nanoparticle surface activity bello sno_surface activity.pdfnanoparticles in human blood serum by...

51
NANOPARTICLE SURFACE ACTIVITY: UNDERSTANDING, MEASURING, AND INTEGRATING IT INTO DOSIMETRY Dhimiter Bello, Sc.D., M.Sc. Assoc. Professor, Exposure Biology Work Environment Department College of Health Sciences UMass Lowell Visiting Scientist, Harvard School of Public Health Molecular & Integrative Physiological Sciences Department of Environmental Health [email protected] SNO, Venice 03/11/2015

Upload: others

Post on 26-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

NANOPARTICLE SURFACE ACTIVITY

UNDERSTANDING MEASURING AND

INTEGRATING IT INTO DOSIMETRY

Dhimiter Bello ScD MSc

Assoc Professor Exposure Biology

Work Environment Department

College of Health Sciences

UMass Lowell

Visiting Scientist Harvard School of Public Health

Molecular amp Integrative Physiological Sciences

Department of Environmental Health

Dhimiter_Belloumledu SNO Venice 03112015

The CHALLENGE

THE VIAL THE FILTER

dhimiter_belloumledu 2

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 3

Dose Metrics A Historical Perspective

dhimiter_belloumledu 4

MASS(ugm3)

RESPIRABLE

FIBERS

(fm3)

Viable amp Total

Microorganisms

(m3)

Departing from Mass (OR NOT)

dhimiter_belloumledu 5

Maynard amp Kuempel 2005

SURFACE AREA METRIC

dhimiter_belloumledu 6

Maynard amp Kuempel 2005

Surface Area as a Dose Metric

7

BET Surface Area [cm2]Lung [g]

Inflam

ma

tion P

MN

()

DOSE = f(SURFACE AREA SURFACE ACTIVITY)

bull Size Distribution

bull Surface Area

bull Surface Chemistry

bull Surface Charge

bull Bulk Chemical Composition

bull Metals amp Impurities

bull Morphology

bull Crystalinity

bull Biopersistence

bull Metal Leachinghellip

28 Properties in all (ICON 2007)

Physicochemical amp Morphological Properties Influencing

Toxicity

8

Surfaces are NOT

equal

Multiple parameters

related to surface

properties (SP)

How to measure these

surface properties

How do these

measures relate to

biologytoxicology

(1) Sotiriou et al Curr Opin Chem Eng 2011 1 3 ndash 10

(2) Xia et al ACS Nano 2011 5 1223 ndash 1235

(3) Napierska et al Particle and Fibre Toxicology 2010 739

(4) Teleki et al Chem Mater 2009 21 2094ndash2100

(5) Sotiriou et al Adv Funct Mater 2010 20 4250ndash4257Demokritou ES Nano 2013

Next generation ENM Safer-by design

Impurities amp Bioactivity

Doping of SiO2 NPs with

MeOx NP or Men+

CB +Fe2O3

Synergistic ROS generation

10

Guo et al PFT 2009Limbah et al ESampT 2007 41

Examples illustrate the importance of material composition electronic structure bonded

surface species (eg metal-containing) surface coatings (active or passive) and solubility

including the contribution of surface species and coatings and interactions with other

environmental factors

Nel et al Science 311 622 (2006)

Oxidative stress ndash An important mechanism of NP

toxicity

Oxidative stress (OS) has

been recognized in vivo and

in vitro systems as one

such major pathway and is

being explored for ENM

toxicity screening purposes

(Nel et al 2006 Xia et al

2006 Borm et al 2007

Ayres et al 2008 Rogers et

al 2008 Bello et al 2009

Lu et al 2009 Meng et al

2009)

In vivo InhalationOral Administr Skin irritationAquatic animals

hellip

hellip

hellip

hellip

hellip

hellip

hellip

hellip

In vitro Cell free System

Cellular System

System Markers (of Oxidative Stress)

ROS - Reactive oxygen species DTT-Dithiothreitol DCFH-DA-Dichlorofluorescin diacetate HO-1 Heme

oxygenase-1 SOD-superoxide dismutase GSH-Glutathione EPR-Electron paramagnetic resonance ESR-

electron spin resonance

hellip

hellip

Measure ROS generationDTT assay

DCFH-DA assay

EPRESR

Cell viabilityMitochondrial dysfunction

ROS ndash DCFH-DA assay

Activation of pro-inflammatory pathway

Inflammatory factors cytokine production

Redox enzyme expression (HO-1 SOD)

DNA damagecell mutagenesisproliferation

Luciferase Reporter Cyt C

Similar to Cellular system

GSH depletion

Hematological biochemical

and pathologic change

12

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 2: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

The CHALLENGE

THE VIAL THE FILTER

dhimiter_belloumledu 2

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 3

Dose Metrics A Historical Perspective

dhimiter_belloumledu 4

MASS(ugm3)

RESPIRABLE

FIBERS

(fm3)

Viable amp Total

Microorganisms

(m3)

Departing from Mass (OR NOT)

dhimiter_belloumledu 5

Maynard amp Kuempel 2005

SURFACE AREA METRIC

dhimiter_belloumledu 6

Maynard amp Kuempel 2005

Surface Area as a Dose Metric

7

BET Surface Area [cm2]Lung [g]

Inflam

ma

tion P

MN

()

DOSE = f(SURFACE AREA SURFACE ACTIVITY)

bull Size Distribution

bull Surface Area

bull Surface Chemistry

bull Surface Charge

bull Bulk Chemical Composition

bull Metals amp Impurities

bull Morphology

bull Crystalinity

bull Biopersistence

bull Metal Leachinghellip

28 Properties in all (ICON 2007)

Physicochemical amp Morphological Properties Influencing

Toxicity

8

Surfaces are NOT

equal

Multiple parameters

related to surface

properties (SP)

How to measure these

surface properties

How do these

measures relate to

biologytoxicology

(1) Sotiriou et al Curr Opin Chem Eng 2011 1 3 ndash 10

(2) Xia et al ACS Nano 2011 5 1223 ndash 1235

(3) Napierska et al Particle and Fibre Toxicology 2010 739

(4) Teleki et al Chem Mater 2009 21 2094ndash2100

(5) Sotiriou et al Adv Funct Mater 2010 20 4250ndash4257Demokritou ES Nano 2013

Next generation ENM Safer-by design

Impurities amp Bioactivity

Doping of SiO2 NPs with

MeOx NP or Men+

CB +Fe2O3

Synergistic ROS generation

10

Guo et al PFT 2009Limbah et al ESampT 2007 41

Examples illustrate the importance of material composition electronic structure bonded

surface species (eg metal-containing) surface coatings (active or passive) and solubility

including the contribution of surface species and coatings and interactions with other

environmental factors

Nel et al Science 311 622 (2006)

Oxidative stress ndash An important mechanism of NP

toxicity

Oxidative stress (OS) has

been recognized in vivo and

in vitro systems as one

such major pathway and is

being explored for ENM

toxicity screening purposes

(Nel et al 2006 Xia et al

2006 Borm et al 2007

Ayres et al 2008 Rogers et

al 2008 Bello et al 2009

Lu et al 2009 Meng et al

2009)

In vivo InhalationOral Administr Skin irritationAquatic animals

hellip

hellip

hellip

hellip

hellip

hellip

hellip

hellip

In vitro Cell free System

Cellular System

System Markers (of Oxidative Stress)

ROS - Reactive oxygen species DTT-Dithiothreitol DCFH-DA-Dichlorofluorescin diacetate HO-1 Heme

oxygenase-1 SOD-superoxide dismutase GSH-Glutathione EPR-Electron paramagnetic resonance ESR-

electron spin resonance

hellip

hellip

Measure ROS generationDTT assay

DCFH-DA assay

EPRESR

Cell viabilityMitochondrial dysfunction

ROS ndash DCFH-DA assay

Activation of pro-inflammatory pathway

Inflammatory factors cytokine production

Redox enzyme expression (HO-1 SOD)

DNA damagecell mutagenesisproliferation

Luciferase Reporter Cyt C

Similar to Cellular system

GSH depletion

Hematological biochemical

and pathologic change

12

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 3: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 3

Dose Metrics A Historical Perspective

dhimiter_belloumledu 4

MASS(ugm3)

RESPIRABLE

FIBERS

(fm3)

Viable amp Total

Microorganisms

(m3)

Departing from Mass (OR NOT)

dhimiter_belloumledu 5

Maynard amp Kuempel 2005

SURFACE AREA METRIC

dhimiter_belloumledu 6

Maynard amp Kuempel 2005

Surface Area as a Dose Metric

7

BET Surface Area [cm2]Lung [g]

Inflam

ma

tion P

MN

()

DOSE = f(SURFACE AREA SURFACE ACTIVITY)

bull Size Distribution

bull Surface Area

bull Surface Chemistry

bull Surface Charge

bull Bulk Chemical Composition

bull Metals amp Impurities

bull Morphology

bull Crystalinity

bull Biopersistence

bull Metal Leachinghellip

28 Properties in all (ICON 2007)

Physicochemical amp Morphological Properties Influencing

Toxicity

8

Surfaces are NOT

equal

Multiple parameters

related to surface

properties (SP)

How to measure these

surface properties

How do these

measures relate to

biologytoxicology

(1) Sotiriou et al Curr Opin Chem Eng 2011 1 3 ndash 10

(2) Xia et al ACS Nano 2011 5 1223 ndash 1235

(3) Napierska et al Particle and Fibre Toxicology 2010 739

(4) Teleki et al Chem Mater 2009 21 2094ndash2100

(5) Sotiriou et al Adv Funct Mater 2010 20 4250ndash4257Demokritou ES Nano 2013

Next generation ENM Safer-by design

Impurities amp Bioactivity

Doping of SiO2 NPs with

MeOx NP or Men+

CB +Fe2O3

Synergistic ROS generation

10

Guo et al PFT 2009Limbah et al ESampT 2007 41

Examples illustrate the importance of material composition electronic structure bonded

surface species (eg metal-containing) surface coatings (active or passive) and solubility

including the contribution of surface species and coatings and interactions with other

environmental factors

Nel et al Science 311 622 (2006)

Oxidative stress ndash An important mechanism of NP

toxicity

Oxidative stress (OS) has

been recognized in vivo and

in vitro systems as one

such major pathway and is

being explored for ENM

toxicity screening purposes

(Nel et al 2006 Xia et al

2006 Borm et al 2007

Ayres et al 2008 Rogers et

al 2008 Bello et al 2009

Lu et al 2009 Meng et al

2009)

In vivo InhalationOral Administr Skin irritationAquatic animals

hellip

hellip

hellip

hellip

hellip

hellip

hellip

hellip

In vitro Cell free System

Cellular System

System Markers (of Oxidative Stress)

ROS - Reactive oxygen species DTT-Dithiothreitol DCFH-DA-Dichlorofluorescin diacetate HO-1 Heme

oxygenase-1 SOD-superoxide dismutase GSH-Glutathione EPR-Electron paramagnetic resonance ESR-

electron spin resonance

hellip

hellip

Measure ROS generationDTT assay

DCFH-DA assay

EPRESR

Cell viabilityMitochondrial dysfunction

ROS ndash DCFH-DA assay

Activation of pro-inflammatory pathway

Inflammatory factors cytokine production

Redox enzyme expression (HO-1 SOD)

DNA damagecell mutagenesisproliferation

Luciferase Reporter Cyt C

Similar to Cellular system

GSH depletion

Hematological biochemical

and pathologic change

12

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 4: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Dose Metrics A Historical Perspective

dhimiter_belloumledu 4

MASS(ugm3)

RESPIRABLE

FIBERS

(fm3)

Viable amp Total

Microorganisms

(m3)

Departing from Mass (OR NOT)

dhimiter_belloumledu 5

Maynard amp Kuempel 2005

SURFACE AREA METRIC

dhimiter_belloumledu 6

Maynard amp Kuempel 2005

Surface Area as a Dose Metric

7

BET Surface Area [cm2]Lung [g]

Inflam

ma

tion P

MN

()

DOSE = f(SURFACE AREA SURFACE ACTIVITY)

bull Size Distribution

bull Surface Area

bull Surface Chemistry

bull Surface Charge

bull Bulk Chemical Composition

bull Metals amp Impurities

bull Morphology

bull Crystalinity

bull Biopersistence

bull Metal Leachinghellip

28 Properties in all (ICON 2007)

Physicochemical amp Morphological Properties Influencing

Toxicity

8

Surfaces are NOT

equal

Multiple parameters

related to surface

properties (SP)

How to measure these

surface properties

How do these

measures relate to

biologytoxicology

(1) Sotiriou et al Curr Opin Chem Eng 2011 1 3 ndash 10

(2) Xia et al ACS Nano 2011 5 1223 ndash 1235

(3) Napierska et al Particle and Fibre Toxicology 2010 739

(4) Teleki et al Chem Mater 2009 21 2094ndash2100

(5) Sotiriou et al Adv Funct Mater 2010 20 4250ndash4257Demokritou ES Nano 2013

Next generation ENM Safer-by design

Impurities amp Bioactivity

Doping of SiO2 NPs with

MeOx NP or Men+

CB +Fe2O3

Synergistic ROS generation

10

Guo et al PFT 2009Limbah et al ESampT 2007 41

Examples illustrate the importance of material composition electronic structure bonded

surface species (eg metal-containing) surface coatings (active or passive) and solubility

including the contribution of surface species and coatings and interactions with other

environmental factors

Nel et al Science 311 622 (2006)

Oxidative stress ndash An important mechanism of NP

toxicity

Oxidative stress (OS) has

been recognized in vivo and

in vitro systems as one

such major pathway and is

being explored for ENM

toxicity screening purposes

(Nel et al 2006 Xia et al

2006 Borm et al 2007

Ayres et al 2008 Rogers et

al 2008 Bello et al 2009

Lu et al 2009 Meng et al

2009)

In vivo InhalationOral Administr Skin irritationAquatic animals

hellip

hellip

hellip

hellip

hellip

hellip

hellip

hellip

In vitro Cell free System

Cellular System

System Markers (of Oxidative Stress)

ROS - Reactive oxygen species DTT-Dithiothreitol DCFH-DA-Dichlorofluorescin diacetate HO-1 Heme

oxygenase-1 SOD-superoxide dismutase GSH-Glutathione EPR-Electron paramagnetic resonance ESR-

electron spin resonance

hellip

hellip

Measure ROS generationDTT assay

DCFH-DA assay

EPRESR

Cell viabilityMitochondrial dysfunction

ROS ndash DCFH-DA assay

Activation of pro-inflammatory pathway

Inflammatory factors cytokine production

Redox enzyme expression (HO-1 SOD)

DNA damagecell mutagenesisproliferation

Luciferase Reporter Cyt C

Similar to Cellular system

GSH depletion

Hematological biochemical

and pathologic change

12

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 5: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Departing from Mass (OR NOT)

dhimiter_belloumledu 5

Maynard amp Kuempel 2005

SURFACE AREA METRIC

dhimiter_belloumledu 6

Maynard amp Kuempel 2005

Surface Area as a Dose Metric

7

BET Surface Area [cm2]Lung [g]

Inflam

ma

tion P

MN

()

DOSE = f(SURFACE AREA SURFACE ACTIVITY)

bull Size Distribution

bull Surface Area

bull Surface Chemistry

bull Surface Charge

bull Bulk Chemical Composition

bull Metals amp Impurities

bull Morphology

bull Crystalinity

bull Biopersistence

bull Metal Leachinghellip

28 Properties in all (ICON 2007)

Physicochemical amp Morphological Properties Influencing

Toxicity

8

Surfaces are NOT

equal

Multiple parameters

related to surface

properties (SP)

How to measure these

surface properties

How do these

measures relate to

biologytoxicology

(1) Sotiriou et al Curr Opin Chem Eng 2011 1 3 ndash 10

(2) Xia et al ACS Nano 2011 5 1223 ndash 1235

(3) Napierska et al Particle and Fibre Toxicology 2010 739

(4) Teleki et al Chem Mater 2009 21 2094ndash2100

(5) Sotiriou et al Adv Funct Mater 2010 20 4250ndash4257Demokritou ES Nano 2013

Next generation ENM Safer-by design

Impurities amp Bioactivity

Doping of SiO2 NPs with

MeOx NP or Men+

CB +Fe2O3

Synergistic ROS generation

10

Guo et al PFT 2009Limbah et al ESampT 2007 41

Examples illustrate the importance of material composition electronic structure bonded

surface species (eg metal-containing) surface coatings (active or passive) and solubility

including the contribution of surface species and coatings and interactions with other

environmental factors

Nel et al Science 311 622 (2006)

Oxidative stress ndash An important mechanism of NP

toxicity

Oxidative stress (OS) has

been recognized in vivo and

in vitro systems as one

such major pathway and is

being explored for ENM

toxicity screening purposes

(Nel et al 2006 Xia et al

2006 Borm et al 2007

Ayres et al 2008 Rogers et

al 2008 Bello et al 2009

Lu et al 2009 Meng et al

2009)

In vivo InhalationOral Administr Skin irritationAquatic animals

hellip

hellip

hellip

hellip

hellip

hellip

hellip

hellip

In vitro Cell free System

Cellular System

System Markers (of Oxidative Stress)

ROS - Reactive oxygen species DTT-Dithiothreitol DCFH-DA-Dichlorofluorescin diacetate HO-1 Heme

oxygenase-1 SOD-superoxide dismutase GSH-Glutathione EPR-Electron paramagnetic resonance ESR-

electron spin resonance

hellip

hellip

Measure ROS generationDTT assay

DCFH-DA assay

EPRESR

Cell viabilityMitochondrial dysfunction

ROS ndash DCFH-DA assay

Activation of pro-inflammatory pathway

Inflammatory factors cytokine production

Redox enzyme expression (HO-1 SOD)

DNA damagecell mutagenesisproliferation

Luciferase Reporter Cyt C

Similar to Cellular system

GSH depletion

Hematological biochemical

and pathologic change

12

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 6: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

SURFACE AREA METRIC

dhimiter_belloumledu 6

Maynard amp Kuempel 2005

Surface Area as a Dose Metric

7

BET Surface Area [cm2]Lung [g]

Inflam

ma

tion P

MN

()

DOSE = f(SURFACE AREA SURFACE ACTIVITY)

bull Size Distribution

bull Surface Area

bull Surface Chemistry

bull Surface Charge

bull Bulk Chemical Composition

bull Metals amp Impurities

bull Morphology

bull Crystalinity

bull Biopersistence

bull Metal Leachinghellip

28 Properties in all (ICON 2007)

Physicochemical amp Morphological Properties Influencing

Toxicity

8

Surfaces are NOT

equal

Multiple parameters

related to surface

properties (SP)

How to measure these

surface properties

How do these

measures relate to

biologytoxicology

(1) Sotiriou et al Curr Opin Chem Eng 2011 1 3 ndash 10

(2) Xia et al ACS Nano 2011 5 1223 ndash 1235

(3) Napierska et al Particle and Fibre Toxicology 2010 739

(4) Teleki et al Chem Mater 2009 21 2094ndash2100

(5) Sotiriou et al Adv Funct Mater 2010 20 4250ndash4257Demokritou ES Nano 2013

Next generation ENM Safer-by design

Impurities amp Bioactivity

Doping of SiO2 NPs with

MeOx NP or Men+

CB +Fe2O3

Synergistic ROS generation

10

Guo et al PFT 2009Limbah et al ESampT 2007 41

Examples illustrate the importance of material composition electronic structure bonded

surface species (eg metal-containing) surface coatings (active or passive) and solubility

including the contribution of surface species and coatings and interactions with other

environmental factors

Nel et al Science 311 622 (2006)

Oxidative stress ndash An important mechanism of NP

toxicity

Oxidative stress (OS) has

been recognized in vivo and

in vitro systems as one

such major pathway and is

being explored for ENM

toxicity screening purposes

(Nel et al 2006 Xia et al

2006 Borm et al 2007

Ayres et al 2008 Rogers et

al 2008 Bello et al 2009

Lu et al 2009 Meng et al

2009)

In vivo InhalationOral Administr Skin irritationAquatic animals

hellip

hellip

hellip

hellip

hellip

hellip

hellip

hellip

In vitro Cell free System

Cellular System

System Markers (of Oxidative Stress)

ROS - Reactive oxygen species DTT-Dithiothreitol DCFH-DA-Dichlorofluorescin diacetate HO-1 Heme

oxygenase-1 SOD-superoxide dismutase GSH-Glutathione EPR-Electron paramagnetic resonance ESR-

electron spin resonance

hellip

hellip

Measure ROS generationDTT assay

DCFH-DA assay

EPRESR

Cell viabilityMitochondrial dysfunction

ROS ndash DCFH-DA assay

Activation of pro-inflammatory pathway

Inflammatory factors cytokine production

Redox enzyme expression (HO-1 SOD)

DNA damagecell mutagenesisproliferation

Luciferase Reporter Cyt C

Similar to Cellular system

GSH depletion

Hematological biochemical

and pathologic change

12

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 7: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Surface Area as a Dose Metric

7

BET Surface Area [cm2]Lung [g]

Inflam

ma

tion P

MN

()

DOSE = f(SURFACE AREA SURFACE ACTIVITY)

bull Size Distribution

bull Surface Area

bull Surface Chemistry

bull Surface Charge

bull Bulk Chemical Composition

bull Metals amp Impurities

bull Morphology

bull Crystalinity

bull Biopersistence

bull Metal Leachinghellip

28 Properties in all (ICON 2007)

Physicochemical amp Morphological Properties Influencing

Toxicity

8

Surfaces are NOT

equal

Multiple parameters

related to surface

properties (SP)

How to measure these

surface properties

How do these

measures relate to

biologytoxicology

(1) Sotiriou et al Curr Opin Chem Eng 2011 1 3 ndash 10

(2) Xia et al ACS Nano 2011 5 1223 ndash 1235

(3) Napierska et al Particle and Fibre Toxicology 2010 739

(4) Teleki et al Chem Mater 2009 21 2094ndash2100

(5) Sotiriou et al Adv Funct Mater 2010 20 4250ndash4257Demokritou ES Nano 2013

Next generation ENM Safer-by design

Impurities amp Bioactivity

Doping of SiO2 NPs with

MeOx NP or Men+

CB +Fe2O3

Synergistic ROS generation

10

Guo et al PFT 2009Limbah et al ESampT 2007 41

Examples illustrate the importance of material composition electronic structure bonded

surface species (eg metal-containing) surface coatings (active or passive) and solubility

including the contribution of surface species and coatings and interactions with other

environmental factors

Nel et al Science 311 622 (2006)

Oxidative stress ndash An important mechanism of NP

toxicity

Oxidative stress (OS) has

been recognized in vivo and

in vitro systems as one

such major pathway and is

being explored for ENM

toxicity screening purposes

(Nel et al 2006 Xia et al

2006 Borm et al 2007

Ayres et al 2008 Rogers et

al 2008 Bello et al 2009

Lu et al 2009 Meng et al

2009)

In vivo InhalationOral Administr Skin irritationAquatic animals

hellip

hellip

hellip

hellip

hellip

hellip

hellip

hellip

In vitro Cell free System

Cellular System

System Markers (of Oxidative Stress)

ROS - Reactive oxygen species DTT-Dithiothreitol DCFH-DA-Dichlorofluorescin diacetate HO-1 Heme

oxygenase-1 SOD-superoxide dismutase GSH-Glutathione EPR-Electron paramagnetic resonance ESR-

electron spin resonance

hellip

hellip

Measure ROS generationDTT assay

DCFH-DA assay

EPRESR

Cell viabilityMitochondrial dysfunction

ROS ndash DCFH-DA assay

Activation of pro-inflammatory pathway

Inflammatory factors cytokine production

Redox enzyme expression (HO-1 SOD)

DNA damagecell mutagenesisproliferation

Luciferase Reporter Cyt C

Similar to Cellular system

GSH depletion

Hematological biochemical

and pathologic change

12

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 8: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

bull Size Distribution

bull Surface Area

bull Surface Chemistry

bull Surface Charge

bull Bulk Chemical Composition

bull Metals amp Impurities

bull Morphology

bull Crystalinity

bull Biopersistence

bull Metal Leachinghellip

28 Properties in all (ICON 2007)

Physicochemical amp Morphological Properties Influencing

Toxicity

8

Surfaces are NOT

equal

Multiple parameters

related to surface

properties (SP)

How to measure these

surface properties

How do these

measures relate to

biologytoxicology

(1) Sotiriou et al Curr Opin Chem Eng 2011 1 3 ndash 10

(2) Xia et al ACS Nano 2011 5 1223 ndash 1235

(3) Napierska et al Particle and Fibre Toxicology 2010 739

(4) Teleki et al Chem Mater 2009 21 2094ndash2100

(5) Sotiriou et al Adv Funct Mater 2010 20 4250ndash4257Demokritou ES Nano 2013

Next generation ENM Safer-by design

Impurities amp Bioactivity

Doping of SiO2 NPs with

MeOx NP or Men+

CB +Fe2O3

Synergistic ROS generation

10

Guo et al PFT 2009Limbah et al ESampT 2007 41

Examples illustrate the importance of material composition electronic structure bonded

surface species (eg metal-containing) surface coatings (active or passive) and solubility

including the contribution of surface species and coatings and interactions with other

environmental factors

Nel et al Science 311 622 (2006)

Oxidative stress ndash An important mechanism of NP

toxicity

Oxidative stress (OS) has

been recognized in vivo and

in vitro systems as one

such major pathway and is

being explored for ENM

toxicity screening purposes

(Nel et al 2006 Xia et al

2006 Borm et al 2007

Ayres et al 2008 Rogers et

al 2008 Bello et al 2009

Lu et al 2009 Meng et al

2009)

In vivo InhalationOral Administr Skin irritationAquatic animals

hellip

hellip

hellip

hellip

hellip

hellip

hellip

hellip

In vitro Cell free System

Cellular System

System Markers (of Oxidative Stress)

ROS - Reactive oxygen species DTT-Dithiothreitol DCFH-DA-Dichlorofluorescin diacetate HO-1 Heme

oxygenase-1 SOD-superoxide dismutase GSH-Glutathione EPR-Electron paramagnetic resonance ESR-

electron spin resonance

hellip

hellip

Measure ROS generationDTT assay

DCFH-DA assay

EPRESR

Cell viabilityMitochondrial dysfunction

ROS ndash DCFH-DA assay

Activation of pro-inflammatory pathway

Inflammatory factors cytokine production

Redox enzyme expression (HO-1 SOD)

DNA damagecell mutagenesisproliferation

Luciferase Reporter Cyt C

Similar to Cellular system

GSH depletion

Hematological biochemical

and pathologic change

12

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 9: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

(1) Sotiriou et al Curr Opin Chem Eng 2011 1 3 ndash 10

(2) Xia et al ACS Nano 2011 5 1223 ndash 1235

(3) Napierska et al Particle and Fibre Toxicology 2010 739

(4) Teleki et al Chem Mater 2009 21 2094ndash2100

(5) Sotiriou et al Adv Funct Mater 2010 20 4250ndash4257Demokritou ES Nano 2013

Next generation ENM Safer-by design

Impurities amp Bioactivity

Doping of SiO2 NPs with

MeOx NP or Men+

CB +Fe2O3

Synergistic ROS generation

10

Guo et al PFT 2009Limbah et al ESampT 2007 41

Examples illustrate the importance of material composition electronic structure bonded

surface species (eg metal-containing) surface coatings (active or passive) and solubility

including the contribution of surface species and coatings and interactions with other

environmental factors

Nel et al Science 311 622 (2006)

Oxidative stress ndash An important mechanism of NP

toxicity

Oxidative stress (OS) has

been recognized in vivo and

in vitro systems as one

such major pathway and is

being explored for ENM

toxicity screening purposes

(Nel et al 2006 Xia et al

2006 Borm et al 2007

Ayres et al 2008 Rogers et

al 2008 Bello et al 2009

Lu et al 2009 Meng et al

2009)

In vivo InhalationOral Administr Skin irritationAquatic animals

hellip

hellip

hellip

hellip

hellip

hellip

hellip

hellip

In vitro Cell free System

Cellular System

System Markers (of Oxidative Stress)

ROS - Reactive oxygen species DTT-Dithiothreitol DCFH-DA-Dichlorofluorescin diacetate HO-1 Heme

oxygenase-1 SOD-superoxide dismutase GSH-Glutathione EPR-Electron paramagnetic resonance ESR-

electron spin resonance

hellip

hellip

Measure ROS generationDTT assay

DCFH-DA assay

EPRESR

Cell viabilityMitochondrial dysfunction

ROS ndash DCFH-DA assay

Activation of pro-inflammatory pathway

Inflammatory factors cytokine production

Redox enzyme expression (HO-1 SOD)

DNA damagecell mutagenesisproliferation

Luciferase Reporter Cyt C

Similar to Cellular system

GSH depletion

Hematological biochemical

and pathologic change

12

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 10: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Impurities amp Bioactivity

Doping of SiO2 NPs with

MeOx NP or Men+

CB +Fe2O3

Synergistic ROS generation

10

Guo et al PFT 2009Limbah et al ESampT 2007 41

Examples illustrate the importance of material composition electronic structure bonded

surface species (eg metal-containing) surface coatings (active or passive) and solubility

including the contribution of surface species and coatings and interactions with other

environmental factors

Nel et al Science 311 622 (2006)

Oxidative stress ndash An important mechanism of NP

toxicity

Oxidative stress (OS) has

been recognized in vivo and

in vitro systems as one

such major pathway and is

being explored for ENM

toxicity screening purposes

(Nel et al 2006 Xia et al

2006 Borm et al 2007

Ayres et al 2008 Rogers et

al 2008 Bello et al 2009

Lu et al 2009 Meng et al

2009)

In vivo InhalationOral Administr Skin irritationAquatic animals

hellip

hellip

hellip

hellip

hellip

hellip

hellip

hellip

In vitro Cell free System

Cellular System

System Markers (of Oxidative Stress)

ROS - Reactive oxygen species DTT-Dithiothreitol DCFH-DA-Dichlorofluorescin diacetate HO-1 Heme

oxygenase-1 SOD-superoxide dismutase GSH-Glutathione EPR-Electron paramagnetic resonance ESR-

electron spin resonance

hellip

hellip

Measure ROS generationDTT assay

DCFH-DA assay

EPRESR

Cell viabilityMitochondrial dysfunction

ROS ndash DCFH-DA assay

Activation of pro-inflammatory pathway

Inflammatory factors cytokine production

Redox enzyme expression (HO-1 SOD)

DNA damagecell mutagenesisproliferation

Luciferase Reporter Cyt C

Similar to Cellular system

GSH depletion

Hematological biochemical

and pathologic change

12

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 11: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Examples illustrate the importance of material composition electronic structure bonded

surface species (eg metal-containing) surface coatings (active or passive) and solubility

including the contribution of surface species and coatings and interactions with other

environmental factors

Nel et al Science 311 622 (2006)

Oxidative stress ndash An important mechanism of NP

toxicity

Oxidative stress (OS) has

been recognized in vivo and

in vitro systems as one

such major pathway and is

being explored for ENM

toxicity screening purposes

(Nel et al 2006 Xia et al

2006 Borm et al 2007

Ayres et al 2008 Rogers et

al 2008 Bello et al 2009

Lu et al 2009 Meng et al

2009)

In vivo InhalationOral Administr Skin irritationAquatic animals

hellip

hellip

hellip

hellip

hellip

hellip

hellip

hellip

In vitro Cell free System

Cellular System

System Markers (of Oxidative Stress)

ROS - Reactive oxygen species DTT-Dithiothreitol DCFH-DA-Dichlorofluorescin diacetate HO-1 Heme

oxygenase-1 SOD-superoxide dismutase GSH-Glutathione EPR-Electron paramagnetic resonance ESR-

electron spin resonance

hellip

hellip

Measure ROS generationDTT assay

DCFH-DA assay

EPRESR

Cell viabilityMitochondrial dysfunction

ROS ndash DCFH-DA assay

Activation of pro-inflammatory pathway

Inflammatory factors cytokine production

Redox enzyme expression (HO-1 SOD)

DNA damagecell mutagenesisproliferation

Luciferase Reporter Cyt C

Similar to Cellular system

GSH depletion

Hematological biochemical

and pathologic change

12

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 12: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

In vivo InhalationOral Administr Skin irritationAquatic animals

hellip

hellip

hellip

hellip

hellip

hellip

hellip

hellip

In vitro Cell free System

Cellular System

System Markers (of Oxidative Stress)

ROS - Reactive oxygen species DTT-Dithiothreitol DCFH-DA-Dichlorofluorescin diacetate HO-1 Heme

oxygenase-1 SOD-superoxide dismutase GSH-Glutathione EPR-Electron paramagnetic resonance ESR-

electron spin resonance

hellip

hellip

Measure ROS generationDTT assay

DCFH-DA assay

EPRESR

Cell viabilityMitochondrial dysfunction

ROS ndash DCFH-DA assay

Activation of pro-inflammatory pathway

Inflammatory factors cytokine production

Redox enzyme expression (HO-1 SOD)

DNA damagecell mutagenesisproliferation

Luciferase Reporter Cyt C

Similar to Cellular system

GSH depletion

Hematological biochemical

and pathologic change

12

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 13: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Approaches

Acellular

ESREPR

o Spin trapping with select

agents (eg DMPO)

DTT

o Colorimetric

DCFH

o Fluorescence (RO2 RO OH

HOCl and ONOO but not O2- and H2O2 )

FRAS

o Human Serum - Colorimetric

Property

dhimiter_belloumledu 13

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 14: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Human Blood Serum(containing endogenous

antioxidantseg VITE VITC)

Residual Serum Antioxidants

Fe3+

IN FRAS REAGENTFe2+

+TPTZ

BLUE COLORCOMPLEX

MEASURE ABSORBANCE AT 593nm BY VISIBLE

SPECTROPHOTOMETRY

FRAS REACTION

HOmiddot

ANALYTICAL APPROACH TO DETERMINE THE DEGREE OF OXIDATIVE STRESS EXERTED BY NANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY)

O

CH3

CH3

OH

CH3

H3C

-Tocopherol(Reduced form)

R

O

OHO

HO

OHHOH2C

L-Ascorbic Acid(Reduced form)

O

OO

O

OHHOH2C

+ H2O

L-Dehydroascorbic Acid (Oxidized form)

O

CH3

CH3

OCH3

H3CR

Stabilized Tocopherol Radical

Oxidatively Damaging Nanoparticles+

+ ROOH

L-Ascorbic acid(Reduced form)

L-Dehydroascorbic acid(Oxidized form)

α-Tocopherol(Reduced form) Stabilized Tocopheroxyl Radical

ROOmiddot

O

TPTZ-246-

Tripyridyl-135zine

RED

BLUE

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 15: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Oxidative Stress vs Inflammation

X2012

dhimiter_belloumledu 16

P

M

N

c

m

2

DCFH ESR

AMcell -ESR Luciferase

Activity

R2=074 R2=079

R2=095

R2=088

Rushton et al 2010

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 16: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

FRAS vs ESR

dhimiter_belloumledu 17

y = 00273x + 67895Rsup2 = 00013

0

20

40

60

80

100

120

140

160

0 50 100 150

ES

R (

H2

O2

eq

)

FRAS TEU (mM)

ESR vs FRAS

Bello D unpublished data

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 17: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Protocols

dhimiter_belloumledu 18Pal et al 2011 Dose-Response

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 18: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

dhimiter_belloumledu 19

(A) (C)

(B) (D)

mR

OS

(micro

mo

l H

2O

2E

q

mg

)sR

OS

(micro

mo

l H

2O

2E

q

m2)

mR

OS

(micro

mo

l H

2O

2E

qm

g)

sRO

S (micro

mo

l H

2O

2E

q

m2)

mBOD (micromol TEU Eqmg)mBOD (micromol TEU Eqmg)

sBOD (micromol TEU Eqm2) sBOD (micromol TEU Eqm2)

Spearman 085

R2 Linear 078

Spearman 062

R2 Linear 068

Spearman 058

R2 Linear 032

Spearman 030

R2 Linear 011

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 19: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

FRAS

Positive

(2128)

Negative

(728)

DCFH

Positive

(1028)10 0

Negative

(1828)11 7

N=28

Pal et al 2013 J Nano Research

Comparison of FRAS amp DCFH for the 28 ENM

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 20: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Acellular vs

Intracellular

GSHGSSG

dhimiter_belloumledu 21

Pal et al 2014

J Nano Research

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 21: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

dhimiter_belloumledu 22

Pal et al J Nano Research 2013

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 22: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Oxidative Stress vs Inflammation

dhimiter_belloumledu 23

TiO2_F

TiO2_D

Ag-35

Cu-60

MWCNT_MitsuiNi-60

Cristobalite

1

10

100

1000

10000

1 10 100 1000 10000

PM

N N

um

be

r x

10

^7m

^2

sBOD (nmol TEUsm2)

FRAS vs Inflammation

Bello Unpublished data PMN data Alison Elder U Rochester

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 23: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Physicochemical Properties amp FRAS Oxidative Stress

24

BOD ~ with SSA and the total

content of Redox-active metalsBello Hsieh et al 2010 Nanotoxicology

BO

D (

TE

Us

n

mo

l1

0m

g)

BOD (TEUs) = 075 SSA (m2g-1) + 0418TMe (ppm) R2=093

Hsieh Bello et al 2013

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 24: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

25

Distribution of FRAS BOD Values of 145 Tested

ENMs

1 BOD is expressed as Trolox

equivalent units (TEUs

μmol L-1)

2 Total antioxidant capacity of

normal blood serum is 535 plusmn15 μmol L-1 TEUs

3 1000 TEUs BOD near

complete depletion of the

antioxidants pool (5mgmL)

4 15 TEUs = The non-

significant BOD

5 25 of ENM lt15 TEUs

Hsieh et al 2013 Small

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 25: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Between-Class Variations in BOD

26

Hsieh Bello et al Small 2013

N=138

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 26: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Within-Class Variation in BOD CNTs

27

Hsieh Bello et al Small 2013

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 27: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Metal Oxides

28

TiO2

Hsieh Bello et al Small 2013

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 28: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

100 10 1

00

01

02

03

04

05

MWCNTs

SWCNTs

sB

OD

(T

EU

s micro

mo

l m

-2 m

L-1)

Outer Diameter (nm)

Effect of CNT OD size on BOD

Surface Activity of narrow CNTs is

much higher than for larger CNTsHsieh Bello et al 2011 Nanotoxicology

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 29: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Surface Activity vs ENM Class

dhimiter_belloumledu 30Hsieh Bello et al Small 2013

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 30: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Outline

Surface in Inhalation Dosimetry

o Surface Area amp Activity

o Bench top Technologies and Options

Surface in ENM Exposure Assessment

o Gaps amp Needs

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 31

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 31: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

dhimiter_belloumledu 32

Brouwer et al J Nanoparticle Res

2013 15 2090

Exposures to ENM by

Task

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 32: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Surface Area vs Number Concentration

dhimiter_belloumledu 33

Brouwer et al Journal of Nanoparticle Research 2013 15(11)

DOI101007s11051-013-2090-7

NSAM

SMPS

lt100 nm amp

ALVEOLAR

O gt100 nm amp TB

200-1000 nm amp

ACTIVE SA (LQ1-DC)

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 33: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

ENM Exposures

320201

534

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 34: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

35

Nanoparticle Emissions from Commercial Photocopiers

Bello et al Nanotoxicology 2012

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 35: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Morphology amp Chemistry

36Bello et al Nanotoxicology 2012

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 36: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Important Real-World Lessons

NP Exposures are often to MIXTURES

PCM Properties along the life cycle of NEPs may be DIFFERENT from input ENMso Toxicological properties ndash likely DIFFERENT (by how much amp what

direction)

Multi-metric approach ndash necessaryo Sufficient

o Interpretation

Exposure- dose equivalency for in vitro or in vivo workhellipo mass number surface area elemental composition

dhimiter_belloumledu 37

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 37: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Outline

Current Metrology amp Exposure Monitoring for ENM

Surface Area

Surface Activity ndash what does it tell us

o Benchtop Technologies and Options

o Validity of the Concept

Near Real-time monitoring of SAr and SAc

dhimiter_belloumledu 38

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 38: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Nanodevices

(FP7 project)httpwwwnano-

deviceeuindexphpid=328

dhimiter_belloumledu 39

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 39: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Near-Real Time ROS Is Almost Here

dhimiter_belloumledu 40

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 40: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

dhimiter_belloumledu 41

Vogel 2013

3 min cycle

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 41: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Direct On-filter FLD detection

dhimiter_belloumledu 42

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 42: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

CONCLUSIONS

dhimiter_belloumledu 43

Surface activity appears to integrate

across multiple PCM parameters including

surface area

Therefore it is a critical parameter to

capture preferably in near-real time

Additional parameter to SA

The challenge- to develop the right

technology

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 43: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

My Collaborators

dhimiter_belloumledu 44

Prof P

Demokritou HSPHProf E Rogers

UMass LowellProf D F Schmidt

UMass LowellProf P Gaines

UMass Lowell

Prof B Wardle

MIT Prof J Isaacs

NEU

Dr D

Brouwer TNOProf Redlich Yale

Prof J Mead

UMass Lowell

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 44: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Questions

X 2012DHIMITER_BELLOUMLEDU

45

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 45: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

112920

1046

Monitoring NP Exposures Instrumentation

CCI

FMPS

APS

NPS-500

Nano-ID

CPC

Q-Trak

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 46: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

Personal Samplers

Personal size selective

impactors

o Naneum Aerosol PS 300

o Several miniaturized impactors

Quazi Personal Real-Time

Monitors

o Philips NanoTracer (10-300 nm

TNC SD)

oDiSCmini (Matter-Aerosol Inc)

dhimiter_belloumledu 47

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 47: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

BOD Correlates Well with TELI in E-Coli

dhimiter_belloumledu 48

Guo amp Gu et al 2011 EST

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 48: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

ldquoToxicity Screening tests for new nanomaterials

products are urgently needed Whilst recognizing that

oxidative stress potential may not be predictive of all

possible adverse outcomes tests based upon oxidative

potential maybe an invaluable tool for initial screening

and classification of the relative biohazard of such

materialsrdquo

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 49: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol

OXIDATIVE STRESS ANTIOXIDANTS

bullAscorbic acidbullTocopherolbullFolate

bullCatalasebullGlutathionie PeroxidasebullSuperoxide Dismutase

ENDOGENOUS PRODUCTION OFFREE RADICALS ROS AND RNS

eg bullOH bullO2- ROObull RObull H2O2

ONOO-

SMOKING

AIR POLLUTIONRADIATION

CHEMICALS

INCREASED PRODUCTION OFFREE RADICALSREACTIVE OXYGEN AND

NITROGEN SPECIES (ROS RNS)eg bullOH bullO2- ROObull RObull H2O2

ONOO-

OXIDATIVE DAMAGE

DNA DamageProtein

DenaturationInflammation

Lipid Peroxidation

Mutation

METAPLASIA CARCINOGENESIS

Defective Protein Structures

Cytokine and Chemokine Release

Mitochondrial andother Membrane Damage

Complement Activation and WBC Infiltration

DEVELOPMENT OF CHRONIC DISEASES

NANOPARTICLES

Biological Oxidative Stress

Key Metric Biological Oxidative Stress

What SAMPLE TYPE do we use to check for this Oxidative Stress

Page 50: NANOPARTICLE SURFACE ACTIVITY Bello SNO_Surface Activity.pdfNANOPARTICLES IN HUMAN BLOOD SERUM BY FERRIC REDUCTION ACTIVITY OF SERUM (FRAS ASSAY) O CH 3 CH 3 OH CH 3 H 3 C D-Tocopherol