nasa technlcal nasa tm memorandum · pdf filei \ ’ \> - * nasa technlcal nasa tm...

16
I \ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln 0 + cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche (M F) ff 653 July 65 I CENTAUR- ELECTRICAL SYSTEM PROBLEMS, RELATED WORK, AND SOLUTIONS by Maurice F. Baddour Lewis Research Center 3- c Cleveland, Ohio .. N 0 = lACCESSl8k m RI ITHRUI > l L 0.7 aa/cis’ e 1 c (P~GES) (CODE1 < I 4 (CATEGO~~Y) (NASA CR OR Tmx OR AD NUMBER) I NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D.C. 1965 https://ntrs.nasa.gov/search.jsp?R=19650025918 2018-04-22T19:51:53+00:00Z

Upload: buithien

Post on 06-Feb-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

I \

’ \> -

* NASA T E C H N l C A L NASA TM X-52105

M E M O R A N D U M

L n 0 + cv n

GPO PRICE $ A s i- 4 v) 4 z

CSFTI PRICE(S) $

Hard copy (HC)

Microfiche (M F)

ff 653 July 65

I

CENTAUR- ELECTRICAL SYSTEM PROBLEMS, RELATED WORK, AND SOLUTIONS

by Maurice F. Baddour Lewis Research Center

3- c

Cleveland, Ohio .. N 0 = lACCESSl8k m RI ITHRUI

> l L 0.7 aa/cis’ e

1 c ( P ~ G E S ) (CODE1

< I 4

(CATEGO~~Y) (NASA CR OR T m x OR AD NUMBER) I

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D.C. 1965

https://ntrs.nasa.gov/search.jsp?R=19650025918 2018-04-22T19:51:53+00:00Z

Page 2: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

CENTAUR ELECTRICAL SYSTEM PROBLEMS,

RELATED WORK, AND SOLUTIONS

by Maurice F. Baddour

Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Page 3: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

CENTAUR ELECTRI CAL SYSTEM PROBLEMS, RELATED WORK, AND SOLUTIONS

by Maur i c e F. Baddour

0 Ln 0 M I

The Centaur e l e c t r i c a l system problems can be c a t e o r i z e d i n t o two areas, namely, the equipment and the power d i s t r i b u t i o n i n te r face .

- I c. j 0 . u

The equipment problems a r e t o o extens ive t o be discussed a t t h i s conference, b u t an example w i l l be used by showing how the i n v e r t e r was removed from the c r i t i c a l l i s t and made r e l i a b l e enough t o be f l i g h t qual i f ied.

Later-models . -- “ ---%&--*<.,I o f **‘e* A t l a s 4s *.-<”*. Centaur * use two sil- - -2-k~ r

The b a t t e r i e s a r e contained b a t t e r i e s . Piche; Company t o Centaur spec i f i ca t i ons . i n a p l a s t i c case which i s i n t u r n sealed i n a s t a i n l e s s - s t e e l conta iner t h a t has a p r e s s u r e - r e l i e f valve. g lass heater-wi re b lanket which maintains temperature optimum by thermostat c o n t r o l thraughout f l i g h t ,

The b a t t e r i e s have 79 c e l l s each and a r e made by the Eagle-

The b a t t e r i e s a r e p laced on a f i b e r -

One b a t t e r y i s used f o r te lemetry only, and the o t h e r b a t t e r y i s used main ly t o d r i v e the i n v e r t e r and supply the balance o f power t o the guidance, a u t o p i l o t , and f u e l - u t i l i z a t i o n systems. I t a l s o a c t s as a b ias supply and energizes re lays f o r sho r t per iods o f t ime.

The b a t t e r i e s a r e sealed i n a s t a i n l e s s - s t e e l conta iner t o prevent exp los ion i n a vacuum environment and t h e con ta ine r r e l i e f va l ve releases a t approximately 25 p s i t o vent t he gases. Problems were encount-ered w i t h e l e c t r w leaka e on the heater b lankercau‘s ing-a s h o r t c i r c u i t t6-e ou ts ide case. % I S was solved by b e t t e r a c t i v a t i o n procedure p r i o r t o launch, and by des ign ing a vent valve on each c e l l which would vent gas w i t h o u t ven t ing the e l e c t r o l y t e . There a r e two types o f vent valves. One t ype i s requ i red f o r each c e l l of t h e b a t t e r y i n the s t e e l case, and another i s requ i red on the s t a i n l e s s s t e e l case i t s e l f . A new s i n g l e p l a s t i c b a t t e r y case design i s approved t o c o n t a i n a l l c e l l s which w i l l improve re1 i a b i 1 i ty, increase s t reng th and reduce weight.

-r,- rc*”IcIwb*- Tsllc-. 1 I- .

Before going i n t o the inver ter , r e f e r t o F igu re 1 which shows the b a t t e r y e l e c t r i c a l load p r o f i l e f o r A t l a s Centaur number 3 (AC-3). The s o l i d l i n e i nd i ca tes the cu r ren t d r a i n on the main m i s s i l e b a t t e r y t o r t he sequence of ope ra t i on a f t e r launch. The dashed l i n e i nd i ca tes t h e te lemetry b a t t e r y cu r ren t d r a i n and shows a f a i r l y constant load on the ba t te ry . ampere-hour capaci ty. For AC-4 and l a t e r models, both b a t t e r i e s a re 100 ampere hour which i s as p h y s i c a l l y small as can be obta ined w i t h o u t a f f e c t i n g r e l i a b i l i t y . A t launch, the main b a t t e r y c u r r e n t - d r a i n i s

Also, n o t i c e t h a t f o r AC-3 the te lemetry b a t t e r y had a 250-

Page 4: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

2

approximately 45 amperes and o f that, about 37 amperes i s d e l i v e r e d t o t h e inverter. The balance o f the c u r r e n t i s d i s t r i b u t e d among the r e s t o f the system t o energ ize the d i f f e r e n t f unc t i ons d u r i n g o r a f t e r 1 aunch.

The t ime scale i n f i g u r e 1 i s i n seconds and the programmed f l i g h t i s 1225.1 seconds. The miss ion requirement a t present i s approximately 16 minutes. There w i l l be a t ime when i t w i l l reach 1 hour.

Before going i n t o (he i n v e r t 2 5 i-ram, a mechanical and e l e c t r i c a l d e s c r i p t i o n o f t he i n v e r t e r w i l l be given. F igure 2 i s a top view photograph o f t he i n v e r t e r w i t h the cover removed.

The i n v e r t e r i s approximately 10 by 16, by 6 inches, and weighs 37 pounds. The case i s now white. I t was found t h a t the a b i l i t y t o d i s s i - p a t e heat i n the vacuum environment o f space i s b e t t e r w i t h a w h i t e case than w i t h a b l a c k case due t o the s p i n cycle, which exposes the i n v e r t e r t o s o l a r rad iat ion. I f the case were black, the heat absorbed from s o l a r r a d i a t i o n would be greater than the r e f l e c t i v i t y as a w h i t e body due t o the i n t e r n a l heat generated. The i n v e r t e r i s i n a c losed case bu t i s not h e r m e t i c a l l y sealed. The webs on the per imeter o f t he case do not have openings t o the i n s i d e bu t a re used t o produce a chimney e f f e c t t o encourage the f l o w o f a i r be fo re i t reaches ou te r space. The i r e f f e c t i n a space environment i s n e g l i g i b l e .

The top o f f i g u r e 2 shows, the c i r c u i t boards mounted i n a p l a s t i c rack. Below the board rack a r e t h e commutating capaci tors. I n the middle o f t he i n v e r t e r case i s an aluminum p a r t i t i o n t h a t a c t s as a heat s i n k on which the s i l i c o n - c o n t r o l l e d r e c t i f i e r s (SCR's) a r e mounted. Below the heat s i n k i s the ou tpu t t ransformer w i t h a Y-connected three-phase secondary wound on a s i n g l e core. n e u t r a l which i s a t ground p o t e n t i a l . T e r t i a r y windings i n each phase a r e interconnected t o produce harmonic cance l l a t i on . The secondary o f the output t ransformer i s fed t o the output connector through t h e ou tpu t f i l t e r and both can be seen i n the lower l e f t corner o f t he case. The input connector can be seen i n the lower r i g h t corner o f t he case w i t h the input f i l t e r mounted between the i n p u t and output connectors. The inpu t charging chokes a re the th ree i nduc to rs mounted on top of the ou tpu t trans f o rmer.

A f o u r t h w i r e i s used as

The i n v e r t e r i s energized 12 hours p r i o r t o launch and has approx i - mately 100 hours o f running t ime on it, checking t h e m i s s i l e out. The guidance system,which represents approximately 80 percent o f the load, i s energized a t T-6 hours. i n v e r t e r has considerable ground o p e r a t i o n p r i o r t o launch. c o o l i n g i s always used on ground operat ion.

From these fac ts i t can be seen t h a t t he Forced a i r

w 0 cn 0

The f a c t t h a t the i n v e r t e r i s no t sealed has no t produced an I t was p o i n t e d o u t t h a t corona e f f e c t s i o n i z a t i o n ' . . problem - f 1 i n space.

W U l T ~ e produc;d,'-particularly, i n t h e Van A1 l e n Bel t . Ca lcu la t i ons

Page 5: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

3

were made based upon the c loses t spaced te rm ina ls i n the i nve r te r . I t was found t h a t t he re was l e s s than one microampere o f c u r r e n t f l o w due t o e l e c t r o n d i s t r i b u t i o n i n a vacuum due t o molecular c o l l i s i o n producing ions and electrons, and both producing random c o l l i s i o n w i t h t h e terminals.

0 Lo 0 M

w I

A schematic o f the i n v e r t e r i s shown i n f i g u r e 3. The c i r c u i t s enclosed by dashed l i n e s represent c i r c u i t boards. Fortunately, the enclosed areas may a l s o be used as a b lock diagram. S t a r t i n g a t the lower l e f t -hand corner o f f i g u r e 3 and moving up t o the r i g h t , t h e b locks a r e s e l f - i d e n t . i f i e d as the over load c i r c u i t , t he o s c i l l a t o r c i r c u i t , the countdown c i r c u i t and the core d r i v e r c i r c u i t which d r i v e s t h e s h i f t r e g i s t e r . The pu lse output from the s h i f t r e g i s t e r i s fed t o a p a r a l l e l - operated SCR i n v e r t e r c i r c u i t which i n t u r n i s shunted by a magamp

There a r e three i n v e r t e r s t imed 120 degrees apart, t h a t produce the 3-phase, 115-vol t, 400-cycle output across the secondary. The ou tpu t i s sensed both i n vo l tage and c u r r e n t as feedback through a magamp regulator . The regu la to r feeds a pu lse through the r e g u l a t i n g SCR's whose pu lse d u r a t i o n i s a f u n c t i o n o f the c u r r e n t o r voltage. regu la to rs a r e considered as b a t t e r y chargers, t h e i r ope ra t i on i s r e a d i l y apparent. Excess energy i s sensed by the magamp regulator, r e c t i f i e d , and i s fed back i n t o the b a t t e r y l ine, between the b a t t e r y and the over load c i r c u i t . This produces a back e lec t romot i ve f o r c e (emf) which reduces t h e c u r r e n t requirement from the bat tery .

I f t h e

The inpu t b a t t e r y cu r ren t must pass through the over load c i r c u i t (which i s a misnomer). It i s r e a l l y a s t a r t - p r o t e c t i o n c i r c u i t as wel l . I f the main SCR's a r e not commutated i n p e r f e c t t ime coincidence w i t h t h e resonant charge o f t he commutating capaci tor , by the pulses de r i ved from t h e s h i f t core reg i s te r , the over load c i r c u i t opens up the b a t t e r y c i r c u i t and t h e process i s repeated u n t i l t ime coincidence i s achieved.

An important change i n phi losophy t h a t has added t o the r e l i a b i l i t y o f t he i n v e r t e r i s t he e l i m i n a t i o n o f t he over load bypass c i r c u i t . Th is i s t he c i r c u i t i n the schematic t h a t would be energized by going through p i n 'IBl' of t he i npu t connector. I t was normal ly energized by t h e m i s s i l e chanaeover s w i t c h p r i o r t o launch. I f t h e over load c i r c u i t i s bypassed and a malfunct ion, a sho r t c i r c u i t , or a decommutation occurs, a l l s i x o f t he main SCRIs a r e destroyed w i t h i n microseconds.

Wi th the over load c i r c u i t i n a l l the time, an over load c u r r e n t exceeding 400 percent develops s u f f i c i e n t vo l tage across R53 t o f i r e CR40 which i n t u r n ext inguishes CR39 and thus opens up the b a t t e r y i n p u t I [ne. Once t h e c i r c u i t i s open, the uni jur ict ior- i oscillator Q; p i ~ d u c e s 5 pu lses pe r second tha t f i r e the main over load SCR, CR39, t o t u r n the system back on i n case the over load c o n d i t i o n has been cleared. This c i r c u i t w i l l cont inue t o sample the load c o n d i t i o n i n d e f i n i t e l y unless the b a t t e r y i s disconnected manually o r t he s h o r t c i r c u i t o r over load has been removed t o permi t normal operation. The i n v e r t e r has been

..

Page 6: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

4

operated 24 hours w i t h i n performance when the sho r t was removed. The reason the over load c i r c u i t became so important, p r i o r t o t e s t s by Lewis Research Center, i s t h a t there was poor r e g u l a t i o n i n the o s c i l l a t o r c i r c u i t which made the i n v e r t e r suscep t ib le t o no i se and caused a l o t o f decommutation p rob 1 ems.

a dead s h o r t on the output w i t h no degradat ion

The c r y s t a l osc i 1 l a t o r operates a t 19.2 k i l o c y c l e s w i t h a decoupl i n g s tage i n t o two uni j ’unct ion countdown stages o f 4 t o 1 and 2 t o 1 respec t i ve l y . i s used t o t r i g g e r an SCR used as a core d r i v e r . The SCR i n t u r n feeds a p u l s e through the s h i f t r e g i s t e r which cons is t s o f a se r ies o f s i x cores. Each core has f o u r windings and i s connected i n s e r i e s and p a r a l l e l t o produce a 60 degree phase s h i f t every t ime a p u l s e i s f ed from one core t o another. capac i to r (RC) i n t e g r a t i n g networks i n j e c t e d i n between cores t o a l s o produce a 6 t o 1 stepdown i n frequency. One o f the f o u r windings i s used as output t o feed a u n i d i r e c t i o n a l pu l se through a diode t o t h e SCR gate. I f the f i r s t pu l se a t terminal 1, 2, i s fed t o the f i r s t SCR, CR27, the next pu l se a t terminal 7, 8, would be used t o feed the gate of CR28 t o o b t a i n 180 degree phase s h i f t necessary f o r push-pul l o p e r a t i o n t o produce Phase A output. Using the same technique o f pu l se se lect ion, t h e output f o r Phase B and Phase C i s generated r e s u l t i n g i n a 3-phase 400-cycle ou tpu t w i t h push-pul l ope ra t i on 120 degrees apart .

The 2400-pulse-per-second output fromthe countdown stages

The shunt windings have diodes and r e s i s t o r -

Fromthe prev ious explanat ion, i t f o l l o w s t h a t the i npu t power c i r c u i t i s 2400 cyc le r i pp le , no t 400 cycle. The r i p p l e has an ampl i tude o f 1 t o 2 v o l t s across a b a t t e r y impedance o f 0.04 ohms. This produces a peak power r a d i a t i o n o f 25 t o 50 wa t t s w i t h s t rong harmonics i n t h e 35 k i l o c y c l e reg ion due t o r i n g i n g o f t h e i n p u t f i l t e r which produces o n l y 3 dec i be ls o f a t tenuat ion. I t i s obvious t h a t the f i l t e r i s no t very e f f e c t i v e and i s being redesigned. By proper d ress ing o f leads and s h i e l d i n g c r i t i c a l wi res i n the m i s s i l e d i s t r i b u t i o n system, the e f f e c t s o f radiofrequency i n t e r f e r e n c e have been minimized.

The output o f the i n v e r t e r i s a smooth s i n e wave w i t h less than 4 pe rcen t d i s t o r t i o n . The vo l tage r e g u l a t i o n i s k l .5 percent from no load t o h a l f load and C 1 percent from h a l f load t o f u l l load. The frequency i s merely s p e c i f i e d a t *0.5 percent accuracy and s t a b i l i t y a t present. a c t u a l pract ice, CO.05 percent i s maintained s ince a 50.002 pe rcen t c r y s t a l i s used. I n the new s p e c i f i c a t i o n , k0.5 percen t accuracy and k O . l percent s t a b i l i t y f o r 12 hours i s s p e c i f i e d t o meet the requirements of t h e guidance system.

I n

DJ 0 01 0 1

The ra ted output o f the i n v e r t e r i s 115 vo l t s , 400 cycles, 3-phase, Wye connected, 650 volt-amperes, w i t h a 200 percent over load c a p a b i l i t y f o r 60 seconds. The present m i s s i l e load i s 500 w a t t s maximum.

Page 7: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

5

T h i s completes the techn ica l resume of the inver te r . The method o f hand l ing a product improvement program by the Lewis Research Center w i l l be g iven us ing the i n v e r t e r as an example.

Background

I When the Centaur program was t rans fe r red t o Lewis i n October, 1962, . . the t e r was a c r i t i c a l , u n r e l i a b l e i tem and a general l a c k

o f understanding e x i s t e d about i t s operation, usage and i n t e r n a l s a f e t y

extended t ime tes t ing , and has reached a mean t ime between f a i l u r e s (MTBF)

I . 0 0 Lo margins. Since then, the component has passed design p r o o f - t e s t s and Y w o f 50,000 hours under l abo ra to ry condi t ions.

A l i s t o f problems encountered and t h e i r s o l u t i w

r roo iem I : G E

The o r i g i n a l 25-pound i n v e r t e r was overloaded, be ing ra ted f o r o n l y I n a d d i t i o n 300 v o l t amperes, w h i l e the load was and i s 500 vo l tamperes.

the o r i g i n a l c o n f i g u r a t i o n employed ac t r a n s f e r r e s u l t i n g i n sw i t ch ing d i s c o n t i n u i t i e s .

Sol u t i on:

The problem was recognized, a 650 voltampere inver ter , weighing 35 pounds, was ordered and e l im ina ted the ac switching. we c a l l F-1 and AC-2. F-1 i s the one t h a t blew up a t the pad. That happened be fo re Centaur was t rans fe r red t o Lewis, i n c i d e n t a l l y .

Th is i s between what

Problem 2:

The new i n v e r t e r was purchased as a "Black Box" t o a se t o f i npu t - ou tpu t s p e c i f i c a t i o n s w i thou t due regard f o r i n t e r n a l sa fe ty margins o r adequacy o f c i r c u i t des ign de ta i l s , as w e l l as c o r r e c t usage. This was mentioned e a r l i e r i n exp la in ing the schematic.

Examp 1 es :

a. Over load c i rcu i t bypass.

b. F a i l u r e t o recognize c r i t i c a l importance o f inpu t impedance o r sw i t ch ing procedure.

c. F a i l u r e t o recognize c r i t i c a l i n te rna l ' t rans ien ts .

do Histcry ~f insufficient t e s t s and inadequate documentation.

Sol u t ion:

The Centaur P r o j e c t Of f i ce assigned a c i r c u i t s p e c i a l i s t t o analyze the problem i n a l l i t s aspects and to implement c o r r e c t i v e measures. I n i t i a l l y t he f o l l o w i n g s p e c i f i c steps were taken:

Page 8: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

6

a.

b.

C.

Issuance o f Technical D i r e c t i v e s Nos. 50 and 75 i n s t r u c t i n g the c o n t r a c t o r t o make c e r t a i n parametr ic measurements, n o t recognized i n the s p e c i f i c a t i o n s , namely the e f f e c t o f low inpu t vo l tage and h i g h i n p u t impedance as manifested a t A t l a n t i c M i s s i l e Range. P r i o r t o launch the i n v e r t e r works o f f o f ground support equipment (GSE) ground supply and i s a r e c t i f i e r power supply. Th is requ i res a cable run o f 350 f e e t from t h e blockhouse up t o the tower t o the vehic le . I f you w i l l r e c a l l t he schematic, t he re i s a s e r i e s resonant charging c i r c u i t i n t he input. Al though i t i s a push-pul l p a r a l l e l SCR, commutating capac i t y c i r c u i t , s e r i e s i n d u c t i v e e f f e c t s i n the l i n e en te r the p i c t u r e and caused what we c a l l m u l t i p l e s t a r t s .

I f the t ime sequences a r e no t c o r r e c t a t i n v e r t e r s ta r t , t he over load c i r c u i t w i l l k i c k o u t and the i n v e r t e r cyc les again u n t i l i t does. I t has been found t h a t the l i n e impedance entered i n t o th i s , the res i s tance as w e l l as the inductance. Actual measured values o f res i s tance and inductance were made be fo re the i n v e r t e r f a i l e d t o commutate completely. This i s the e f f e c t t h a t had t o be cleaned up a t AMR. A new run had t o be made us ing heav ie r wire. This could n o t be a coax ia l run because t h e r e were too many power t a k e o f f s i n t h e tower.

Lewis procurement o f an i n v e r t e r and i n i t i a t i o n o f comprehensive l a b o r a t o r y t e s t i n g and a n a l y s i s program f o r c o r r e c t e v a l u a t i o n and understanding o f the component. Subsequently the c o n t r a c t o r embarked upon a s i m i l a r program.

Detai l e d f o l lowup by t h e P r o j e c t O f f i c e o f a1 1 f a i l u r e s and c o r r e c t i m s , i n c l o s e cooperat ion w i t h General Dynamics Corporat ion and the vendor. Lewis had the t a s k o f going t o Borg-Warner and recommending i n v e r t e r changes. Lewis had t o go down t o the p a r t s level , and p a r t s a p p l i c a t i o n requirements, t o c o r r e c t the s i t u a t i o n .

S t imu la t i on of the c o n t r a c t o r ' s engineer ing s t a f f t o concentrate on the i n v e r t e r and undertake in-house c i r c u i t ana lys i s and l a b o r a t o r y program.

Fo l l ow ing i s a l i s t o f r e l i a b i l i t y improvements made t o date:

1. Improved low vo l tage performance and e l i m i n a t e d no ise and t r a n s i e n t s u s c e p t i b i l i t i e s by changing r e g u l a t i o n c i r c u i t f o r o s c i l l a t o r and countdown c i rcu i t ry .

0 u1 0

Page 9: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

7

0 Ln 0 Y w

Reca l l i ng the schematic i n f i g u r e 3 the r e g u l a t i o n c i r c u i t c o n t r o l s the c r y s t a l o s c i l l a t o r . There i s a Zener diode r e g u l a t o r i n t h a t supply. 0.5 watt, a t 22 vo l t s . t o spec., from 25 t o 30 vo l t s . Load t r a n s i e n t s were recorded a t t he Cape p r i o r t o launch which dropped the supply t o 22 v o l t s even f o r m i l l i - seconds. This was enough t o decommutate the i nve r te r . An 18 vo l t , 10 watt, Zener d iode was used t o regulate the o s c i l l a t o r c i r c u i t . Th is removed the no ise s u s c e p t i b i l i t y completely because the dynamic impedance w i t h t h e 10 w a t t Zener diode was 2 o r 3 ohms aga ins t 25 ohms w i t h the 0.5 w a t t Zener diode.

The Zener diode was w e l l w i t h i n i t s power ra t ing, namely, The i n v e r t e r i s designed t o operate, accord ing

Another t h i n g found was t h a t the 0.5 w a t t Zener diode and 26 v o l t s b a t t e r y supply produced a p e c u l i a r i t y which showed up as no ise modulat ion again. diode. A l l t h i s was e l im ina ted w i t h proper r e g u l a t i o n c i r c u i t r y redes i gn.

It was i n the r e g u l a t i o n c h a r a c t e r i s t i c o f t he Zener

2. Redesigned the SCR core d r i v e r t o e l i m i n a t e f a l s e t r i g g e r i n g o r double p u l s i n g i n the memory core s h i f t r e g i s t e r . reg i s te r , which i s d r i v e n w i t h the SCR, produces 6 output pulses, some- times a second pu lse i s obtained inunediately a f t e r t he f i r s t one. This was e l im ina ted by p u t t i n g a small r e s i s t o r i n t h e SCR core d r i v e r anode c i r c u i t . ,

Remembering the s h i f t ,

3. Replacement o f misappl ied capaci tors w i t h h i g h r e l i a b i l i t y (Hi-Rel) type i n the s h i f t reg i s te r .

4. E l i m i n a t i o n o f c e r t a i n h i g h v i b r a t i o n a l stresses. This happened p r i o r to AC-2 launch. Lewis had t h e r e s p o n s i b i l i t y t o dec la re the i n v e r t e r f l i g h t - q u a l i f i e d upon the complet ion o f two i n v e r t e r s through design p r o o f t e s t i n g (DPT), and extended t ime t e s t (ETT), a watered-down extended t ime q u a l i f i c a t i o n o f the DPT. I t was decided t o q u a l i f y them a t 5:OO o ' c l o c k i n the a f te rnoon when 15,000 hours of ope ra t i on would be reached. This was 3:OO o ' c l o c k i n t h e afternoon. A ha l f -hou r l a t e r one o f t he i n v e r t e r s f a i l e d . Fo r tuna te l y i t was i n the t h i r d v i b r a t i o n a l cycle. It was found t h a t t he main ground s t r a p from the input connector t o the t ransformer strap, which

r e l i e f . I t was a l a r g e conductor made o f double zero wire. Lewis immediately dec lared a f l i g h t const ra in t , removed the i n v e r t e r from the vehic le, p u t a longer w i r e on, r e t r o f i t t e d a l l the o t h e r inver ters . Lewis has no t had a f a i l u r e on the i n v e r t e r s since. That was the l a s t d e l i b e r a t e m a l f u n c t i o n on the inver ters . The others have been human causes.

The q u a l i f i c a t i o n t ime was 15,000 hours.

cdrried ~ 1 . - L - L L - - . . - . . - - - . - .c h - 4 h,-fil,em Ll l t : U d L L C I y LUI I G I I L , 1 1 a u " I "I\b.ll d u e tc IICk C f prcper stress

5. New p a r t s l ayou t w i t h improved cable harnesses (This occurred between the f i r s t 650 voltampere inver ters , o f the -1 series, and second major improvement o f the -3 ser ies).

6. Impos i t i on o f NASA s o l d e r i n g s p e c i f i c a t i o n , 1588,

Page 10: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

8

1. Improved r e f l e c t i v e and r a d i a t i v e coa t ing ( t h e w h i t e p a i n t mentioned e a r l i e r )

8. E l i m i n a t i o n o f t he over load bypass

Fu r the r planned improvements:

As o f 2 weeks ago, an o rde r f o r e i g h t new i n v e r t e r s was p laced inco rpo ra t i ng the f o l l o w i n g improvements:

1. Thermal redesign

2. A d d i t i o n o f sa tu rab le reactors. A 0.1-microsecond 250- v o l t t u r n o f f p u l s e was found i n the main SCR c i r c u i t s . I t was due t o t h e t u r n o f f cu r ren t i n the one f i r e d SCR f o r c i n g i t s way back through t h e other tu rned-o f f SCR. I t developed a 250-vol t sp i ke on a 200 v o l t peak inverse vo l tage (PIV)-SCR. sa tu rab le reac to r i n t o e l i m i n a t e the vo l tage spike. La te r i t was decided to redress the leads and go t o 250 v o l t SCR because the sp i ke v a r i e d i n ampl i tude from one i n v e r t e r t o another.

The f i r s t t h i n g t o do was t o p u t a

3. Replacement of l ossy commutating capac i to rs w i t h h i g h e r - r e l i a b i l i t y low-loss types. A t present we a r e us ing 32 m ic ro fa rad capac i to rs on the pr imary and 8 m ic ro fa red capac i to rs on the secondary. meta l ized capaci tors. It i s the o n l y u n r e l i a b l e p a r t l e f t i n t he i nve r te r . We have had no f a i l u r e on t h a t p a r t t o da te f o r some unknown reason. I n s p i t e o f t h i s we a r e s p e c i f y i n g polycarbonate capac i to rs which a r e being tes ted by General Dynamics Corporat ion now f o r q u a l i f i c a t i o n i n the new inver ters .

These a r e

4. Thermally compensated countdown c i r c u i t Lewis checked the u n i j u n c t i - o n countdown c i r c u i t s and found t h a t they were n o t t he rma l l y compensated. A l l t h a t was needed was a 50-ohm res i s tance i n the u n i j u n c t i o n base one c i r c u i t and they w i l l operate from -55" C t o 85" C w i t h l e s s than 0.5 percent frequency d r i f t . The manufacturer had t r o u b l e the rma l l y compensating i t because o f t he coup l i ng requirements. Therefore, the u n i j u n c t i o n c i r c u i t s w i l l be t e s t e d up t o 190" F be fo re i n c o r p o r a t i o n i n each inver ter .

Y w 0 ul 0

5. Use o f Hi-Re1 p a r t s throughout Lewis s p e c i f i e d Minuteman q u a l i t y or b e t t e r f o r the new p a r t s of new i n v e r t e r s on order.

6. Use o f new high-temperature SCRls. We a r e us ing a t the present t ime 2N685 made by General E l e c t r i c o r Texas Instruments. New SCR's w i l l be 2N686 w i t h a q u a l i f i c a t i o n up t o 150" C f o r proper operat ion.

7. Improved r e g u l a t i o n c i r c u i t w i t h one of increased e f f i c i e n c y

I t w i 1 1 be reduced from 200 percent t o 125 percent, which by reducing the over load capac i t y o f t he i n v e r t e r s ince the p resen t capac i t y i s n o t needed. w i l l s t i l l leave a c a p a b i l i t y o f Over 850 watts. Th is w i l l improve t h e

Page 11: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

I 9

w

e f f i c i e n c y another 10 percent from the present 65 percent. I f we can The e f f i c i e n c y get i t up t o 75 percent we might not need forced cool ing.

l i m i t f o r SCR i n v e r t e r s has been reached w i t h the present design.

As a r e s u l t o f t h i s program, the i n v e r t e r i s no longer on the c r i t i c a l l i s t . So far, i t i s t u rn ing out t o be a r e l i a b l e inver te r . I say t h i s because I was t r y i n g t o get a t r a n s i s t o r i z e d inver te r . The more r e l i a b l e t h i s i n v e r t e r is, the more d i f f i c u l t y I w i l l have.

There i s one o the r t h i n g being tes ted a t Lewis r i g h t now. The SCR's a r e mounted on an aluminum heat s i n k w i t h a 2 m i l micawasher on one s i d e and a Tef lon washer on the o the r t o g i v e i t mechanical s t ress r e l i e f . This produces a temperature d i f f e r e n c e o f 20" F, accord ing t o the manufacturer, between the SCR and the heat sink. We measure from 30" t o 50" F. This i s another source o f opera t iona l l i m i t a t i o n , namely, the upper temperature l i m i t o f the inver ter , which i s l i m i t e d aga in by the SCR heat r i se .

We a r e using, a t present, bery l l ium-ox ide washers i n our tests . Bery l l ium-ox ide washers, i n case you a r e not f a m i l i a r w i t h them, a r e made by Brush Bery l l i um Company and have a thermal c o n d u c t i v i t y b e t t e r than pure aluminum. I t i s a p e r f e c t e l e c t r i c a l i n s u l a t o r and i s a w h i t e ceramic. Basica l ly , i t has the mechanical p roper t i es o f a ceramic. I t has been known i n the f i e l d f o r a couple o f years, b u t i t has never been t r i e d i n t h e inver te r . We have used it, and s p e c i f i e d i t f o r the guidance system i n severa l areas, w i t h good success. That is , when used i n con junc t ion w i t h a s i l v e r shim. The s i l v e r shim i s used t o f i l l the pores o f t h e b e r y l l i u m ox ide and t o take up the s lack o f non-para l le l i sm between the b e r y l l i u m ox ide washer and the mounting surface. The 2-mil s o f t - s i l v e r shim w i l l squeeze ou t and f i l l the vo ids and prevent c rack ing o f t h e b e r y l l i u m ox ide washer. i n two grades, one a t 25,000 psi , and the o ther 35,OOOpsi.

The b e r y l l i u m ox ide has a t e n s i l e strength,

The new inve r te rs a re being ordered t o a vo l tage accuracy and s t a b i l i t y o f i 1 percent. The accuracy i s de f ined a t i l percent, b u t the s t a b i l i t y i s def ined as i 1 percent f o r a 12-hour per iod. The frequency i s i O . l percent, both i n accuracy and s t a b i l i t y f o r a 12-hour per iod.

We a r e a l s o i n the process of eva lua t i ng the t r a n s i s t o r i z e d i n v e r t e r from th ree sources, as a backup, and i n ai; k 1 - 1 1 - e cases the e f f i c l e n c y i s about 10 percent be t te r . I n o ther words, i t w i l l approach 85 percent. I f i t averages 80, we w i l l be happy because fo rced -a i r c o o l i n g w i l l n o t be needed.

Power D i s t r i b u t i o n Problems

I n the area o f power d i s t r i b u t i o n , the b iggest problem i s t rans ien ts . The problem o f AMR l i n e impedance from GSE p r i o r t o launch was mentioned e a r l ier .

Another problem was t h e te lemetry f i l t e r used t o p r o t e c t t h e te lemet ry power supply from the GSE. The te lemetry system was energized

Page 12: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

10

from the ground power supply p r i o r t o launch. I t worked f i n e on the v e h i c l e and on t h e b a t t e r y b u t when i t was operated from the ground, the te lemetry power-supply t r a n s i s t o r s were destroyed. It tu rns o u t t h a t energ iz ing and de-energiz ing the ground support equipment turned o f f the toggle swi tch and l e f t a bank o f 4000 m i c r o f a r r a d capac i to rs on the teleme r y power supply, which p u t a reverse voltage, the f u l l 28 v o l t s

We cured t h a t by p u t t i n g a diode f i l t e r , and i t i s l i t e r a l l y a diode f i l t e r because there i s inductance and capaci tance i n the f i l t e r t o suppress some o the r r a t i o frequency t r a n s i e n t r a d i a t i o n i n t o the t e l e - metry system i t s e l f from o the r sources.

on a l2 I- v o l t base t o e m i t t e r power t r a n s i s t o r . The r e s t i s h i s t o r y .

Another source o f t r a n s i e n t s i n the d i s t r i b u t i o n system was random f i r i n g o f S C R ' s due t o t r a n s i e n t s i n the order o f microwatts, running up and down the s i g n a l cables and the power d i s t r i b u t i o n cables on the vehic le . The cure f o r t h a t was a diode across a l l r e l a y c o i l s w i t h i n the case o f the r e l a y i t s e l f . The r e l a y s a r e enclosed i n s t e e l cases where ever poss i b l e.

A l l switched inductors must have diodes d i r e c t l y across the inductors, p l u s shielded leads f o r c r i t i c a l l ines.

There a r e several S C R ' s used p layed havoc w i t h us, random vern programmed improperly, and so on. by min imiz ing the t r a n s i e n t s t o a be ing done t o minimize i t even f u

f o r program switching, and t h i s has e r engine turn-on, programmers being We e l i m i n a t e d most o f these problems

t o l e r a b l e leve l , and f u r t h e r work i s ther.

Pyrotechnique problems: The squibs a r e e l e c t r i c a l detonators f o r t he explosives, i n nose f a i r i n g and the i n s u l a t i o n panels t h a t have t o be j e t t i s o n e d d u r i n g f l i g h t . When the squibs a r e f i r e d , they can s t a t i s t i c a l l y produce an open c i r c u i t o r s h o r t c i r c u i t . a s h o r t c i r c u i t they w i l l dest roy the ba t te ry . This c o n d i t i o n was corrected by us ing a thermal l a t c h i n g r e l a y t h a t a c t s i n the order o f 2 mil l iseconds. Once a squib i s energized, t he heavy c u r r e n t a c t i v a t e s the thermal r e l a y and opens the c i r c u i t , and p r o t e c t s the bat tery .

I f they produce

I n the area o f the guidance package, we have t h e computer which can scramble i n 4 m i l l i s e c o n d s i f t h e power i s i n te r rup ted . We have no s imple s o l u t i o n a t the present time. was designed, the power-supply t ime constant should have been made a t l e a s t 25 mi l l iseconds, j u s t from rule-of- thumb engineering. Instead, i t i s 4 mil l iseconds.

A t t he t ime the guidance package

w 0 UI 0

We have looked i n t o t h e s o l u t i o n o f u s i n g a ba t te ry , shunted across the guidance power supply i n case of power fa i l u re , bu t i t was too bu lky a solut ion, p a r t i c u l a r l y f o r t he computer. Since t h e r e s t o f the system was no b e t t e r off, we decided t h a t t h i s was no t f e a s i b l e a t a l l .

Page 13: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

0 Lo 0 n

I w

11

Lewis i s now i n the process o f redesigning the guidance power suppl ies f o r a h ighe r t ime constant and reducing the sampl ing-rate t ime constant o f t he i n v e r t e r from 200 m i l l i seconds down t o a t l e a s t 50 m i l l i s e c o n d s so t h a t i f the i n v e r t e r k i c k s out, i t w i l l come back on d u r i n g the energy storage t ime o f the power supp l i es i n the guidance pa c kag e.

A recent problem occurred on AC-4, we a r e f l y i n g what i s c a l l e d c losed loop. The Centaur guidance system w i l l now d i r e c t Atlas-Centaur instead o f be ing programmed. That means i t w i l l a l s o feed in fo rma t ion down t o the A t l a s a u t o p i l o t f o r use, which requ i red a s i g n a l l i n e running up from A t l a s t o Centaur t o c lose the loop. The a u t o p i l o t servo amp was r e a c t i n g t o f a l s e s ignals. T h i s turned ou t t o be a beat note between the A t l a s 400 c y c l e supply and the Centaur 400 c y c l e supply, and was being produced on the 28 v o l t b a t t e r y l i n e which has a low impedance. A heavy f i l t e r had t o be placed i n the servoamp supply l i n e t o c o r r e c t the r i p p l e t o a t o l e r a b l e leve l . Another change was made t o improve performance. The frequency o f t he A t l a s i n v e r t e r was changed 2 cycles. It i s a r o t a r y i n v e r t e r and the frequency can be s h i f t e d a l i t t l e b e t t e r than the s t a t i c i n v e r t e r on the Centaur, which i s c r y s t a l con t ro l l ed . By s h i f t i n g i t 2 cycles, the beat note does no t en te r the tuned filter i n t h e servoamp loop.

This concludes a b r i e f summary on the Centaur e l e c t r i c a l problems and how they were solved.

Page 14: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

W W

? ?

a a 4 4

I

I I >

I I + I I c I

I I I I In

hl hl w

a, rl

0

$ - v; a I

- VI W

c % a, -P

F9 M

I

2

a,

M 4 Fr

0

Page 15: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

.

Figure 2. - Top view of inverter.

Page 16: NASA TECHNlCAL NASA TM MEMORANDUM · PDF fileI \ ’ \> - * NASA TECHNlCAL NASA TM X-52105 MEMORANDUM Ln + 0 cv n GPO PRICE $ A s i- 4 v) 4 z CSFTI PRICE(S) $ Hard copy (HC) Microfiche

0 In 0 M

w I

t n i i i t s i i i i CIICIII o i i i i c i i i n CII w i i 1

Figure 3. - Inverter block diagram and schematic.