nature by numbers. the theory behind this movie.pdf

Upload: fatimacobo

Post on 02-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Nature by numbers. The theory behind this movie.pdf

    1/11

    27/10/14 23:41Nature by numbers. The theory behind this movie

    Pgina 1 de 11http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm

    Home> Works> Nature by Numbers > The theory behind this movie

    This section is meant to be a complement to theanimation, in order to better understand the theoreticalbasis that you can find behind the sequences. It wasalso, more or less, the appearance of the screenplay inthe days that I was planning this project.

    Esta seccin pretende ser un complemento a laanimacin, para poder entender mejor la base tericaque se encierra detrs de ella. Era tambin, ms omenos, el aspecto que tena el guin previo queelabor cuando planificaba el proyecto.

    The animation begins by presenting a series of numbers. This is avery famous and recognized sequence since many centuries ago inthe Western World thanks to Leonardo of Pisa, a thirteenth centuryItalian mathematician, also called Fibonacci. So it is known asFibonacci Sequence, even although it had been described muchearlier by Indian mathematicians.

    La animacin arranca presentando una sucesin de nmeros. Unaserie muy famosa y reconocida desde hace muchos siglos en elmundo occidental gracias a Leonardo de Pisa, una matemtico italianodel siglo XIII, tambin llamado Fibonacci. Por eso se la conoce comoSucesin de Fibonacci, aunque ya haba sido descrita con muchaanterioridad por los matemticos hindes.

    This is an infinite sequence of natural numbers wherethe first value is 0, the next is 1and, from there, eachamount is obtained by adding the previous two.

    Se trata de una sucesin infinita de nmeros naturalesdonde el primer valor es 0, el siguiente es 1y, a partirde ah, cada cantidad se obtiene sumando las dosanteriores.

    The values of this sequence havebeen appearingin numerousapplications, but one of the mostrecognized is the Fibonacci Spiral,which has always been used as an approximationto the Golden Spiral

    (a type of logarithmic spiral) because it is easier to represent withhelp of a simple drawing compass.

    This is the next thing to be shown on the animation, appearing justafter the first values on the succession: the process of building one ofthese spirals.

    Los valores de esta sucesin aparecen en numerosas aplicaciones,perouna dela ms reconocidaes la Espiral de Fibonacci, quesiempre se ha utilizado como una aproximacin a la Espiral urea(un

    tipo de espiral logartmica) porque es ms fcil de representarsimplemente con la ayuda de un comps.

    Eso es lo siguiente que se muestra en la animacin, justo despus deaparecer los primeros nmeros de la sucesin: el proceso deconstruccin de una de estas espirales.

    http://en.wikipedia.org/wiki/Golden_spiralhttp://www.etereaestudios.com/docs_html/nbyn_htm/intro.htmhttp://www.etereaestudios.com/docs_html/nbyn_htm/stills_index.htmhttp://www.etereaestudios.com/index.htmlhttp://www.etereaestudios.com/docs_html/general_index_htm/what.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/news.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/works_01.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/training.htmhttp://www.etereaestudios.com/index.htmlhttp://www.etereaestudios.com/docs_html/general_index_htm/what.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/news.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/works_01.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/works_01.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/training.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/success_top.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/success_top.htmhttp://www.etereaestudios.com/index.htmlhttp://www.etereaestudios.com/docs_html/general_index_htm/what.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/news.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/works_01.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/works_01.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/training.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/success_top.htmhttp://www.etereaestudios.com/index.htmlhttp://www.etereaestudios.com/index.htmlhttp://www.etereaestudios.com/docs_html/general_index_htm/what.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/news.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/works_01.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/training.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/success_top.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/links.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/photos.htmhttp://etereaestudios.com/bloghttp://www.etereaestudios.com/docs_html/general_index_htm/success_top.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/links.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/photos.htmhttp://etereaestudios.com/bloghttp://www.etereaestudios.com/docs_html/general_index_htm/success_top.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/links.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/photos.htmhttp://etereaestudios.com/bloghttp://www.etereaestudios.com/docs_html/general_index_htm/success_top.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/links.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/links.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/photos.htmhttp://etereaestudios.com/bloghttp://etereaestudios.com/bloghttp://es.wikipedia.org/wiki/Espiral_logar%C3%ADtmicahttp://en.wikipedia.org/wiki/Logarithmic_spiralhttp://en.wikipedia.org/wiki/Golden_spiralhttp://es.wikipedia.org/wiki/Sucesi%C3%B3n_de_Fibonaccihttp://es.wikipedia.org/wiki/Leonardo_de_Pisahttp://en.wikipedia.org/wiki/Fibonacci_numberhttp://en.wikipedia.org/wiki/Fibonaccihttp://www.etereaestudios.com/docs_html/nbyn_htm/wip_index.htmhttp://www.etereaestudios.com/docs_html/nbyn_htm/movie_index.htmhttp://www.etereaestudios.com/docs_html/nbyn_htm/stills_index.htmhttp://www.etereaestudios.com/docs_html/nbyn_htm/intro.htmhttp://www.etereaestudios.com/docs_html/nbyn_htm/stills_index.htmhttp://www.etereaestudios.com/docs_html/nbyn_htm/intro.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/works_01.htmhttp://www.etereaestudios.com/index.htmlhttp://etereaestudios.com/bloghttp://www.etereaestudios.com/docs_html/general_index_htm/photos.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/links.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/success_top.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/training.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/works_01.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/news.htmhttp://www.etereaestudios.com/docs_html/general_index_htm/what.htmhttp://www.etereaestudios.com/index.html
  • 8/10/2019 Nature by numbers. The theory behind this movie.pdf

    2/11

    27/10/14 23:41Nature by numbers. The theory behind this movie

    Pgina 2 de 11http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm

    We will create first a few squares that correspond to each value on thesequence: 1x1 - 1x1 - 2x2 - 3x3 - 5x5 - 8x8, etc. And they arearranged in the way how we see in the diagram at left.

    Then we draw a quarter circle arc (90) within each little square andwe can easily see how it builds step by step the Fibonacci Spiral,looking at right graphic.

    I have introduced a small optical correction in the animation in orderto get the resulting curve more like a true Golden Spiral(moreharmonious and balanced), as explained on this plate. It's somethingsimilar to what happens when we try to approach to an ellipse bydrawing an oval using circular segments: the result is not the same asa true ellipse. And it shows.

    IMPORTANT NOTE:while watching the animation conveys the idea

    that the Fibonacci spiral(or the Golden Spiral, it doesn't matter) is onthe origin of the shape of a Nautilus, this isn't absolutely right.

    It's funny because if you perform this search at Google Images:spiral + nautilus you will see how many images suggest that thisshell is really based on the construction system described above.

    But this isn't correct, as it's outlined on this other page.

    Primero se van creando cuadraditos que corresponden a cada valor dela sucesin: 1x1 - 1x1 - 2x2 - 3x3 - 5x5 - 8x8, etc y se disponen de lamanera que vemos en el grfico de la izquierda.

    A continuacin podemos trazar un cuarto de arco de circunferencia(90) dentro de cada cuadradito y fcilmente vemos cmo surge laEspiral de Fibonacci, a la derecha.

    En la animacin se ha introducido una pequea correccin ptica parahacer que la curva resultante sea ms parecida a una verdaderaEspiral urea(ms armoniosa y equilibrada), tal como se explica ensta lmina. Es algo parecido a lo que ocurre cuando tratamos deaproximarnos a una elipse trazando un valo con segmentos decircunferencia: el resultado no es lo mismo que una verdadera elipse.Y se nota.

    NOTA IMPORTANTE:aunque viendo la animacin se transmite la

    idea de que la Espiral de Fibonacci(o la Espiral urea, tanto da) esten la base de la forma de un Nautilus, realmente no es as.

    Es curioso, porque si buscis en Google Images: espiral+nautilusveris cantidad de imgenes que sugieren que esta concha realmentese basa en el sistema constructivo descrito ms arriba.

    Pero no es correcto, como bien se apunta en sta otra pgina.

    http://www.shallowsky.com/blog/science/fibonautilus.htmlhttp://images.google.com/images?hl=en&source=hp&q=espiral+nautilus&btnG=Search+Images&gbv=2&aq=f&aqi=&aql=&oq=http://es.wikipedia.org/wiki/Nautilinahttp://www.etereaestudios.com/docs_html/nbyn_htm/wip_01.htmhttp://www.shallowsky.com/blog/science/fibonautilus.htmlhttp://images.google.com/images?hl=en&source=hp&q=nautilus+spiral&btnG=Search+Images&gbv=2&aq=f&aqi=&aql=f&oq=http://en.wikipedia.org/wiki/Nautilushttp://www.etereaestudios.com/docs_html/nbyn_htm/wip_01.htm
  • 8/10/2019 Nature by numbers. The theory behind this movie.pdf

    3/11

    27/10/14 23:41Nature by numbers. The theory behind this movie

    Pgina 3 de 11http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm

    The truth is that this is something I discovered when I had completelyfinished the screenplay for this project and I was too lazy to change.Therefore I must confess that I did a kind of cheat with thisanimation. Or you could explain in a more "genteel" way, saying that Ihave taken an artistic license;-)

    Lo cierto es que es algo que descubr cuando ya tena completamenteplanteado el guin del proyecto y me dio mucha pereza cambiar. Portanto he de confesar que en la animacin he hecho trampa. O sepodra explicar de un modo ms fino, diciendo que me he tomadouna licencia artstica;-)

    Once it has appeared the Nautilus we advance to the second part ofthe animation. It introduces the concept of Golden Ratiobyconstructing a Golden Rectangle. We start from a simple square to get

    Una vez que ha aparecido el Nautilus se da paso a la segunda partede la animacin. En ella se introduce el concepto de Proporcinureamediante la construccin de un Rectngulo ureo.Para ello

    http://es.wikipedia.org/wiki/N%C3%BAmero_%C3%A1ureohttp://en.wikipedia.org/wiki/Golden_ratio
  • 8/10/2019 Nature by numbers. The theory behind this movie.pdf

    4/11

    27/10/14 23:41Nature by numbers. The theory behind this movie

    Pgina 4 de 11http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm

    that and use a classic method that requires only a ruler and drawingcompass. See the complete process on the following series ofillustrations:

    partimos de un simple cuadrado y utilizamos un procedimiento clsicoque slo requiere regla y comps. Lo podemos ver en la siguienteserie de ilustraciones:

    This is very special rectangle known since ancient times. It fulfills this

    ratio, also known as the Golden Ratioor Divine Proportion: the ratioof the sum of the quantities (a+b) to the larger quantity (a) is equalto the ratio of the larger quantity (a) to the smaller one (b).

    Se trata un rectngulo muy especial y conocido desde antiguo. En l

    se cumple esta proporcin, tambin conocida como Razn ureaoDivina Proporcin: el lado mayor (a) es al lado menor (b) lo que lasuma de ambos (a+b) es al mayor (a).

    The result of this ratio (ie the division of aby b) is an irrationalnumberknown as Phinot to be confused with Pi and anapproximate value of 1.61803399

    Formerly was not conceived as a true "unit" but as a simplerelationship of proportionality between two segments. And we find inmany works created by the mankind in art and architecture, from theBabylonian and Assyrian civilizations to our days, passing throughancient Greece or the Renaissance.

    El resultado de esta proporcin (es decir, de la divisin de apor b) esun nmero irracionaltambin conocido como Phino confundir conPi y con un valor aproximado de 1,61803399

    Antiguamente no se conceba como una verdadera unidad sino comouna sencilla relacin de proporcionalidad entre dos segmentos. Ypodemos encontrarla en numerosas figuras creadas por el ser humanoen el arte y la arquitectura, desde las civilizaciones Babilnicas oAsirias hasta nuestros das, pasando por la Antigua Grecia o elRenacimiento.

    JUST A CURIOSITY:it isn't evident on the

    UNA CURIOSIDAD:no est evidenciada en la

    http://es.wikipedia.org/wiki/N%C3%BAmero_irracionalhttp://en.wikipedia.org/wiki/Irrational_number
  • 8/10/2019 Nature by numbers. The theory behind this movie.pdf

    5/11

    27/10/14 23:41Nature by numbers. The theory behind this movie

    Pgina 5 de 11http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm

    animation, but there is a deep connectionbetween the Fibonacci Sequenceand GoldenRatio.

    You have an example at right (we will seeanother one): if we divide each value in theFibonacci Seriesby the previous, the resulttends to Phi. The higher the value, the greaterthe approximation (consider that Phi, like anyirrational number, has infinite decimals).

    ,entre la Sucesin de Fibonacciy la Proporcin

    urea.

    A la izquierda tenemos un ejemplo (luegoveremos otro ms): si vamos dividiendo cadavalor de la Serie de Fibonaccipor el anterior, elresultado tiende a Phi. Cuanto ms altos sonlos valores, mayor es la aproximacin(considerad que Phi, como todo nmeroirracional, tiene infinitos decimales).

    We are going one step further on the animation by introducing a newconcept, maybe less known but equally important, the Golden Angle.That is, the angular proportional relationship between two circularsegments:

    En la animacin vamos un pasito ms all y llegamos a un nuevoconcepto, quizs no tan conocido, pero igualmente importante: elngulo ureo. Es decir, la relacin angular de proporcin entre dossegmentos circulares:

    These two circular segments are accomplishing too with the samegolden proportionality, but on this case the value of the angle formedby the smallest of them is another irrational number, we can simplifyand round it as 137.5

    And this value is deeply present in nature. This is the next concept wesee on the animation: how to configure the structure formed by thesunflower seeds.

    Look at the figures below:

    Con estos dos segmentos circulares se sigue cumpliendo la mismaproporcionalidad urea, pero en este caso el valor del ngulo formadopor el menor de ellos es otro nmero irracional, que podemossimplificar y redondear como 137,5

    Y resulta que ese valor est muy presente en la naturaleza. Esto es losiguiente que vemos en la animacin: cmo se configura la estructuraque forman las pipas de un girasol.

    Fijos en al siguientes figuras:

    We add a first red seed.

    Aportamos una primera pipa de color rojo.

    http://en.wikipedia.org/wiki/Golden_angle
  • 8/10/2019 Nature by numbers. The theory behind this movie.pdf

    6/11

    27/10/14 23:41Nature by numbers. The theory behind this movie

    Pgina 6 de 11http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm

    urn .

    Add a second green color seed and make the previous traveling tothe center.

    Turn other 137.5

    Add a third ocher seed and make the previous traveling to thecenter, to stay side by side with the first one.

    Turn other 137.5

    and so on, seed after seed, we will obtain gradually a kind ofdistributions like the ones you have in the following figures.

    ramos ,

    Aadimos una segunda pipa de color verde y hacemos que laanterior se vaya hacia el centro.

    Giramos otros 137,5

    Aadimos una tercera pipa de color tostado y hacemos que laanterior se vaya hacia el centro, hasta tocar con la primera.

    Giramos otros 137,5

    y as sucesivamente, pipa tras pipa, iramos obteniendopaulatinamente unas distribuciones como las que tenis en lassiguientes figuras.

    This leads to the characteristic structure in which all seeds arearranged into a sunflower, which is as compact as possible. We havealways said: nature is wise :-)

    ANOTHER CURIOSITY:Do you remember we had commented thatthere had a deep connection between the Fibonacci SequenceandGolden Ratio? Well, next we have another meeting point betweenboth concepts. Look at the following images of a sunflower:

    De este modo llegamos a la estructura caracterstica en la que estndispuestas todas las pipas en su girasol, que es la ms compactaposible. Siempre se ha dicho: la naturaleza es sabia :-)

    OTRA CURIOSIDAD:Recordis que habamos comentado que habauna profunda relacin entre la Sucesin de Fibonacciy la Proporcin

    urea? Pues bien, a continuacin tenemos otro punto de encuentroentre ambos conceptos. Fijaos en las siguientes imgenes de ungirasol:

    By observing closely the seeds configuration you will see how appearsa kind of spiral patterns. In the top left picture we have highlightedthree of the spirals typologies that could be found on almost anysunflower.

    Well, if you look at one of the typologies, for example the one ingreen, and you go to the illustration above right you can check thatthere is a certain number of spirals like this, specifically 55 spirals.

    Si observis atentamente la configuracin de las pipas veris cmoaparecen una serie de patrones en espiral. En la ilustracin superiorizquierda tenis resaltadas tres de las tipologas de espirales quepodemos encontrar.

    Pues bien: si os centris en una de las tipologas, por ejemplo la queaparece en verde, y os vis a la ilustracin superior derecha podriscomprobar que se cuentan un nmero determinado de espirales como

  • 8/10/2019 Nature by numbers. The theory behind this movie.pdf

    7/11

    27/10/14 23:41Nature by numbers. The theory behind this movie

    Pgina 7 de 11http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm

    Coincidentally a number that is within the Fibonacci Sequence;-)

    sta, concretamente 55 espirales. Casualmente un nmero que estdentro de la Sucesin de Fibonacci;-)

    And we have more examples in the two upper panels, cyan and

    orange, they are also arranged following values that are within thesequence: 34and 21 spirals.

    In principle, all the sunflowers in the world show a number of spiralsthat are within the Fibonacci Sequence. You could go out to thecountryside and look for a plantation to be sure :-)

    You can also use this image of a real sunfloweror go to this websitewhere this is explained, along with another curiosities.

    By the way, I recommend the rest of the Ron Knottsite, amathematician at the University of Surreyin England. His web is fullof invaluable and educational information, all very well explained andwith large doses of curious and funney elements.

    Y en las dos ilustraciones superiores tenis los otros casos, en azul y

    naranja, que nos proporcionan unos valores que tambin se hallandentro de la sucesin: 34y 21 espirales.

    En principio, todos los girasoles del mundo muestran una cantidad deespirales que se hallan dentro de la Sucesin de Fibonacci. Podiscomprobarlo saliendo al campo y buscando una plantacin.

    Tambin podis usar sta imagen de un girasol realo acudir a estaotra webdonde aparece explicado, junto a otras curiosidades.

    A propsito: os recomiendo el resto de lapgina de Ron Knott, unmatemtico de la Universidad de Surrey, en Inglaterra: est llena deinformacin muy valiosa y didctica, todo muy bien explicado y congrandes dosis de elementos curiosos.

    Finally we reached the third segment of the animation in which wework with a concept that is a little less known than the others: theVoronoi Tessellations, also called Dirichlet Tessellation.

    I discovered this issue thanks to Hector Garcia's personal site, which Ivisit almost daily (and despite being a blog dedicated to Japaneseculture and everything that is related to that country, also delights usfrom time to time with other interesting topics, like this one aboutDelaunay and Voronoi).

    These geometric formations are based on a distribution pattern that iseasily recognizable in many natural structures, like the wings of someinsects or these small capillary ramifications in some plant's leaves.

    It is also widely used to optimize the distribution systems based onareas of influence, at the time to decide, for example, where to installphone antennas, or where to build the different delegations for a pizzachain.

    Para terminar llegamos a la tercera parte de la animacin en la que setrabaja con un concepto un poco menos conocido que los anteriores:las Teselaciones de Voronoi, tambin conocidas como Polgonos deThiessen.

    Comentaros que este tema lo descubr gracias a la pgina de HctorGarca, que visito prcticamente a diario (y que a pesar de ser un blogdedicado a la cultura japonesa y todo lo que tiene que ver con aquelpas, de vez en cuando tambin nos regala con otros temasinteresantes, como ste de Delaunay y Voronoi).

    Estas formaciones geomtricas se basan en un patrn de distribucinque resulta fcilmente reconocible en muchas estructuras naturales,como las alas de los insectos o las ramificaciones capilares vegetales.

    Tambin es ampliamente utilizado para optimizar los sistemas dedistribucin basados en reas de influencia, a la hora de decidir, porejemplo, dnde se instalan las antenas de telefona o las diferentes

    http://www.kirainet.com/delaunay-y-voronoi/http://www.kirainet.com/http://es.wikipedia.org/wiki/Pol%C3%ADgonos_de_Thiessenhttp://www.kirainet.com/delaunay-y-voronoi/http://www.kirainet.com/http://en.wikipedia.org/wiki/Voronoi_diagramhttp://www.maths.surrey.ac.uk/hosted-sites/R.Knott/http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html#seedshttp://www.flickr.com/photos/lucapost/694780262http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/http://www.flickr.com/photos/lucapost/694780262http://www.flickr.com/photos/lucapost/694780262
  • 8/10/2019 Nature by numbers. The theory behind this movie.pdf

    8/11

    27/10/14 23:41Nature by numbers. The theory behind this movie

    Pgina 8 de 11http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm

    Let me show you a very intuitive way to understand how it forms aVoronoi Tiling:

    delegaciones de una cadena de pizzeras.

    Veamos un sistema muy intuitivo de entender cmo se conforma unaTeselacin de Voronoi:

    Imagine we have two points: one red and another blue (top left).Start by drawing a segment joining these dots and then a secondorthogonal line who is right in the middle. We have just found thebisectorof the segment joining these two points.

    Above right we added a third green point, generating two newbisectors that intersect with the first.

    If we continue adding points to generate succesive bisectors, withtheir intersections, will lead to a series of polygons Voronoi Tilesaround a set of "control points". Thus, the perimeter of each one ofthese tiles is equidistant to neighboring pointsand defines their

    area of influence.

    All these segments that interconnect the points form a triangularstructure called Delaunay Triangulation. In the illustration below youcan see the process as we continue adding points:

    Imaginad que tenemos dos puntos: uno rojo y otro azul (arriba a laizquierda). Empezamos trazando una lnea que los une y despus otraperpendicular que se halle justo en la mitad. Acabamos de hallar lamediatrizdel segmento de unin de estos dos puntos.

    Arriba a la derecha aadimos un tercer punto verde y generamos dosnuevas mediatrices, que se interseccionan con la primera.

    Si seguimos aadiendo puntos podremos ir generando sucesivasmediatrices que, con sus intersecciones, darn lugar a una serie depolgonos Teselas de Voronoi alrededor de un conjunto de puntosde control. De esta manera, el permetro de los polgonos

    generados es equidistante a los puntos vecinosy designa surea de influencia.

    Los segmentos que unen directamente los puntos forman unaestructura triangular conocida como Triangulacin de Delaunay. En lasiguiente ilustracin podis ver el proceso conforme vamos aadiendopuntos:

    http://es.wikipedia.org/wiki/Triangulaci%C3%B3n_de_Delaunayhttp://en.wikipedia.org/wiki/Delaunay_triangulation
  • 8/10/2019 Nature by numbers. The theory behind this movie.pdf

    9/11

    27/10/14 23:41Nature by numbers. The theory behind this movie

    Pgina 9 de 11http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm

    We can find interactive sites on the internet (like this) to draw points,move them, and check how the structure becomes updated in realtime.

    In fact, if we have a series of random dots scattered in the plane, thebest way of finding the correct Voronoi Telesacinfor this set is usingthe Delaunay triangulation. And in fact, this is precisely the ideashown on the animation: first the Delaunay Triangulationand then,subsequently, the Voronoi Tessellation.

    But to draw a correct Delaunay Triangulationis necessary to meet theso-called Delaunay Condition. This means that: a network oftriangles could be considered Delaunay Triangulation if allcircumcircles of all triangles of the network are empty.

    Notice that actually, given a certain number of points in the planethere is no single way to draw triangles, there are many. But only onepossible triangulation meets this condition. It is very simple: we drawa triangle using 3 points only if the circumcircle created using these 3points is "empty" (not enclosing any other dot).

    You see that in the graph below, extracted from Wikipedia:

    Tambin encontraris sistemas interactivos en la red, como ste, parair aadiendo puntos, moverlos y comprobar cmo se actualiza laestructura.

    En realidad, si tenemos una serie de puntos aleatorios dispersos en elplano, la mejor forma de hallar la Telesacin de Voronoicorrespondiente a ese conjunto es partir de la Triangulacin deDelaunay. Y de hecho ese es precisamente el orden que se muestraen la animacin: primero aparece la Triangulacin de Delaunayyposteriormente la Teselacin de Voronoi.

    Pero para poder trazar una correcta Triangulacin de Delaunayesnecesario que se cumpla la conocida como Condicin deDelaunay: una red de tringulos es una triangulacin de Delaunaysi todas las circunferencias circunscritas de todos los tringulos de lared son vacas.

    Fijaos que realmente, dados un nmero determinado de puntos en elplano no existe una nica manera de unirlos formando tringulos,existen muchsimas. Pero slo una posible triangulacin cumple con la

    mencionada condicin. Es muy simple: trazaremos un tringulousando 3 puntos slo si se cumple que la circunferencia circunscrita aesos 3 puntos es vaca (no encierra ningn otro punto).

    Podis verlo en la siguiente grfica, extrada de la Wikipedia:

    http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/index.html.enhttp://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/index.html.en
  • 8/10/2019 Nature by numbers. The theory behind this movie.pdf

    10/11

    27/10/14 23:41Nature by numbers. The theory behind this movie

    Pgina 10 de 11http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm

    We could rotate 90 degrees each side of the triangle using the themidpoint after defining the Delaunay Triangulation(top left), toconstruct the Voronoi Tiling(top right). This is exactly what theanimation shows just before that the camera pulls back to show usthe structure of our dragonfly wing.

    We could also use the centers of each circle, marked in red, as theydescribe the vertices of Voronoi Tilings.

    Una vez que tenemos definida la Triangulacin de Delaunay(arriba ala izquierda) podemos ir girando 90 cada uno de los segmentos delos tringulos por el punto medio para dar con la Teselacin deVoronoi(arriba a la derecha). Exactamente lo que muestra laanimacin justo antes de alejarnos y mostrar la estructura del ala denuestra liblula.

    Tambin podramos utilizar los centros de cada circunferencia,marcados en rojo, ya que describen los vrtices de las Teselas deVoronoi.

  • 8/10/2019 Nature by numbers. The theory behind this movie.pdf

    11/11

    27/10/14 23:41Nature by numbers. The theory behind this movie

    Pgina 11 de 11http://www.etereaestudios.com/docs_html/nbyn_htm/about_index.htm

    Of course, I am pretty sure of one thing: if we take a real dragonfly,and we analyze their wings with the help of a magnifying glass ormicroscope (example), we find exceptions and deviations. But it isclear the similarity of both structures.

    Por supuesto, estoy seguro de que si tomaramos una liblula real yanalizasemos sus alas con la ayuda de una lupa o un microscopio(ejemplo), encontraramos excepciones y desviaciones. Pero esindudable la similitud de ambas estructuras.

    I

    http://www.etereaestudios.com/docs_html/general_index_htm/contact.htmhttp://www.etereaestudios.com/training_img/next_workshop.htmhttp://www.flickr.com/photos/gripspix/1233292309/http://www.flickr.com/photos/gripspix/1233292309/