hölscher, University of Münster

B

Ab initio calculation – 2nd layer, between atoms

=> very unstableEnergy dissipation!

Site C

C

Vasile Caciuc and Hendrik Hölscher, University of Münster

Frequency shift versus distance curves

Topography: Simulation

Image Contrast – Ab-initio Simulation

Topography: Experiment

Ab-initio simulation

Height Profiles – Theory vs. Experiment

NC-AFM experiment

Atomic contrast in NC-AFM: Short range chemical binding forces

Energy Dissipation in Dynamic AFM

Energy dissipationcauses damping of oscillation

Amplitude gainfactor is a measureof dissipated energy

From: Schirmeisen, Anczykowski, Fuchs in Springer Handbook of Nanotechnology, Edt. Bushan, 2007

2x2 nm

topography

dissipation

line profile A

line profile B

Experiment: topography and dissipation

topography

topographydissipation

dissipation

Energy Dissipation in Dynamic AFM

NC-AFM: Spitze oszilliert durchgehend (~ 5-10 nm)

Krafthysterese in den Kurven:Fläche zwischen ‘Approach’und ‘Retraction’ = Dissipierte Energie

A. Reversable(until force minimum) B. Fully reversable

C. Irreversable,Strong mechanical relaxation

Summary ab initio simulations

Little energy dissipation Increased energy dissipation

topography dissipation

2x2 nm

Experiment: topography and dissipation

Experiment: Domenique Weiner, University of Münster

Mechanismus der Frequenzverschiebung

Kraftspektroskopie

Model: Gekoppelte Federn

Gekoppelte Federn:

1. Spitze an Federbalken: kFb

2. Spitze und Probe

Kraftwechselwirkung: kts = ∂F/∂z

Resonanzfrequenz eines

(ungedämpften) Federbalkens:

ω² = (ω0+ ∆ω)² = keff / m*

(m* = effektive Masse des

Federbalkens)

wobei: keff = kFb + ∂F/∂z

damit gilt für Gradienten ∂F/∂z < kFb

∆ω ≅ ω0 / 2kFb · ∂F/∂z

V(z)

E

zD + 2AD

Parabolisches PotentialSpitzen-Proben PotentialEffektives Potential

Grosse Schwingungsamplituden

Theorie der dynamische Kraftspektroskopie

∫∞

−≈∆

D

ts

z

dzzD

zF

Ac

fADf

)(

2

1),(

2/3

0

π

Giessibl, PRB (1997)Dürig, APL 75, 433 (1999)

Frequenzverschiebung:

Inversion:

∫∞

′−′

∂≈

D

zts zd

Dz

ADf

f

Ac

DDF

),(2)(

0

2/3

normierte Frequenzverschiebung:

),()(0

2/3

ADff

cAD z ∆=γ

Gewichtung: Aufenthaltsdauer

NC-AFM Spectroscopy – Force Distance Curves

-10

-5

0

5

freq

uenc

y sh

ift in

Hz

5 4 3 2 1 0

relative tip-sample distance in nm

38.6 nm 31.1 nm 27.3 nm 23.4 nm

Frequency shiftSi-tip on HOPG

From: Schirmeisen, Hölscher, Anczykowski, Weiner, Schäfer, Fuchs, Nanotechnology 16 (2005) S13

Conservative forces

Conservative and Dissipative Forces

dissipated energy

1.4

1.2

1.0

0.8

0.6

exci

tatio

n am

plitu

de in

pm

5 4 3 2 1 0

relative tip-sample distance in nm

38.6 nm 31.1 nm 27.3 nm 23.4 nm

excitation amplitude dissipative forces

From: Schirmeisen, Hölscher, Anczykowski, Weiner, Schäfer, Fuchs, Nanotechnology 16 (2005) S13

3-dimensionale Kraftfelder

Dynamics of Adatoms on Surface

Energy barrier for atomic jumps

different interaction potential energy fo A and B sites

- Potential energy landscape responsible for surface atom dynamics

- Crystal growth, facetting, catalytic action

- Tribology: Atomic friction models

A site B site

Acquisition of Interaction Energy Landscape

Interaction force

Measurement of interaction potential energy landscape:

� attach adsorbate to support base

� measure forces as a function of relative tip-sample position in 3D space

� calculate potential energy map

Force Spectroscopy – Point Mode

2.0 nm

yxz

-200

-150

-100

-50

0

fre

qu

en

cy

sh

ift (

Hz

)

1.00.80.60.40.20.0

z-position (nm)

site A

NaCl(100)

2.0 nm

yxz

-200

-150

-100

-50

0

fre

qu

en

cy

sh

ift (

Hz

)

1.00.80.60.40.20.0

z-position (nm)

site A site B

Force Spectroscopy – Point Mode

NaCl(100)

3D Spectroscopy – Principle of Operation

2.0 nm

y

xz Na+Cl-

a = 0.56 nm

3d force spectroscopy: Hölscher et al., Appl. Phys. Lett. 81 (2002) 4428

Frequency Shift: 2D Slice along Corrugation Maxima

Two Separate Force Minima

Potential Energy Map

∆Ebarrier = 48 meV

Schirmeisen, Weiner, Fuchs, Phys. Rev. Lett. 97, 136101 (2006)

Potential Energy Map: Tip Atom Equilibrium Position

x

z

Epot

x

z

Epot

z

zxEzxF

pot

z∂

∂=

),(),(

Vertical Force Field from Potential Energy Map

Fz

x

z

Epot

Lateral Force Field from Potential Energy Map

Fx

x

zxEzxF

pot

x∂

∂=

),(),(

Lateral Forces from Potential Energy Map

Flateral = dVts(x,z) / dx

A A ABBB

Lateral forces similar to ‘site-specific’ normal forces!

Lateral forces from energy profile:Schwarz et al., AIP Conf. Proc. 696 (2003) 68

Simultaneously Acquired Energy Dissipation

Force Curves – Hysteresis Model

Single Atom Tip Model with Spring

site A site B

Single Atom Tip Model with Spring

site A site B

Single Atom Tip Model with Spring

site A site B

Force Curves – Hysteresis Model

Theory:Sasaki et al. JJAP 39 (2000) L1334Kantorovich et al. PRL 93 (2005) 236102...Experiments:Gotsmann et al., PRL 86 (2001) 2597Hoffmann et al., PRL 87 (2001) 265502...