nanoscale thermal mapping of vo 2 - harvard...

17
Nanoscale Thermal Mapping of VO 2 Changhyun Ko Prof. Shriram Ramanathan Harvard School of Engineering & Applied Sciences Jenny Hoffman Contributors: Thanks to seed funding from: Adam Pivonka Alex Frenzel Kevin O’Connor Harry Mickalide Prof. Eric Hudson Harvard Physics V VO 2 n-type Si 100 nm

Upload: others

Post on 19-May-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

Nanoscale Thermal Mapping of VO2

Changhyun KoProf. Shriram Ramanathan

Harvard School of Engineering & Applied Sciences

Jenny Hoffman

Contributors:

Thanks to seed funding from:

Adam PivonkaAlex Frenzel

Kevin O’ConnorHarry Mickalide

Prof. Eric HudsonHarvard Physics

V

VO2

n-type Si

100 nm

Page 2: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

VO2 Insulator to Metal Transition

Tetragonal Metal

Monoclinic Insulator

T (K)

340 K

Goodenough, J.Solid State Chem 3, 490 (1971)

EF

3dπ (V-O-V)

3d|| (V-V)

EF

3dπ (V-O-V)

3d|| (V-V)

0.7 eV

Insulator-Metal Transition• temperature: ~340 K • uniaxial stress: ~38 kbar• optical excitation• electric field???? ~107 V/m

Transition features• tunability near room temperature• 80 fs switching time• large change in optical reflectance• high resistivity ratio: up to 105

Applications• sensors• data storage• memristors• tunable metamaterials

2

Can the transition be triggered by E-field alone??

Page 3: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

Thermal vs. Electronic Transition?

Morin, PRL 3, 34 (1959)

500 250 167 125 100 83T (Kelvin) Considered a thermal transition…

Caveats:1. Joule heating?2. electrical breakdown of gate?

3

Stefanovich, JPCM 12, 8837 (2000)

…until 40 years later: electronic triggering?

Qazilbash, APL 92, 241906 (2008)

Page 4: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

Motivations

4

300 320 340 360 380

102

103

104

105

Heating Cooling

T (Kelvin)

R (Ω

)

VO2

n-type Si

Pd

Bulk thermal transition

0 5 100

50

100

150

Cur

rent

(uA

)

Bias (V)

Voltage-triggered transition

VO2

n-type Si

Au

Kim, Ko, Frenzel, Ramanathan, Hoffman, APL 96, 213106 (2010)

1. VO2: E-field vs. Joule heating

2. General scanning technique for nanoscale T measurement

Question boils down to:what is the local temperature here?

Page 5: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

Inhomogeneity → need local probe

5Qazilbash, Science 318, 1750 (2007)

insulator metal

Kim, Ko, Frenzel, Ramanathan, Hoffman, APL 96, 213106 (2010)

Thermal inhomogeneity: Electrical inhomogeneity:4.44 V

4.93 V

5.43 V

3.45 V

500 nm

3.95 V

0 50 100 150Current (μA)

40 nm

0

3.45 V

3.95 V

4.44 V

4.93 V

5.43 V

Page 6: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

Local probe: conducting force microscope

RR ~102

V

VO2

n-type Si~ 2 nm SiOx

Cr/Aucoated tip

n-type Sicantilever: kc ~ 40 N/m

6

12 cm

built by Dr. Jeehoon Kim

0 5 100

50

100

150

Cur

rent

(uA

)

Bias (V)

187 nm

high Rinsulator

low Rmetal

Page 7: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

IV map

0 5 10 150

50

100

150

200

Cur

rent

(uA

)

Bias (V)

Cur

rent

(uA

)

VO2

Si

Au

Bias (V)

Original data

100 nm

Topography

7

Page 8: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

High-resolution IV map

0 5 10 150

50

100

150

200

Cur

rent

(uA

)

Bias (V)

straycapacitance

100 nm

Cur

rent

(uA

)

Bias (V)

VO2

Si

Au

New data (same sample) Topography

8

Page 9: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

High-resolution IV map

0 5 10 150

50

100

150

200

Cur

rent

(uA

)

Bias (V) 100 nm

Cur

rent

(uA

)

Bias (V)

VO2

Si

Au

New data (same sample) Topography

9

Page 10: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

High-resolution IV map

100 nm

TopographyV at transition

4.5 7.5 V = 187 13nmSi

VO2

TEM:

167 207 nm

=2 4 10 V/m

E-field

10But how can we get T at transition?Voltage E ( 10 V/m)

Page 11: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

Poole-Frenkel effect

11

EF

3dπ

3d||

0.7 eV

1. VO2 at T=0, V=0:

EF

3dπ

3d||

0.7 eV

2. VO2 at room T, V=0:

Frenkel, Physical Review 54, 647 (1938)Simmons, Physical Review 155, 657 (1967)

EF

3dπ

3d||

0.7 eV

3. VO2 at room T, V>0:

= exp // /

fundamentalconstants high freq. dielectric

film thickness

temperature

Page 12: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

12

Poole-Frenkel slope

0 5 10 150

50

100

150

200

Cur

rent

(uA

)

Bias (V)

ln = /4 1 / C

Page 13: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

13

Poole-Frenkel slope

0 5 10 150

50

100

150

200

Cur

rent

(uA

)

Bias (V)

slope ≡ = 1.57ln = /4 1 / C

Page 14: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

14

Poole-Frenkel slope

slope

1 3 /100 nm

slope ≡ 1.57ln /4 1 / C

Page 15: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

Solve for local temperature

15

fundamentalconstants high freq. dielectric

film thickness

temperature

slope ≡ = 1.57ln = /4 1 / C

100 nm

high freq. dielectric

100 nm305 K

345 K

Temperature

slope

1 3 / 167 207 nm

film thickness

100 nm

Page 16: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

16

100 nm305 K

345 K

TemperatureCompare E-field vs. Temperature

100 nm

-field

4 10 V/m

2 10 V/m

→ No special -field → = 332 K (c.f. = 339K)E ( 10 V/m) T (K)

Page 17: Nanoscale Thermal Mapping of VO 2 - Harvard Universityhoffman.physics.harvard.edu/talks/2013-03-18-Hoffman-VO2.pdf · VO2 n-type Si Pd Bulk thermal transition 05 10 0 50 100 150 Current

Conclusions

17

1. Joule heating is primarily responsible for insulator-to-metal transition in VO2(2-terminal geometry on Si)

2. Poole-Frenkel mapping viaconducting AFM provides anew general scanning techniquefor nanoscale T measurementon insulating films/ /

T (K)

100 nm305 K

345 K

Temperature