nasa_power_space

16
NA SA’s ADVANCED ON-BOARD PROPULSION PROGRA M: ACTIVITIES AT JOHN H. GLENN RESEARCH CENTER DR. JOHN W. DUNNING SCOTT BENSON STEVEN OLESON NATIONAL AERONAUTICS AND SPACE ADMINISTRATION JOHN H. GLENN RESEARCH CENTER AT LEWIS FIELD CLEVELAND, OHIO USA 44135 ADVANCED SPACE PROPULSION WORKSHOP 3-5 APRIL 2001 HUNTSVILLE, AL

Upload: cataalexmunt

Post on 09-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 116

NASArsquos ADVANCED ON-BOARD PROPULSION PROGRAMACTIVITIES AT JOHN H GLENN RESEARCH CENTER

DR JOHN W DUNNING

SCOTT BENSONSTEVEN OLESON

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONJOHN H GLENN RESEARCH CENTER AT LEWIS FIELD

CLEVELAND OHIO USA 44135

ADVANCED SPACE PROPULSION WORKSHOP

3-5 APRIL 2001HUNTSVILLE AL

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 216

Electric Propulsion -

Candidate Trajectory Approaches

bull High Power Hall Pump-Up

bull Hall Thruster Stage

Delivers Spacecraft to Near

Earth Escape

bull Chemical Propulsion toInject into direct trajectory to

Pluto

bull Continued Interplanetary

Use of Hall System May

Improve Mission

bull Low Power Ion Direct

bull Launch Vehicle Upper

Stage Kicks to High C3

Earth Escape

bull Ion Propulsion Used onDirect Trajectory to

Pluto Thrusting Out to

Uranus

EP Transfer

Chemical

TMI Burn

EP Transfer EP Transfer

Gravity Assist

EP Transfer

bull High Power IonGravity

Assists

bull Launch Vehicle Upper Stage

Kicks to Low C3 Earth Escape

bull Ion Propulsion Used DuringInner Solar System Cruise

bull Gravity Assist at Venus or

Earth

bull Ion Propulsion Continues

Out to Jupiter

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 316

High Pow er Elec t r ic Propuls ion

Enables Edge of Solar Syst em Probes

diams Achieve gt 550 au in 10 to 20 yearsdiams Explore Kuiper belt Oort Cloud Heliopause Deep Space observationhellipdiams High Isp propulsion needed for the High Energy Missiondiams Isps 10000 to 15000 sec to minimize launch mass

diams High PowerElectric Propulsion 01 - gt1 MW Optionsbull Ionbull MPDbull PIT

diams Use with nuclear power systemsdiams Similar to nuclear powered crewed planetary exploration vehicles

Proposed by RJ Lipinsk i etal

GRC MW-class MPD Thruster

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 416

High Power Propulsion SystembullSPT vs TAL vs HybridbullAnnular vs Racetrack Geometry

bullSingle vs Clusters vs Nested

Physical Processes ampEngineering Constraints

bullPerformance

bullMagnetic SystembullThermalbullMaterialsbullStability

Mission RequirementsbullIsp Thrust EfficiencybullThrottleability

bullLifetimebullEMIbullMass

High Power Facility IssuesbullThrust StandbullPumping Speed

bullChamber SizebullPower amp Feed SystemsbullThermal Limitations

Develop a high power Hall propulsion system based on existing design

heritage using mission and engineering constraints as inputs

Hall Propulsion

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 516

SOA NEAR TERM FAR TERM

Hall Thruster Roadmap

10 kW Dom estic

Engine

23 kW3 4 0 0 se c

2 - Sta g e

Concept

Eva lua t ion

100 W

Feasib i l i ty

Assessment

NASA 457M

50 kW Hall

Engine

T i m e

T

RL

L

ev

e

l

High Performance

45kW IHPRPT Ph 1

Life Test 200W Low Power Tests

8kW Bi-Modal

SBIR Ph2

Fakel 100W Demo Model

Modular Cluster for

gt 100kW Missions

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 616

LEO to GEO space

transportation Four Times

the Payload of Chemical

Systems In Four Weeks using

next generation Power levels

LunarMarsExploration

Eliminates need for

nuclear technology

Reduces Launch

Vehicle Fleet

ISS Drag MakeupSignificantly reduces required

refueling flights

Space Solar Power Reduces

number of launch vehicles required by a factor of 5 Deliveries in few

weeks to less than four monthsbullNeed Power Levels ~ 50 kW amp

Isps ~ 2500 sec

Hal l Propuls ion - 50 kW Thruster Appl icat ions

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 716

98 00 02 04 06 08 10 12

5-10 kW 30 cm ENGINE TESTBED

30 kW+ 75 cm ENGINE TESTBED

TITANIUM AND C-C ION OPTICS

DEEP-SPACE 1

HIGH-CURRENT CATHODES

NSTAR

50-100 KW INTERSTELLAR PRECURSOR AND

KUIPER BELT MISSION ENGINES

SUB-kW ENGINE -

OPTICS TESTBED

High-Power Ion Propulsion Road-Map

100 kW-class EPCathode

Thermaland lifelimits

assessed

5 kW PPUdesign

completed

10 kW prototypeengine

Titanium optics

C-C andadvanced-Mo

optics

20kW 50 cm TESTBED

VIPS

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 816

diams Major accomplishments

Design and fabrication of large-area dischargechamber completedDischarge operation characterized on krypton and xenon

propellantsPerformance characterized

diams Near Term Plans (FY01)Manufacture large-area high-voltage ion opticsDemonstrate engine operation at gt 10000 seconds Isp

Ion Propuls ion - In ters t e l la r Prec ursor Tec hnology

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 916

Ion Propuls i on - 5 kW Next -Generat ion Ion Tec hnology

diams Near Term Plans

Conduct design and performance analysis ofnext-generation large-area thrusterComplete detailed mechanical design of thruster

Fabricate and assemble prototype thruster and conductpreliminary performance testing

Sizecomparisonof NSTARand Next-Generation

thruster

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1016

ldquoMicrordquo Ion Engine TechnologyDevelop Prototype

FEASIBILITY OF A HOLLOW-CATHODE-BASED

MICRO ION THRUSTER FOR MICROSPACECRAFT

RELIES ON HIGH IONIZATION EFFICIENCIES DEMONSTRATED WITH

SMALL GRC HIGH ASPECT RATIO HOLLOW CATHODES

GOAL gt25 EFFICIENCY gt1500 S Isp 5-25 W

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1116

00 01 02 03 04 05 06 07

Sub-kW Ion Propulsion Technology Road-Map options

Advanced Moly or Titanium optics

20 kg Xe Throughput

C-C Optics30 kg Xe

Throughput

08 09 10 11 12

05 sccm

Cathode

No Flow Cathode

Moly optics

12 kg Xe Throughput

Regulated 28v PPU

300 W

2800 sec

49 Efficient

12 kg Xe Throughput

300 W

2800 sec

49 Efficient

20 kg Xe Throughput

300 W

3300 sec

56 Efficient

30 kg Xe

Throughput

Thermal and life

limits

assessed

Thermal and life

limits

assessed

Thermal and life

limitsassessed

rsquo06 Option

rsquo09 Option

rsquo12 Option

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1216

HHHH iiii gggg hhhh PPPPoooowwww eeee rr r r PPPPrr r r oooo ppppuuuu llll ssss iiii oooo nnnn

Potential transportation systems includebull Electric and Plasma Propulsion

minus 100 KW LEO to GEO deliver 6000 kg in 60

days

minus 100 KW powered Interstellar precursor

mission 10 times payload increase

minus 1 MW Jupiter mission (1 year trip time)

minus Multi-MW class fast Human planetary mission

(1 year round trip to Mars)

minus Options include ion thrusters Hall thrusters

MPD Pulsed Inductive Thrusters and

VASMIR

KEY TECHNOLOGIES Electrode lifetimes power conditioning high energy density

capacitors sputter resistant materials lightweight magnets magnetic nozzle work

thermal control and propellant management

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 216

Electric Propulsion -

Candidate Trajectory Approaches

bull High Power Hall Pump-Up

bull Hall Thruster Stage

Delivers Spacecraft to Near

Earth Escape

bull Chemical Propulsion toInject into direct trajectory to

Pluto

bull Continued Interplanetary

Use of Hall System May

Improve Mission

bull Low Power Ion Direct

bull Launch Vehicle Upper

Stage Kicks to High C3

Earth Escape

bull Ion Propulsion Used onDirect Trajectory to

Pluto Thrusting Out to

Uranus

EP Transfer

Chemical

TMI Burn

EP Transfer EP Transfer

Gravity Assist

EP Transfer

bull High Power IonGravity

Assists

bull Launch Vehicle Upper Stage

Kicks to Low C3 Earth Escape

bull Ion Propulsion Used DuringInner Solar System Cruise

bull Gravity Assist at Venus or

Earth

bull Ion Propulsion Continues

Out to Jupiter

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 316

High Pow er Elec t r ic Propuls ion

Enables Edge of Solar Syst em Probes

diams Achieve gt 550 au in 10 to 20 yearsdiams Explore Kuiper belt Oort Cloud Heliopause Deep Space observationhellipdiams High Isp propulsion needed for the High Energy Missiondiams Isps 10000 to 15000 sec to minimize launch mass

diams High PowerElectric Propulsion 01 - gt1 MW Optionsbull Ionbull MPDbull PIT

diams Use with nuclear power systemsdiams Similar to nuclear powered crewed planetary exploration vehicles

Proposed by RJ Lipinsk i etal

GRC MW-class MPD Thruster

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 416

High Power Propulsion SystembullSPT vs TAL vs HybridbullAnnular vs Racetrack Geometry

bullSingle vs Clusters vs Nested

Physical Processes ampEngineering Constraints

bullPerformance

bullMagnetic SystembullThermalbullMaterialsbullStability

Mission RequirementsbullIsp Thrust EfficiencybullThrottleability

bullLifetimebullEMIbullMass

High Power Facility IssuesbullThrust StandbullPumping Speed

bullChamber SizebullPower amp Feed SystemsbullThermal Limitations

Develop a high power Hall propulsion system based on existing design

heritage using mission and engineering constraints as inputs

Hall Propulsion

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 516

SOA NEAR TERM FAR TERM

Hall Thruster Roadmap

10 kW Dom estic

Engine

23 kW3 4 0 0 se c

2 - Sta g e

Concept

Eva lua t ion

100 W

Feasib i l i ty

Assessment

NASA 457M

50 kW Hall

Engine

T i m e

T

RL

L

ev

e

l

High Performance

45kW IHPRPT Ph 1

Life Test 200W Low Power Tests

8kW Bi-Modal

SBIR Ph2

Fakel 100W Demo Model

Modular Cluster for

gt 100kW Missions

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 616

LEO to GEO space

transportation Four Times

the Payload of Chemical

Systems In Four Weeks using

next generation Power levels

LunarMarsExploration

Eliminates need for

nuclear technology

Reduces Launch

Vehicle Fleet

ISS Drag MakeupSignificantly reduces required

refueling flights

Space Solar Power Reduces

number of launch vehicles required by a factor of 5 Deliveries in few

weeks to less than four monthsbullNeed Power Levels ~ 50 kW amp

Isps ~ 2500 sec

Hal l Propuls ion - 50 kW Thruster Appl icat ions

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 716

98 00 02 04 06 08 10 12

5-10 kW 30 cm ENGINE TESTBED

30 kW+ 75 cm ENGINE TESTBED

TITANIUM AND C-C ION OPTICS

DEEP-SPACE 1

HIGH-CURRENT CATHODES

NSTAR

50-100 KW INTERSTELLAR PRECURSOR AND

KUIPER BELT MISSION ENGINES

SUB-kW ENGINE -

OPTICS TESTBED

High-Power Ion Propulsion Road-Map

100 kW-class EPCathode

Thermaland lifelimits

assessed

5 kW PPUdesign

completed

10 kW prototypeengine

Titanium optics

C-C andadvanced-Mo

optics

20kW 50 cm TESTBED

VIPS

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 816

diams Major accomplishments

Design and fabrication of large-area dischargechamber completedDischarge operation characterized on krypton and xenon

propellantsPerformance characterized

diams Near Term Plans (FY01)Manufacture large-area high-voltage ion opticsDemonstrate engine operation at gt 10000 seconds Isp

Ion Propuls ion - In ters t e l la r Prec ursor Tec hnology

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 916

Ion Propuls i on - 5 kW Next -Generat ion Ion Tec hnology

diams Near Term Plans

Conduct design and performance analysis ofnext-generation large-area thrusterComplete detailed mechanical design of thruster

Fabricate and assemble prototype thruster and conductpreliminary performance testing

Sizecomparisonof NSTARand Next-Generation

thruster

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1016

ldquoMicrordquo Ion Engine TechnologyDevelop Prototype

FEASIBILITY OF A HOLLOW-CATHODE-BASED

MICRO ION THRUSTER FOR MICROSPACECRAFT

RELIES ON HIGH IONIZATION EFFICIENCIES DEMONSTRATED WITH

SMALL GRC HIGH ASPECT RATIO HOLLOW CATHODES

GOAL gt25 EFFICIENCY gt1500 S Isp 5-25 W

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1116

00 01 02 03 04 05 06 07

Sub-kW Ion Propulsion Technology Road-Map options

Advanced Moly or Titanium optics

20 kg Xe Throughput

C-C Optics30 kg Xe

Throughput

08 09 10 11 12

05 sccm

Cathode

No Flow Cathode

Moly optics

12 kg Xe Throughput

Regulated 28v PPU

300 W

2800 sec

49 Efficient

12 kg Xe Throughput

300 W

2800 sec

49 Efficient

20 kg Xe Throughput

300 W

3300 sec

56 Efficient

30 kg Xe

Throughput

Thermal and life

limits

assessed

Thermal and life

limits

assessed

Thermal and life

limitsassessed

rsquo06 Option

rsquo09 Option

rsquo12 Option

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1216

HHHH iiii gggg hhhh PPPPoooowwww eeee rr r r PPPPrr r r oooo ppppuuuu llll ssss iiii oooo nnnn

Potential transportation systems includebull Electric and Plasma Propulsion

minus 100 KW LEO to GEO deliver 6000 kg in 60

days

minus 100 KW powered Interstellar precursor

mission 10 times payload increase

minus 1 MW Jupiter mission (1 year trip time)

minus Multi-MW class fast Human planetary mission

(1 year round trip to Mars)

minus Options include ion thrusters Hall thrusters

MPD Pulsed Inductive Thrusters and

VASMIR

KEY TECHNOLOGIES Electrode lifetimes power conditioning high energy density

capacitors sputter resistant materials lightweight magnets magnetic nozzle work

thermal control and propellant management

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 316

High Pow er Elec t r ic Propuls ion

Enables Edge of Solar Syst em Probes

diams Achieve gt 550 au in 10 to 20 yearsdiams Explore Kuiper belt Oort Cloud Heliopause Deep Space observationhellipdiams High Isp propulsion needed for the High Energy Missiondiams Isps 10000 to 15000 sec to minimize launch mass

diams High PowerElectric Propulsion 01 - gt1 MW Optionsbull Ionbull MPDbull PIT

diams Use with nuclear power systemsdiams Similar to nuclear powered crewed planetary exploration vehicles

Proposed by RJ Lipinsk i etal

GRC MW-class MPD Thruster

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 416

High Power Propulsion SystembullSPT vs TAL vs HybridbullAnnular vs Racetrack Geometry

bullSingle vs Clusters vs Nested

Physical Processes ampEngineering Constraints

bullPerformance

bullMagnetic SystembullThermalbullMaterialsbullStability

Mission RequirementsbullIsp Thrust EfficiencybullThrottleability

bullLifetimebullEMIbullMass

High Power Facility IssuesbullThrust StandbullPumping Speed

bullChamber SizebullPower amp Feed SystemsbullThermal Limitations

Develop a high power Hall propulsion system based on existing design

heritage using mission and engineering constraints as inputs

Hall Propulsion

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 516

SOA NEAR TERM FAR TERM

Hall Thruster Roadmap

10 kW Dom estic

Engine

23 kW3 4 0 0 se c

2 - Sta g e

Concept

Eva lua t ion

100 W

Feasib i l i ty

Assessment

NASA 457M

50 kW Hall

Engine

T i m e

T

RL

L

ev

e

l

High Performance

45kW IHPRPT Ph 1

Life Test 200W Low Power Tests

8kW Bi-Modal

SBIR Ph2

Fakel 100W Demo Model

Modular Cluster for

gt 100kW Missions

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 616

LEO to GEO space

transportation Four Times

the Payload of Chemical

Systems In Four Weeks using

next generation Power levels

LunarMarsExploration

Eliminates need for

nuclear technology

Reduces Launch

Vehicle Fleet

ISS Drag MakeupSignificantly reduces required

refueling flights

Space Solar Power Reduces

number of launch vehicles required by a factor of 5 Deliveries in few

weeks to less than four monthsbullNeed Power Levels ~ 50 kW amp

Isps ~ 2500 sec

Hal l Propuls ion - 50 kW Thruster Appl icat ions

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 716

98 00 02 04 06 08 10 12

5-10 kW 30 cm ENGINE TESTBED

30 kW+ 75 cm ENGINE TESTBED

TITANIUM AND C-C ION OPTICS

DEEP-SPACE 1

HIGH-CURRENT CATHODES

NSTAR

50-100 KW INTERSTELLAR PRECURSOR AND

KUIPER BELT MISSION ENGINES

SUB-kW ENGINE -

OPTICS TESTBED

High-Power Ion Propulsion Road-Map

100 kW-class EPCathode

Thermaland lifelimits

assessed

5 kW PPUdesign

completed

10 kW prototypeengine

Titanium optics

C-C andadvanced-Mo

optics

20kW 50 cm TESTBED

VIPS

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 816

diams Major accomplishments

Design and fabrication of large-area dischargechamber completedDischarge operation characterized on krypton and xenon

propellantsPerformance characterized

diams Near Term Plans (FY01)Manufacture large-area high-voltage ion opticsDemonstrate engine operation at gt 10000 seconds Isp

Ion Propuls ion - In ters t e l la r Prec ursor Tec hnology

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 916

Ion Propuls i on - 5 kW Next -Generat ion Ion Tec hnology

diams Near Term Plans

Conduct design and performance analysis ofnext-generation large-area thrusterComplete detailed mechanical design of thruster

Fabricate and assemble prototype thruster and conductpreliminary performance testing

Sizecomparisonof NSTARand Next-Generation

thruster

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1016

ldquoMicrordquo Ion Engine TechnologyDevelop Prototype

FEASIBILITY OF A HOLLOW-CATHODE-BASED

MICRO ION THRUSTER FOR MICROSPACECRAFT

RELIES ON HIGH IONIZATION EFFICIENCIES DEMONSTRATED WITH

SMALL GRC HIGH ASPECT RATIO HOLLOW CATHODES

GOAL gt25 EFFICIENCY gt1500 S Isp 5-25 W

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1116

00 01 02 03 04 05 06 07

Sub-kW Ion Propulsion Technology Road-Map options

Advanced Moly or Titanium optics

20 kg Xe Throughput

C-C Optics30 kg Xe

Throughput

08 09 10 11 12

05 sccm

Cathode

No Flow Cathode

Moly optics

12 kg Xe Throughput

Regulated 28v PPU

300 W

2800 sec

49 Efficient

12 kg Xe Throughput

300 W

2800 sec

49 Efficient

20 kg Xe Throughput

300 W

3300 sec

56 Efficient

30 kg Xe

Throughput

Thermal and life

limits

assessed

Thermal and life

limits

assessed

Thermal and life

limitsassessed

rsquo06 Option

rsquo09 Option

rsquo12 Option

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1216

HHHH iiii gggg hhhh PPPPoooowwww eeee rr r r PPPPrr r r oooo ppppuuuu llll ssss iiii oooo nnnn

Potential transportation systems includebull Electric and Plasma Propulsion

minus 100 KW LEO to GEO deliver 6000 kg in 60

days

minus 100 KW powered Interstellar precursor

mission 10 times payload increase

minus 1 MW Jupiter mission (1 year trip time)

minus Multi-MW class fast Human planetary mission

(1 year round trip to Mars)

minus Options include ion thrusters Hall thrusters

MPD Pulsed Inductive Thrusters and

VASMIR

KEY TECHNOLOGIES Electrode lifetimes power conditioning high energy density

capacitors sputter resistant materials lightweight magnets magnetic nozzle work

thermal control and propellant management

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 416

High Power Propulsion SystembullSPT vs TAL vs HybridbullAnnular vs Racetrack Geometry

bullSingle vs Clusters vs Nested

Physical Processes ampEngineering Constraints

bullPerformance

bullMagnetic SystembullThermalbullMaterialsbullStability

Mission RequirementsbullIsp Thrust EfficiencybullThrottleability

bullLifetimebullEMIbullMass

High Power Facility IssuesbullThrust StandbullPumping Speed

bullChamber SizebullPower amp Feed SystemsbullThermal Limitations

Develop a high power Hall propulsion system based on existing design

heritage using mission and engineering constraints as inputs

Hall Propulsion

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 516

SOA NEAR TERM FAR TERM

Hall Thruster Roadmap

10 kW Dom estic

Engine

23 kW3 4 0 0 se c

2 - Sta g e

Concept

Eva lua t ion

100 W

Feasib i l i ty

Assessment

NASA 457M

50 kW Hall

Engine

T i m e

T

RL

L

ev

e

l

High Performance

45kW IHPRPT Ph 1

Life Test 200W Low Power Tests

8kW Bi-Modal

SBIR Ph2

Fakel 100W Demo Model

Modular Cluster for

gt 100kW Missions

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 616

LEO to GEO space

transportation Four Times

the Payload of Chemical

Systems In Four Weeks using

next generation Power levels

LunarMarsExploration

Eliminates need for

nuclear technology

Reduces Launch

Vehicle Fleet

ISS Drag MakeupSignificantly reduces required

refueling flights

Space Solar Power Reduces

number of launch vehicles required by a factor of 5 Deliveries in few

weeks to less than four monthsbullNeed Power Levels ~ 50 kW amp

Isps ~ 2500 sec

Hal l Propuls ion - 50 kW Thruster Appl icat ions

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 716

98 00 02 04 06 08 10 12

5-10 kW 30 cm ENGINE TESTBED

30 kW+ 75 cm ENGINE TESTBED

TITANIUM AND C-C ION OPTICS

DEEP-SPACE 1

HIGH-CURRENT CATHODES

NSTAR

50-100 KW INTERSTELLAR PRECURSOR AND

KUIPER BELT MISSION ENGINES

SUB-kW ENGINE -

OPTICS TESTBED

High-Power Ion Propulsion Road-Map

100 kW-class EPCathode

Thermaland lifelimits

assessed

5 kW PPUdesign

completed

10 kW prototypeengine

Titanium optics

C-C andadvanced-Mo

optics

20kW 50 cm TESTBED

VIPS

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 816

diams Major accomplishments

Design and fabrication of large-area dischargechamber completedDischarge operation characterized on krypton and xenon

propellantsPerformance characterized

diams Near Term Plans (FY01)Manufacture large-area high-voltage ion opticsDemonstrate engine operation at gt 10000 seconds Isp

Ion Propuls ion - In ters t e l la r Prec ursor Tec hnology

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 916

Ion Propuls i on - 5 kW Next -Generat ion Ion Tec hnology

diams Near Term Plans

Conduct design and performance analysis ofnext-generation large-area thrusterComplete detailed mechanical design of thruster

Fabricate and assemble prototype thruster and conductpreliminary performance testing

Sizecomparisonof NSTARand Next-Generation

thruster

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1016

ldquoMicrordquo Ion Engine TechnologyDevelop Prototype

FEASIBILITY OF A HOLLOW-CATHODE-BASED

MICRO ION THRUSTER FOR MICROSPACECRAFT

RELIES ON HIGH IONIZATION EFFICIENCIES DEMONSTRATED WITH

SMALL GRC HIGH ASPECT RATIO HOLLOW CATHODES

GOAL gt25 EFFICIENCY gt1500 S Isp 5-25 W

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1116

00 01 02 03 04 05 06 07

Sub-kW Ion Propulsion Technology Road-Map options

Advanced Moly or Titanium optics

20 kg Xe Throughput

C-C Optics30 kg Xe

Throughput

08 09 10 11 12

05 sccm

Cathode

No Flow Cathode

Moly optics

12 kg Xe Throughput

Regulated 28v PPU

300 W

2800 sec

49 Efficient

12 kg Xe Throughput

300 W

2800 sec

49 Efficient

20 kg Xe Throughput

300 W

3300 sec

56 Efficient

30 kg Xe

Throughput

Thermal and life

limits

assessed

Thermal and life

limits

assessed

Thermal and life

limitsassessed

rsquo06 Option

rsquo09 Option

rsquo12 Option

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1216

HHHH iiii gggg hhhh PPPPoooowwww eeee rr r r PPPPrr r r oooo ppppuuuu llll ssss iiii oooo nnnn

Potential transportation systems includebull Electric and Plasma Propulsion

minus 100 KW LEO to GEO deliver 6000 kg in 60

days

minus 100 KW powered Interstellar precursor

mission 10 times payload increase

minus 1 MW Jupiter mission (1 year trip time)

minus Multi-MW class fast Human planetary mission

(1 year round trip to Mars)

minus Options include ion thrusters Hall thrusters

MPD Pulsed Inductive Thrusters and

VASMIR

KEY TECHNOLOGIES Electrode lifetimes power conditioning high energy density

capacitors sputter resistant materials lightweight magnets magnetic nozzle work

thermal control and propellant management

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 516

SOA NEAR TERM FAR TERM

Hall Thruster Roadmap

10 kW Dom estic

Engine

23 kW3 4 0 0 se c

2 - Sta g e

Concept

Eva lua t ion

100 W

Feasib i l i ty

Assessment

NASA 457M

50 kW Hall

Engine

T i m e

T

RL

L

ev

e

l

High Performance

45kW IHPRPT Ph 1

Life Test 200W Low Power Tests

8kW Bi-Modal

SBIR Ph2

Fakel 100W Demo Model

Modular Cluster for

gt 100kW Missions

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 616

LEO to GEO space

transportation Four Times

the Payload of Chemical

Systems In Four Weeks using

next generation Power levels

LunarMarsExploration

Eliminates need for

nuclear technology

Reduces Launch

Vehicle Fleet

ISS Drag MakeupSignificantly reduces required

refueling flights

Space Solar Power Reduces

number of launch vehicles required by a factor of 5 Deliveries in few

weeks to less than four monthsbullNeed Power Levels ~ 50 kW amp

Isps ~ 2500 sec

Hal l Propuls ion - 50 kW Thruster Appl icat ions

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 716

98 00 02 04 06 08 10 12

5-10 kW 30 cm ENGINE TESTBED

30 kW+ 75 cm ENGINE TESTBED

TITANIUM AND C-C ION OPTICS

DEEP-SPACE 1

HIGH-CURRENT CATHODES

NSTAR

50-100 KW INTERSTELLAR PRECURSOR AND

KUIPER BELT MISSION ENGINES

SUB-kW ENGINE -

OPTICS TESTBED

High-Power Ion Propulsion Road-Map

100 kW-class EPCathode

Thermaland lifelimits

assessed

5 kW PPUdesign

completed

10 kW prototypeengine

Titanium optics

C-C andadvanced-Mo

optics

20kW 50 cm TESTBED

VIPS

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 816

diams Major accomplishments

Design and fabrication of large-area dischargechamber completedDischarge operation characterized on krypton and xenon

propellantsPerformance characterized

diams Near Term Plans (FY01)Manufacture large-area high-voltage ion opticsDemonstrate engine operation at gt 10000 seconds Isp

Ion Propuls ion - In ters t e l la r Prec ursor Tec hnology

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 916

Ion Propuls i on - 5 kW Next -Generat ion Ion Tec hnology

diams Near Term Plans

Conduct design and performance analysis ofnext-generation large-area thrusterComplete detailed mechanical design of thruster

Fabricate and assemble prototype thruster and conductpreliminary performance testing

Sizecomparisonof NSTARand Next-Generation

thruster

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1016

ldquoMicrordquo Ion Engine TechnologyDevelop Prototype

FEASIBILITY OF A HOLLOW-CATHODE-BASED

MICRO ION THRUSTER FOR MICROSPACECRAFT

RELIES ON HIGH IONIZATION EFFICIENCIES DEMONSTRATED WITH

SMALL GRC HIGH ASPECT RATIO HOLLOW CATHODES

GOAL gt25 EFFICIENCY gt1500 S Isp 5-25 W

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1116

00 01 02 03 04 05 06 07

Sub-kW Ion Propulsion Technology Road-Map options

Advanced Moly or Titanium optics

20 kg Xe Throughput

C-C Optics30 kg Xe

Throughput

08 09 10 11 12

05 sccm

Cathode

No Flow Cathode

Moly optics

12 kg Xe Throughput

Regulated 28v PPU

300 W

2800 sec

49 Efficient

12 kg Xe Throughput

300 W

2800 sec

49 Efficient

20 kg Xe Throughput

300 W

3300 sec

56 Efficient

30 kg Xe

Throughput

Thermal and life

limits

assessed

Thermal and life

limits

assessed

Thermal and life

limitsassessed

rsquo06 Option

rsquo09 Option

rsquo12 Option

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1216

HHHH iiii gggg hhhh PPPPoooowwww eeee rr r r PPPPrr r r oooo ppppuuuu llll ssss iiii oooo nnnn

Potential transportation systems includebull Electric and Plasma Propulsion

minus 100 KW LEO to GEO deliver 6000 kg in 60

days

minus 100 KW powered Interstellar precursor

mission 10 times payload increase

minus 1 MW Jupiter mission (1 year trip time)

minus Multi-MW class fast Human planetary mission

(1 year round trip to Mars)

minus Options include ion thrusters Hall thrusters

MPD Pulsed Inductive Thrusters and

VASMIR

KEY TECHNOLOGIES Electrode lifetimes power conditioning high energy density

capacitors sputter resistant materials lightweight magnets magnetic nozzle work

thermal control and propellant management

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 616

LEO to GEO space

transportation Four Times

the Payload of Chemical

Systems In Four Weeks using

next generation Power levels

LunarMarsExploration

Eliminates need for

nuclear technology

Reduces Launch

Vehicle Fleet

ISS Drag MakeupSignificantly reduces required

refueling flights

Space Solar Power Reduces

number of launch vehicles required by a factor of 5 Deliveries in few

weeks to less than four monthsbullNeed Power Levels ~ 50 kW amp

Isps ~ 2500 sec

Hal l Propuls ion - 50 kW Thruster Appl icat ions

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 716

98 00 02 04 06 08 10 12

5-10 kW 30 cm ENGINE TESTBED

30 kW+ 75 cm ENGINE TESTBED

TITANIUM AND C-C ION OPTICS

DEEP-SPACE 1

HIGH-CURRENT CATHODES

NSTAR

50-100 KW INTERSTELLAR PRECURSOR AND

KUIPER BELT MISSION ENGINES

SUB-kW ENGINE -

OPTICS TESTBED

High-Power Ion Propulsion Road-Map

100 kW-class EPCathode

Thermaland lifelimits

assessed

5 kW PPUdesign

completed

10 kW prototypeengine

Titanium optics

C-C andadvanced-Mo

optics

20kW 50 cm TESTBED

VIPS

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 816

diams Major accomplishments

Design and fabrication of large-area dischargechamber completedDischarge operation characterized on krypton and xenon

propellantsPerformance characterized

diams Near Term Plans (FY01)Manufacture large-area high-voltage ion opticsDemonstrate engine operation at gt 10000 seconds Isp

Ion Propuls ion - In ters t e l la r Prec ursor Tec hnology

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 916

Ion Propuls i on - 5 kW Next -Generat ion Ion Tec hnology

diams Near Term Plans

Conduct design and performance analysis ofnext-generation large-area thrusterComplete detailed mechanical design of thruster

Fabricate and assemble prototype thruster and conductpreliminary performance testing

Sizecomparisonof NSTARand Next-Generation

thruster

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1016

ldquoMicrordquo Ion Engine TechnologyDevelop Prototype

FEASIBILITY OF A HOLLOW-CATHODE-BASED

MICRO ION THRUSTER FOR MICROSPACECRAFT

RELIES ON HIGH IONIZATION EFFICIENCIES DEMONSTRATED WITH

SMALL GRC HIGH ASPECT RATIO HOLLOW CATHODES

GOAL gt25 EFFICIENCY gt1500 S Isp 5-25 W

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1116

00 01 02 03 04 05 06 07

Sub-kW Ion Propulsion Technology Road-Map options

Advanced Moly or Titanium optics

20 kg Xe Throughput

C-C Optics30 kg Xe

Throughput

08 09 10 11 12

05 sccm

Cathode

No Flow Cathode

Moly optics

12 kg Xe Throughput

Regulated 28v PPU

300 W

2800 sec

49 Efficient

12 kg Xe Throughput

300 W

2800 sec

49 Efficient

20 kg Xe Throughput

300 W

3300 sec

56 Efficient

30 kg Xe

Throughput

Thermal and life

limits

assessed

Thermal and life

limits

assessed

Thermal and life

limitsassessed

rsquo06 Option

rsquo09 Option

rsquo12 Option

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1216

HHHH iiii gggg hhhh PPPPoooowwww eeee rr r r PPPPrr r r oooo ppppuuuu llll ssss iiii oooo nnnn

Potential transportation systems includebull Electric and Plasma Propulsion

minus 100 KW LEO to GEO deliver 6000 kg in 60

days

minus 100 KW powered Interstellar precursor

mission 10 times payload increase

minus 1 MW Jupiter mission (1 year trip time)

minus Multi-MW class fast Human planetary mission

(1 year round trip to Mars)

minus Options include ion thrusters Hall thrusters

MPD Pulsed Inductive Thrusters and

VASMIR

KEY TECHNOLOGIES Electrode lifetimes power conditioning high energy density

capacitors sputter resistant materials lightweight magnets magnetic nozzle work

thermal control and propellant management

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 716

98 00 02 04 06 08 10 12

5-10 kW 30 cm ENGINE TESTBED

30 kW+ 75 cm ENGINE TESTBED

TITANIUM AND C-C ION OPTICS

DEEP-SPACE 1

HIGH-CURRENT CATHODES

NSTAR

50-100 KW INTERSTELLAR PRECURSOR AND

KUIPER BELT MISSION ENGINES

SUB-kW ENGINE -

OPTICS TESTBED

High-Power Ion Propulsion Road-Map

100 kW-class EPCathode

Thermaland lifelimits

assessed

5 kW PPUdesign

completed

10 kW prototypeengine

Titanium optics

C-C andadvanced-Mo

optics

20kW 50 cm TESTBED

VIPS

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 816

diams Major accomplishments

Design and fabrication of large-area dischargechamber completedDischarge operation characterized on krypton and xenon

propellantsPerformance characterized

diams Near Term Plans (FY01)Manufacture large-area high-voltage ion opticsDemonstrate engine operation at gt 10000 seconds Isp

Ion Propuls ion - In ters t e l la r Prec ursor Tec hnology

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 916

Ion Propuls i on - 5 kW Next -Generat ion Ion Tec hnology

diams Near Term Plans

Conduct design and performance analysis ofnext-generation large-area thrusterComplete detailed mechanical design of thruster

Fabricate and assemble prototype thruster and conductpreliminary performance testing

Sizecomparisonof NSTARand Next-Generation

thruster

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1016

ldquoMicrordquo Ion Engine TechnologyDevelop Prototype

FEASIBILITY OF A HOLLOW-CATHODE-BASED

MICRO ION THRUSTER FOR MICROSPACECRAFT

RELIES ON HIGH IONIZATION EFFICIENCIES DEMONSTRATED WITH

SMALL GRC HIGH ASPECT RATIO HOLLOW CATHODES

GOAL gt25 EFFICIENCY gt1500 S Isp 5-25 W

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1116

00 01 02 03 04 05 06 07

Sub-kW Ion Propulsion Technology Road-Map options

Advanced Moly or Titanium optics

20 kg Xe Throughput

C-C Optics30 kg Xe

Throughput

08 09 10 11 12

05 sccm

Cathode

No Flow Cathode

Moly optics

12 kg Xe Throughput

Regulated 28v PPU

300 W

2800 sec

49 Efficient

12 kg Xe Throughput

300 W

2800 sec

49 Efficient

20 kg Xe Throughput

300 W

3300 sec

56 Efficient

30 kg Xe

Throughput

Thermal and life

limits

assessed

Thermal and life

limits

assessed

Thermal and life

limitsassessed

rsquo06 Option

rsquo09 Option

rsquo12 Option

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1216

HHHH iiii gggg hhhh PPPPoooowwww eeee rr r r PPPPrr r r oooo ppppuuuu llll ssss iiii oooo nnnn

Potential transportation systems includebull Electric and Plasma Propulsion

minus 100 KW LEO to GEO deliver 6000 kg in 60

days

minus 100 KW powered Interstellar precursor

mission 10 times payload increase

minus 1 MW Jupiter mission (1 year trip time)

minus Multi-MW class fast Human planetary mission

(1 year round trip to Mars)

minus Options include ion thrusters Hall thrusters

MPD Pulsed Inductive Thrusters and

VASMIR

KEY TECHNOLOGIES Electrode lifetimes power conditioning high energy density

capacitors sputter resistant materials lightweight magnets magnetic nozzle work

thermal control and propellant management

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 816

diams Major accomplishments

Design and fabrication of large-area dischargechamber completedDischarge operation characterized on krypton and xenon

propellantsPerformance characterized

diams Near Term Plans (FY01)Manufacture large-area high-voltage ion opticsDemonstrate engine operation at gt 10000 seconds Isp

Ion Propuls ion - In ters t e l la r Prec ursor Tec hnology

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 916

Ion Propuls i on - 5 kW Next -Generat ion Ion Tec hnology

diams Near Term Plans

Conduct design and performance analysis ofnext-generation large-area thrusterComplete detailed mechanical design of thruster

Fabricate and assemble prototype thruster and conductpreliminary performance testing

Sizecomparisonof NSTARand Next-Generation

thruster

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1016

ldquoMicrordquo Ion Engine TechnologyDevelop Prototype

FEASIBILITY OF A HOLLOW-CATHODE-BASED

MICRO ION THRUSTER FOR MICROSPACECRAFT

RELIES ON HIGH IONIZATION EFFICIENCIES DEMONSTRATED WITH

SMALL GRC HIGH ASPECT RATIO HOLLOW CATHODES

GOAL gt25 EFFICIENCY gt1500 S Isp 5-25 W

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1116

00 01 02 03 04 05 06 07

Sub-kW Ion Propulsion Technology Road-Map options

Advanced Moly or Titanium optics

20 kg Xe Throughput

C-C Optics30 kg Xe

Throughput

08 09 10 11 12

05 sccm

Cathode

No Flow Cathode

Moly optics

12 kg Xe Throughput

Regulated 28v PPU

300 W

2800 sec

49 Efficient

12 kg Xe Throughput

300 W

2800 sec

49 Efficient

20 kg Xe Throughput

300 W

3300 sec

56 Efficient

30 kg Xe

Throughput

Thermal and life

limits

assessed

Thermal and life

limits

assessed

Thermal and life

limitsassessed

rsquo06 Option

rsquo09 Option

rsquo12 Option

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1216

HHHH iiii gggg hhhh PPPPoooowwww eeee rr r r PPPPrr r r oooo ppppuuuu llll ssss iiii oooo nnnn

Potential transportation systems includebull Electric and Plasma Propulsion

minus 100 KW LEO to GEO deliver 6000 kg in 60

days

minus 100 KW powered Interstellar precursor

mission 10 times payload increase

minus 1 MW Jupiter mission (1 year trip time)

minus Multi-MW class fast Human planetary mission

(1 year round trip to Mars)

minus Options include ion thrusters Hall thrusters

MPD Pulsed Inductive Thrusters and

VASMIR

KEY TECHNOLOGIES Electrode lifetimes power conditioning high energy density

capacitors sputter resistant materials lightweight magnets magnetic nozzle work

thermal control and propellant management

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 916

Ion Propuls i on - 5 kW Next -Generat ion Ion Tec hnology

diams Near Term Plans

Conduct design and performance analysis ofnext-generation large-area thrusterComplete detailed mechanical design of thruster

Fabricate and assemble prototype thruster and conductpreliminary performance testing

Sizecomparisonof NSTARand Next-Generation

thruster

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1016

ldquoMicrordquo Ion Engine TechnologyDevelop Prototype

FEASIBILITY OF A HOLLOW-CATHODE-BASED

MICRO ION THRUSTER FOR MICROSPACECRAFT

RELIES ON HIGH IONIZATION EFFICIENCIES DEMONSTRATED WITH

SMALL GRC HIGH ASPECT RATIO HOLLOW CATHODES

GOAL gt25 EFFICIENCY gt1500 S Isp 5-25 W

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1116

00 01 02 03 04 05 06 07

Sub-kW Ion Propulsion Technology Road-Map options

Advanced Moly or Titanium optics

20 kg Xe Throughput

C-C Optics30 kg Xe

Throughput

08 09 10 11 12

05 sccm

Cathode

No Flow Cathode

Moly optics

12 kg Xe Throughput

Regulated 28v PPU

300 W

2800 sec

49 Efficient

12 kg Xe Throughput

300 W

2800 sec

49 Efficient

20 kg Xe Throughput

300 W

3300 sec

56 Efficient

30 kg Xe

Throughput

Thermal and life

limits

assessed

Thermal and life

limits

assessed

Thermal and life

limitsassessed

rsquo06 Option

rsquo09 Option

rsquo12 Option

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1216

HHHH iiii gggg hhhh PPPPoooowwww eeee rr r r PPPPrr r r oooo ppppuuuu llll ssss iiii oooo nnnn

Potential transportation systems includebull Electric and Plasma Propulsion

minus 100 KW LEO to GEO deliver 6000 kg in 60

days

minus 100 KW powered Interstellar precursor

mission 10 times payload increase

minus 1 MW Jupiter mission (1 year trip time)

minus Multi-MW class fast Human planetary mission

(1 year round trip to Mars)

minus Options include ion thrusters Hall thrusters

MPD Pulsed Inductive Thrusters and

VASMIR

KEY TECHNOLOGIES Electrode lifetimes power conditioning high energy density

capacitors sputter resistant materials lightweight magnets magnetic nozzle work

thermal control and propellant management

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1016

ldquoMicrordquo Ion Engine TechnologyDevelop Prototype

FEASIBILITY OF A HOLLOW-CATHODE-BASED

MICRO ION THRUSTER FOR MICROSPACECRAFT

RELIES ON HIGH IONIZATION EFFICIENCIES DEMONSTRATED WITH

SMALL GRC HIGH ASPECT RATIO HOLLOW CATHODES

GOAL gt25 EFFICIENCY gt1500 S Isp 5-25 W

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1116

00 01 02 03 04 05 06 07

Sub-kW Ion Propulsion Technology Road-Map options

Advanced Moly or Titanium optics

20 kg Xe Throughput

C-C Optics30 kg Xe

Throughput

08 09 10 11 12

05 sccm

Cathode

No Flow Cathode

Moly optics

12 kg Xe Throughput

Regulated 28v PPU

300 W

2800 sec

49 Efficient

12 kg Xe Throughput

300 W

2800 sec

49 Efficient

20 kg Xe Throughput

300 W

3300 sec

56 Efficient

30 kg Xe

Throughput

Thermal and life

limits

assessed

Thermal and life

limits

assessed

Thermal and life

limitsassessed

rsquo06 Option

rsquo09 Option

rsquo12 Option

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1216

HHHH iiii gggg hhhh PPPPoooowwww eeee rr r r PPPPrr r r oooo ppppuuuu llll ssss iiii oooo nnnn

Potential transportation systems includebull Electric and Plasma Propulsion

minus 100 KW LEO to GEO deliver 6000 kg in 60

days

minus 100 KW powered Interstellar precursor

mission 10 times payload increase

minus 1 MW Jupiter mission (1 year trip time)

minus Multi-MW class fast Human planetary mission

(1 year round trip to Mars)

minus Options include ion thrusters Hall thrusters

MPD Pulsed Inductive Thrusters and

VASMIR

KEY TECHNOLOGIES Electrode lifetimes power conditioning high energy density

capacitors sputter resistant materials lightweight magnets magnetic nozzle work

thermal control and propellant management

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1116

00 01 02 03 04 05 06 07

Sub-kW Ion Propulsion Technology Road-Map options

Advanced Moly or Titanium optics

20 kg Xe Throughput

C-C Optics30 kg Xe

Throughput

08 09 10 11 12

05 sccm

Cathode

No Flow Cathode

Moly optics

12 kg Xe Throughput

Regulated 28v PPU

300 W

2800 sec

49 Efficient

12 kg Xe Throughput

300 W

2800 sec

49 Efficient

20 kg Xe Throughput

300 W

3300 sec

56 Efficient

30 kg Xe

Throughput

Thermal and life

limits

assessed

Thermal and life

limits

assessed

Thermal and life

limitsassessed

rsquo06 Option

rsquo09 Option

rsquo12 Option

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1216

HHHH iiii gggg hhhh PPPPoooowwww eeee rr r r PPPPrr r r oooo ppppuuuu llll ssss iiii oooo nnnn

Potential transportation systems includebull Electric and Plasma Propulsion

minus 100 KW LEO to GEO deliver 6000 kg in 60

days

minus 100 KW powered Interstellar precursor

mission 10 times payload increase

minus 1 MW Jupiter mission (1 year trip time)

minus Multi-MW class fast Human planetary mission

(1 year round trip to Mars)

minus Options include ion thrusters Hall thrusters

MPD Pulsed Inductive Thrusters and

VASMIR

KEY TECHNOLOGIES Electrode lifetimes power conditioning high energy density

capacitors sputter resistant materials lightweight magnets magnetic nozzle work

thermal control and propellant management

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1216

HHHH iiii gggg hhhh PPPPoooowwww eeee rr r r PPPPrr r r oooo ppppuuuu llll ssss iiii oooo nnnn

Potential transportation systems includebull Electric and Plasma Propulsion

minus 100 KW LEO to GEO deliver 6000 kg in 60

days

minus 100 KW powered Interstellar precursor

mission 10 times payload increase

minus 1 MW Jupiter mission (1 year trip time)

minus Multi-MW class fast Human planetary mission

(1 year round trip to Mars)

minus Options include ion thrusters Hall thrusters

MPD Pulsed Inductive Thrusters and

VASMIR

KEY TECHNOLOGIES Electrode lifetimes power conditioning high energy density

capacitors sputter resistant materials lightweight magnets magnetic nozzle work

thermal control and propellant management

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1316

Magnetoplasmadynamic (MPD) Thrusters

bull RobustSimple design and constru ction canoperate w ith various propellants

bull High Pow er Capab i l ity w ithLow Volume Requirements

Steady- state devices tested to 500-kW pulsed devices tested to severalMW

bull Potential High Performance30- kW tests demonstra ted 70

efficiency at 5000 s using appliedmagnetic fields and l ithiumpropellant (Gianinni Scientific CorpNASA GRC cir ca 1968)

Benef i t s

bull Thruster L i fet ime

Electrode erosion at high

currents

bull MW- Class Oper a t i o nAddress high pow er thermaldesign issues improve thrusterefficiencies

Power management and

distributionPropellant handl ing

Chal lenges

NASA GRC 01 MW- Class MPD Cir ca 1989

NASA GRC 01 MW Steady- State Hel ium MPD Cir ca 1989

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1416

MPD THRUSTER PROGRAM PLANS

USE NUMERICAL MODELING

AND PULSED MW-CLASS MPDTHRUSTER EXPERIMENTS TO

ESTABLISH EFFICIENT MPD

THRUSTER DESIGNS

TRANSITION EFFICIENT

DESIGNS TO MW-CLASSSTEADY-STATE FACILITY

EVALUATE MPD THRUSTER

LIFETIME AND EFFICIENCY

bull 50 EFFICIENCY

bull 5000 HOURS LIFE

bull 2500 s - 7000 s Isp

ENGINEERING MODEL

MPD THRUSTER

FY01-02 FY03-05 FY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1516

PULSED INDUCTIVE THRUSTER PROGRAM PLANS

NUMERICAL

MODELING AND

FABRICATION OF

MULTIPLE REP-RATE

PIT DESIGN

(GRCTRWMSFC)

bull 60 EFFICIENCY

bull HIGH REP-RATE

bull 2500 s - 7500 s Isp

ENGINEERING MODEL

PIT THRUSTER

SINGLE-SHOT

AND MULTIPLE

REP-RATE

EVALUATION

OF PIT

PERFORMANCE

SOLID STATE SWITCH

DEVELOPMENT ANDINTEGRATION INTO

MULTIPLE REP-RATE

THRUSTER

FY01-02 FY03-04 FY05-06 gtFY06

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0

872019 NASA_Power_space

httpslidepdfcomreaderfullnasapowerspace 1616

CCCCoooo mmmm bbbb iiii nnnn eeee dddd BBBB eeee nnnn eeee ff f f iiii tttt ssss oooo ff f f PPPPrr r r oooo pppp uuuu llll ssss iiii oooo nnnn aaaa nnnn dddd PPPPoooo wwww eeee rr r r

ff f f oooo rr r r PPPPllll uuuu tttt oooo FFFFllll yyyy bbbb yyyy (((((St udy Requested b y Code S Fal l 20 00)))))

Electric Prop-

8cm Ionthrusters

Radioisotope

with StirlingConverters

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

All CasesAtlas IIIbStar48V

2009 Launch

2020 flyby

Electric

Propulsion andStirling

RadioisotopeConverters

Direct RTG

bullRadioisotope

Electric Propulsion

bullAdd Electric

Propulsion to

increase PayloadbullNo launch window

constraints direct

fast trajectories

bullStirling Converter

Reduces required

of Pu Modules

bullCombination of Ion

thrusters and

Stirling Converters

bullDoubles

Useable SCPayload and

Power at Flyby

Pluto Flyby Spacecraft Net Mass and Power at Flyby

0

50

100

150

200

250

300

350

400

450

SOA Adv EP Only Adv Stirling Only Adv EP and Stirling

SC Net Mass (kg)or Power (W)

at Flyby

Net Delivered SC Mass SC Power Available at Flyby

Power (BOM) 290 W 474 W 250 W 474 W

Power (Flyby) 230 W 376 W 230 W 435 W

EP Propellant 84 kg 84 kg

Power mass 56 kg 92 kg 29 kg 60 kg

Propulsion mass 29 kg 29 kg

Net SC Mass 121 kg 212 kg 148 kg 243 kg

of Pu Modules 2 7 4 3 6 1 0