nato science for peace and security programme advanced research

44
INTERNETBASED INTELLIGENCE FOR PUBLIC HEALTH EMERGENCIES AND DISEASE OUTBREAK 2 NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH WORKSHOP NATO Public Diplomacy Division, Bd. Leopold III, B1110 Brussels, Belgium fax +32 2 707 4232 : email [email protected] MARCH 1315, 2011 DAN PANORAMA HOTEL HAIFA HAIFA, ISRAEL

Upload: others

Post on 12-Sep-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

INTERNET‐BASED INTELLIGENCE FOR  PUBLIC HEALTH EMERGENCIES AND  DISEASE OUTBREAK 

 

 

 

NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME 

 

ADVANCED RESEARCH WORKSHOP 

 

NATO Public Diplomacy Division, Bd. Leopold III, B‐1110 Brussels, Belgium 

fax +32 2 707 4232 : e‐mail [email protected]  

 

 

 

 

 

 

 

 

 

 

 

 

MARCH 13‐15, 2011  

DAN PANORAMA HOTEL HAIFA  

HAIFA, ISRAEL 

 

 

 

 

 

Page 2: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

INTERNET‐BASED INTELLIGENCE FOR  PUBLIC HEALTH EMERGENCIES AND  DISEASE OUTBREAK 

 

ORGANIZING COMMITTEE  

Co‐Directors 

 

Emilio Mordini  Manfred Green 

Centre for Science, Society and Citizenship, Rome, Italy 

School of Public Health at Haifa University, Haifa, Israel 

 

 

 

Committee Members 

   

François M.H. Géré   Toby Merlin  

Institut Français d'Analyse Stratégique, Paris, France   Influenza Coordination Unit Centers for Disease Control and Prevention, Atlanta, USA  

 

  

 

Secreteriat: 

 Centre for Science, Society and Citizenship 

Piazza Capo di Ferro 23, 00186 Rome, Italy  

Phone: +39 0645551042/3  ‐ Fax: +39 0645551044    

Email: [email protected] 

   

Page 3: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

INTERNET‐BASED INTELLIGENCE FOR  PUBLIC HEALTH EMERGENCIES AND  DISEASE OUTBREAK 

 

Need A number of initiatives aimed at identifying health crises earlier than existing official monitoring systems are in progress. Web crawlers – automated software programs that scour the web for information – are increasingly used  to  find patterns  that may signify an emerging  threat. “Over  the past 15 years,  Internet  technology has become integral to public health surveillance. Systems using informal electronic information have been credited with  reducing  the  time  to  recognition  of  an  outbreak,  preventing  governments  from  suppressing  outbreak information, and facilitating public health responses to outbreaks and emerging diseases” 1. Yet Internet‐based systems  for  outbreak  detection  still  lack  a  calm  and  reflective  evaluation,  which  includes  not  only  an assessment of their technical reliability but also a careful analysis of   their policy and regulatory  implications. The main issues include; 1) Whether web‐crawler systems are truly able to extract reliable data on emerging crises from the Internet; 2) How it is possible to deal with information overload, false reports, lack of specificity of signals; 3) How it is possible to exploit  new mobile technologies to engage  directly with citizens to report illness; 4)  How it is possible to minimize the risk  that affected groups might deliberately provoke false alarms; 5) Whether  it  is possible  to  also  apply  this  technology  to  the early detection of   other  kinds of  crisis  (e.g., conflicts, environmental disasters, financial crisis, etc). 6) How it is possible  to improve the coverage of developing countries, where news sources are fewer; 7) Political impact given that Internet based systems bypass state based epidemiological surveillance. 8) How it is possible to implement public verification and follow‐up procedures; 9) Privacy concerns for strategies that have the potential to identify individual internet activity.  Importance The potential  threat of  infectious diseases  to  the security of human  life and global stability  is very  real.  In a closely  interconnected  and  interdependent world,  new  infectious  diseases may  adversely  affect  economic growth,  trade,  tourism,  business  and  industry,  and  social  stability  as  well  as  public  health2.  Severe  high‐mortality rate pandemics due to highly‐transmissible viruses are a real threat for the world in the 21st century. Over  the  past  three  decades,  scientists  have  identified more  than  30  "new"  infectious  diseases,  including HIV/AIDS, SARS, Ebola, and  the West Nile Virus.    In addition,  the  risk of  infectious diseases crossing  species boundaries may be more frequent, as in the case of “mad cow disease” and the threat of “swine flu.”   

Public health measures to control and fight emerging infectious diseases are still limited3. Governments have to weigh the benefits and harms of exposing people, communities and whole countries to possible discrimination and  economic  insult  through  epidemic  controls.  A  range  of  negative  outcomes  are  possible  including  a population's  refusal  to accept preventive measures or  treatment  regimens such as  isolation and quarantine.  Inappropriate  public  health  responses  may  cause  social  disruption  and  civil  disobedience.  Beyond  the immediate human health toll of epidemic crises, there may be damage inflicted by stereotyping, stigmatization and  staggering economic  losses.     Another aspect of epidemics  in our age  is  that  it  is hard  to distinguish a natural disease outbreak from an intentionally caused biological threat. The combined danger arising from the bioterrorist  threats  to public order  and  the emergence of naturally‐occurring new  infections demand novel solutions and particular attention.   

                                                            1 Brownstein JS, Freifeld CC, Madoff LC. (2009) Digital disease detection‐‐harnessing the Web for public health surveillance.  N Engl J Med. 21;360(21):2153‐5, 2157 2 Klaucke D. (2002) Globalization and Health: A Framework for Analysis and Action. Presentation at the Institute of Medicine Workshop on the Impact of Globalization on Infectious Disease Emergence and Control: Exploring the consequences and the Opportunities, Washington, D.C. Institute of Medicine Forum on Emerging Infections. 3 Smolinski, M, Hamburg, MA, Lederberg, J (2001) Microbial Threats to Health; Emergence, Detection, and Response. Institute of Medicine of the National Academies: Washington DC.

Page 4: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

INTERNET‐BASED INTELLIGENCE FOR  PUBLIC HEALTH EMERGENCIES AND  DISEASE OUTBREAK 

 

If fighting new epidemics is not easy, predicting them is still more difficult4. The spread of infections  depends on  several  factors,  related  to  the nature of  the microbiological  agent,   peoples’ behaviour,  socio‐economic conditions  and    the  like. Despite  established  links  between microbiological,  ecological,  geographical,  socio‐economic variables   and epidemics,  surveillance  systems  to  forecast epidemics are  far  from being accurate. False alarms can have huge economic costs and can seriously undermine public confidence. As a consequence, our ability to deal effectively with new and emerging epidemics chiefly relies on early detection. Early detection of disease activity, when followed by a rapid response, can reduce the impact of outbreaks and allow essential medical, social and economic countermeasures to be taken.  

Timeliness  Early detection of disease outbreak has traditionally relied on microbiological and clinical data. Yet since 1990s new  surveillance  systems  have  been  created  to monitor  indirect  signals  of  disease  activity.  Among  these indirect methods some rely on   obvious  indicators, such as the volume of over‐the‐counter drug sales5 or the number of  calls  to  telephone  triage  advice  lines6; other more  innovative methods    are based on electronic communication monitoring . The aim of these innovative methods is  to detect health crises earlier than official monitoring systems.   The Program for Monitoring Emerging Diseases (PROMed‐mail) was founded  in 1994 by the International Society for Infectious Diseases, and it is likely to be the most ancient online, publicly available, reporting system. ProMED uses the Internet to disseminate information on outbreaks by e‐mailing and posting 

case reports,  including many gleaned from readers, along with expert commentary. Founded  in 1997, GPHIN, Global  Public  Health  Intelligence  Network,  is  an  Internet‐based  'early warning'  system  for  potential  public health threats  including chemical, biological, radiological and nuclear (CBRN). GPHIN has been   developed by the Canada's Centre for Emergency Preparedness and Response (CEPR). GPHIN retrieves relevant articles from news aggregators every 15 minutes, using extensive  search queries. The system   monitors on a   worldwide,  24/7 basis,   with media sources  in six  languages  (Arabic, Chinese, English, French, Russian and Spanish)   and  provides  relevant  information on disease outbreaks  and other public health events.   The  automatic  system filters  and  categorizes  information,  which  is  further  processed  by    human  analysis. More  recently  a  new generation  of web  application hybrids  (mushups), which  combine  information  from multiple  sources  into  a single  representation,  have  been  used  to  mine,  categorize,  filter,  and  visualize  online  intelligence  about epidemics  in  real  time.  Current  systems  include Healthmap, Google  Flu  Trends, MediSys, Argus,  EpiSPIDER, BioCaster, and the Wildlife Disease  Information Node. Text‐processing algorithms are used  to determine  the relevance of the information, which  is then sorted by disease and location, with duplicate articles filtered out.  The mining power of these systems is constantly increasing, for instance, Healthmap  searches 20,000 websites every hour, tracking about 75 infectious diseases, including malaria, cholera, Ebola, and recently also swine flu. An average of 300 reports are collected each day, about 90% of which come from news media sources.  Current systems  combine  similar  types  of media,  yet  the  introduction  of    new  automated  analysis  of  online  video materials and radio broadcasts, and the possibility to aggregate different types of media, will soon provide still more robust and sophisticated systems. 

ProMED and GPHIN played critical roles  in informing public health officials of the outbreak of SARS, or severe acute  respiratory syndrome, in Guangdong, China, as early as November 2002, by identifying informal reports on the Web through news media and chat‐room discussions.   Yet the use of using electronic tools to monitor for infection outbreaks went to the limelight only with the recent outbreak of swine flu in Mexico when  Google Flu Trends, which aggregates and analyzes search queries to detect online early sign of flu epidemics, found a peak  in telltale flu‐related search terms about two weeks  in advance of the actual outbreak.    In other words, 

                                                            4 Tait, J., Meagher, L., Lyall, C., Suk, J. (2006) Foresight. Infectious Diseases: preparing for the future. Risk Analysis. Office of Science and Innovation, London 5 Magruder, S., (2003) Evaluation of over‐the‐counter pharmaceutical sales as a possible early warning indicator of public health. Johns Hopkins University APL Technical Digest 24, 349–353 6 Espino, J., Hogan, W. & Wagner, M. (2003)  Telephone triage: A timely data source for surveillance of influenza‐like diseases. Proc AMIA Symp 215–219

Page 5: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

INTERNET‐BASED INTELLIGENCE FOR  PUBLIC HEALTH EMERGENCIES AND  DISEASE OUTBREAK 

 

Google data may have been able  to provide an early warning of  the swine  flu outbreak,  if  the system were adopted as a  reference  system. When on April 25, 2009    the World Health Organisation  (WHO) declared  a "public health emergency of international concern", it was too late to contain the disease and stop its spread. Could  the  spread  of  the  virus  have  been  stopped  if  public  health  groups  had  paid  better  attention  online earlier?  The  answer  is  likely  to  be  “yes”.    John Brownstein,  an  assistant  professor  of  pediatrics  at Harvard University and co‐creator of  the Health Map service  (one of  the new digital detection devices  for  infectious diseases), believes  the  swine  flu outbreak  represents a  "different era"  in  the world of  information  flow and communication.  "The  speed  at which we  are  receiving  data  of  this  outbreak  and  new  reports  in  different countries, different provinces is just astonishing" he said7.  

Early  detection  of  an  infectious  disease  outbreak  is  an  important  element  of  security  policies.    Infectious disease outbreak are not only medical events, but complex socio‐economic incidents which affect the whole of society in several ways, not to mention the possibility of the occurrence of bioterrorist attacks. Rapid disease identification allows to implement public health intervention and to  establish  the necessary social, economical and  political  countermeasures, which  improve  public  resilience  and    reduce  the  risk  of  disruptive  societal reactions.    Yet   many  countries,    often    in  the  same world  regions  in which    new  infectious  diseases  are emerging,  lack capacity for early detection and  sometimes tend to not fully disclose the nature and extent of an  outbreak  in  order  to  avoid  a  negative  economic  impact.  The  Internet  offers  solutions  to  some  of  these challenges. Freely available Web‐based sources of information may allow us to detect disease outbreaks earlier with  reduced  cost  and  increased  reporting  transparency.    A  vast  amount  of  real‐time  information  about infectious disease outbreaks  is  found  in various  forms of Web‐based data streams. These range  from official public health  reporting  to  informal news coverage  to  individual accounts  in  chat  rooms and blogs. However infectious disease intelligence, like any other kind of intelligence, should never be considered  a trivial issue. On the contrary it always requires a careful, technical and political, critical assessment. This  ARW aims to initiate such  a  critical  assessment  by  gathering  a  multidisciplinary  pool  of  experts  and  launching  a  high  level conversation on the main technical, regulatory and political issues raised by this new technology.  

General Approach The  workshop  will  provide  a  flexible  framework  within  which  to  assess  emerging  systems  of  global epidemiological surveillance based on monitoring online communications and the World Wide Web. We aim to gather information from different perspectives and provide a pluralistic picture of the issue. The workshop will allow  a  full  exchange  of  opinions  to  take  place  and  promote  open  debate  among  participants.  These participants  will  be  both  men  and  women  from  academia,  international  organisations,  civil  society organizations,  national  and  international  regulatory  bodies  and  security  agencies.  During  the  three‐day workshop,  the main  speakers will  present  a  full  picture  of  the  situation  from  their  own  perspectives  to  a selected audience, including other speakers, chairs, and participants, up to max 40 persons in total. This should allow  ample opportunity  for each participant  to  ask questions, debate points or  refute one or more of  the statements made by the speakers.   Papers will be collected, edited,  and published in a  book.   

    

                                                            7 CBC News, May 1, 2009 , http://www.cbc.ca/technology/story/2009/05/01/tech‐090501‐online‐tools‐pandemic.html

Page 6: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

INTERNET‐BASED INTELLIGENCE FOR  PUBLIC HEALTH EMERGENCIES AND  DISEASE OUTBREAK 

 

SUNDAY, MARCH 13   15:00  ‐ 17:00  Registration and Coffee 

 

SESSION 1  OPENING   Chair: Manfred Green, Israeli Co‐Director 

 17:00 – 17:20  Welcome  by Manfred Green, Israeli Co‐Director 

 17:20 – 17:40  Welcome and scope of the workshop  by Emilio Mordini, NATO country Co‐Director  

   Key notes delivered by 17:40– 18:10  Marjorie P. Pollack, Deputy Editor Epidemiology & Surveillance,  Moderator  ProMED‐mail 

Digital Detection of Diseases:  where we are, where we go  

18:10 ‐ 18:40  General Discussion  

18:40 – 19:00  Chair’s  conclusive remarks and  adjourn 

19.00  Get together Reception   

MONDAY, MARCH 14  SESSION 2  EARLY DETECTION OF DISEASE OUTBREAKS BY USING THE INTERNET, THE CONTEXT  Chair: Toby L. Merlin Deputy Director, Influenza Coordination Unit,  US Centers for Disease 

Control and Prevention  

09:00 ‐09:10  Chair’s general introduction  

09:10 – 09:30  Tamar Shohat, Director, Israel Center for Disease Control The use of multi sources digital data bases for influenza surveillance  

09:30 – 09:50  Discussion  

09:50  ‐ 10:10  Predrag Kon, Head of the Department for immunization at Institute of Public Health Internet based intelligence service during pandemic influenza season 2009/2010 in Serbia 

 

10:10 – 10:30  Discussion  

10:30 – 11:00  Break  

11:00 – 11:20  Marc Gastellu Etchegorry,  Director of the International Department, French Institute for Public Health Surveillance,  EpiSouth project Sources of Information in Epidemic Intelligence 

11:20 – 11:40  Discussion  

11:40 – 12:00  Massimo Ciotti, Preparedness and Response Unit,  European Centre for Disease Prevention and Control Epidemic intelligence in the European Union: the role of Internet 

12:00 – 12:20  Discussion 

Page 7: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

INTERNET‐BASED INTELLIGENCE FOR  PUBLIC HEALTH EMERGENCIES AND  DISEASE OUTBREAK 

 

 12:20‐12:40  Laetitia  Vaillant Global Health Security Action Group, Institute for Public Health Surveillance  

Epidemic intelligence in France and within the GHSAG community 12:40 ‐  13:00  Discussion 

13:00 – 13:10  Chair’s  conclusive remarks and  adjourn  

13:10 – 14:30  Lunch 

 SESSION 3 

 INTERNET, PUBLIC HEALTH AND COMMUNICATION 

  Chair: Emilio Mordini, Centre for Science, Society and Citizenship  

14.30 – 14:40  Chair’s general introduction  

14:40 – 15:00  Donato Greco, Italian National Institute of Health  New Communication Strategies in Epidemics 

15:30 – 15:20  Discussion  

15:20 – 15:40  Ben Reis, Assistant Professor, Harvard Medical School, Affiliated Faculty, Harvard‐MIT Division of Health Sciences and Technology  Social networks and health 

15:40 – 16:00  Discussion  

16:00 – 16:20  Break  

16:20 – 16:40  Anat Gesser‐Edelsburg  Health Promotion‐School of Public Health, University of Haifa Strategies of persuasion on the Internet

16:40 – 17:00  Discussion  

17:00 – 17:20  Yair Amikan, Head, Department of Information, Ministry of Health Transparency in  Public Health Communication  

17:20 – 17:40  Discussion  

17:40 – 18:00  Goran Belojevic,  Institute of Hygiene and Medical Ecology, School of Medicine, University of Belgrade Internet  Based  Health  Communication  –  Analysis  of Messages  on  the Websites  of  Serbian Public Health Institutes  

18:00 ‐ 18:20  Discussion  

18:20 – 18:30  Chair’s  conclusive remarks and  adjourn  

20:30  Conference dinner   

   

Page 8: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

INTERNET‐BASED INTELLIGENCE FOR  PUBLIC HEALTH EMERGENCIES AND  DISEASE OUTBREAK 

 

  TUESDAY, MARCH 15

SESSION 3  THE COMPLEX RELATION BETWEEN SECURITY AND PUBLIC HEALTH   Chair: François M.H. Géré, Institut Français d'Analyse Stratégique 

 09:00‐09:10  Chair’s general introduction 

 09:10 – 09:40  Deborah Cohen, British Medical Journal

WHO and the “pandemic flu conspiracies” 09:40 – 10:00  Discussion 

 10:00  ‐ 10:20  Michael Hopmeier, Director, Unconventional Concepts 

Public Health, Intelligence and National Security:  an approach for the 21st Century 10:20 – 10:40  Discussion 

 10:40 – 11:00  Break 

 11:00 – 11:20  Iris Hunger Research Group for Biological Arms Control, University of Hamburg 

Internet Based Intelligence and Bioterrorism11:20 – 11:40  Discussion 

 11:40 – 12:00  Richard B. Schwartz, Chairman Emergency Medicine Georgia Health Sciences University,  Vice 

Chairman National Disaster Life Support Foundation (NDLSF) A Health Security Card (HSC) for Disasters and Public Health Emergencies  

12:00 – 12:20  Discussion  

12:20 ‐  13:00  FINAL ROUND TABLE: LESSON LEARNED AND FUTURE DIRECTIONS   Manfred Green, Emilio Mordini, Toby l. Merlin, François M.H. Géré 

 13: 00  Adjourn & Lunch   

 

   

Page 9: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

INTERNET‐BASED INTELLIGENCE FOR  PUBLIC HEALTH EMERGENCIES AND  DISEASE OUTBREAK 

 

10 

Participants  Valeria  Balestrieri  Centre for Science, Society and Citizenship ITALY 

Yair Amikan  Department of Information, Ministry of Health ISRAEL 

Artak Barseghyan  Academy of Armenia Engineering  ARMENIA

Goran Belojevic  Institute of Hygiene and Medical Ecology, School of Medicine, University of Belgrade 

SERBIA 

Massimo Ciotti    Preparedness and Response Unit,  European Centre for Disease Prevention and Control 

EUROPEAN UNION

Daniel Cohen  Dept of Epidemiology, Tel Aviv University ISRAEL 

Deborah Cohen  British Medical Journal UNITED KINGDOM

Marc Gastellu Etchegorry  French Institute for Public Health Surveillance,  EpiSouth project  FRANCE 

François M.H. Géré  Institut Français d'Analyse Stratégique FRANCE 

Anat Gesser‐Edelsburg  Health Promotion‐School of Public Health, University of Haifa ISRAEL 

Donato Greco  Italian National Institute of Health ITALY 

Manfred Green  School of Public Health at Haifa University ISRAEL 

Michael Hopmeier  Unconventional Concepts UNITED STATES 

Iris Hunger  Research Group for Biological Arms Control, University of Hamburg  GERMANY

Predrag Kon  Department for immunization at Institute of Public Health SERBIA 

Toby Merlin  Influenza Coordination Unit Centers for Disease Control and Prevention 

UNITED STATES 

Emilio Mordini  Centre for Science, Society and Citizenship ITALY 

Adkham Paiziev  Uzbek Academy of Science and Ministry of Public Health 

UZBEKISTAN

Marjorie P.  Pollack  Epidemiology & Surveillance,  and ProMED‐mail UNITED STATES

Ben Reis  Harvard Medical School, Children's Hospital Informatics Program, Harvard‐MIT Division of Health Sciences and Technology 

UNITED STATES

Tamar Shohat  Israel Center for Disease Control ISRAEL 

Richard B. Schwartz  Emergency Medicine Georgia Health Sciences University,  National Disaster Life Support Foundation (NDLSF) 

UNITED STATES

Laetitia Vaillant  Global Health Security Action Group, French Institute for Public Health Surveillance 

FRANCE 

Page 10: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

1

EpiSouth

Mediterranean Early Warning and alert System

M. GASTELLU ETCHEGORRY, F. AÏT-BELGHITI, C. GIESE and P. BARBOZA

for the WP 6 Steering Group

International Department Institut de Veille Sanitaire (InVS),

France

Page 11: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Globalisation of health crisis

International threats Access to information

Mediterranean countries share common history, populations, ecosystem… and threats

Existing EWS (WHO, ECDC, OIE, FAO…) do not fulfil totally Mediterranean needs

Page 12: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Participating countries

Page 13: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH
Page 14: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

EpiSouth

Dec 2006-June 2010

Objective “Create a framework of collaboration on

epidemiological issues and communicable diseases

control in the Mediterranean region”.

Funding DG-Sanco (EU countries only) + EU- RELEX (TAIEX)

Italian Ministry of Health

Participating countries

1st Phase

Page 15: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

EpiSouth

Start: 15 October 2010 -- Duration: 2 ½ years Focus :

Increase health security in in the Mediterranean AreaPreparedness to common health threats

Funding:EU : DG-SANCO (EAHC) & DEVC, ECDC Italian Ministry of Health All participating countries

2nd Phase

Page 16: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

EpiSouth 1st Phase

Cross-border-epidemic intelligence (InVS, France).Vaccine preventable diseases in migrants (NICPD, Bulgaria).Emerging zoonoses (HCDCP, Greece)

Training (ISCIII, Spain)Networking (Venetia, Italia)

Coordination (ISS, Italy)Communication (ISS, Italy)Evaluation (Venetia, Italy)

8 WP managed by EU Public Health Institutes

Page 17: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Episouth Network Added Values

1st phaseTrust and cohesion among focal points and leaders

Awareness on regional and cross-border issues

Proved feasibility

Majors challenges remain

Governance

Sustainability

Formalisation

To be addressed during the 2nd phase : EpiSouth Plus

Page 18: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

9

EpiSouth + 2nd Phase

Page 19: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Governance

CoordinationWork packages (PHI)

Leaders, co-leaders, steering committees

2 focal points per countriesCrossroad of reception and dissemination

Page 20: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Technical WPs

WP 4 Laboratory network

WP Leaders :Institut Pasteur (France) & Refik Saydam National Hygiene Center, MoH Turkey

WP 5 Generic Preparedness & Risk management

WP Leaders :Instituto de Salud Carlos III (Spain) & Institut National de Santé Publique of Algeria.

WP6 Early warning system

WP Leaders : InVS (France) & Middle East Consortium on Infectious Disease Surveillance (MECIDS) [Israel + Jordan + Palestine

WP 7 Data collection & assessments for IHR Preparedness & Risk management

WP Leaders : Istituto Superiore di Sanità (ISS) Italy &WHO-LYON

Page 21: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Horizontal WPs

WP 1 Coordination

WP Leaders : Istituto Superiore di Sanità (ISS) Italy & Ministry of health of Tunisia

WP 2 Dissemination

WP Leaders : Istituto Superiore di Sanità (ISS) Italy) & Institute of Public Health of Montenegro

WP3 Evaluation

WP Leaders : Azienda Sanitaria Locale Torino 1 (ASLTO1) Italy

Page 22: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

13

EpiSouth

Epidemic intelligence and Early warning

Page 23: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

EpiSouth E.I. Global Concept

International threats

Page 24: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

EpiSouth E.I.

Consists in 5 mains steps (# InVS) DetectionSelectionValidation Analysis & interpretationInformation dissemination

But tailored to EpiSouth needs (geographical criteria +++)

Not exhaustive but aims at covering most countries needs

Only verified information shared

Reduces duplication

Page 25: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Communication

Two main communication supportsIn English Only new & verified events Available online in the EpiSouth site http://www.episouth.org

e-WebEpiSouth Weekly epidemiological Bulletin

Thematic notesad hoc basis Complex, not well known or multiple countries issues (CCHF, WNV, A/H1N1, Alkhurma virus…)

Page 26: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Cross border EW

Mediterranean Alert Early warning systemSecured web site (confidential)To share national alertsOperational since November 09

Accessible to EpiSouth FP NPHI MoH

Majors Stakeholders WHO ECDC EU commission

Complements existing systems WHOE.U. / ECDC

Page 27: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Focus of the 2nd phase / Lessons

Maintain EI and Cross-border activities

Synergies / interoperability /other network institutions WHO, OIE, ECDC, EU (EWRS and alert systems…)Regional Network MECIDS, SEEHN, etc.Develop articulation with Diseases surveillance Thematic networks Work packages

Involvement of non EU countries

Collaboration with partners: WHO, ECDC…

Page 28: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

19

West Nile virus circulation in the

EpiSouth countries

as of 7th October 2010

Page 29: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Mediterranean WN Context

Since 1st documented outbreak in 1951 in Israel, circulation documented almost worldwide

Large human outbreaks EpiSouth & neighboring areas Romania (1996-1997) Tunisia (1997); Israel (2000) Russia (1999)

Up to 2010, restricted to limited geographical settings

Surveillance biases Number of reported neurological cases grossly underestimate circulation in human

Not all countries have specific surveillance system

Page 30: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

West Nile 2010

Mid August 2010

signals of WNV (cases and deaths)

circulation ?2nd September

EpiSouth survey on

WN surveillance systems, availability of national WNV laboratoryEpidemiological context; cases definition and recent cases…

24 countries participated

1st July and 7th Oct.

8 countries reported WN outbreaks

Page 31: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Human cases and deaths Equine casesCountries Cases Deaths CountriesGreece(*) 257 31 GreeceIsrael 65 3Italy 1 0 ItalyRomania 41 4Spain 2 0 Spain (**)Turkey(*) 7 3

MoroccoBulgaria (**)

Total 373 41 140(*) First outbreak ever reported (**) First equine cases reported to OIE

Distribution of WNV cases and deaths. EpiSouh countries 1st July / 7 October 2010

Page 32: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH
Page 33: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Surveillance (23 responding countries)

WN Reference Laboratory15 operational4 non functional1 external reference laboratory 4 no reference laboratory

14 specific Human Surveillance of which:9 permanent (year long) passive surveillance2 seasonal only3 permanent surveillance + enhanced seasonal system in at-risk areas.

Veterinary surveillance11 equine permanent3 seasonal equine 6 countries have also implemented a bird sentinel surveillance system

Page 34: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH
Page 35: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Limits/discussion

Objective : Rapid information for decision (e.g. blood donors)Limits : Information collected in a very short time

Number of items wilfully limited Does not allow in-depth analysis.

Issues : In 2010, unprecedented reported viral circulation in the areaContributed to raise awareness Exchange of information and description of WN circulation Heterogeneity of strategies and resources available for WN surveillance

Among 11 EpiSouth countries with specific WNV (humans and horses) surveillance and operational lab : 7 diagnosed human or horses casesNo countries without specific WNV surveillance system reported case

Origin of high viral circulation not clearly understood.

Lack of virological data (lineage, phylogenetic…)

Page 36: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

27

The progressive expansion of the Novel A(H1N1)v epidemic in the EpiSouth region

(Mediterranean and Balkans)

Page 37: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Focus on EpiSouth region

Source of data: EpiSouth countries

Data collected:Confirmed casesCase definition and case management strategiesDeaths / severe casesCommunity transmission: circulation intensity Imported VS local cases

Descriptive analysis on a weekly basis

Information shared with the network:Daily bulletin (since 06 May to 26 June); Twice a week (in June) Weekly bulletin (from July)

Page 38: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Chronological A(H1N1) evolution (detected cases reported)

08 June 2009 13 July 2009

11 May 2009 31 May 2009

Page 39: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Evolution by « sub-region »

Cumulative A(H1N1)2009 confirmed cases, EpiSouth sub-regions, as of 28 July (week 31).

Page 40: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Exportation of cases: Imported cases and countries of origin

Imported VS local cases

(for 12/13 countries providing data)

Countries of origin (imported cases)

Main trends: Canada and USA exported in Egypt, Lebanon, Saudi Arabia, Morocco (Students and expatriate population back for summer)

Europe exported in Tunisia and Algeria

Saudi Arabia in the Middle East neighbouring countries (e.g. pilgrims)

0 50 100 150 200 250

KosovoAlbaniaBosnia

Tunisia*Morocco

MaltaEgypt

LebanonRomania

TurkeySlovenia

ItalyAlgeria

secondary casesNb imported cases

Page 41: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Discussion / conclusion

Limits Different surveillance systems

Added value: First data and Regional overview (3 different WHO regions)

Reduced duplicationInformation / case definition, management, etc.Illustrated Different strategiesSpread of A/H1N1

Page 42: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Conclusion

Clear needs for enhanced international collaboration to:Optimise limited resources utilisation and minimise duplication Build on experiencesDevelop synergies and partnerships Improve dissemination of information

In case of major threats, pooling internationally available capacities will strengthen health security .A new challenge

Vast potential for synergy and collaboration with other networks

Key role for regional networks

Global crises = Global response

Page 43: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

34

Emilia Anis & Michal Bromberg Israel Raja’a Haddadin & S. Abdullah Saleh Jordan Naser Ramadani; Arijana Kalaveshi Kosovo Tanya Melillo, Jackie Maistre Melillo, Charmaine Gauci Malta Dragan Lausevic and Zoran Vratnica Montenegro Mohammed Youbi & Ahmed Rguig Morocco Bassam Saeed Madi and Basem Al-Rimawi Palestine Mondher Bejaoui & Mohamed Ben Ghorbel Tunisia Alex Leventhal & Sari Husseini MECIDS

Fatima Aït-Belghiti, Coralie Giese & Philippe Barboza France

Acknowledgements WP6 – Steering Group

Page 44: NATO SCIENCE FOR PEACE AND SECURITY PROGRAMME ADVANCED RESEARCH

Acknowledgements

The EpiSouth-Plus project is implemented by the Italian National Institute of Health and is co-funded by the European Union DG SANCO/EAHC and EuropeAid together with the participating national partner Institutions.

The financial support of the Italian Ministry of Health and ECDC is also acknowledged.

The contents of this presentation are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Union.