nanoscale investigation-x ray diffraction

Upload: shailoza

Post on 10-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    1/33

    Investigation in nanoscale

    X-RAY DIFFRACTION

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    2/33

    X-ray generation

    Wavelength range:0.5-2.5

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    3/33

    Bremsstruhlung radiation-B re m sstra h lu n g p ro d u ce d b y ra p id d e ce le ra tio n o f a h ig h

    .e n e rg y e le ctro n in th e e le ctric fie ld o f a n a to m ic n u cle u s

    :// . . / /h ttp e n w ikip e d ia o rg w iki B re m sstra hlu n g

    impactbeforjustelectronofvelocityv,

    masselectronm,volts30,000oforderin theeV,

    2

    1 2mveVKE ==

    T h e d e ce le ra te d e le ctro n e m its e n e rg y

    ( - ).x ray

    http://upload.wikimedia.org/wikipedia/commons/1/1e/Bremsstrahlung.svg
  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    4/33

    ( , ) W h ite p o ly ch ro m a tic co n tin u o u sra d ia tio n

    -C o n tin u o u s X ra yspe ctrum of m olbd en um

    ( )Mo as of a function of

    .a p p lie d v o lta g e

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    5/33

    W h e n a p p lie d v o lta g e e xc e ss a critica l v a lu e C h a ra cte ristic

    .R a d ia tio n o ccu rs

    C h a ra cte ristic e m issio n s su p e rim p o se o n co n tin u o u s sp e ctru m a n d. -th e y a re n a rro w a n d in te n se T h e y a re u sed fo r x R a y d iffra ctio n

    .b eca u se o f th ey are ap p roxim a te m o n och ro m atic

    Characteristics radiation

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    6/33

    2p str ns t o n

    Characteristic radiation lines, , , .,fall into several sets K L M

    in the order of increasing.wavelength Only K line is used

    - .in x ray diffraction

    3p s1tr ns t on

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    7/33

    K doublet

    E le ctro n S p in sta te2 P /3 2

    E le ctro n S p in sta te

    2 P / 2

    K istwice asstrong as K 2

    U n re solve d K lineistaken

    as w eig h ted av erag e ofw ave len g th of K and K 2

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    8/33

    X-Ray and Braggs law

    A crystal is viewed as a planecontaining several lattice point. AtBraggs angle the reflective beamsare in phase and reinforced beamis obtained.

    http://upload.wikimedia.org/wikipedia/commons/0/0a/Bragg_diffraction.pnghttp://upload.wikimedia.org/wikipedia/commons/0/0a/Bragg_diffraction.png
  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    9/33

    X-RAY spectroscopy

    A crystal with planes of known spacing or a grating ofknow spacing can be set at particular angle , thus,the incident wavelength of the radiation can be

    determined. Intensity of diffraction at that particular angle is

    recorded. Repeat this test for various diffraction angle , a

    wavelength-x-ray intensity curve can be plotted.Te st sa m p le -generates xR a y

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    10/33

    X-Ray diffractometerCrystal structure analysis: With known x-Ray irradiation, a crystals

    lattice spacing can be determined by thediffraction pattern.

    Three methods :

    method Laue Variable

    (polychromatic)Fixed

    Rotating-crystal Fixed

    (monochromatic)

    Variable in part

    powder Fixed(monochromatic)

    variable

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    11/33

    Laue method

    First x-ray diffraction ever used A white x-ray irradiation falls on a crystal Each set of planes in the crystal, selects and

    diffracts a particular wavelength thatsatisfies Braggs law.

    S p o ts lyin g o n o n ecu rv e a re tra n sm itte d

    d iffra ctio n s fro mp lan es b elon g s to on e

    .z o n e

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    12/33

    Rotating crystal method Uses the characteristic x-ray

    irradiations The crystal is mounted with one

    of its axes or importantcrystallographic direction,

    normal to the incident x-ray. The crystal axis or

    crystallographic directioncoincides with the axis of the

    cylindrical film. The crystal rotates, a particular

    set of lattice plane will satisfiesBraggs law at a particularangle and at that instant adiffraction pattern will be

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    13/33

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    14/33

    Powder method

    Sample is reduced to very fine powder.Each microscopic grain is a crystal.

    Same principle as rotating crystal

    method. Only that in powder form,each tiny crystal is orientated atrandom angle with respect to incidentbeam. The mass of powder in fact is

    equivalent to a single crystal rotatedat all possible axes. Therefore, alllattice planes are capable ofdiffraction.

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    15/33

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    16/33

    ( )a T h e d iffra cte d ra ys fro m a sin g le cry sta l p o in t to d iscre te d ire ctio n s

    . ( )e a ch co rre sp o n d in g to a fa m ily o f d iffra ctio n p la n e s S p o t p a tte rn

    ( ) ( )b The diffractionpattern from a polycrystalline powder sample formsa se rie s d iffra ctio n co n e s if la rg e n u m b e r o f cry sta ls o rie n te d ra n d o m ly in

    - .th e spa ce a re cov e re d b y th e in cid e n t x ra y b e a m E a ch d iffra ctio n con eco rre sp o n d s to th e d iffra ctio n fro m th e sa m e fa m ily o f cry sta llin e p la n e s

    . ( )in a ll th e p a rticip a tin g g ra in s R in g p a tte rn

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    17/33

    ,Jo h n H a rt,n a n o m a n u fa ctu rin g

    U n iv e rsity o f M ich ig a n

    ,T h e co m p o sitio n size a n dd e g re e o f cry sta llin e o f th esam p le m a te ria l ca n b e

    e x tra cte d fro m th e rin gp o sitio n s a n d ra d ia l w id th s o f

    .th e se rin g s

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    18/33

    S ch e m a ticd ra w in g o f a X

    R a yD iffra cto m e te r

    : -S X R a y so u rce:H ro ta tio n ta b le, : -A B X R a y o p tics:F re ce iv in g slit o f

    the detector

    ,D iffra ctio n p a tte r a b o u t-on e h alf of th e e n tire ran g e

    .o f 21

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    19/33

    O n ly cry sta llin em a te ria l g iv e s

    .na rrow pe aksFro m th e

    lo ca tio n s o f th e se

    ( ),p ea ks rin g sla ttice sp a cin gca n b e

    .ca lcu la te d

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    20/33

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    21/33

    Calculation of DiffractionIntensity

    Lattice is considered as gratings for thedetermination of diffraction direction(Braggs law)

    In real X-Ray irradiation, lattice cannotbe considered a not a grating. For thecalculation of diffraction intensity, X-ray is considered as photons of highenergies and the intensity is the result

    of photon-electron, photon-nucleusinteraction. The emission of diffractedbeams is a result of interference ofscattered X-Rays, but not the incidentX-Ray,

    Eff t d d b th

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    22/33

    Effects produced by thepassage of X-ray through

    matter

    C on trib u te to

    ba ckgrou n dn o ise

    Form s

    D iffractio np a tte rn

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    23/33

    Factors of intensitycalculation

    Structure factor Multiplicity factor

    Absorption factor Temperature

    factor

    D ete rm in e dby the

    stru ctu re o fthe crystal

    A ccou n t for sam p le-a b sorp tio n o f x ra ya n d th e re su lta n t

    .te m p e ra tu re rise

    ( ) MeApFI 22

    2

    2

    cossin

    2cos1

    +=

    Me

    2( )A

    F

    p

    ,I relative integrated

    intensity

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    24/33

    Example of intensitycalculation

    , -C op p er face cen tered cub e

    T h e in te n sity a n a lysisg iv e s m o re d e ta ils o n

    the a tom arran ge m e nt.o f th e u n it ce ll

    To g e th e r w ith th e

    la ttice sp a cin ge x tra cte d fro m th e

    ,d iffra ctio n a n g le th estru ctu re o f th e cry sta l

    .ca n b e p re d icte d

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    25/33

    Intensity in x-ray scattering Scattering factors is proportional to the atomic number. The

    scattering factor of atoms of similar atomic numbers areclose, therefore it is difficult to identify similar atoms.

    Problem materials: compound containing N andO(polymers) aluminosilicates, Al, Si.

    the peak of maximum is taken as 100 and all the otherpeaks are scaled accordingly. A set of peaks and theirheights are adequate for phase identification. Sometimesaccurate measurement of peak positions is required.

    If preferred orientation exist for a material, it is likely thatonly those orientations will be manifested.

    Sample preparation affects the scattering intensity. It is

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    26/33

    Broadening of diffractionpeak

    , -B fu ll p e a k w id th a t h a lfm ax im u m

    21=B

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    27/33

    http://prism.mit.edu/xray

    Particle size and Peakwidth

    P. Scherrer, Bestimmung der Grsse und der inneren Struktur vonKolloidteilchen mittels Rntgenstrahlen, Nachr. Ges. Wiss.Gttingen26 (1918) pp 98-100.

    J.I. Langford and A.J.C. Wilson, Scherrer after Sixty Years: A Survey

    and Some New Results in the Determination of Crystallite Size,J.Appl. Cryst.11 (1978) pp 102-113.

    BB

    t

    cos9.0=

    ( )eak width B is inversely ( )roportional to crystallite size t

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    28/33

    http://prism.mit.edu/xray

    Particle size is not the onlyattribution to peak boardening

    66 67 68 69 70 7 72 73 742 ( .)eg These diffraction patterns were produced from the xact same sample , ,Two different diffractometers with different optical configurations were use h e a p p a r e n t p e a k b r o a d e n i n g i s du e s o l el y t o t h e i n s t ru m e n t at i o n

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    29/33

    http://prism.mit.edu/xray

    The Laue Equations describe the intensity of adiffracted peak from a single parallelopipeden

    crystal

    N1, N2, and N3 are the number of unit cells along the a1, a2, and a3directions

    When N is small, the diffraction peaks become broader

    The peak area remains constant independent of N

    ( ) ( )( ) ( )

    ( ) ( )( ) ( )

    ( )( )( ) ( ) 3

    2

    33

    2

    2

    2

    22

    2

    1

    2

    11

    2

    2

    /sin/sin

    /sin/sin

    /sin/sin

    assaNss

    assaNss

    assaNssFII

    O

    O

    O

    O

    O

    O

    e

    =

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    5000

    2.4 2.9 3.4

    N=99

    N=20

    N=10

    N=5

    N=2

    0

    50

    100

    150

    200

    250

    300

    350

    400

    2.4 2.9 3.4

    N=20

    N=10

    N=5

    N=2

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    30/33

    Stress measurement

    U n ifo rm e d stra inre su lt in sh ift in 1 B ,

    w ith n o a ffe ct on

    .p ro file o f th e p e a kU sed fo r

    m ea surem en t of.m a cro stre ss

    -N o n u n ifo rm e dm icro stra in d istu rb s

    th e g rain sha p e b u t

    n o d isto rtio n to th ee n tire v o lu m e o f th e.sam p le T h e re sults

    is n o t sh ift in 1B ,b u t th e p ro file o f th e

    p e a k w ill b e a lte re d

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    31/33

    XRD Strain measurement

    ( )

    2

    22

    2

    11

    2211

    2

    sincosstressbiaxial

    sin1

    +=

    ++

    =

    EEd

    dd

    o

    o

    ,In re a lte st w illb e ch a n g e d sev e ra ltim e sa n d d11 .recorded

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    32/33

    Definition of

  • 8/8/2019 Nanoscale Investigation-x Ray Diffraction

    33/33

    Stress measurementExample

    C o m p re sse d th in g o ld film