naval postgraduate school monterey b ncicinney …

187
RADAR DEFENDED LAND TARGETS(U ) NAVAL POSTGRADUATE SCHOOL MONTEREY CA D B NCICINNEY SEP 83 UNCLASSIID 7F/G 15/3 N mEEEEEEEEEmoi EEEEEEEEEEEEEI EEmhhEEEEEmhhI mEEEohhEEEEEEI EEEEEEEEEEmhhE

Upload: others

Post on 03-Oct-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

RADAR DEFENDED LAND TARGETS(U ) NAVAL POSTGRADUATESCHOOL MONTEREY CA D B NCICINNEY SEP 83

UNCLASSIID 7F/G 15/3 N

mEEEEEEEEEmoiEEEEEEEEEEEEEIEEmhhEEEEEmhhImEEEohhEEEEEEIEEEEEEEEEEmhhE

Page 2: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

- - -. ~ -- ... ..A

144 JIV

aLa

11111L2 1111_L4

MICRCOP RESLUIO TES32 ARuNTOA UEI FSADRS 6-

L 136

Page 3: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

:1' NAVAL POSTGRADUATE SCHOOLMonterey, California

" DTI CiU i.4 * JAN.13 x4

THESIS c*i-7 HMASK:

A TACTICAL AID FOR PLANNING AIR STRIKESAGAINST RADAR DEFENDED LAND TARGETS

by

LI Dana Bruce McKinney-,J

," September 1983

Thesis Advisor: A. F. Andrus

Approved for public release; distribution unlimited

84 01 i 8S.13 08

Page 4: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

UnclassifiedSCCUYFAT CLASIFICATION OP 'THIS P0469 Mko Darn 3M,, ________________

REM IT DOCUMENTATION PAGE BEFORE__COMPLETINGFORM

1. RIEV@RT UMBIRM 2. GOVT ACCESSIONNo. 3. RECIPIENT'$ CATALOG NUMBER

4. TILE (411" &A"0~) 5. TYPE OF REPORT 6 PERIOD COVERED

-MASK: A Tactical Aid for Planning Air Strikes Master's ThesisAgainst Radar Defended Land Targets September 1983

6. PERFORMING ORG. REPORT NUMBER

7 . hA)NO Ao) 6. CONTRACT OR GRANT NUMIER(a)

Dana Bruce McKinney

9 . PERPORMSNG@ORANIZATION N4AME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKCAREA A *ORK UNIT NUMBERS

Naval Postgraduate SchoolMonterey, California 93943

11. CONTROLLING OFFICE MNZ AND ADDRESS 12. REPORT DATE

Naval Postgraduate School September 1983Monterey, California 93943 13. NUMBER OF PAGES

18114L MONITORING LOENCY MNZ A050RESS(If 40foieat harn Contrefifii Ofice.) tS. SECURITY CL.ASS. (at this repofl)

Isa. OECLASSIFICATIONe DOWNGRAOINGSCHEDULE

Approved for public release; distribution unlimited.

4DTIC T1, V3

Jut 'f ic at ina

10. SUuP1PIEMIENYAR NOTES B

'I Gab i I t Y Codes

*III. gay WORDS (0.11sm on reumwe side it Mweew Md identify by bleak timber)

DTED Radar CoverageTerrain MaskingStrike WarfareMission Planning

* Digital Terrain Data BaseM0. AIMIYRAC1 (CnfiWsO M aoew. side it fts"0aaus a" idenify by Wleek miff)

-i-This thesis presents an interactive computer program called MASK which generatesAradar and optical line-of-sight coverage envelopes based on terrain masking and*refractive propagation effects. MASK is designed primarily as an aid in

planning air strikes against radar defended land targets and has additional* applications to air defense network planning. A large digital terrain dataI,. base provides extensive coverage of potential areas of interest to the tactical

planner.

DO 1 4JN 7 3 EDITION OF I NOV 6 18 OS1SOLETE UnclassifiedS/N 102 I.. 01 661 1SECURITY CLASSIFICATION OF THIS PACE (When Date Enta,.c

Page 5: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

" : Approved for public release; distribution unlimited.

~MASK:

A Tactical Aid for Planning Air StrikesAgainst Radar Defended Land Targets

by

Dana Bruce McKinneyCommander, United States Navy

~B.A., University of California, Berkeley, 1969

,' i Submitted in partial fulfillment of the

F]" requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL

September 1983

Auhr -'.4

Appoverfovpuli relase di tbutio unlmied

Thesis Advisor

Aant dSecornd Reader

airman, Department of erations Research

DeL P GA and Polic Sciences

, 2

; " ,,A.•. - " - . . .

W; Y ' Author :., ,. ,.,,, .i -. .-.. .. ..- • -.. -.-. v .. ., - .- - ..- ,.,- - . • - - •

Page 6: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

ABSTRACT

This thesis presents an interactive computer program called MASK

which generates radar and optical line-of-sight coverage envelopes

based on terrain masking and refractive propagation effects. MASK is

designed primarily as an aid in planning air strikes against radar

defended land targets and has additional applications to air defense

.4 network planning. A large digital terrain data base provides extensive

coverage of potential areas of interest to the tactical planner.

'3

'.4

44" ' . ,N .' ; . ; '; . .-.-.- -. -. -.- -- -.. - -. - . . . • • -. .

, .. 4- J - ili ia m , 'km -,,li1 "i 6 " -,-,- .- ' ;",; _:- -, v . .; -"-":---"- ,- ;". " . " -. ' ;

Page 7: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

979

TABLE OF CONTENTS

I. INTRODUCTION --------------------------------------- 9

A. HISTORICAL PERSPECTIVE ---------------------------- 9

B. RECENT DEVELOPMENTS ------------------------------ 10

C. THESIS OBJECTIVE -------------------------------- 12

D. APPLICATIONS ----------------------------------- 12

II. PROBLEM STATEMENT ---------------------------------- 14

A. GENERAL --------------------------------------- 14

B. OBSERVER POSITION ------------------------------- 14

C. PLANE EARTH LINE-OF-SIGHT ------------------------- 15

D. OBSTRUCTIONS ----------------------------------- 15

E. EXTENSION TO SPHERICAL MODEL ---------------------- 18

1. Refractive Effects --------------------------- 18

2. Earth Curvature ------------------------------ 21

3. Spherical to Planar Transformation -------------- 24

4. Reflection ---------------------------------- 27

III. PROBLEM SOLUTION ----------------------------------- 29

A. OVERVIEW -------------------------------------- 29

B. INPUT PHASE ------------------------------------ 30

1. Terrain Data -------------------------------- 30

2. Transformations ------------------------------ 34

3. Radar Parameters ----------------------------- 40

4. Refractive Effects ------------------------- 4

5. Strike Altitudes ----------------------------- 47

4

.'' ,*. -,' ,, . . ,_...,' . • .'. -'... '. ,' .. -" -'. -,-..- W-, .- .*- . -.- : -. . •-

Page 8: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

6. Topographic Display Selection -------------------- 47

7. Input Errors ---------------------------------- 48

C. MATHEMATIC MODEL ---------------------------------- 48

1. General -------------------------------------- 48

2. MASK ---------------------------------------- 49

3. LOOK ---------------------------------------- 56

4. LOCATE -------------------------------------- 58

5. LONSCN -------------------------------------- 58

6. LATSCN ------------------------------------------- 61

7. COMPAR -------------------------------------- 66

O. FUNCTIONS --------------------------------------- 67

E. OUTPUT ------------------------------------------ 70

1. Topographic Display ---------------------------- 70

2. AGL Display ---------------------------------- 70

3. MSL Display ---------------------------------- 74

IV. MODEL VERIFICATION ----------------------------------- 75

A. GENERAL ----------------------------------------- 75

B. TEST DATA BASE --------------------------------------- 75

C. RADAR HORIZON TEST -------------------------------- 77

D. TERRAIN MASKING TEST ------------------------------ 79

V. EXAMPLE PROGRAM PROCEDURES ----------------------------- 85

A. GENERAL ----------------------------------------- 85

B. SCENARIO ---------------------------------------- 85

C. TAPE DATA TRANSFER -------------------------------- 87

1. PROFILE Exec ---------------------------------- 87

2. GETTAPE -------------------------------------- 87

5

Page 9: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

W7' W. a- z W% .. % *..'-*o~4

D. DATA TRANSFORMATION -------------------------------- 89

1. TRANS ----------------------------- 89

2. COMBIN --------------------------------------- 91

E. EXECUTING MASK ------------------------------------ 94

1. Input Data ------------------------------------ 94

2. Output Analysis -------------------------------- 96

F. ADDITIONAL EXAMPLES ------------------------------- 15

1. General -------------------------------------- 115

2. Antenna Height Variation ------------------------ 115

3. PRF Variation --------------------------------- 117

4. Refractive Effects -------------------------------- 117

5. Strike Altitudes ------------------------------ 121

VI. CONCLUSIONS AND RECOMMENDATIONS ------------------------- 129

APPENDIX A: SOURCE CODE LISTING ----------------------------- 132

LIST OF REFERENCES ---------------------------------------- 180

INITIAL DISTRIBUTION LIST ---------------------------------- 181

6

Page 10: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

LIST OF FIGURES

2.1 Determination of Horizontal Slope ------------------------ 16

2.2 Vertical Slope Determination ---------------------------- 17

2.3 Masking Height Determination ---------------------------- 19

2.4 Refractive Propagation Paths ---------------------------- 22

2.5 Actual and Equivalent Earth Comparison -------------------- 23

2.6 Calculation of Vertical Slope at (X,Y) -------------------- 25

2.7 Calculation of Masking Height at (M,N) -------------------- 26

2.8 Flow Chart of Masking Calculation Process ----------------- 28

3.1 Internal Structure of a DTED Data File -------------------- 32

3.2 Variation of Longitudinal Distance ----------------------- 33

3.3 Geographic Areas by Tape and File Number ------------------ 36

3.4 Radar Site Location Method ------------------ 42

3.5a Flowchart for MASK ------------------------------------ 50

3.5b Flowchart for MASK ------------------------------------ 51

3.5c Flowchart for MASK ------------------------------------ 52

3.6 Sampling Technique for Various Quadrants ------------------ 57

3.7 Flowchart for LOOK ------------------------------------ 59

3.8 Flowchart for LOCATE ---------------------------------- 60

3.9a Flowchart for LONSCN ---------------------------------- 62

3.9b Flowchart for LONSCN ---------------------------------- 63

3.10a Flowchart for LATSCN ---------------------------------- 64

3.lOb Flowchart for LATSCN ---------------------------------- 65

3.11a Flowchart for COMPAR ---------------------------------- 68

3.11b Flowchart for COMPAR ---------------------------------- 69

7

I 5" '- ''''-*- "" -.- " -, " • • ' -• • , . . .. -

Page 11: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

3.12 Topographic Display Example ---------------------------- 71

3.13 Aeronautical Chart Corresponding to Topo Display ---------- 72

4.1 Test Data Base Configuration --------------------------- 76

4.2 Radar Horizon Test Results ----------------------------- 80

4.3 Terrain Masking Test Scenario -------------------------- 81

4.4 Terrain Masking Test Result ---------------------------- 83

5.1 Topographic Display Legend ----------------------------- 97

5.2 20 Minute Square Topographic Display --------------------- 99

5.3 40 Minute Square Topographic Display -------------------- 100

5.4 60 Minute Square Topographic Display -------------------- 102

5.5 Two Degree Square Topographic Display ------------------- 103

5.6 Typical AGL Descriptive Output Page --------------------- 1055.7 20 Minute Square AGL Display -------------------------- 106

5.8 40 Minute Square AGL Display -------------------------- 108

5.9 AGL Masking Envelope for EW Site Only ------------------- 109

5'10 60 Minute Square AGL Display -------------------------- 110

5.11 Two Degree Square AGL Display -------------------------- 112

5.12 Two Degree Square MSL Display -------------------------- 114

5.13 Low Antenna Height Example ---------------------------- 116

5.14 Medium Antenna Height Example -------------------------- 118

5.15 Airborne Antenna Height Example ------------------------ 119

5.16 PRF Limitation Example ------------------------------- 120

5.17 Optical Refraction Example ---------------------------- 122

5.18 Superrefractive Gradient Example ----------------------- 123

5.19 600 Foot AGL Strike Example --------------------------- 124

5.20 5000 Foot MSL Strike Example -------------------------- 126

5.21 2000 Foot MSL Example -------------------------------- 127

8

Page 12: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

I. INTRODUCTION

A. HISTORICAL PERSPECTIVE

In the last decade, tactical planners have witnessed a revolution in

the development and deployment of air defense systems. The increasing

number and effectiveness of the weapons introduced into the inventories

of potential adversaries have greatly complicated the task of today's

tactical strike planner. The primary objective of timely delivery of

ordnance on target has been increasingly challenged by the ability of an

adversary to impose an unacceptably high attrition rate on the attacking

forces. The deployment of modern air defense systems in some areas of the

third world has contributed to instability by calling into question the

ability of the Carrier Battle Group to project power ashore.

Due to the risk involved in directly engaging a modern air defense net-

work, additional emphasis has been placed on methods of reducing the amount

of time that attacking aircraft must spend in the threat weapon envelope.

These methods generally include the use of stand-off weapons, electronic

countermeasures and low altitude penetration tactics. The success of low

altitude penetration tactics rests on the ability of the attacking force

to use terrain masking to delay initial detection and thereby reduce the

time for the defense to effectively react. Effective employment of ter-

rain masking is a concept which is likely to play an important role in

future strike planning regardless of the air defense threat.

The increasing threat to our strike forces has spurred the development

of more effective methods of neutralizing enemy defenses. Attacking aircraft

9

Page 13: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

have more capable weapon systems, electronic warfare support has increased

and real-time intelligence and surveillance capabilities have improved.

However, our ability to accurately and rapidly assess the effect of terrain

on the strength of enemy defenses has not progressed. This shortcoming

-. limits the ability of the planner to employ his assets to the maximum ad-

vantage. This is especially true in situations requiring a quick reaction

to a present threat. In such a situation, the tactical planner is forced to

make extremely important decisions based on a gross estimation of the effects

of terrain masking. The current state of the art is limited to the use of

aeronautical or topographic charts to get an estimation of the threat system

coverage envelope. Lines of sight, if plotted, are manually computed and

* based on the most rudimentary calculations. In short, the process is tedious,

time consuming and inadequate. The importance of an accurate estimation of

the enemy defensive coverage cannot be overstated. This information will

ultimately determine the mission profile of the entire strike including cruis-

ing altitudes, routes of flight, low altitude penetration descent points,

electronic countermeasures employment, fuel requirements and carrier aircraft

launch position. In the absence of better information, the planner often

assumes "worst case" conditions and limits the aggressive employment of his

assets. Overly optimistic assumptions have more serious consequences.

B. RECENT DEVELOPMENTS

The need to upgrade tactical planning capabilities has been recognized by

the fleet. The introduction of the Integrated Refractive Effects Prediction

System (IREPS) into the fleet was a major step in improving the tactical plan-

ning process, especially in the War-at-Sea scenario. IREPS provided a real-

time onboard capability to predict radar coverage and propagation anomalies

10

Page 14: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

caused by the atmosphere. In particular, identification of the effect of

surface based ducting on low altitude radar effectiveness was of great

tactical importance. In many situations it became apparent that the selec-

tion of extremely low altitude attack profiles increased, rather than de-

creased, detection ranges against attack aircraft over water. The potential

of IREPS and the nearly simultaneous development of a program by the De-

fense Mapping Agency Aerospace Center (DMAAC) to produce a world-wide

Digital Terrain Elevation Data (DTED) base led logically to an idea called

the Radar Detection Analysis System (RDAS). RDAS was put forth as an oper-

ational requirement from the fleet in June 1981 and envisioned a system

incorporating the capabilities of IREPS, the data resources of the DTED and

radar order-of-battle information supplied by already existing intelligence

sources. Although several candidate systems have been developed to date,

the fleet is still without the capabilities described in RDAS. At present,

the most promising system is the Computer Aided Mission Planning System

(CAMPS). Current information is that some CAMPS units are included in POM

85, but it is not possible to forecast the point at which this crucial

capability will become operational throughout the fleet.

One final development should be mentioned. This is the impressive

growth in computing power afforded by the introduction of the modern "desk

top" computer. Units scheduled for near term fleet introduction, such as

the Hewlett-Packard HP 9000, have a vastly greater capability for execut-

ing complex programs than did their immediate predecessors. In light of

this imminent leap in shipboard computing power, it is now feasible to

develop sophisiticated computer programs for future fleet use.

M&II 1.

I, f b , , "'" " -",. .' .'".,' -.. .-..-. .-. ... * , ? .'.- .-,° ..,,, ,.,, .- . . *-,.. --. . .. -. .

Page 15: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

C. THESIS OBJECTIVE

The objective of this thesis is to develop a computer program to pro-

vide a shipboard terrain masking prediction capability pending the intro-

duction of systems such as CAMPS. The program, MASK, incorporates terrain

masking calculations based on DTED and includes anomalous propagation

effects based on data derived from IREPS outputs. The design of MASK will

allow it to be easily modified to run on systems such as the HP 9000 which

have a baseline 500 KBYTE core memory and the ability to run a FORTRAN pro-

gram using the UNIX operating system. MASK is currently running on the IBM

3033 using FORTRAN IV and the CMS operating system.

It is worth pointing out at this time that MASK is not a radar range pre-

diction device. Radar detection range determination is dependent on many

variables, some of which are time and route dependent (radar cross section as

a function of relative aspect angle) or are dependent on operator fatigue or

alertment. MASK is a deterministic model which calculates the ability of a

given threat to have a clear line-of-sight in the direction of a target at a

given altitude and range under specified atmospheric conditions. A pre-

determined flight path is neither required nor desired for MASK to carry out

its calculations. The output from MASK graphically shows the vulnerable

areas in the enemy defense network. Identification of these areas forms the

basis upon which the rest of the planning evolution must ultimately rest.

D. APPLICATIONS

The primary application of MASK is in air strike planning. A brief

examination of the MASK output will reveal any areas of inadequate enemy

radar coverage. By choosing routes of flight which take advantage of

these areas, the planner will increase the survivability and effectiveness

12

- -' , .. .. .-. . .. -.- ,j .. ..-..- ,.,. .. ,.,- .... ... . . . .~ . * . .- ,. ,_...

Page 16: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

. . . . . .- - o .-

of his attacking aircraft. MASK will allow attacking forces to choose

descent points so as to take advantage of efficient cruising altitudes for

as long as possible, descending only when required to remain "unseen".

Preflight coordination of jamming and anti-radiation missile assets will

also be enhanced by having a more realistic idea of the radar envelope,

rather than just a circle of coverage centered on the victim radar.

A change of viewpoint leads to MASK's application to improving the

air defense posture of friendly forces. MASK will allow the air defense

network planner to easily assess his area coverage and to relocate or add

assets to fill any voids. In the amphibious assault scenario, MASK will

permit the planner to survey potential defensive missile battery locations

prior to landing and allow rapid deployment of an air defense perimeter

"tailor-made" for the local terrain. The time saved in setting up an

organic land-based air defense system will mean that supporting missile

ships can leave the landing area sooner, decreasing their vulnerability

to attack and increasing overall tactical flexibility.

60.

13

Page 17: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

II. PROBLEM STATEMENT

A. GENERAL

The central problem in the terrain masking calculation is to define

the position of an observer (the radar) and a candidate point and then

to ask the question, "Is there any part of the earth's surface which

interrupts the line of sight between the two?". Once this question is

answered, an adjacent candidate point is chosen and the question is re-

peated and so on. Eventually, all candidate points are investigated and

all those points for which the answer is "yes" form the set of masked

points. All other points are unmasked and the boundary between the two

sets defines the terrain masking envelope.

It should be understood that this model is not designed to include

propagation loss factors or radar maximum detection range limits. The

only range limit imposed which is not related to terrain masking is the

V: maximum unambiguous range as a function of pulse repetition frequency

(PRF).

B. OBSERVER POSITION

The first consideration is to define the position of the observer.

In this case the observer is a radar site with a known geographic loca-

tion in terms of latitude, longitude and elevation. The observer's lati-

tude and longitude are defined in terms of position (I,J) in a square

matrix and the observer's elevation is the value of that matrix element.

The observer will then be located at or above the matrix element (I,J)

depending on the local terrain elevation value. For simplicity in this

14

Page 18: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

discussion it is assumed that when locating an observer in the matrix,

all observers are well behaved and only exist in the real world at the

exact location where a matrix element exists in the model. In practice,

allowances must be made for perverse observers who violate this assump-

..2 tion.

C. PLANE EARTH LINE-OF-SIGHT

Given an observer location and the location of a candidate point (CP)

above matrix element (M,N), the line-of-sight can be defined. In a

simple world, line-of-sight would be a straight line between the observer

and the CP. The real world is not so simple, but for now it is assumed

that the earth's surface is a plane and that it exists in a vacuum. This

allows the curvature of the earth and the effects of atmospheric refrac-

tion on the propagation of radar and light waves to be ignored. In this

initial model the line-of-sight between the observer and the CP can be de-

fined by two values. The first value, which is called horizontal slope

(SH), is the geometric slope of the line from (I,J) to (M,N). Determina-

tion of the horizontal slope is shown in Figure 2.1. The second value,

which is called vertical slope (SV), is the angular (radian) measure of

the "look up" or "look down" when the observer points at the CP. For ex-

ample, if the observer were located in a valley and the CP were on a hill

SV would be positive. If the observer and CP exchanged places SV would

be negative, and if they were at the same elevation SV would equal zero.

Determination of the vertical slope is shown in Figure 2.2.

D. OBSTRUCTIONS

Having defined line-of-sight, the location of any obstructions between

the observer and the CP must be determined. One method of accomplishing

15

Page 19: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

V..J

.'4'

~N(MN)

(1,1)

.4.:

.'-

.40

-vi

Fiue21 Deemntono oiona lp

a'; _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _

V.%°

'ala.,+

'1'..'

4p

*;', Figure " 2.1 Deteminaion" Hoizontal-'.." '. Slope. -.- +" . .- .'.

.. , +.% .,. .. . .. .. +. . . .. . . . .. .. . . ."U ± _ • p , : L + * , . . , • . . . - • . • - . . . . L i l ~ . f

Page 20: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

.117

Page 21: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

this is to travel along the line from (M,N) to (I,J), sampling matrix

elevation values to determine the SV at each sampling point (X,Y). As

sampling progresses, only the largest (i.e., most positive) angle is

saved. The largest value of SV for all sample points along the line is

called the maximum vertical slope angle (MAXV) and is the elevation angle

from the observer to the top of the (apparently) tallest object on theline from (I,J) to (M,N). This is illustrated in Figure 2.3. If a line

is extended outward from the observer with elevation angle MAXV it will

pass over (M,N) at some height above the plane of the matrix. This "mask-

'ing height" is then compared with the specified height of a given target

above (M,N). If the target height is below the masking height the target

is masked by terrain. Otherwise, the target is visible to the observer.

Once the condition of a target above (M,N) is determined, an adjacent ele-

ment is chosen as the next CP. This process is duplicated for each matrix

element.

E. EXTENSION TO SPHERICAL MODEL44

Now that the problem has been defined in the simple case, two major

complications must be introduced to provide a realistic model.

1. Refractive Effects

The first complication is the phenomenon of the refraction of

radar (and to a lesser extent, light) waves by the atmosphere. The result

of refraction is that waves in the atmosphere tend to follow propagation

paths which are curved rather than straight lines. The magnitude and direc-

tion of path curvature is determined by the rate of change with respect to

height of the refractive index of the atmosphere (dn/dh). The index of re-

fraction, n, is a function of pressure, temperature and humidity and, in

18

.1 , ' '. .' .. o . . .- .-. , .. -. .- . ,. . . .. . . . . . . . . . . ... .

Page 22: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

,.. . . ~

C.7

U E.NE

UNMASKED TARGET -

I

SV~

MASKED TARGET-

(,N19

II

-:"_ HEIGHTAT M,N)

(xY)

Figure 2.3 Masking Height Determination

II- - - -. : .. , ,. . , , . . - ., . , , . , ., . , ., . ., . . . . .. , - ,..

Page 23: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

most cases, is a decreasing function with respect to height. By using

Snell's Law it can be shown that the radius of curvature, R, of the re-

fracted wave path is given by equation 2.1.

R=-1/(dn/dh) (eqn. 2.1)

The derivation may be found in (Ref. 1: p 48]. For standard values of

dn/dh (approximately -0.0000392 per kilometer), R has a value of 25510

kilometers or about four times the radius of the earth. This results in

radar waves propagating along paths which usually curve in the same direc-

tion as the curvature of the earth's surface, but which do not intersect it.

Certain atmospheric conditions generate values of dn/dh which can

produce anomalous propagation paths. In extreme cases, R takes on values

which are less than the earth's radius, causing the waves to curve back and

intersect the surface. The wave is then partially reflected back into the

atmosphere and continues in this way to "skip" along the surface of the

earth for long distances. This effect is called ducting and can result in

greatly extended radar ranges, especially over water. In less extreme

cases, the ray paths may have greater than normal curvature but fail to re-

turn to earth. This condition, called superrefraction, can still produce

over-the-horizon radar ranges. A value of dn/dh equal to zero equates to

a radius of curvature which is infinite, producing straight line propaga-

tion and positive values of dn/dh actually yield ray paths which curve

away from the earth. This latter condition is called subrefraction and

is very rare.

For convenience the term, N, has been used to equal (n-i) x

1,000,000. For example, the use of this transformation gives a value for

dN/dh of -39.2 'N' units' per kilometer of altitude on a standard day.

20

U . . . . ..

Page 24: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

- - - -. - - p.. . ..4 ,

Figure 2.4 shows a graphic representation of the types of refractive

effects discussed and a table relating dN/dh to the refractive types.

It should be obvious from this discussion that refractive effects

must be accounted for in terrain masking calculations due to their in-

fluence on the curvature of the line-of-sight.

2. Earth Curvature

.4 The second complication is that the earth's surface is not a

plane. It has a complex elliptical shape which can be approximated in

this application by a sphere with a radius equal to roughly 6370 kilometers.

The resulting curvature causes the apparent line-of-sight (as viewed from

a "plane earth" perspective) to bend away from the surface. As a result,

the use of a spherical earth model profoundly affects the determination of

the elevation angle, MAXV.

The introduction of refraction and earth's curvature naturally

complicates the problem at hand. While the simpler model involved straight

line ray propagation over a plane, the more complex one deals with curvi-

linear propagation over a spherical surface. Fortunately, there is a

method of combining these two problems and obtaining a simplified equiva-

lent one. The derivation of this method is not presented here, but the end

result will be used (for the complete derivation, see [Ref. 1: pp 45-48]).

The method allows plotting the line-of-sight as a straight line provided a

larger "equivalent radius" is used in place of the actual earth radius.

This is illustrated in Figure 2.5. This method also assumes that the atmos-

phere is homogeneous with a constant value of dn/dh. The equivalent radius,

RE, is given by equation 2.2,

RE = a/(l+(a x (dn/dh))), (eqn. 2.2)

where a is the actual earth radius. This equation allows the use of dn/dh

to arrive at an equivalent earth radius which accounts for both refractive

21

4

-d . . S , . .

' - ' ' % ,' . " ' w " "•".' "•" " ". ." . . .. . 4.. . . '. . .. . . .- •.

Page 25: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

/000

NORMAL REFRACTION

I-0-

IiIlk

4~

dN/dh TYPE REFRACTION RANGES

> 0 SUBREFRACTION SHORT

Ai

0 - -79 NORMAL NORMAL

-79- -157 SUPERREFRACTION LONG

< -157 DUCTING EXTREME

Figure 2.4 Refractive Propagation Paths

22

S . .S. o " '...

Page 26: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

(a)ACTUAL EARTH RADIUS

aa

(b) EQIVALEN EARTHRADIU

La 4/3 x a

Figure 2.5 Actual and Equivalent Earth Comparison

23

Page 27: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

and earth curvature effects and which leads to a convenient way of modi-

fying the flat earth model.

3. Spherical to Planar Transformation

The use of equivalent earth radius provides a means of accounting

for the effects of refraction and earth curvature at the same time. How-

ever, it introduces the problem of dealing with a spherical earth's sur-

face. As a result, determination of the angle, SV, is made more difficult

than in the flat earth model. One way to retain the benefits of the equiva-

lent earth radius model and still deal in planar coordinates is to transform

the spherical surface into an equivalent plane while preserving the angular

relationships. During the following discussion, it will be helpful to refer

to Figure 2.6.

The transformation to planar coordinates essentially involves a

-i reduction in the height of the radar antenna (hl) and the sample terrain

height (h2) above (X,Y), as well as increasing the distance between (I,J)

and (X,Y). The cosine of ALPHA yields the reduced heights, hl' and h2',

while the sine of ALPHA leads to the calculation of the increased distance,

Di, between (I,J)' and (X,Y)'. The signed difference between h2' and hi'

is then divided by D' and the arctangent of the result is the angle SV.

The angle SV' is obtained by adding pi/2 to SV and subtracting ALPHA. SV'

is the radian measure of the elevation of the line of sight between the

radar antenna, A, and the obscuring terrain, 0, relative to the vertical

line from (I,J) to the earth's center, C. The determination of MAXV is

performed just as in the flat earth model except that the maximum value

of SV' is retained as the sampling proceeds from (M,N) to (I,J).

At this point all of the information requried to determine the

masking height, MHM, above (M,N) is available. Figure 2.7 shows the per-

tinent relationships. MAXV has already been found, and BETA is calculated

24

..I C. ' 'tq..t.--.- *t..- --. - .. 4..-*.-.- .. ... ... . .. .. .

Page 28: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

0

-IW~- --IA~~ ~ _- - - SV I '7-7-

oKJ

RE. RE

RELATIONSHIPS: i /

(a) at= D-RE.

(b) hl' = hl x COS (a)

(c) h2' = h2 x COS (a)(d) DI = (2RE+hl+h2)sina(e) SV- tan-l((h2'-hl'/D')M SV = LS2 + SV -

Figure 2.6 Calculation of Vertical Slope at (X,Y)

25

,, , ,.,,,:',. .: ,,,:-.; .. ,. . ..., . -. , . . ,,\ . .- .. ., .. .-. , ,,.- . .. .. .-, ., -. . . . .;.-: ;

Page 29: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

B

40

RELATIONSHIPS

(a) B =D/RE(b) y = n(MAXV + )(c) MASKING HEIGHT

-. 0(h + RE)(sir, MAXV)-R

Figure 2.7 Calculation of Masking Height at (M,N)

'p1

26

Page 30: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

by dividing D, the ground distance from (I,J) to (M,N), by the equivalent

radius, RE. GAMMA is obtained by inspection and the Law of Sines is

applied to the side AC to obtain the length of BC. The comparison of MHM

is performed as in the flat earth model and the masking indicator variable

is saved for later display.

The process described above is systematically applied to the entire

matrix, producing the masking envelope for the first observer. The se-

quence is then repeated for each additional observer located in the matrix.

Figure 2.8 shows a simplified flow chart of the required steps in the mask-

ing calculation process.

4. Reflection

A final point should be mentioned in passing. In radar propagation

models for shipboard systems one of the primary concerns is the modifica-

tion of the received signal energy due to reflection from the sea surface.

This effect is primarily caused by constructive and destructive inter-

ference resulting from phase differences in the received signal at'the

antenna. This 'nterference causes the formation of lobes of increased and

decreased detection ranges and can significantly affect the performance of

shipboard weapon systems. However, since this model is primarily con-

cerned with landbased systems, reflective effects have been ignored.

Overwater propagation effects, including reflection, have been treated

extensively in the IREPS model which is already widely deployed.

27

"-"-- - "". - """ " -. ": .,"" " ' -. -- •. . .-.... .. ."" " " - , - -.. . °. .

Page 31: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

4.7

loae0.. nptdt

abov (li

pi( )

*V y

Figure 28 Flow Cart o askn aluain rcs

28nghlst

Page 32: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

W, W. F. F - i---~---;- r. .. - - w

-p:

III. PROBLEM SOLUTION

A. OVERVIEW

This chapter will present an overview of the steps used in MASK to derive

terrain masking envelopes. The steps involved are best examined by separating

them into the three general areas of input, mathematic calculations and output.

Input starts with the standard DTED description, follows through data base

transformations and concludes with determination of the relative positions of

the radar sites and targets. In addition, inputs related to radar system

characteristics, strike variables and atmospheric conditions are included.

The mathematic model phase begins with all initial conditions established.

The math model takes the input data and performs the calculations required to

determine whether or not a given point in space is in an unobstructed line of

sight from the radar site. The end result is a binary indicator variable

which is used in the output phase to display a masked or unmasked condition.

The output phase is concerned primarily with three map displays. The

first is a topographic picture of the area in question and is alphabetically

coded by elevation. This display is the link between the planner's view of

the world and the masking envelopes which follow. It provides the geographic

landmarks and scale indicators which make the masking envelopes useable as

planning tools. The final two displays are the actual masking envelopes.

There is one display based on a selected strike cruising altitude referenced

to mean sea level (MSL) and one for the strike in the terrain following mode

whose altitudes are referenced to height above ground level (AGL).

29

F '' " - " -, " ' - _ -. ' )" - ,-. " - ' -. ' ' " -.-. ' -

Page 33: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

B. INPUT PHASE

1. Terrain Data

The data base for all terrain elevation values used by MASK is

the DTED produced by DMAAC. The objective of the DTED program is to

digitally map the entire terrain surface of the earth. The current

status of completed mapping is available in [Ref. 2].N' The elevation reference for the DTED is Mean Sea Level (MSL) and

the horizontal location of terrain is referenced to the World Geodetic

System. All terrain elevation values are signed magnitude, sixteen-bit

(two word) binary integers representing elevation in meters above MSL.

The DTED is distributed on a subscription basis to a number of DOD users

and is unclassified. Standard tapes are nine track, 1600 FPI/phase

encoded and use ASCII code for tape labels. Complete tape specifications

are contained in [Ref. 3].

The basic unit of DTED is the data file. Each data file con-

tains the elevation data for a one aegree square of the earth's surface.

The reference for all data in the file is the latitude and longitude of

the southwest corner of the degree square. Within the file, data is

divided into records of constant longitude. Each record contains a

record location identifier and the terrain elevation values which span

the degree square from south to north at the given longitude. The

interval between elevation values for the standard DTED is three arc-

seconds. In order to provide overlap between adjacent data files an

extra elevation value is added to the top of each record. Accordingly,

each record contains 1201 individual values (3600 arcseconds per degree

divided by three arcseconds per value, plus the overlap). The records

30V.h

Page 34: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

are arranged within the file in a similar manner from west to east so

that there are 1201 records spanning the width of the data file includ-

ing one for overlap. The file is thus arranged so that elevation values

are read from south to north within each record and records are read from

west to east within the file. Figure 3.1 illustrates the internal struc-

ture of a typical data file.

For any location on the earth the standard three arcsecond inter-

val is equivalent to approximately 300 feet (93 meters) of ground distance

between elevation values when measured along a meridian (i.e., north to

south). At the equator, the longitudinal (east to west) measurement is

identical. However, as latitude increases, the distance between eleva-

tion points decreases when measured longitudinally. At the poles, of

course, this distance shrinks to zero. The effect of this shrinkage is

to increase the longitudinal density of the terrain elevation points as

they depart from the equator. The relationship between the width (in dis-

tance) of a degree square"at the equator and one at some other latitude

is given by equation 3.1,

DL = 60 x cos(L), (eqn. 3.1)

where DL is the width in nautical miles at a given latitude and L is

the specified latitude in degrees. This relationship is illustrated in

Figure 3.2. Because of this decreasing longitudinal distance at the

higher latitudes, the DTED changes the longitudinal interval between

values. The first change occurs at 50 degrees north and south where

the interval is doubled to six arcseconds. A second change takes place

at 75 degrees as the interval again doubles to twelve arcseconds.

These changes reduce the number of records in each data file to 601

31

Page 35: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

PARITY CHECKSUMDATA E N 1

DATA ELEMENT 1201

DATA ELEMENT 1200

,N

R- RECORD 1

"DATA ERECORD 2

R ECORD 3

F 3 n RECORD 19 D F

RECORD 1200 -

RECORD 1201 -

J...

DATA ELEMENT 2

DATA ELEMENT 1

.A

RECORD LABELS

Figure 3.1 Internal Structure of a DTED Data File

32

e .

* - .*-

Page 36: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

7~ 7:17.

.4r2

{r

REATONHIS

dl - r =6

d2 - 6r

r2- l bsl

d2d 2rl r o9,/l csl

d2 =dl cs~l

d= 60 cos60

Figure 3.2 Variation of Longitudinal Distance

33

Page 37: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

r " "rrrr~r'"'" - - -...............'... " .....- 0.-'..-

above 50 degrees and 301 above 75 degrees. No change is made to the

number of elevation values per record, since the meridian distance re-

mains constant for all locations.

In addition to terrain elevation data, each file contains a

label identifying its location within the DTED and other administrative

information including the accuracy of the data. Accuracy is in terms of

a 90 percent probability that elevation errors will not exceed a given

value in meters. For a complete explanation of DTED data file struc-

, ~ture, see [Ref. 3].

2. Transformations

a. General

An artificial limit was set on the core memory requirements

of MASK during its development. This limit is 500 kbytes and was chosen

to represent the anticipated capability of desk-top computers projected

to be available in the fleet in the near term. The design of MASK re-

quires that a large elevation data matrix and two smaller display

matrices be accessible during processing. In order to remain below the

core limit the data matrix size was fixed at 400 by 400 elements. Since

each element is two bytes long, the data matrix alone requires 320

kbytes of core storage. The storage requirement for a complete DTED

data file at the three arcsecond resolution is about 2900 kbytes. It is

therefore impossible to access anything more than a fraction of a DTED

file at full resolution using MASK.

Obviously, a data transformation of some kind is required

for MASK to use the DTED. This transformation is normally accomplished

in two steps. First, the DTED file is located and loaded from tape via

34

" q ?.'4-,4.4.; ,.4

Page 38: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

MVS to the user's diskfile. This is accomplished using the GETTAPE pro-

gram which retrieves a specified DTED file and sends it to an MVS file

under the name of TAPE DATA. The MVS file is then accessed and TAPE DATA

is loaded onto the user's disk. Due to the size of the file a temporary

disk must be defined prior to the transfer of TAPE DATA. The second step

is to process TAPE DATA through a transformation program called TRANS

which produces an output file called MASK DATA. MASK DATA is the 400 by

400 element square data base required by MASK. A third step, which is

required if an area larger than one degree is needed, uses a program

called COMBIN.

b. Transferring DTED From Tape

The GETTAPE program is a short batch program which retrieves

a specified DTED file from tape and transfers it to MVS under the name

TAPE DATA. The user must identify the desired file by tape label and

*file number prior to submitting the GETTAPE program. Each tape contains

several miscellaneous administrative files interspersed with the eleva-% I.

tion data files. Desired data files may be more easily located by using

a program called TSCN, which scans the tape and prints out the contents

by file number.

The tapes used in developing MASK cover an area from 46 to

• 51 degrees north latitude and from 118 to 124 degrees west longitude.

This includes most of Washington State and part of southern British

Columbia. The tapes are arranged primarily in latitude bands with each

tape containing six adjacent one-degree squares. The elevation data files

on each tape are numbered, from west to east, 2, 5, 8, 11, 14 and 17.

Figure 3.3 shows the areas covered by tape label and file number.

35

I"

Page 39: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

-; - . Z .. . . - . b . . . . -. . ,-. . ... . - , .. . , , , ... . _ ' " . .. .. . ... -.. ... - • . . = -

* Iq

FILE 211 14 17'NUMBER

TAPE LATITUDE AND LONGITUDE OF SOUTHWEST CORNER

50 N 50 N 50 N 50N 50N 50N124 W 123 W 122 W 121W 120W 119W

S87 49N ----49N

S87 124W 119W

48N 48NS76 124W --- 119W

.1''

47N 47NS-8 124W g119W

ii

S 46N 46N 46N 46N 46N 46N124W 123W 122W 121W 120W 119W

Figure 3.3 Geographic Areas by Tape and File Number

36

- .i

S~ . '4*4

Page 40: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

'4 4

c. TRANS

TRANS is the workhorse of the transformation process. It

accepts user defined inputs and the TAPE DATA file and produces a 400

by 400 square matrix called MASK DATA which is used by MASK. TRANS

prompts the user to input certain required values. These include the

latitude and longitude of the southwest corner of TAPE DATA, the south-

west corner of the area within TAPE DATA to be transformed and the de-

sired transformation interval.

Since MASK DATA can only hold a 400 square matrix the user

must make a tradeoff between resolution and area coverage. If high reso-

lution is required then MASK DATA will use the same three arcsecond

interval as TAPE DATA. This necessarily limits the geographic coverage

of MASK DATA to twenty minutes on each side. The next larger area

covered is 40 minutes square and is obtained by selecting a transforma-

tion interval of six arcseconds. During this transformation TRANS de-

letes half of the elevation values in each record and half the records in

the data file. This is equivalent to increasing the distance between

elevation data points to about 600 feet. If the entire data file is to

be transformed a similar process takes place, except that the interval is

increased to nine and more points are deleted.

As previously mentioned, the user must enter the location of

the southwest corner of the area to be transformed. If an entire degree

is to be transformed this location must necessarily be the same as the

southwest corner of the TAPE DATA file. When smaller areas are desired,

the user has some flexibility in the selection of the corner point as

long as it is not chosen so that TRANS runs out of data before the MASK

37

Page 41: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

DATA file is filled. For example, when transforming a 20 minute square

the user may locate the corner point anywhere in TAPE DATA as long as 20

minutes of data remain to the north and to the east of the location.

This feature allows the user to position the MASK DATA file to best ad-

vantage in relation to terrain features or radar site locations.

In addition to transferring data based on a specified inter-

val and origin, TRANS deletes all nonelevation information from TAPE DATA

including labels, parity checks and the overlap values discussed before.

The format of the data is also rearranged so that MASK can read MASK DATA

as a FORTRAN matrix from right to left and top to bottom, equating this

with west to east and north to south. A header is added in the first

five data blocks of MASK DATA identifying the southwest corner of the

file in degrees, minutes and seconds and listing the data interval speci-

fied during the transformation.

Transformation of data at latitudes greater than 50 degrees is

handled within TRANS by a special algorithm. When a southwest corner

latitude is greater than, or equal to, 50 degrees north or 51 degrees

south a temporary file is created. TRANS then reads the TAPE DATA file

and duplicates the records required to "pad" the data and make the file

1200 records wide. During this process, the padded information is stored

in the temporary file. The file is then treated identically to a file

from lower latitudes.

d. COMBIN

Thus far, MASK DATA has been limited to the size of one DTED

file. While useful for fire control radars, the area of a single degree

square is inadequate for evaluating the envelopes of longer range

38

I ... ., .•. .. .. ..

Page 42: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

-. acquisition and early warning radars. A program called COMBIN was written

to increase the area coverage of the MASK DATA file. As previously stated,

increasing the area of MASK DATA results in a commensurate degradation in

resolution due to deletion of data points. In practice, this degradation

has been slight but noticeable and is likely to be dependent on local

terrain roughness and radar location as well as decreased resolution.

The concept of COMBIN is to create a mosaic of several files

previously transformed by TRANS. Of neccessity, the output from COMBIN

will still be limited to the size of the MASK DATA file and the caveat

regarding resolution applies. To form the "tiles" of the mosaic, indi-

vidual DTED files are transformed using intervals greater than nine and

are stored in separate numbered files. When all of the required files are

transformed and properly assigned by file definition (FILEDEF) to their

positions in the mosaic, COMBIN systematically accesses the files by

number and combines the data into the standard MASK DATA format. For

example, if an area two degrees by two degrees were required, four

separate DTED files would have to be processed by TRANS at an interval

of 18. They would then be assigned by the user to FILEDEFs 11-14 accord-

ing to their relative geographic positions with the northwest file assigned

to 11, the northeast to 12, the southwest to 13 and the southeast to 14.

COMBIN would then be run and would access each file in turn, placing the

appropriate data in the mosaic. The product of COMBIN would be a MASK

DATA file which would be identical to one produced directly by TRANS,

except that it would cover four times the area at a reduced resolution.

The same general procedure applies to larger areas.

3g

* , -. *.. .*, -~*~* . . . . . . . . . . . - - . .. .- .-l m m m N 'i*M ~ *H W

m m m mC

mC .

m*

mm - n m*. ". . -.. " " " " : ', -

Page 43: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

At present, the largest area which COMBIN will process is a

square mosaic of twenty-five individual DTED files. This equates to an

area of about 200 by 300 nautical miles at 48 degrees of latitude. The

I five by five degree square was chosen as a limit for two reasons. First,

the interval at this resolution is 45 arcseconds (three-fourths of a

nautical mile) and that is a significant distance betwen elevation data

points, especially in rough terrain. The second reason is that the pro-

cess is largely manual, since the user must load and transform twenty-five

DTED files and then assign each to a specific location in the mosaic. The

next larger square would contain 36 files and that is considered excessively

time consuming. An example using COMBIN will be presented in Chapter V.

3. Radar Parameters

a. Location

In addition to the data provided by the DTED, MASK prompts the

user to provide specific information about the radar site or sites to be

used. At a minimum, the latitude and longitude in degrees, minutes and

seconds is required for each site. If no information about the radar site

elevation is provided, MASK will determine elevation based on the location

entered by the user. A separate entry must be made giving the antenna

height above the ground. If this information is not known, a default

entry will assign a value of five meters to the mast height. It is, of

course, preferable to use the actual antenna elevation but MASK will per-

form the calculations using only the latitude and longitude if necessary.

Since site location is a critical variable in computing the

masking envelope, an effort has been made to provide as accurate a site

location as possible within the MASK DATA matrix. Some mention was made

40

¢/ , '-' ".b" " ' .- ''. .'- -. . .i . . .. . ..*-... . .. ..

Page 44: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

-~~7 S7 -V - .-j

.4 in Chapter II of the requirement to cope with observers who fail to exist

7 exactly at matrix element locations. This requirement is not as critical

with a high resolution matrix as with one which has a large interval be-

tween data points. Positional errors in the large area data bases could

,. be on the order of half a mile if site locations within the matrix were

restricted solely to matrix element locations.

In general, geographic location in MASK is represented by the

*position of a subscripted element in the MASK DATA matrix. The point (l,l)

defines the northwest corner of the matrix and (400,400) is the southeast

corner. When MASK DATA is read by MASK the latitude and longitude of the

southwest corner is used as the geographic reference point for the rest of

the points in the matrix. By reading the transformation interval on the

MASK DATA file header, MASK has all of the information necessary to com-

pute the latitude and longitude of any element in the matrix. The actual

location of any element in MASK DATA is completely determined by the data

point location originally used in preparing the DTED file. These loca-

tions are used for the positions of the candidate points (CP) discussed in

Chapter II. Location of the radar site is a more complex problem, since

these sites will most likely be placed in locations which do not correspond

exactly to the location of any DTED elevation data point. Note that in

the following discussion (I,J) refers to the actual site locations, while

(II,JJ) describes the closest MASK DATA element to the northwest of (I,J).

A method was devised for MASK which allows for representing the exact

-. site location in terms of a matrix element (II,JJ) and an incremental dis-

placement (DI,DJ) from that element. This relationship is illustrated in

• !Figure 3.4. Whenever MASK performs a measurement in relation to a site,

41

mS, " "% " -":, -"""'-"--"-"-% 4 -- - -. . . . - . - . .

Page 45: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

7T 7 .6. 17 17 t 77

" N.%- -

IF

. - ""IMJ A -

vI

-- -- -

a..- O .. .

.

Figure 3.4 Radar Site Location Method

42-.1-

................................... 2.

Page 46: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

B.."

the distance is in terms of the distance to (II,JJ) and then an additional

incremental distance is either added or subtracted to compensate for the

offset location of the site.

b. Elevation

One of the applications of the method just described is in de-

termining a given site elevation in the absence of specific user informa-

tion. If the site were located exactly at a position corresponding to

(II,JJ) it would only be necessary to dereference the value of (II,JJ) to

obtain the site elevation. In most cases, however, an interpolation must

be performed to derive an approximate elevation value. Since MASK keeps

track of the exact position of the site within a four element square, a

weighted interpolation is performed based on the relative proximity of the

site to each of the four surrounding elevation data points. Consequently,

the interpolated elevation value derived by MASK is more accurate than a

simple average of the elevations of the surrounding points.

It should be noted that although the internal manipulation of

data in MASK is in terms of meters, the input values are specified in

terms of feet to comply with common usage in the Navy.

c. Pulse Repetition Frequency

The final site parameter is the pulse repetition frequency

(PRF) of the radar. MASK accepts a value up to 9999 pulses per second.

This is used to compute the radar's maximum unambiguous range (MUR)

according to equation 3.2,

MUR = C/(2 x PRF), (eqn. 3.2)

where C is the speed of light in a vacuum. If there is a range of PRF

the user should enter the lowest value which is operationally employed.

43

K:

" . " " " ° -:-" - *.. . . . .

Page 47: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

Some radars use two simultaneous PRFs to extend the MUR. In this case,

the user should enter the difference between the two. The MUR is used in

MASK to reduce run time by limiting masking calculations to those points

in the matrix whose slant range from the radar is less than the MUR.

Points outside the MUR are automatically classified as masked. If the

user does not desire the MUR limit imposed, a default value of -999 will

set the PRF value so low that the MUR is beyond the display capabilities

of MASK. In particular, deletion of the MUR limit would be applicable to

all non-pulsed radars.

d. Multiple Sites

MASK is capable of processing and displaying the combined

envelopes of up to nine different radar sites on any given run. After

completing all required entries for sites one through eight, MASK will

prompt the user to input additional sites as desired. If more sites are

required, the user so indicates and then supplies inputs for the next site

as previously discussed. After the ninth site has been entered MASK will

not accept further site information.

4. Refractive Effects

One of the features of MASK is the modelling of the effects of

refraction on radar and optical propagation paths. The concept outlined

in Chapter II requires that an equivalent earth radius be calculated as

a function of the refractive gradient, dn/dh. MASK uses the scaled-up

gradient, dN/dh for this purpose. The value of dN/dh must be computed

and input by the user if non-standard propagation is to be modelled.

In the standard case, the user enters a value of -039 which results in

the conventional four-thirds earth radius model. Land based systems

44

i v.. .. ", % %* " . . .,.. ... . . . . . . .. . ...

Page 48: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

will not normally be subject to effects such as superrefraction or duct-

ing, since these phenomena are caused primarily by the formation of evapora-

tion layers over large bodies of water. If, however, a land based system

is located in an essentially marine atmospheric environment significant

anomalous propagation can result. An example of such a situation is the

use of radar for coastal defense and surveillance. If the radar is placed

sufficiently close to the coast it will be immersed in a marine air mass

and is likely to be subject to the refractive anomalies normally associ-

ated with shipboard radar propagation. In these cases a non-standard value

of dN/dh should be used to determine the equivalent earth radius.

The best available source of information on the value of dN/dh is

the IREPS computer program, which is installed on all CVs. One of the

outputs of IREPS is a table of N values for various heights in kilometers-4

above MSL. In addition, IREPS predicts a radar ducting height if condi-

tions would produce one. To compute dN/dh, the user chooses an altitude

above MSL and subtracts the value of N at the radar antenna height from

the value of N at the specified altitude (the result will normally be nega-

tive). This number is then divided by the difference between the two

altitudes in kilometers. The altitude should be chosen to include the

proposed strike altitude. For example, if the strike altitude were 5000

feet MSL the user would choose an N value at an altitude of about 1525

meters, interpolating as necessary from the available altitude readings.

The value of dN/dh obtained in this manner would be the average gradient

from the surface to 5000 feet MSL. If ducting is predicted by IREPS,

this indicates that an average value is probably not appropriate, since

there will be a significant difference in dN/dh values at various altitudes.

45

p" • a . ,¢ .°c -i .oo oi1 ' .. q - .. -... . . .. • . •.-. .. .. ° .- 4. . . - °. - . • .- t . . o

Page 49: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

In these cases, the predicted ducting height should be used to calculate

dN/dh. If the radar and the aircraft are both below the ducting height,

MASK will use the non-standard value of dN/dh. Otherwise, standard four-

thirds earth radius will be used. It is recommended that the value of

dN/dh be computed whenever the information is available, since even normal

refractive conditions cover a wide range of values for dN/dh.MASK does not model atmospheric effects at the same level of

sophistication as the IREPS program. Consequently, there is one case in

which MASK will not produce accurate results. This occurs when ducting is

present and the radar is located inside the duct but the aircraft is

located above the duct. MASK contains no algorithm to predict the radar's

ability to "see through" the top of the duct. In this case, MASK uses the

four-thirds earth radius model and produces coverage envelopes which are

likely to extend well beyond the radar's actual coverage. The terminal

prompt message for entering ducting height contains a specific warning to

this effect. In such situations the user should consult the IREPS verti-

cal coverage diagram for the radar in question to determine the severity

of predicted radar coverage loss.

One special use of the refractive effects inputs is to model the

coverage of optical systems. Under standard conditions the distance to

the optical horizon is approximately seven percent greater than the

geometric horizon and seven percent less than the radar horizon (Ref. 4:

p 48]. The reason that the optical horizon is less than the radar hori-

zon is that light refraction depends only on temperature and pressure and

not on humidity as in the case of radar. The result is that the values

of dN/dh obtained from IREPS cannot be used to account for optical

46

Page 50: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

refraction. It is possible, however, to model standard day optical re-

fraction in MASK by entering a dN/dh of -020, which equates to the correct

equivalent earth radius for optics. This value has no relation to the

actual optical refractivity but is merely a means of tricking MASK into

producing standard day optical conditions. The appropriate ducting height

value in this special case is 99999.

5. Strike Altitudes

MASK is able to process two types of strike profiles simultaneously.

The first type is a cruising profile in which the aircraft maintain a given

altitude above MSL. This profile is applicable to transiting to and from a

low altitude descent point or for strike elements whose mission requires

* that they remain at higher altitudes. The second type is a terrain follow-

ing profile which is applicable to strike aircraft attempting to remain

below the terrain masking altitude during the terminal portion of the

attack. MASK requires that the user enter a value in terms of feet above

ground level (AGL) and one in terms of feet above MSL. There is no re-

quirement for any dependence between the two values, thus allowing for

simultaneous processing of coverage envelopes for widely separated strike

elements. A special value is required by MASK if the user does not want

one or the other of the coverage displays to be output.

6. Topographic Display Selection

The user must choose whether or not to display a topographic map

of the area covered by MASK DATA. It is necessary to have a copy of the

topographic display in order to interpret the masking envelope displays.

However, the topographic display will not change unless MASK DATA is

changed, so one initial copy will suffice for any number of envelope

displays as long as the same MASK DATA file is used.

47

":~~~~~~~~~~~~~~~~.-:......... .. :.... .. :,.:..- .-... :....,.....,....*.., . *.-.- ...-....-..-... , ,-. -.. '*...,.-...-

Page 51: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

7. Input Errors

If, at any time during the input phase, an entry is made in error

it cannot be changed. The only corrective action is to press the ENTER

key twice which causes the program to abort. All previous inputs are

automatically erased and the program must be run again from the beginning.

Since the inputs for MASK are all integers, it is vital that the

user enter them in the correct format using right justification. Each

prompt message specifies the exact format of the required response, in-

cluding sign if negative values are appropriate. The only exception is a

value of zero, in which case the format is irrelevant. Failure to comply

with the specified input format will produce results ranging from in-

accuracy to program abort.

C. MATHEMATIC MODEL

1. General

This section discusses the mathematic model which manipulates the

input data and creates the output displays. The model is composed of the

main program, MASK, five subroutines and three short functions. All pro-

gram elements are written in FORTRAN IV and use the IBM 3033 FORTHX com-

piler. Calculations are primarily done in single precision with the

exception of some of the angle computations which use double precision.

In addition to the MASK program elements, there is an executive program

called FLY EXEC which defines certain files and compiles, loads and runs

either MASK, TRANS or COMBIN. Other functions related to acquiring

temporary disk space and moving files from MVS to disk are performed by

a profile executive program during the log-on procedure. In the sections

which follow, each of the program elements is discussed, emphasizing the

48

-4.,

., .. ,...-.. .. . ., . ... .. . ... . .. . ... . . , ..

Page 52: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

the concepts used to solve the masking calculation problem. Detailed

discussion of the program code is only used when required to explain the

method used by a particular routine.

The main program is presented first from start to finish, followed

by each subroutine in order and then the functions. Flow charts are

interspersed in the text to provide a graphic display of the program

structure. It will be helpful for the reader to briefly review the flow-

charts prior to reading the explanations in the text. The flowchart for

the main program, MASK, is shown in Figure 3.5.

2. MASK

The first portion of MASK is devoted to reading the input data

discussed in the previous section. At the end of this phase MASK knows

the position and elevation of each element in MASK DATA, the southwest

corner of MASK DATA, the transformation interval, the latitude, longitude,

elevation, mast height and PRF of each site, the number of total sites,

strike altitudes in AGL and/or MSL terms, dN/dh, ducting height andtopographic display selection.

The next operation is initialization of variables. These include

actual earth radius, resolution of the output displays, the value of pi,

the relation between meters and feet and the dimensions of the output dis-

plays. At this time the AGL and MSL output displays are intialized to the

masked condition.

If the user has requested a topographic display, the LOOK sub-

routine is called and generates the display which is stored in the output

file. This operation is essentially "off line" and does not require any

core storage in MASK.

49

2. "

Page 53: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

-p.I

Y W OWL

4"dtn" trunt*.1 WmW9

In A,

N.f/

e"I MS

~~01

S.

Figure 3.5a lowChrtfo MS

* 50

Page 54: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

24 A

Cy

ro b

sp4ay

614t b

SDa

.4,

drwara4te

.4

Figure 3.5b Flow Chart for MASK

%4 51

Page 55: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

calculat

r -1 * 1 0 . * .. ~ - . * * .

rsso-v4

nIMA

calulte*I

Page 56: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

The next operation is to initiate the loop which calls up each

radar site in sequence. The description which follows applies to all

sites as they are processed.

The first step is to compute the radar maximum unambiguous range

which is stored for later comparison with the slant range from the site

to each CP. Next, the LOCATE subroutine is called and returns the posi-

tion (I,J) of the site and the antenna mast height if the default value

is used. MASK then takes the integer value (II,JJ) of the site and sub-

tracts (IIJJ) from (I,J) to obtain DI and DJ. These two variables

describe the site offset from (II,JJ) to the south and east, respectively.

If site elevation has not been explicitly input, MASK then performs the

previously described interpolation of site elevation. Mast height is

* then added to the elevation to obtain the antenna height above MSL.

The calculations performed so far have all been in terms of matrix

position or elevation. In order to measure horizontal distances along the

ground a relationship must be established between the matrix dimensions

and real world. As previously mentioned, the distance between elevation

data points decreases as latitude increases according to the cosine of

the latitude of the positions in ,ise. In this case the latitude value

used is that of the radar site. The number of meters between points in

latitude (MPPLAT) is computed based on the number of meters per arcsecond

of latitude (approximately 30.87) and the number of arcseconds of inter-

val used between points. For example, if an interval of three were used

MPPLAT would be approximately 92.6. The number of meters per point in

longitude (MPPLON) is obtaint by multiplying MPPLAT by the cosine of the

radar site latitude. MPPLAT and MPPLON define the north-south and

53

Page 57: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

-7J. '. -. .. . .- : .. ...- .- .L : , - . > ,. L - . ... .. . .. .... . .

east-west dimensions, respectively, of an imaginary rectangle formed by

any four adjacent elements of MASK DATA. Another way to visualize this

relationship is to think of MPPLAT as the ground distance between any two

matrix elements (M,N) and (M+I,N) and MPPLON as the distance between (M,N)

and (M,N+l). All horizontal distance measurements in MASK are in terms of

these two basic values.

The next event is the initiation of the nested loops which scan

MASK DATA from west to east and north to south. The outer loop is the

north to south one and uses the index variable, M, while the inner loop

uses N as an index variable and scans from west to east. These two loops

scan the entire MASK DATA matrix, but only a fraction of the elements

(M,N) are actually processed as CPs. The reason is that although MASK

DATA is a 400 by 400 matrix, the output matrices are only 80 characters

square and will therefore only display one element in five horizontally

and one in five vertically. There is no sense in processing elements

2.. which will not be displayed, so only one in twenty-five elements (M,N) is

chosen as a CP. The twenty-five to one ratio is solely a function of the

output display size relative to the size of MASK DATA; use of larger out-

put displays would increase the number of CPs processed. It should be

emphasized that although only a fraction of the MASK DATA elements are

--.. used as CPs, none of the matrix elements are excluded from the terrain

4."-"- masking calculations since the computations performed at each CP use

every MASK DATA element between the CP and the site.

The first event within the (M,N) loops is to establish the five

to one ratio of M and N to the display matrix indices, DM and DN. In

contrast to the elements (M,N), every element (DM,DN) will be used as a

CP and will be displayed during output.

A, 54

.4;

.5.4. J . .', .. . -< , "-.,.-.. , ... . .-. -. . .. ..

n l lli lN ~ i "a - - " " t ... . . ' ' '. ', '.. 't , '-'- ."-. ,

Page 58: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

At this point the display matrices are accessed and a grid network

I is superimposed so that the matrices have horizontal and vertical lines

printed on all four borders and at the points corresponding to DM or DN

equal to 20, 40, and 60. This grid is identical on all output matrices

and is used as an aid in correlating the information contained in the

various displays.

The first displayable element (MrN) is now dereferenced and its

value becomes the height above MSL of the first CP. The value of MAXV is

initialized at its minimum value of -pi/2 to begin the loop. The maximum

unambiguous range (MUR) is compared with the slant range between the site

and the CP. If the slant range is greater than the MUR the CP is con-

sidered masked. If not, the horizontal slope (SH) is computed according

- to equation 3.3.

SH = (M-I)/(J-N) (eqn. 3.3)

If J is exactly equal to N (both have the same longitude) SH is set to

an arbitrarily large positive value.

The next section of MASK is devoted to sampling all intermediate

points (X,Y) between (I,J) and (M,N) as described in Chapter II. The

sampling value used depends on the value of SH. Logically speaking,

MASK can be divided into four quadrants defined by two perpendicular

lines intersecting at (I,J) with slopes of one and negative one. All

those CPs which fall into the upper and lower quadrants have an SH whose

absolute value is greater than one. The CPs in the left and right

quadrants have slopes whose absolute value is less than or equal to one.

If the MASK DATA matrix is envisioned as a network of horizontal and

55kelp

• V , , . -".. . -- '."."."." " .. .-. ' ".. ..-- . . . .

Page 59: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

vertical lines whose intersections define the individual element loca-

tions, the horizontal lines can be thought of as lines of equal latitude

and the veritcal ones as lines of equal longitude. If a CP is in an

upper or lower quadrant, a line connecting it to the site will intersect

more latitude lines than longitude lines. The opposite holds if the CP

is in a left or right quadrant. All sampling for the CPs in the upper

and lower quadrants is done at the points (X,Y) where the line from (I,J)

to (M,N) intersects one of the horizontal lines. Conversely, the (X,Y)

points for CPs in the left and right quadrants are located at the inter-

sections of the vertical lines and the line from (I,J) to (M,N). This

method is illustrated in Figure 3.6.

Two separate subroutines handle the sampling in MASK. The LATSCN

subroutine is used for CPs in the upper or lower quadrants and LONSCN is

used if the CP is in the left or right. Both routines perform the neces-

sary calculations outlined in Chapter II in order to determine a value for

MAXV at each CP and return the value to MASK.

The last subroutine called by MASK is COMPAR. It is given MAXV

and other inputs which it uses to compute the masking altitude, MHM, above

(M,N). The output from COMPAR is a variable for each CP, indicating

whether or not a target is masked at the specified strike altitude above

the CP. As each CP is processed the indicator variables are stored in the

output matrices for later display as discussed in section E.

3. LOOK

The LOOK subroutine provides a topographic display of the contents

of MASK DATA. This display is the key to interpreting the AGL and MSL

displays. An alphabetic code is used to denote the elevation of each

56

r.•

Page 60: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

UPPER 0

QUADRANT

\A

LEFT______QUADRANT

H(Y)

'4w' -

BRACKET EL, MENTS

Is RIGHTQUADRANT

*'ILI (X' ' )

LOWER M',N')

QUADRANT

Figure 3.6 Sampling Technique for Various Quadrants

57

' 4, . 4.* . . . . . . . . - ... , ... . , . , . - . . . . . . , . . .. . , . , . . . , -.. . . .-~ . . . . . .

Page 61: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

element. By comparing adjacent codes, LOOK "blanks out" all codes which

-6 are not part of a boundary between one elevation value and the next

higher value. The result is that only boundary elements are displayed

and these form contour lines of equal elevation. Grid lines identical-°Ul

to those on the AGL and MSL displays are superimposed on the LOOK output

matrix to aid in display correlation. The output is annotated with the

latitude and longitude of the southwest corner of MASK DATA and with a

legend providing the relation between the alphabetic codes and the corres-

ponding elevation bands. The flowchart for LOOK is shown in Figure 3.7.

4. LOCATE

LOCATE determines the location of a given radar site in terms of

a matrix position (I,J) within MASK DATA. It modifies its calculations to

account for latitudes above or below the equator and west or east of 0

degrees longitude. Site position is based on the latitude and longitude

relative to the southwest corner of MASK DATA and is transformed into

matrix position by use of the transformation interval value. In addition,

it assigns a default mast height value of five meters if no specific value

is provided by the user. The flowchart for LOCATE is shown in Figure 3.8.

5. LONSCNLONSCN performs the task of sampling intermediate points (X,Y)

between (M,N) and (I,J) when the CP is in the left or right quadrant rela-

tive to (I,J). At each (X,Y) point LONSCN locates the two elements of

MASK DATA which bracket (X,Y) directly to the north and south. The loca-

tion of these elements is determined by the slope of the line, SH, and the

distance from Y to J. The elevation values of the bracketing elements are

used to interpolate the elevation value of (X,Y). The interpolation is

58

U. >-:..K-..K -. < :c-

Page 62: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

red.~x

Det*mm

Is1aye

NAti

Figure 3.7 Flow Chart for LOOK

' 59

Page 63: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

4-J

.4.w Jfo

*9for

*It-ratta

coV nu

frm as tNot

know

F~gure 38 Flo Cat fo OCT

60

Page 64: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

done using a weighted value for each elevation based on the distance of

(X,Y) from each element. If (X,Y) chances to fall exactly on a MASK DATA

a element the elevation of that element is simply assigned to (X,Y).

LONSCN also performs the spherical to planar transformation dis-

cussed in Chapter II. The first step in this process is to find the

ground distance from (I,J) to (X,Y). This is done by first computing the

length of the hypotenuse of a triangle whose base is equal to MPPLON and

whose height is equal to SH times MPPLAT. This distance corresponds to

the length of a segment of the line from (I,J) to (M,N) as it passes be-

tween two vertical lines separted by one N-unit. This length is then

multiplied by the difference between Y and J to give the desired ground

distance. The ground distance is divided by twice the equivalent earth

radius to give the value for the angle, ALPHA. ALPHA is then used to com-

pute the equivalent heights, hl' and h2', and the increased distance D'.

SV' is computed as discussed in Chapter II and is compared with the cur-

rent value of MAXV. If SV' is larger than MAXV, MAXV takes on the value

of SV' for the next comparison. The next adjacent (X,Y) point is then

investigated using the same process. Once all (X,Y) points along the line

have been investigated the existing value of MAXV is returned to MASK for

use in COMPAR. The flowchart for LONSCN is shown in Figure 3.9.

6. LATSCN

LATSCN performs the same operations as LONSCN for all CPs in the

upper or lower quadrants. The code is, of course, written to handle the

problem with a 90 degree rotation of axes, but the concepts are identical.The flowchart for LATSCN is shown in Figure 3.10.

61

: ' "..........' " .............................................. ......

Page 65: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

-~ Inttte11as LOAX

pe-n IN.

r st

Figur IT9 Flo Ca t fr NCIA62

Page 66: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

FW.

compte SYp

-42

N

I c.4e I to

Fiue39 lwCatfrLNC

631

Page 67: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

tnfttaltze iKixto "-I

.A.

fo tAl ari

Figure ~~ Ing~ FloChat frLTC

shghbave64v)tovlet.d 5v

( fi, I

Page 68: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

£ 'V" .'

F ' sa.

-- d

i .

Figure 3.10b Flow Chart for LATSCN

" 65

""4..,' , , ... .,. . .-. ., .. . - .',' -. .'% . ' .. -.- - ..

Page 69: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

7. COMPAR

COMPAR performs several functions. The first is the calculation

of the masking height in meters above MSL at the CP. The problem is set

up as a triangle having one apex at the radar antenna (A), one at the

center of the equivalent earth (C) and one at an unknown height (B) above

(M,N). The distance from (I,J) to (M,N) is the arclength separating AC

and BC at the equivalent earth radius from C. The angle (BETA) subtended

by this arclength is obtained by dividing the arclength by the radius.

The angle between AB and BC is pi minus the sum of MAXV and BETA and is

the angle opposite to AC. The length of the side AC is known to be the

equivalent radius plus antenna height above MSL. By using the above in-

formation and the Law of Sines, COMPAR obtains the length of the side BC.

The value of the masking height above MSL (MHM) is obtained by subtract-

ing the equivalent earth radius from the length of BC. A corresponding

value for the masking height above ground level (MHA) is obtained by sub-

tracting the elevation value at (M,N) from MHM.

The determination of the state of the indicator variable at (M,N)

is made by comparing MHM to the input MSL strike altitude and MHA to the

AGL altitude. If MHM is greater than the MSL strike altitude, the indi-

cator variable takes on a value equivalent to a masked condition. If MHM

is less than the MSL altitude, the indicator variable shows that the air-

craft is unmasked and within the radar maximum unambiguous range at the

specified altitude. The MHA comparison performs the same function in re-

lation to the AGL strike altitude. The MHM comparison may also result in

a third state for the indicator variable. This occurs if the specified

input value of the MSL strike altitude is less than or equal to the terrain

66

Page 70: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

elevation at the CP, regardless of the masking calculation. This state is

displayed to alert the user to the fact that the assigned MSL altitude is

infeasible at that particular point. The indicator variables generated by

the calculations for the point (M,N) are stored in the AGL and MSL dis-

plays at the location (DM,DN), which is identical in both displays.

As the MASK DATA matrix is sequentially investigated, the indicator

variables in the AGL and MSL matrices eventually form sets of masked points,

unmasked points and, in the MSL matrix, points where terrain elevation ex-

ceeds strike altitude. A procedure is employed, similar to that used in

LOOK, which blanks out all masked and unmasked indicator variables except

those which define the boundary between the two sets. The result is an

envelope extending out from the radar site within which an aircraft at the

specified altitude is in the direct line of sight and inside maximum un-

ambiguous range. COMPAR also generates up to nine numbered site locations

for display in the AGL and MSL outputs. If more than one site is placed

at the same display element only the number of the last site input will be

displayed on output. If envelopes from multiple sites overlap, the indi-

vidual boundaries within the overlap area are deleted and the envelopes

are merged into a single continuous area of coverage. This results in a

much more easily interpreted output display. If individual envelopes are

desired, the user must run the sites separately. The flowchart for COMPAR

is shown in Figure 3.11.

D. FUNCTIONS

MASK uses three short functions. The IASEC function converts degrees,

minutes and seconds of arc into units of seconds only. The RAD function

667

'.4

- * '1 -

Page 71: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

s" 77-

primIf%

Figure sitea Flo Chat fr CMP

a.!

mm fe thfds rause xt68w efu etw au

t~ I >n

Page 72: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

AA

.4On

to.'o"

.4f:

Urg Mke

Fiur 3.llbum Flo Ar for AMOMPARM

~j. 69

Page 73: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

converts degree angular measurements into equivalent radian values. IRND

converts real numbers to integers by performing a round-off (instead of

the normal truncation used by the library function).

E. OUTPUT

1. Topographic Display

The topographic display is selected by the user during the input

phase. The purpose of the display is to provide a reference to aid in

relating the AGL and MSL masking displays to actual geographic features

such as mountain ranges, river valleys and coastlines. The topographic

display has much the same appearance as a typical topographic chart. Con-

tour lines are spaced closely in areas of steep terrain and are more

widely spaced in areas of moderate terrain variation. Coastlines are

easily recognized due to the use of the special symbol (.) for sea level

elevation. The grid system which overlays the elevation code provides

additional cues for locating geographic features and relating them to the

same features on standard aeronautical charts. In effect, the topographic

display acts as the interface between the AGL and MSL masking displays,

which contain almost no geographic references, and the detailed charts

used in planning strike routes. Figure 3.12 shows a typical topographic

display while Figure 3.13 shows the same geographic area on an aeronauti-

cal chart.

2. AGL Display

The AGL display shows numbered site loca uils and the masking

envelope for the specified AGL strike altitude. The area depicted in

the display is identical to the area covered by the topographic display.

.70"--' 70

o 'W. ' *.', . . . . . . . . . ..- *' -,, ,". • " . . .

Page 74: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

*.* ............. K 0 LMNI'.NLLL L j Oif MM Pu iIRT:K LL LLLLL L141 N w uPP3 'sK

*......... KKK 14MM NOOuPPO 1SA~*4 **0.. .. ,..K~oKLMIUNUO VPN PPWj.'4OU~JJP

...... LM P Pu NU.4 US..KLNUPR42 PU 'JNO3i

S....4(I LLL MOPJ 4 P 0 eJuik0PJ.. % L LL LL. LLNUP'..FjUJO NNVwki4A

'*.........KK L L L L L OPIIP OUL NUUI' w, r sKKL MLL LI.I L L MOP P PON OPWRW~.RRk RT~~: ..... . LL LLL LI L MNO0PPPUJ4M N#.,?4-tSrS S

KI LL LL I IUUINM M4 Nvj K.$rST.. .. KL L MMNMMM M N UWAS rs

so o.s*...KK L L .MNN.JOON M441 14 Uk STTRQj K..KK L L MU. LMMNMM 0'iPPOJN' MNN Ui OSSSPLIJ

............. **......K Ko....KK I LLMM UON UP.J PUC, ,O0PP.Njj r'3 PWS..................................... K V....... KK L MNr '4 0 ,'JQPO, r MNPPU OPQP

*.*.*.***..*. .LK.4.K......LLINN N U i-PUiN M OUPU OwiRSKA~I.LF........... I LL~' Ou NhM i4VPQIP M 14N NOP JIJIMb ST...KKLK.o ...... I ..!..V............. KKL M N 0 00 4M--i'4 4,PO M4 M4 04~i 0.4 RSP S

:*LLLKK'4CNK.... L M..L.".....41 N Gi PPCj#3'4 3PWQi PC1 M A'POP3QQRt R* .N .. 4..COK IN ..... I NiO N 3PQJ 3 NOIPPUM M N.DO LIP P )1 R

L114 M...LCPOO(.....N..... . 1( 00414N N0Q4JNMMf M4ICUR M NO ?4QRI3RNO0OLLL...4NCPOCN:*-IL.o.....AON4........-.&4IOOCN NP N'INNOO NM COON~ Ui JAS SRLPIM LLK..LF Mt.N,%LX(........ N NN MON N3PQ?4 N3PQ NO' RRSTi.KL LNK..CMM;'L.................. .... 400 CPPNM NN OOPR(UP-4 Cs)QkPLI 4uP Q RR

- * .*.KM N .4o.KLL .. . K.. ...... LI4OPPO M .1 NUP U.4MOPRS.4PN N3PQ~atRRKoK.M41 MI..LI ... K ... a.ZONN M4 .4N00PPC4 MC RSA PC NOPPPP

* *..KLULNL.... K.. ... I(MMJ-4N MNNNM N4 OPPRQP ONLKKK.K ........ K NIK............K LA L I OP RSk RPog OPPQ.KLLKKNL..*....IMW4L LN N.K..........K L L L I M CP~ikRSRKRPCI 43PPKKK..........: M NI :;NOL..S. IA....... *K....K L LLL L. MI MNh)PWFPQQ~j~i 3.206.9K.KK 1..P4. NK'KL..o4X I4..so: KK ILL LNMMI4N 14140 00J'4N

* K.....K KKlI. I::: KIKK.K.....l. LLLeLIL. Ri4NMLLLLK.....KLKKL:I LLLL.LL.

L..,I MKooK. ......... LI.LK...I L L t I LLLLLLLL N

L..I L L..V.o.. .**K...L4M,4M.(K. I .K ILNNMNMMMVINN;2POMNPKKK.W.K LIKo....... MKV...NN NK K.. I..K IL ff4JPPPPPPP;)RQQ 0

*.......K.KKKL..... .. LLM14 LI-iL L .. R400 kiSSRM P0e........KKK..KK .... ..... KLMt LKK...L LI LILL NUPRA R -k QQP

t4 ............ .. o....KL......jKL Li LNMMIL Mu PiQR R Rk Q.... .. ....i 4L.#(~L L MM M4L L. MNOP RRRSR RR

.................................... ...... K LLMLK..*..L K IN ML LM H4 0 PQR.1AJ RRJ. Q... K L N.4.....LIK MNONNL LM OP u..0PPWPPIPP

::::::A LLLL.....K.I.K 114000MM 4.M NOPPP...... Ko. sK..:. o ..KKK MNQG00 NM N NCXOO

S....4 . ....IKLLN.L.KK L. M NOON MN NN N 0

:::::::K L LM. KKKKKL.1 ........ V L. A ONM NGOPJO3 PILL L INN IMIK K L M NO N N NOPQP PQPL KK ... KK. I ..........K M NNN14M MN 0 NI4O3POO'4NN

KILL K..K............ ......... K L j M MNN MI..........V.4U.....K LL Nf M *MMM'INN1 N

#---- --- LL-LL------N4L -KK---L -- M-LL---M--4.I1--NO*...........KL K* ........ ..... I. LV.KKKKK IL I L. L L L IL NOP

S....KK....4....... ...LM 4 LA:... LLLLL L L LI. L W400*.......... .. KLLIK.LLI .. (.s( MI ::LK...!K LL L L M.

.LK' LL L......L3IN.K........KLLI. L L. 1 1141

...K LLK... ..IM..... .KL-4M LLLI LLL A4% .. K KKK LLK...AINI..........44. MNN LI L.MV MN

.... ...... 4I. II(.....I N 14M45 L 14 43MN 140.:.:.:::.:.:::LK....KI LK.......L 14 MI L NM MN

* *..........KK AN....... L....N LL4....VLI N 111 41 14 14....L.....iiNLLLLL.......KI.. M 1.I(..I 4 1141L I. M 14

LLMMLL...L-4 La::~ .... IK.LLI...K...L LNLN IN SM14:N11..KI'4k LK. IK*....KL*L K.LK.....4.K.....LLI 11.1 41414N

NIMLI: %4V.IIL444. K4.K...~44..K Mt........ 11-4 114414 NM

* .I MNK...K . I!K.Kf.*....4M L.*KL LK...........*KILLLIKKK L 144 4 NKIMWN!N;-*II.. KLL L.K.K......I Lik....L KJ I...... ....K.. ...K L. NM M

4. W4OOPC'%I'K..I ML ILg.K.KK.....4LLI..KMI. LLI.'......... .... K L M444 N4OPJ3PGNMMK. LM4LKL(LL. ..K......... K KKLIL LLLLLLLK .I..I.4K 1 M

Figure 3.12 Topographic Display Example

J.

71

Page 75: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

477-

Il-me-n).

r SORS"

.14

% I

noim :2 IEffO?3A.. ola

Fie 31 eoatclCatCrrsodn oTp ipa

Rd a

- ~ ~ ~ ~ ~ gy 40*- ~ ~ *~~ 1 . <'-.**

Page 76: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

There is, in fact, a one to one relationship between each position on

the topographic display and the corresponding position on both the AGL

and MSL displays. This allows the user to physically overlay one dis-

play on top of another during the correlation process. The recommended

procedure is to highlight the masking envelope with a dark pen, place

the topographic display on top of the AGL display and simply trace the

envelope onto the topographic display. If desired, transparencies may

be made of the AGL display and then used as overlays on top of the

topographic display.

In addition to the graphic portion of the AGL display there is

a separate printed page containing amplifying information. The infor-

mation includes the latitude and longitude of the southwest corner of

the display, the grid spacing in minutes, the physical dimensions repre-

sented by each display symbol, dN/dh, ducting height, the input para-meters of each radar site and a legend describing the meaning of the

display symbols.

One common effect shown in the AGL displays warrants some explan-

ation. Instead of a single envelope being displayed, it is not unusual

for the AGL display to contain several disjoint masking enveolopes. The

explanation for this is that the aircraft altitude is varying with ground

elevation in order to maintain a constant AGL height. As a result, the

specified AGL altitude will occasionally rise above the masking height

and then fall below it closer to the site. This would occur, for example,

if the aircraft had to climb over a ridge at some distance from the site.

Just prior to cresting the ridge the aircraft would enter the unmasked

envelope and then as the aircraft descended into the valley below it

73

.icy

Page 77: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

would become masked again until it came sufficiently close to the site'.4

to be seen continuously. In this manner, several disjoint areas of

clear line-of-sight are normally generated in mountainous areas, while

fewer are generated in less variable terrain. This situation does not

occur at all over water, nor does this effect appear in the MSL dis-

plays, since the aircraft are maintaining a constant MSL altitude.

3. MSL Display

The MSL display contains the same information as the AGL display

except that the indicator variables are generated by comparing the mask-

ing height with the specified MSL strike altitude at each CP. The

symbology, grid markings and explanatory pages are identical to those

used in the AGL display with one addition. The symbol "0" is used to

denote areas in which the terrain exceeds the specified MSL altitude.

Flight in such regions is infeasible for obvious reasons.

74

Page 78: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

Ni

IV. MODEL VERIFICATION

A. GENERAL

This chapter will briefly describe methods of verifying the accuracy

of the output from MASK.

The most realistic and most costly method of verifying the results of

MASK's calculations is flight testing using actual radars and aircraft.

There are, however, other methods which may be used to ascertain whether

or not MASK is performing properly. Two such tests are presented below.

Prior to describing the tests, however, some explanation should be given

regarding the data base used in the tests.

B. TEST DATA BASE

In order to have a simple data base of known characteristics a test

data base was developed for MASK. The data base is a 400 by 400 element

matrix containing three pyramids which are placed on a sea level plain.

Figure 4.1 is a topographic display showing the arrangement of the pyramids.

The pyramids are of varying heights with the one in the southeast area of

the plain being the shortest. The northwestern pyramid is twice the height

of the short one and the northeastern one is four times the height of the

short one. The two to one ratio of heights between successively taller

pyramids facilitates certain comparisons which are used in testing.

Some characteristics of the test data base are designed to be adjust-

able by changing the appropriate parameters in the program, TERR, which

creates the data base. The transformation interval may be varied from 3

to 45 arcseconds, effectively changing the area coverage of the data base

75

Page 79: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

'aw

* . . a .. . .. .. .... .* * **. . .. .............. *. *.. . . ... a..a::: :-::., ::.. * . .:* ::...... *:::::*:..:*:.* ...*aae~a*......... .. .a.. .a a ...* * **..a....... .............. a................. ............ .... ......................... .......

LL*...a.... L.... ..aLLa t: K. **AMa,4AM*aALLIa. A ...... ao...

........... .......... .. ...... ... " :'aa.." .""..""".a .. "."" ... a....a".." ."..... *.. ...iii. .a...... .a .O....a..... a....iiii~i!: *..........*aaS-'-;---a.a*.*....**t. aa..a............ ... a.....

P ............... a....aa.. :*:::::::::.::..::: " ................... *"

... N N..P........... PA.............

KEN N...LLUUU K. QN K LUNIP9I.IMP'iIIL *.a .. a .. a

................... :....K .N N .LK L4N .P . . P .IL......................

.. a............ KU. M N 0NN ML K.V L4V N & 00 P N IL ........

*0000 .Ioooooe... KLM I N 00 N LK LINO PPoP 0 Nm ooo. oo . .o

*aa***~*.**....ALM - 300 N M U.K L4 N 0 P p P ONi 14L ........

e........o....e.. eKLN 04 NeN MILK L.4 N0 P iQ0P o.i N.............. ......Ko.................. .L M14 0 0 N L K LM N 0 00 N LK *a...a.....

a'~1 La~.a..... 'U. MI 0 ON LK KLM N0O.OP N LK . . ............

ooeoo oe eoe oooeK LL fMf4MNM4 LL KL AM NNdNN F,. LKI. • e............ a..... . MN 0.. N K I K L ,P I 4 , P .......* eee..o.... o.. ..A P 0 00 N LK, LfKNO PL P 0 N L.L,,KKK. .... ......o..o.ooooeoooe.oo..e.. %.LI F4 20 N N' LK( LIN 0 P P O I.a. K.

>.... .............. . 94, FINo N 94LK LIN0 PP 0 1 1K .. ... .... .... ..... ,

aaa•a.. K IN IU." K K NK L 03 N ILK .L.......... .....

ooo~oooeo~oooo~oeK L(I M4 NN M LM L 0 PP 0; I

"a.a................ K II N U K , KL 1030 N ILK .o... ......................* :.a.............. K LU 114,11 LU K KU 11 Fa'4NNN I, U. .............a............ , .K ULL..LLL,-L K. K, ULLII4. V4114U.U.l/L . .a......ooaa.*aaa..aa.ba.. .KIKKKK KKKIKKKo.o *(KKJKL~.U.....KKK.I a...a.oo.....oe....

j a..... ~ ...... ......... .... . 1::::..:1.:.:'"." "a. .KKK 'KKKI ....*.....a. .. a .. a .... "..*.* * ":::"'::. '1... .KKK...**... *.....a*.........*. ... .... .......... LU U. K.o.aeo ...., ... ......... .. *.a............a.o K . 1111 . K

****...****... *a~t...9.*a** a.a.....a.....K U. " tI L.o..... ... o..... ....... K L M I L

************** .......... a *a* a a K U. M4 N 4 U.

****a*****a.** *aa~a~a.a.... a...a.........K L. MH M LK*.a1....... ...... --....-.-....... ..... ..... L....... K U L

*.........a.o.. .. **....a*. , oa.....a.a...... K. L MM 1N U. K*o**ao*o*aa**a...ao eeooa.o..a.oeoo.ooo o..o*......o......ooo..K, . 94941 U. K.

.. oa.o..o..o...oo... .. a**............o* *eaoa.o.o.eeeo e K L LLLL. K.............a *......a~a~a. .a....a..... *KK KKK.*

•. . .. ..... ................ .: ... :........: ............... a.::. . ...... .....-- I a e -- ra N - ---------- p

.... ..... .......... ..... ...... :........... .. ............ .... ....... a......

.................... 1::.1 .... ... ::::1:1:: .1::: .........................

:::::::::::::.... ...... a.........................::::::::.... ".......... .'::..... ... .... ..... .. .. ......... .iiii

Figure 4.1 Test Data Base Configuration

00A 76

oo

.......... ::::::::::a.~~ii~ii?:i!iiiii..goa.o eo e e o ooo e

ii!'!'.'i!!~i!!i!! ~iii::::::: ::::::::::::::::

Page 80: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

II

S.i

and increasing distances between elevation data points. The latitude and

longitude may be changed to represent changing ratios of MPPLON and MPPLAT

in different latitudes. The heights of the three pyramids may be varied

from zero to an arbitrarily large value as long as the ratio of heights

remains as previously described. This last change is accomplished by

changing the value of a height multiplier which is applied to all elements

in the matrix. As originally designed, the pyramids had heights of 25, 50

and 100 meters. By using a multiplier value of ten the heights were in-

creased to 250, 500 and 1000 meters while the sea level plane, of course,

remained constant. In this manner it is possible to alter the data base

to represent a level plain or ocean surface, an area of moderate terrain

variation or one in which there are radical elevation changes. The obvi-

ous advantage of using this type of data base for verification is that it

is a test pattern which may be easily modified by the user to suit a partic-

ular scenario.

The FLY EXEC is used to define the necessary files and execute TERR. It

should be noted that FLY defines output files on a temporary "D" disk, so

the user should acquire temporary storage prior to executing TERR. Once the

D disk has been defined, the user need only type "FLY TERR" and press the ENTER

key to execute the program. The resulting output file is a MASK DATA file

identical in format to one produced by TRANS or COMBIN.

C. RADAR HORIZON TEST

The radar horizon test checks the ability of MASK to accurately predict

the radar horizon on a smooth earth surface. This test was chosen because

there is an established method, independent of any calculations used in

77

Page 81: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

~.- L _' ._% _w_: '. .. ~ -.-- -. .- o.- .. * o 4-.-.- . .. . -- -.- . -. L.. . . - . . - . , -' - .

MASK, of determining the radar horizon for a smooth earth. Use of the

smooth earth removes terrain features from the process, but does not

diminish the validity of the test, since the curvature of the earth's

surface serves as a replacement for terrain features. In fact, the angu-

lar and height measurements required to predict the radar horizon on a

smooth earth involve the discrimination of values which are very close to

one another and pose an added challenge to the model.

The independent method of predicting the radar horizon, HR, uses equa-

tion 4.1,

HR = SQRT (2 x KA x h), (eqn. 4.1)

where KA is the equivalent earth radius and h is the height of the antenna.For the test, KA will be assumed to be four-thirds earth radius. The test

data base is set at an interval of 6 arcseconds at latitude 46 and the

height multiplier is set to zero, producing a sea level plain 40 nautical

miles by approximately 27.8 nautical miles.

For the test, MASK uses three sites with varying antenna heights. To

facilitate measurement of the distances to each MASK horizon, the sites

are located in the corners of the data base. The southeast site has a

200 foot antenna, the northeast has a 100 foot antenna and the southwest

has a 50 foot antenna. The gradient is set to -039 and zero ducting

height to simulate the four-thirds earth radius used in equation 4.1.

Since the target is a point on the ground, the strike altitude used by

MASK is zero feet AGL and the MSL output is blanked.

If MASK performs correctly, the results should conform to those obtained

by using equation 4.1. For antenna heights of 200, 100 and 50 feet and KA

78

4..

Page 82: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

equal to four-thirds earth radius the resulting radar horizons are,

respectively, 17.4, 12.3 and 8.7 nautical miles from the sites. As an

aid in distance measurement it should be noted that the grid marks on the

MASK output in this case are spaced ten nautical miles apart in latitude

and approximately seven miles apart in longitude, with each display ele-

ment occupying an area approximately .5 by .35 nautical miles. A brief

inspection of Figure 4.2 shows clearly that the output conforms to the

predictions obtained using equation 4.1.

D. TERRAIN MASKING TEST

The second verification procedure makes use of the fact that the tallest

pyramid is exactly twice the height of the next shorter one. In order to

perform this test the data base must be made to behave like a flat earth.

This allows the use of some simple geometric relations to test MASK's cal-

culations. Creation of this situation only requires that a value of -156

be used for the value of dN/dh. This produces a terrain model whose radius

of curvature is about 160 times that of the earth, effectively flattening

the data base.

The test data base has a transformation interval of 9 arcseconds and a

southwest corner location of 46 degrees north and 123 degrees west. This

produces a data base 60 by approximately 42 nautical miles with grid mark-

ings spaced every 15 minutes of arc. The pyramid height multiplier is

equal to ten, giving the northwest pyramid a height of 500 meters (1640

feet) and the northeast a height of 1000 meters (3280 feet).

The test scenario is depicted in Figure 4.3. The site is located to

the north of the two tallest pyramids. The distance from the site to a

point on the plane directly beneath each-peak is defined as B and is the

79

Page 83: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

,-.

0i a ;4104J,

0O

* 0

18 0

800

Page 84: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

-. ,

'4

MSL STRIKE ALTITUDE

EASTERN ./PYRAmrD

2H

%.4

WESTERN/ PYRAMID

/0

B

2B

Figure 4.3 Terrain Masking Test Scenario

48', 81

1 # . . . . . . . . . . 5.5.. . . . .4' ' ' .; ' Y ; . -..,< .. .. ,,..- .- ,.- .-... . - .-. ,-, . . . .. . ,

Page 85: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

same for both pyramids. The height of the shorter pyramid is H, and the

height of the taller one is 2H. The altitude of the target aircraft is

also 2H, so that there is no separation between the target and the taller

peak when the aircraft passes over it. Each pyramid is illuminated by the

site and casts a V-shaped radar shadow at the given MSL altitude of 2H.

In the case of the taller pyramid, the apex of the shadow is located ex-

actly at the peak and the ground distance from site to apex equals B. In

the case of the shorter pyramid, the apex of its shadow meets the MSL alti-

tude at a greater distance south of the peak. By using similar triangles

it can be seen that since the height of the shorter pyramid is H, the dis-

tance required for the shadow to reach a height of 2H is exactly 2B, or

twice the distance encountered in the case of the tallest pyramid. If

MASK performs correctly, this relationship should be duplicated on the

MSL display.

For this test MASK uses a site location of 46 degrees, 55 minutes

north and 122 degrees, 30 minutes west, which equates to midway between

the two northern peaks and 17.5 minutes north of a line connecting the two.

The site elevation is set to zero, dN/dh is -156, ducting height is 99999

and the strike altitude is set at 3280 feet MSL (2H). The AGL display is

not needed. The output from this run is shown in Figure 4.4. The MSLI display is annotated to show the locations of the two northern peaks and

the lines from the radar site to the apex of each shadow. Note that the

apexes do, in fact, lie on the lines extending from *he site through the

peaks of the pyramids. In addition, the apex of the eastern shadow islocated at the position of the eastern peak, as desired. The apex of the

western shadow is located at a distance away from the site equal to twice

82

Page 86: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

0 a oe0wo 6So00*o af a .a S 600 a 0 1100900 000000 00000* .ein. . 0 0

4*.*** *o** o -4 4 4 o 4

4~44. .* .~ .* ... ..

04 44 0 *1, 000.4 00.0....

.0e.. . .. . ..

.............. *KKKKK K KKK KKl.. KAAAA. LLLLI LLKNA . .S.K LL. L LL K. K LLI.- 9MAI4M '441LL A . ..........

... K L. tMtPI LL Z AL M" I:4'N" , M LA .............................. K L .44 M4 L K KLN NN WU~t N MLA.............4

............... A L 14 NNNN .14 L K L-4 N 0 N MLA .............SAL M N :4 P LA L4 NO PPP N MK ..........

............... KLN 30 N FO LK L'4N 0 p ON 4L.............................. KLM2$ 0I OJN MLLA LNo P QQ p UN b.L............................. LN'P N ML K LA4NG P Q 0 ' j.*iML ...........

K.... LA N 0 ON MLK L4NO P Qj ON ...................

....... L N 0 0 N MLA L4.40 P W P CA4L.............SA~L -4 0 00 N MLA LIMO P P 0 N4L..............SA~L N 0 N M LA L'4N 0 P O 14~ IL . ..........

........*oo4 *4 K H N N M LA L4 N 0 P PS ii kIK ...... ..4.,.**.***. K L t4 NNN N L K KLM N 0 G! MiLK... .

............... L I. 4' AN1 I K KLA1 NNG0 0 ,% MLA............4fS LI. MMM4M LL. K KLAM.P N'. NjN LA 440444

A LL&LLa.,L K. K LLLPINN'i :1'44.4L4 &............0.. .KKK KKKKAKKK.. .(.KAALLL L-LLKUI...................

440044444 . . . . 04444 444404 *~**~o L.LL&LLI A.

4**4***4~0 4 ~ 04*404*44 44440 4**~* LL M14414 L. A

444440o4. . .... . . . ............... o- - aeo- eK L* 4 L.

...... *So. o. . ..................... K L. 14 N 4 ML

444*44 4 444 .... o......40.zo ......... 4..... A I. N o A N4 L

4~44~0. .. . .4440440.0 4. 44*4 A I M SS..................................... L NANSM L K.-'C ..... *..*** ........... *.......................A LI m " L

4444444444 a 0 aa4 00.00 00 00 g 04 K4. .A ULLL K:A

*444~~ . .44444 00.. . -04... .- 0-0....

...4404.4.4.4.40000.0..o..*.0 ........ .0... ....

... 404o4 So 444 ... 4 444... . . . . . . . . . .

444444oo~..oo 44044......o~.... ................ ..

4..~~~~ ....4. . 4*~4

4444 . .. 4 444 . . . . . . . . 4 . . . . . . . . .. . . .N

Sao444 4404440444444.6oa

Figure 4.4 Terrain Masking Test Result

83

Page 87: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

the distance from the site to the eastern apex. Clearly, the situation

predicted by the test scenario is duplicated by the MASK output.

Other verification methods are, no doubt, possible. However, these

two tests are sufficient to show that MASK does accurately perform its

- calculations using the test pattern as a data base.

.11'p.

484

'-p.

',.

;'p"

-del

84

* . . . .*..**. - ** 'ZI m l w ,d - ,m, ,,I , . . . ,

Page 88: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

V. EXAMPLE PROGRAM PROCEDURES

A. GENERAL

This chapter presents examples of the procedures required to execute

a MASK program. The sequence runs from accessing the DTED tape, through

the transformation and combining steps and finally to the execution of

MASK. In addition, a section is devoted to interpreting the MASK output.

Following the procedural review, several examples of MASK output are

shown to illustrate the effects of varying MASK input parameters. All

computer programs referred to in this section are contained in Appendix

A. All procedures refer to executing the various programs using the IBM

3033 system at the Naval Postgraduate School. Single quotation marks are

used to denote that the text within the quotes is to be entered as an

input value or used as a name.

B. SCENARIO

This example of MASK supports a hypothetical air strike against the

Deception Pass highway bridge which links Whidbey Island in Puqet Sound

to the mainland. The bridge is located at latitude 0482400 north, longi-

tude 1223900 west. The bridge is defended by a surface-to-air missile

system located at latitude 0482000 north, longitude 1223900 west. The

radar has two PRF's which do not operate simultaneously, but are used

for different ranges to targets. The long range PRF is 1250 pulses per

second. The exact site elevaticA is unknown and the mast height is esti-

mated to be 20 feet. In addition to the SAM radar, there is an early

warning (EW) radar near Bellingham, at latitude 0484800 north, longitude

85

-z. ' ar. - . ,', , * . *-, .. ,,, .-... * . .... ... " .- <-.''. -, . '.-" , " ' ' , '

Page 89: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

1223200 west. It has a 100 foot mast height and a PRF of 400. The IREPS

computer predicts a value of dN/dh equal to -050, indicating no ducting

but slightly greater than normal refraction.

The strike leader has proposed that the attacking aircraft take off

from their base at Tumwater, rendezvous at 7000 feet with chaff, jamming

and anti-radiation strike elements and proceed north to bomb the bridge.

Prior to reaching the immediate target area the bombers are to descend to

200 feet above ground level while the other strike elements maintain 7000

feet MSL, in order to decoy the defenses and launch anti-radiation missiles.

The route of flight must allow the low altitude bombers to get as close to

the bridge as possible while avoiding radar detection. The strike leader

needs to know how soon his bombers must descend, how close they can get to

the bridge without being detected and where the other elements must be

positioned to be most effective.

The planning procedure for MASK is to examine the target area at high

resolution and then expand the area coverage as required to encompass the

early warning radar to the north and the rendezvous point located near

Tumwater at latitude 0470500 north, longitude 1225500 west. This requires%I,.4

the sequential use of a 20 by 20 minute square data base centered on the

SAM site, a 40 by 40 minute data base covering both radar sites, a one

degree square data base with a southwest corner point at 48 north, 123

west and a two by two degree data base running from 47 to 49 north and

122 to 124 west. In practice, all of these data bases would probably not

be required, but this example accounts for most of the operations that a

user is likely to perform.

86

h ,, " ( '£ ;- ..-- .W .- . .6 .;. .*..'-.., , -. " .-. ;"'.) , ", -- -'-"- .-

Page 90: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

C. TAPE DATA TRANSFER

By refering to Figure 3.3, the user finds that the tapes required are

S-798 and S-796, which cover the latitude bands from 47 to 49 degrees

north. The data files required are file numbers 2 and 5 on each tape.

The file containing the data at the target is in S-796, number 5 and is

the first file to be transferred. The other three files will only be

needed for the largest of the data bases.

1. PROFILE Exec

The PROFILE exec performs three operations which are required in

preparation for the transfer of tape data. It defines a file called DSN

S1086 DATA which is used to transfer the tape data into MVS on a temporary

C disk and another file called TAPE DATA Dl which stores the data on the

user's temporary D disk as it is transferred from MVS to the user. Afinal operation is the definition of the temporary D disk which has 20

cylinders of capacity and can hold three full DTED data files. Two finaloperations are required to be performed by the user. The first is to

link to MVS by entering 'LINK MVS IE3 291 RR' and the second is to access

291 as the C disk by entering 'ACC 291 C'. After the tape transfer is

complete the user should release the C disk by entering 'REL 291 (DET'.

2. GETTAPE

The actual tape transfer to MVS is accomplished using the GETTAPE

program. The user must edit the job control language (JCL) in three areas

of the program. The first change is in the fifth line where 'VOL=SER=xxxx'

appears. The 'xxxx' must be changed to the tape volume number desired. In

this case it is changed to S796. The next change is in line six where

'LABEL-(xx,BLP)' appears. The file number is inserted here, so in this4

87

Page 91: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

case '05' is used. The last change depends on whether or not this is the

user's first tape transfer operation of the day. In line eight 'DISP=(xxx,

KEEP)' appears. If this is the first transfer of the day, the user must

enter 'NEW', but for all subsequent transfers for that day 'OLD' must be

entered. If this change is not made for the later transfers, a duplicate

label JCL error will cause the transfer to abort. Once these changes are

made GETTAPE is submitted and the transfer takes place. Progress of the

job in the batch system may be monitored by entering 'INQ GETTAPE' to which

the computer responds with a coded message indicating the current state of

the job. The user is notified of the completion of transfer when two bold

messages appear on the screen indicating that two files have been spooled

to his reader. To read the files, 'RDR' is entered after which the com-

puter asks for a filename and filetype for each file. These names are not

important since the files will be erased shortly, so 'X X' and 'Y Y' may

be used. The files will be transferred to the user's A disk and can be

browsed using the FLIST commands. A successful transfer results in a file

which reads 'IDATA SET UTILITY-GENERATE-PROCESSING ENDED AT EOD'. The

second file is a summary of the transfer operation, the only important

line of which is the sixth line below the GETTAPE JCL code. A successful

transfer is indicated if this line reads 'STEP WAS EXECUTED-COND CODE 0000'.

Once the transfer occurs, the command 'MOVEFILE' is entered to transfer the

data from MVS to the D disk. At this time the C disk may be released

unless further transfers are planned. The DTED file containing the degree

square of data now resides on the D disk and is accessible to the trans-

formation program.

88

V **Vq*~Av \.*\'

Page 92: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

F- 4 -_1

0. DATA TRANSFORMATION

1. TRANS

All transformations are done using the TRANS program which is exe-

cuted by the FLY EXEC. FLY compiles, loads and runs the program in addi-

tion to defining the MASK DATA Dl file into which TRANS loads the transformed

data base.

The first MASK DATA file required is the high resolution data

centered on 0482000 north, 1223900 west. This data base will span 20 minutes

of latitude and longitude, so the appropriate southwest corner is ten minutes

south and west of the center or 0481000 north, 1224900 west. The desired

transformation interval is three arcseconds.

TRANS is executed by entering 'FLY TRANS'. The FLY exec then dis-

plays the compilation messages and FILEDEFs currently in effect. The first

input prompt message asks for the desired transformation interval to be

entered in columns 1-2. A brief explanation is provided to remind the user

of the permissable interval values and the resulting data base dimensions.

The user enters '03'.

The next message requests the latitude and longitude of the parent

DTED file's southwest corner. The first entry specifies the hemisphere of

latitude and the input required is either 'NN' for north of the equator or

'S' for south. The user enters 'NN'. The next prompt requests the lati-

tude value of the corner in degrees, minutes and seconds (DDDMMSS). The

user enters '0480000'. The next two messages ask for the hemisphere and

value of the longitude of the corner. The user enters 'V' and then

'1230000'.

89

S .. . . ..',;- ':' - ,-- / :,.-.-'.-,..-',-.-.-.- '.-. ... . -.- -. - -. " '.,.. - ....- - .,

Page 93: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

The last two entries requested are the latitude and longitude of

the southwest corner of the area to be transformed. In all cases, the

hemisphere specification is the same as that of the parent data base, so

only the values are requested. The user enters '0481000' and then '1224900'.

TRANS executes and produces the desired MASK DATA file which is

stored on the user's D disk. At this time, MASK may be executed. For the

sake of organization, however, the user may desire to perform the transfor-

mations for all of the required data bases prior to running MASK. If another

transformation is to be made prior to executing MASK it is imperative that

the existing MASK DATA Dl file be renamed. Otherwise, it will be overwritten

by successive transformations. In this example the three arcsecond data

base is renamed 'M03 DATA Dl' and the next transformation is begun.

The next MASK DATA file to be created uses a six arcsecond interval

with a southwest corner chosen so that both the SAM and EW radars fall

inside the resulting 40 minute square of data.

As mentioned earlier, some of the transformations in this example

may, in practice, be omitted. For example, the user may opt to forego the

six arcsecond transformation and go to the nine arcsecond one for the

next data base. The terrain characteristics and the tactical situation will

determine which data bases are required for any given strike. It is

16 recommended, however, that the three arcsecond data base be used first for

each planning evolution since it provides the highest resolution and gives

the most accurate value for the site elevation.

The six and nine arcsecond transformations are performed in

exactly the same manner as the first one. In order to ensure that both

radars are included in the six arcsecond data base a southeast corner is

90

Page 94: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

-j

chosen at 0481000 north, 1225200 west. This data base is renamed 'M06

DATA Dl'. The nine arcsecond data base uses 0480000 north, 1230000 westV

as its corner location and is renamed 'M09 DATA Dl'. This last data base

covers the largest area which can be produced by TRANS alone. The remain-

ing two by two degree data base requires the use of COMBIN.

2. COMBIN

a. Overview

The procedure for using COMBIN consists of four separate opera-

tion. The first is the transfer of the desired DTED data from tape to the

D disk. Since one DTED file has already been transferred, three more

remain. Next, the data is transformed at an interval greater than nine.

Following this, the individual files are assigned to specific FILEDEFs

based on their relative geographic positions. Lastly, COMBIN is executed

and produces a MASK DATA Dl file incorporating the data from all of the

component files.

b. Tape Transfer

Tape transfer is accomplished exactly as before, except that

the GETTAPE JCL must be updated to conform to the desired tape volume and

file numbers and the disposition must be amended to 'OLD,KEEP'. In this

example, the user need not change the volume number right away since the

S-796 tape is used again, but the file label number must be changed from

'05' to '02'. To transfer the remaining two files on tape S-798, the

volume identifier must, of course, be changed.

As a practical matter the tape transfer of the second DTED

file should be postponed momentarily. The reason is that the first TAPE

DATA D1 file is still on the D disk and will be overwritten if a subsequent

%N 91

-. ~. A. - -. -- , . g

* .... .. . ... - ---.

Page 95: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

tape file is transferred. The most efficient procedure is to transfer the

first file as previously described, then amend the GETTAPE JCL for the

next file and submit GETTAPE. During the time required for GETTAPE to

transfer the tape file to MVS the user performs the appropriate transforma-

tion of the existing TAPE DATA Dl file and renames the resulting MASK DATA

Dl file. By this time, the prompt message should arrive indicating that

the second file is ready to be moved from MVS to the D disk. If the file

is sent to MVS before the user is ready for it, the file will remain in

MVS until the user has completed the last transformation. In any event,

the new file will not be transferred onto the D disk until the user com-

mands 'MOVEFILE', at which time the new file will overwrite any previous

data on the TAPE DATA Dl file. Following the 'MOVEFILE' command the user

again amends the GETTAPE JCL and renews the cycle which continues until

all required files have been processed.

c. Transformation

The second operation in the combining procedure is the trans-

formation of the TAPE DATA Dl file. This is accomplished using TRANS as

before, except that the transformation interval is increased. For this

example an interval of 18 is used during the combining process. Upon com-

manding 'FLY TRANS' a message will appear asking for the interval. The

user enters '18'. The latitude and longitude of the corners of both the

parent DTED file and the desired area of transformed data are entered,

keeping in mind that when transforming data for use by COMBIN the corner

position of the transformed data base will always be the same as the parent

file. The MASK DATA file produced by TRANS is, in this case, one quarter

the size of a normal MASK DATA file.

92

I .,, w - ' :.: , , : . -.'- , ; .-;;; ; ;.L..... .;. .' '." .--. -'

Page 96: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

d. FILEDEF Assignment

The next operation is FILEDEF assignment. The user must

assign each transformed file to an appropriate FILEDEF based on the geo-

graphic position of the file relative to its neighbors. In the combining

process FILEDEFs are assigned sequentially from west to east starting with

the northern squares and moving southward. In the current two by two de-

gree example, the data from S-796 number 2 is assigned to FILEDEF 11,

S-796 number 5 to FILEDEF 12, S-798 number 2 to FILEDEF 13 and S-798

number 5 to FILEDEF 14. Combinations of more squares follow the same

pattern with the northwestern file assigned the lowest FILEDEF number and

the southeastern one the highest. The FILEDEFs for all permissable data

bases up through a five by five degree square are contained in the FLY

EXEC. FILEDEFs 11-14 are reserved for the two by two square, 15-30 for

the four by four and 31-55 for the five by five. Each component file is

identified according to the pattern 'Kxxyyyzz DATA Dl', where 'xx' is the

southwest corner latitude in degrees, 'yyy' is the longitude and 'zz' is

the interval of transformation used. In this example, FILEDEF 11 reads

'M4812418 DATA Dl', FILEDEF 12 reads 'M4812318 DATA Dl' and so on. There-

fore,.the first 18 arcsecond data file transformed in this example is

renamed 'M4812318 DATA Dl' prior to transferring the next file from MVS.

After this operation the first TAPE DATA Dl file is no longer needed and

may be averwrittert or erased as desired.

e. Combining Files

At this point in the example all four DTED files have been

sequentially transferred from tape, transformed and assigned to appropriate

FILEDEFs. The user now enters 'FLY COMBIN'. The first prompt message is

93

/_ . ., .. . ". .- ... .. .-.. -... ... ,,. ..** . " - . -.. - - . . ,- . . . ... . . . . ... .. . . . .

Page 97: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

a summary of the required transformation and FILEDEF assignments just

described. The next message requests the transformation interval used on

the component files. The user enters '18' in this case. The next four

messages ask for the hemispheres and values of the latitude and longitude

of the southwest corner of the desired combined data base. In this example

the user enters the four responses 'NN', '0470000', 'W' and '1240000'.

COMBIN then combines the previously transformed component files and pro-

duces a MASK DATA file on the D disk. In order to differentiate this data

base from the others the nomenclature 'Cxxyyyzz DATA Dl' is used where 'xx'

and 'yyy' are the latitude and longitude of the data base southwest corner

and 'zz' is the number of degree squares contained in the file. In this

case, the user renames the file 'C4712404 DATA Dl'. There are now four data

bases of varying resolution stored on the D disk ranging from the 20 by 20

minute square to the two by two degree combined data base.

E. EXECUTING MASK

1. Input Data

The user is now prepared to execute MASK. The high resolution M03

DATA Dl file is selected for processing first and is renamed 'MASK DATA Dl'.

The user commands 'FLY MASK' and the input promot messages begin. The first

four messages request the hemispheres and values of the latitude and longi-

tude of the first radar site. The user inputs thp four separate responses

'NN', '0482000', 'W' and '1223900'. The next message asks for the elevation

of the first site in feet MSL. If the elevation is riot known, the user

enters '-9999'. In this example '-9999' is the correct response. The next

message asks for the first site antenna mast height above the ground. If

this value is unknown a response of '-99' sets the height to a value of

94

Page 98: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

.' ' '' - m . - .. .. . . .. ..- . " - - , "o . -. . -. -- - r r-r- . " , .- - . " . . ,. . .

five meters. In this example, '020' is entered. The last radar site

parameter requested is the first site radar PRF. If the user does not

desire a maximum unambiguous range limit imposed, the proper response is

'-999'. In this example the correct entry is '1250' since this PRF pro-

vides the longest range capability. The next message asks whether or not

the user wants to enter additional radar sites. If so, the response is

'1'; otherwise a '0' is entered. The user enters '1', since the EW radar

remains to be input and the radar input parameter sequence is repeated.

-- The correct entries for the second site are 'NN', '0484800', 'W', '1223200',

'-9999', '100' and '0400'. Since a third radar site is not desired, the

user enters '0' in response to the additional site message.

The strike altitudes are input next. The first message in this

phase asks for the AGL strike altitude in columns 1-4. If no AGL display

is desired '-999' is entered. Since the AGL display is needed the user

enters the proposed strike altitude of '0200'. The next message requests

the MSL altitude desired. If no MSL display is desired '-9999' is entered.

The MSL display is needed in this example so '07000' is entered.

The refractive inputs are entered at this point. The prompt

message requests the value of dN/dh in N-units per kilometer including the

sign and lists -156 as the minimum permissable value. A value of -039 is

used for the standard radar refractive gradient and -020 is the value used

to obtain standard day optical refractive effects. Since the IREPS program

predicts a dN/dh of -050 through 7000 feet MSL, '-050' is entered. The

next message asks for the ducting height. This value is used as the upper

altitude bound for applying the input value of dN/dh. At altitudes above

this value, dN/dh automatically reverts to the standard value'of -039. If

IREPS had predicted ducting, the user would input the predicted height, but

95

* . . . ..

Page 99: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

,Rb-A36 771 MASK: A TACTICAL AID FOR PLANNING AIR STRIKES AGAINST 212RADAR DEFENDED LAND TARGETS(U) NAVAL POSTGRADUATESCHOOL MONTEREY CA D B MCKINNEY SEP 83

UNCLSSIFIED F/G 15/3 N

llillllolllolmIImIEEEEEIIEhmhEmhEEEEEEEEEshEmhEEEmhEEmhEEEEEEEEEEEEl,mEElhhEEEElhEEEEEEEEEEEEEEEE

Page 100: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

~ L.

11111 A1"2

lulAO 12.0.5%

1.25 JiI~

MICROCOPY RESOLUTION TEST CHARTNATIONAL BUREAU OF STANDARDS-1963-A

IVA-

Page 101: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

since this is not the case the user enters the upper altitude for which

dN/dh was calculated or '07000'.

The last input required is the selection of the topographic dis-

play. If the user desires the display, a '1' is entered. Otherwise, a

'0' is used. In this case the user enters '1'.

MASK now begins its calculations based on the inputs. For each

two seconds of CPU run time the word 'CRANKING' appears on the screen.

When the calculations for any given site are finished a message will

appear on the screen stating, 'CALCULATIONS COMPLETE FOR x OF y RADAR

SITES', where 'x' is the number of sites processed thus far and 'y' is

the total number requested. When 'x' equals 'y' the calculations for

all sites are complete and the results are stored in the MASK OUT Dl

file. To browse the output, the user enters 'FLIST ** D' and uses

standard FLIST commands. To print the output from FLIST, the command

'PRINT /(CC' is used. After running MASK using the high resolution data

base, MASK DATA Dl is renamed 'M03 DATA Dl' and M06 DATA Dl is renamed

'MASK DATA Dl'. MASK is again executed with the new data base and theoutput is spooled to the printer. This sequence is repeated for each of

the data bases in turn and then the output is analyzed. It is prudent in

most cases not to erase data bases after they have been used by MASK,

since it is likely that some additional runs will be required due to

strike altitude modifications based on the initial output or additional

intelligence on the threat.

2. Output Analysis

a. Topographic Displays

The topographic display consists of an 80 by 80 character

matrix displaying terrain features and a short legend explaining the

elevation code. Figure 5.1 shows the elevation code legend. All

96

*,, ,: --' t. .4.4 K/ : : .. . ". *"-.. * "- ' -; ---.* ". -Y,".* -.*'~' .' --

Page 102: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

CODED TOPOGRAPHIC 4AP OF AREASOUTHWEST CCRNER iS W 1230000 NN 480000

GRID SPAC1NG=15 MINUTES*

LEGENDSYMBOL ELEVATLCN (METERS)

SEA LEVEL

L~ 10M 200N 300aa 500P 700

9001100

S 1300T 1500U 1800v 2100V, 2400X 2700Y 3000z 3000 PLUS

Figure 5.1 Topographic Display Legend

-9,

iqi

97-

~ 1

~ a ' a ~ ' ~ ~ % a* a~ a . a , . * ~ , ',. . - - -

a' * ~ C ~ ~ a . . . : . ~ *~a -

Page 103: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

elevation values are in meters above sea level. The code symbol repre-

sents the upper limit of the elevation. For example, the '.' represents

all areas which are at or below sea level, while the 'K' represents all

areas which are above sea level but less than or equal to 50 meters. The

only exception to this rule is the symbol 'Z' which represents areas

greater than 3000 meters. Areas which are blank fall in the same elevation

bin as the lowest symbol which borders on them. Blank areas correspond to

areas where the terrain variation is very slight such as broad valleys or

plains.

In the runs of MASK four separate topographic displays were

created at various levels of resolution. The first of these was a high

resolution 20 by 20 minute display centered on the SAM radar site. This

display is shown in Figure 5.2. The display has been annotated to show

the radar site in the center of the display and the target bridge due

north of the site. This display shows the relatively flat terrain in the

immediate vicinity of the site. The ground elevation rises gradually to

the south, more steeply to the east and some substantial elevation changes

are indicated by the denser code on the northern side of the bridge. The

shoreline is easily discernable. Each symbol in the display is approxi-

mately one quarter of a nautical mile in height and each grid box is five

nautical miles long and approximately three and a third nautical miles

wide.

The next topographic display created was the 40 by 40 minute

area which included both radar sites and is shown in Figure 5.3. This

display covers four times the area of the previous one and gives a better

idea of the overall nature of the terrain surrounding the target. The

islands to the northwest of the bridge are seen to rise steeply to

98

' V4.. * .' .' \V \ . . .'> i i. .- .

Page 104: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

7- . .e n e ... % 4 -,-

p.********:,K**I A....A.. . N N L .Kz: ..V L:K It ............................... V.AOIL-.".LN A 14 L L K..s4

.*..**......*....K.....LI4 N4 L KL... L... ALM..1... LI 1AN ktd *L....V.L

.4,1 ............ LD LLL4 L V.V..K L K;:::::::::

***. **** ... **** *. . L.. ... .... V.L LNNN INN L LLL* LV. V.VV. V.P

oo:* OOe . .0....( . N AR NI L "KM KZI .......£eeeee........ *......I L I I A L4 .W ... KL LL L .. KK

.. .. .. .. .U AL A LN U .NNI .AL.. " .... Lk .............. ......... L N AIL4.4 L L : t. I .VL L,V...............:*......LN 14 LL L LV.. A..L L

...............NLLNA LL LV...... .SL Ae L L

:::'.LL LV.A..... ..... M LL

*...........V L N N~e LLse.. .K .. L L

*........ L:LLLLLLLK..... .. o. L.L

*.....UaVL L;::tV.&..KL L

K LLMIL NM.o NNINKV......L..of. L 14L o *a Ne .. .......L

........ I.. L....h 4. M .. IN KIS.oo r*............ ..... LAm A e INNNLL . . .....

oeeee..... L...K L L LI.o .A oIN a N ooe o .o..a...00 *..K~..... ...... V.L~ o. o. o. o. ..4 .. N KK o .

::::::::::::::K.. ..... K. . ..L o...... .K*.******* ...V.V.*K.*~o L U. Lo~ooooo

*...*.....*.***..V.V. LL L .. 0.MJKK LK1i**N N LL (V.....**..................K *LLL LLLLLL V4 . ...... .. . o .............

L LL L.. A..PV K............**....**.......K LLLLLL L..LL LL AMR..MAL...... ****

....K .L L L.......... j .****a:::::..0000000000.0 **s.......... L...0L N LhIL

* ....... aLL L.....K L LLL L aVK....... A......Ve..........ICL LLVLLL 4 AL LL 1....... .... nAL

............ "K.L L LOL 4.4.K~ LLIMA..... *.. L N..... LL....SA L L LV... ...... .....A.L ".eN~

LJ L S..... . Ke LV.Keo~~oo... AKMK..... LN I....... L........ ........V U.LLLLLLV.... ...... *...VLLNMhI

---------------------------------------------------------------------------------------

*000000 .-....L L. L-.oooooooooloooo.^KL

Page 105: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

*so*.*.s ..... ... K a. ieAuRA N 1U OP JN4NAM . K L m A NO PP P U.4"w

'gg....... ::..!!4 KKKK.KLLALLLLLLL LIMNNOGON NoP WJWIP U414........**..* ...... K K.... ....A LLM 14 NOON NO P4.wi P ON4.............. 9*..A L K...(. KV a. 14 NNNM N 0 P4~ ..j PNI

I .e..........K ... ( K........ *..K a. MMMIM 40 Pww 61 Pi 0N*......S..f *..& as..... as .. asa. 4414 "NoM( p~gisti,. Pul

a a *.as a............. .LLLMM4M NN A NQWUP 04 Puq

... LLK.K K......... .. as KLM 9 NNCNtMM9mm MM4 NuP.W PON............V.I .. KK......... *.LLL A N 4 3 003 I AN N;JP Qj PU.............. '.K............ KK L"NN3 ONN AM FO Q Kiw P3

KK .LLNM4 N 0 GON A14OMP'J 4 P iWas......PA.. .Ia..K.. *..KAA A *4'N3 PP 3MONH UPP ) OPPON

UU44.........NN L........ f.KN N, N JIPIQPU GM MOO PiJJ P3

~PPON......... .L0V4........ *.NOOON 1 UA..~ - un P .IUJJPPPOjNOP Q-O- ......- 0 --NO I---L-NO---NUPMv.-4 'dN---9

NOPu OONM1 aP .. LK:::: .. NO.4CIK::::.... *.NN ON NN 0i2;PPU 14% WNM ONLMLK.... . L........ ... KNOO NNN ao0 NQPPQPO A4

96 NNLKK ...... I............... *...KOPONN03OON I4 NOQ~w~PON A.NRM ...... I*....***.* ...... MOO OPPPON .403 NO P s..dPO14 14

.~~o:::: LKa.... I K........ ..... .. 4 OP P3 N 14 N 0 p 3.JP U~4 A*...oLLK........ .K....... **::::I:..KMOOaO N N U POPPON NN*..I. ........V. ....... V....... .........M44 NMN .4NOOO003NM NN

a.. ..... AMN N MMWNNNNN A4 A Noos0*@. L.....NNK............... .... ... L 4I a. 14 Ma

*..LMN....a.NINf...4 K............ ... V so. L a. a. N....MM MNN....KKNOONMK.K A.... ... .. *..X... ..K a. 1 a. L 14 4

M..44NNN ....10'K.:::jK KK.;......K.. L LU. a. L '444H" '494-. *....::LMN.. oNAKHM..S A.N.. KK.( K a.L LAMAR4 A4M a.

.. a ** K.......C I .K iKL.. ....K iL ULMNmN %I*so* Ko .: .:KKK!!. ... K.o.*.. ...o IL LL. 4 a.

--0.K--- WKLLLL-L -K--9K*, K-L LLL.LKKK........ oo.oo KAK M aLLK..K K..: I.. K ILLLLN

*41 L.K o .... K a.mK...K..........LK...KLN NN ML.eg Ke... .. &' a

...M.K............AK... LN NMNK. LL KK .... K L494M

IKKLKK....... ....a.N LML LKKL.KJ 0 K KKK a. AKAL v........ a 0 .M N auKo **Al.. a.

V~JIL..........L A94L MI LK...A.L L .a£..K......... .KLM a. KK.....L L. LLLLLL L a.

I .. ... KL a. L L a. a. a..... .: KA.....K 0. a. 4 UL

S.KILL..KK*.K&. a.n Mi....... K..MAIN..Laos... LLM LMX 94 a. LLA

* ............ e...K a. A Moo.... L A. Lm IN Lm:::.A a. M:A. .... Ij.LK.KW. 94 QON'ML L

............... .. K L.La*.........K..K AN 033OWt4 a... KKK Ko.....I ...... K LN0 Wt44

.K~a A...K KKA.K... ..... K a.M00 0 NNL.... K AKKLLa..4MtLK. .*.......KKKKX a. 94 403M

............ *.V L. a a L I AN 9 ALK.......K L . 14.4 N4LL La.a La. 4 NLLK..o......... KI L 14 ft DOM

LL........K L. KKKIIKK.LM 14 LK......... o.....I M N 30DM4 14::::.:...:.:..LK I a. KKK...K'Na.........I a. MA .4 014*.........LLL K....K.o...K .*...s*..... o.o.K a. A N 'IMM449

Ke00... ... I'KK...V a. L 94L ::oeo.*LL .K.K KKK...5. La. Ali4 Am

o..........K a. LLLLLL.........:..IKLM.NKKL KK.K a. 14M........ LYKKKIASKK........... .. LI Na. a. AK A4 L. La.

...........K~~~ La.. ......... af 4a K..KKKK.K LU a.

*....A .......LaLK...LL.L.....A' 4a ...... K LL............aa K~i.LL La. a a:::: :o.... KLL LK.........IK

* .............:::..K.L LL L.aK;*..... 4 L.(... .. L.AULLLa. LK.......KKLI NaK.. ..... l NKA.M LLLLLL U. a.I.....K N Ma4L::::::::::::: K a. 14 1 La.

.............. .A LLAL.....KaMMML....... IKa. AMMAN9 a. KI

Figure 5.3 40 Minute Square Topographic Display

100

Page 106: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

elevations as high as 700 meters (2300 feet) above the sea. The mainland

is essentially flat with a prominent mountainous area in the northeast

corner and a lower set of hills near the southeast corner. These are the

foothills of the Cascade Mountains.

The next topographic display is shown in Figure 5.4. It covers

an area nine times the size of the first and again shows the flat coastal

areas with mountainous terrain to the east. A major river valley separates

the two areas of high terrain and extends eastward from the coast halfway

up the display. Another area of steep terrain has appeared across a

straight from the radar site in the southwest corner of the display.

The final topographic display covers a two by two degree square

area and is shown in Figure 5.5. The mountainous area which first appeared

in the southwest corner of the previous display has emerged as a signifi-

cant mountain range rising steeply from the sea. This is the Olympic

Peninsula. The area of water to the west of the site extending to the

eastern edge of the display is the Strait of Juan de Fuca and is about 15

miles wide. The channel to the south of Whidbey Island is the southern

portion of Puget Sound. This channel passes by Seattle one quarter of the

way up from the bottom of the display and reaches nearly to the hypotheti-

cal rendezvous point in the middle of the bottom of the display. The

southeastern tip of Vancouver Island occupies the northwest corner of the

display.

These four displays will be used in conjunction with the AGL

and MSL masking displays. The masking displays contain no terrain infor-

mation by themselves and are designed to be traced directly onto the

topographic displays for interpretation. An alternate method is to make

101

• ° " " e " * . ° - - -o - . " .. . . . ., .. . - .. .'."., o - -.. . . .. . • . '. .'." .. - - . - ... . . .. . . - . - . . .. ' .. . - .. . .. •

Page 107: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

0*00. . 000 .. Meese 00 AA LANNMLLL L R OOM '4 PRATT:::::::.:..~. ~L LL. LLL LL MR 00 DU 4ATS

000 o *......... KA N5 0 W OPPO tAISSA

K L~k0 PPNPPWNQtJOPL A itPPO NO.4 aLM R PO 'IN03

e*e** o* *qK LLL. a 0 PRPWlI L L LL. A8M QIJ MNS tAk

.......... K.L L L L L DPI P PU NUOP WedS........... KVL ALL LI.L L L Mu P PON OPwAURRk kT................ L LLL LII. LL L AUOPPPOMN N..JPJSTS

............. ..KL LL. LL. L IMNOON to NPO MsS

L ANNA NNA UKOAAL L PANNOONA 04 14~ STTRJ............. .KSV. MN~ A MRANA OOPPOPOON NP 0 QSSSAWd

**~******K* K**** 6000" Q JIMNO oNQPi*..................a.K......KK L ANN '4 4 0 iP NPPO OPUP

............... ::.LK..K K........ILLLMMNNNNNM N 0 POAN MOUj 0-d~lM.. *........... .LilA..K..*.o....L NN# OSO AR NPPWIP A MN MOP J4.? ST

::...K KK ......... L .......... KI N 030'AOU PO AN9 Opi Q A S.I.LNN~K.... ... L.Vu.. .L kL M NOPO' r, ~ R0 A :40P OJQQA Rt

...IJIKNCNK 1 0..NA... .. IO N 3pvla AOPPM MA O P 4 AMAL N... CPPOO. 00 0*0...NON..q...IK ON POA AIDNN NOPR*NL.. NhCP0COMNAM :::::::KOA....K' ON' NP NNNNUD 14H 0004 Ui~

..N NLX NNi.I .. MA........ N..LNPPMON NO? PNRON -OW(ARA

14 KIL ALLK.* 0L4.......... IN ... KAA ANN jPN

Kh N No-"Ll~o.KK K..-.... ... MPP MS O PtMPSP 3QiR

K LLSLL:::::** LN..I.. e..KMMM AN4NNNMOP0M.. L..W Ki 4.1. .KPPIPP oRQO

.14 ...... K KIIL.... I*.LN LL...a.4 LN

L L L L4OA RSQARR P....V ALLL....V. .L Al~N MMM NOPjP 30

***i.KV............. KM..& K .. K ee* KK i.... I..MAM "Noi OO4O2 14... LLL" LAN AlA ..... KK I. IAN O

K V............04.. L..i L LL LLN LL.....L NNLNN OL Q

L....... .. .. KVI4..V LI NA AN PP 6LNAN Nto......... . AN....LM...LA I LQC.V.CP L I L o L L n 0 L O

ILL"~ oo eoL4.L LL...KL L LK... L I I Q b V A P

"5 ............. ... K NI LL...IAL.....C ANN L L A Alt N..... *.........K t N'*.. NAL LAK N

::::::K...... ...... LLK..*KL L...K L "N NI.H L" NS AN~... ... .. .KA 4A .:: ... .L. ...KLp oe L... . NK H N I. L A A'N

......KLILI . . . . . ILL K. .L i: L LK.. L N 1N MNt IN N0::...KK IK.A LL..... L....4LK :...LI.KKN NA A LN NQ N?

... :eo. L. I K... .. K.A.LL . .AKL L . 0 0 00 09.V... L I. NAO N N I. A ON00L.L...L 0 0 ::: I.... * KK..... LK.LLK....K... .L L MNLI LAG 01,A4

*L 000 .so*aL0LL6L*0 a. KKIC.*0*00*0G0*jLN.. K .... LL. .IN LA 4 N NINLK...K .L e.ee... .. L LK..........L LK L AN LL NO

NANLL..S.I.L~ K. .LKK....K LA.I LLU......d . L. LN RNIiPO'94N..L L LL .I1.K........ KI.A I.LL4........ ...S L NL N

POIIMK.L94I.LLL.. . :... .. KKLILLLI.L....LK.. M MM K I. * NA

Figure****L 5. 60 Miut Sqar ToorpA ipa

.5-L&::!M LK. KK K- o K M Ka KL LIL14 LM.5M

.%LLm 'a .*. 9 *.. .* -1/ K aL.*-.... * . . . . . . . . . . . .

MAW * * Ko * . . ...... ....K .~e** ***.KLLK L5. 14 4 N *-aA K:..&K K*SLM

Page 108: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

L a

I rm PO4L...L :A4..:.:::: ........ V. L.Pa PP 0OLL[K. L .K...VL ..... L.....U.A. LOPO OWIfr

P 8 0 N .OA K. K.....Va... . *..... . 54' 5 7P1 N .4A.~N4.....L..........V.V. L '4LMN P PR T ISP90 ON 4.V...htPoL**. K ............ .SVK .. L .L 5MR A' 1 isNOR MRP~ LU.V..N ....e**K.o......... o. ... e .&V... L4L tiiC454 PPU 4MN 3

P LQP 5 L.P4 MK. L-KR *e**e* 0***~ ..L&54. 0. ..AK .. I4.'NL U PP1 JPaa54...IN .V ....... LL...... A.AN5...... .... KL N NN 0 ON AP0 aoff

P P O N K..........L.VN L .#..K . A.N00 h~P' uN JAi1PP'42PC V....S'N. LK 14.dN.N.... ..V4QU A. P JPJK

P 3 M . NN O LA LLL -'PWQ+1 00 8.8t Z.594 54M CiARPO I

*K...... ..NLL IN KLV..4.V.~...WV L U4L Mw000P4Ng

P P 3....5n. 0 1 ........ ....Z.... *......VK.s(Lo KK4. .. V L N U4 N QOM

P 1040 M.L....... LLLK....V.L.V.. LL LL1L I.

PP P tW O PC N LL4NN54 LLA*6 ..... l. .V.LL.... L.. IK R.L. L LN 4it~TC Pg APP PPO MNI4NML4 -oMooV. . . .V.K..4-L .....K NAa 1 54 PI

R5T TU U Q S~IWS OR 0 APN 55N ........ ..A. MO N LI. L 0,t

PP ~ ~ 0.o.0 J 0O UU UTTMTT T U U JSIPNN..V.. 54LA:L.o..N MM 5454. 5Oft ~ ~ ~ *:::::; Kee. URA.TUus u tQa~...oL54 e..N54L 5A.....A. .. N

O APSTUQSUSSU TUMMM uLL ULLL OM~iK. .LK..Ko LW.KV .. L AM WLM NP IO T Aft 4LR jKTTS TUS ft JATQ DIM N. 5A.,L..v.L A ..ILLV .LM 144

P54 TRP OP RANOOI....V..LM oeV . LLL. ..LLA. V... L43Paw f MRKRNCSP P5PPTSSQ U UTS O-PPON..544N4MLNLA .V.V.......A::-.A.

R SS QP RP~ TTI RSA AJ~&QG I4M MNML.V.sooK .. AMA....L oe o 4RR&GP itP PR USe SSUAQ ? N00RI9Q.V.4A. M .KLA: LLLV4 NML

Qj~FONN ~ 0 P T US O 5V.44 5 A LAU..AV. It t..N A. 1'4

NP 00pI0PR A PPN0 N4I45A'%XNK.AA NNN LLMK .M K...m 54L LL

PPtm P 0 "P QQ DN1..54554544.KV..I.NT *LLMM~: A. LVILLL.W.A..W.N 544N 0.i0 P PORNV. LI LLLA.LV..4. LA.KAL AK LKooLL14 MR 4 M 4

54 00~ PM %YU ffQJN5MLL L ... .MA.A....1.QL4 M4.4 4N N O N alN MN 5454541 L 4*. MM..AL L*K.V..19 4.6 144

196 N MNS NTQ NM 14 4 ILA.. .. M. Mo.. ..I~...*.4LoMM4 54 IN 1N N T I IT TUJ~A. I L4.LV.A ....... fK A.V.% 4.54 4 M45 N

M~ NPE f4 4.R r TA. A.I 4 MKLL6.VL : A$L4t4.1 .54 54IN RA L V...4........L M L.MA LK 4.4. .

N N N NiNI N NRSUUjU NI RQ*KL K M...K. .X .K.LL K MN 45545 'L54sRAS P YI 543 4.130KK.K.V. K.L MAK. .. o..L .4 AL N NIN fP MMf 54PUT R954 AD 545944.54:Lf.' 'LV.a 1.. 144M

NPPmmAI 5454T R 99 ML ' LV O LLL4N54NL: L I4 M N N PiI. MR. 54R5 S.L5144 .QL4.54LLMN5 M KCP*OMRJNM MLKKLA LL K~ooA A..L 544444#4445 N N M iPPP

Figufre 5. wDgreSuaeToorphcDipaRW;.5 AP-.,- LK44 3-

0 , QW %Q. SNP. M^1 R IMM - 4.4IL*MM L 4

M Oc o NA.MNM4 .. L.LM 44M1

MP 0 O 0 I P 0 % M K M MLAo L M f L L o o . L

M% 0PN P 000 PP PC9PDON 1 03MjK.LMLMLL"KLoA.1

Page 109: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

;,.FP7r j-.'P -A - .4 - ._ K

transparent overlays of the masking displays and place them over the

topographic displays. In the remaining examples the figures shown will

be combinations of the masking envelopes and the appropriate topographic

C.. displays since the envelopes by themselves are not very informative.

b. AGL Displays

aThe AGL display consists of an 80 by 80 element matrix and a

descriptive page. The descriptive page contains information describing the

parameters of the display, radar site parameters and a brief legend of the

display matrix symbols. Figure 5.6 is the descriptive page for the first

run of MASK in this example.

The AGL masking envelope for the first MASK run is shown in

Figure 5.7. The envelope is based on information only from the SAM radar

site. It can be clearly seen that the radar coverage extends primarily to

the northwest of the site, with the areas to the south and east being

masked by rising terrain. The target lies just on the border of the enve-

lope and appears to be approachable from the east. The small unmasked

area to the north of the target is formed by an isolated peak which rises

steeply from the surrounding terrain. This run of MASK will be the most

accurate of any in this example due to the relatively high density of data

points in any given area. It will become apparent later that the inter-

polated value of site elevation varies between the different resolution

data bases. For this reason, the user should note the elevation values

from the high resolution runs and use them as inputs in following runs as

required. In any event, the information from this display indicates that

a strike approaching at 200 feet AGL from the south or east will be

undetected until just prior to reaching the target.

104

........; -.. ,.. ;....-.......,.........C. - .-.- .. ..... .-

Page 110: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

4

'4'RADAR COVERAGIE DISPLAY FOR STRIKE AT 0o PIET ABOVE GROUNG LEVEL

19 DISPLAY PARAMETERSSOUTHWEST CORNER Of OISPLAVgLATITUDEs 481030 MN

LOGITUOE=1225200 wGRID SPACINGwIO 14INUTES

CELL RESOLUTIONILATITUOE 0.5303 NMLONGITUOE- 0.3297 MN

NIFRACTIVE GRADIENT a -50EPRACTIVE CUCT NEIGHT (FTI a 7000

II. RADAR SITE PARAMETERS

SITE 0 LATITUDE N/S LONGITUDE E/M ELEVATIGN dFEET PUF

1 462000 NN 1223900 W 69021 1250

a 464100 MN .1223200 V 237.0 430

UK. LEGEND

leNU IERED RADAR SITE LOCATIONINELOPE WiITHIN M0I4CH AN AIRCRAFT FLYING AT

A% APIkWIOALTDEi WILL Or. UNNASKED,2|U T AR "A A MmAX/4M UNAM16IGUOkJS RANGfIE

Figure 5.6 Typical AGL Descriptive Output Page

105

* I+ , . , . .,, ,,.,.- . , , ,. . ,.; . . .. . . . . .. . ..- ,. .++,. _ .. , . . . .. . .

Page 111: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

LKET~W ttl M4 04MM .. .A .

4t

. K...NK. K K.............5

*. ** ~ ~ ~ L M.*A I U LAA. .. . . K.....

oooo**o*..oo .. *.oo ..o A. ...oo.A.N MN i 949949 LK.,o No...o..oo fooo::

*****e.......'.Pt -ILa.AK.. .... '.. '4 L LKK

*................ *....~AoK. *... .So Iq 4 A. KKV.. ~ oooeooeoo

*****......... *....... .... LL. N V4 LL.A.J SLS.. K%..A

oooooooooooeeooooom LL L~o K 06Kooooooo

oooo , A. L .K. K .KL L

A. L . V..A. A

U.L L.K. .KS. LLoo.K A. .

S...KA.L 00. - 1M L A. KKK........ AL.. l................ ......... . ..* L L

ooo.K e..

, oo.. ... .. .. . .*: "* .... .* ... L L

oo..*.ooo.... ooooo oooeo... . ....... A. LA. I4M . oo .. ... .. A.

................... ............... A. N..IL.. ...... .. A. V...'..L L *:KL -

Ko............... .. .... .. L..K. VK L .. ... . ..... ......... :.......... .. . ::::: . ..... ......

K KKKKKK K A.*. ::A. IK..

• ......... A. K KKK ......................... K K .....

e ooo ooosseo o**o*o*eoo KLoo RoNee o .

.............. A.. ,V........KV. . A.A.A .KK...............& ....... A.....N ............... A. ..A.LA.. A. A. S......... •*..............oo..... . eoKA A. . LA.oG L . K K ...4LA* . N .. ,.

........... A. L

L LLo LL LA . .4.4L - KK.oooo:* I:.'....K L A K. N N

* * ~................... ....K .I K.. ....A ...N

L .............. L .. A A .....

-Z L................ ... A. & % ..... o. ..

, .,ooeo~ KL &L L : K K::::::::::::14LL Keee

::::::::::::::: ooK L L K .......... o o .. oe l ...................... ---- L K.... e .. KFigure 5.720Miue L D s

...... K..... o ......... . ...... KL(4 4I........... .. LLU 1.4"" '. " '..

: OOeOOOKO L LK ::::: oN"o o o•e,( L.

...... . Lu K......o.*.. ... . . ......... ...... Y -4.ooeeeo eKL L K;:. o

.....4 ,* . '.. . ' 4 '.. . .... ', '.. * . . o, ...-.-- *.. ..

...... . . ...... K ,U . K *@***'.**'::':'- ....... A Mgoge Oge o L L LL Joo LI.LL LL o oe gog eooo,*oeoeoo~eKK&. LLLKLLL L I LLI L Ke:::e:o ,oeoL N

L~OO Lo LL LLKoeo: : :o::::L LL LL

LKooL oooo.~~~~~~ L.... K;:::::::: ::::::L N.•x..... ...ooeeoooo .ooK LL. L Leoee ,o o. 1 4

ooooooeoo ooooe o. go ooo * J L .L Koeoo .oooo... ALeoeoo.. o .ee oooo:Koe L .6 K;:::: 'Meoo

' ooeoooooooo o o .-ee oK LL LK oo )o ooK LL 14, 4oooooo eoeeeoo ooooo... K L LKoooo eeeoe eoK L ,14 "4

' oooe oo oeo eeoe* ...o oo.• K LLLLLLLLKo.•* o....o .oKKL,4.~tq/q4L

Figure 5.7 20 Minute Square AGL Display

106

Page 112: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

The AGL display from the second run is shown in Figure 5.8.

This display includes the masking envelopes formed by both of the radars.

The most critical change in this display is the addition of an area of

coverage to the east of the target provided by the EW radar. The posi-

tioning of the EW radar allows it an unimpeded field of view directly

south over the water. In addition, it has increased the coverage on that

part of Whidbey Island directly east of the site, making an undetected

approach virtually impossible. Still, the time that the aircraft must

spend in the SAM envelope is short. The area over the mainland is pre-

dominantly free of coverage due-to the masking of the EW radar by the high

terrain in the northwest corner. Other masked areas are caused primarily

by the vertical extent of the islands to the north of the target. In

particular a large, roughly diamond shaped area of masking is shown over

water in the upper left of the display. This area is masked by tne long

thin island which forms its northeastern side. Masking boundaries in the

upper half of the display are seen to extend radially from the location

of the EW site. This effect is even more pronounced in Figure 5.9 which

is an evelope of the coverage of the EW radar only, using the 60 by 60

minute data base. The other point of interest in Figure 5.9 is that the

additional area of coverage on Whidbey Island to the east of the SAM site

which first appeared in Figure 5.8 is due to the EW radar. The SAM

coverage is confined to that area depicted in Figure 5.7.

The next AGL display is from the third run and is shown in

Figure 5.10. There are no significant tactical points contained in this

display, other than to show that the AGL coverage does iot extend any

farther south than was shown in Figure 5.8. From the point of view of

107

S - *. ..

Page 113: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

Lc**....~ .. 4 -----.n . 4) 1............ .% LAIU t. L 49 L L M4\. D

**.*.********* ....".LL4LLL4LL4. L14NN3Ji U'V94I *...***..**** .... K KKKKJVAK 194 NO U 4s'u

V.. K..... LLI4 14 N=00 6^ LA4LV 4 K ... KALK L. 44 49494Pr4

. . . & K o o * . * . 4.. L 9 M m m 'G6.w

*** * ..ft KK ........ ..... K L.4 N Pki 3 U *tj9 . AAx. :..& K. LLLLl4 mm We .

PPPON94.. *L -.

........ . V.A. *,,' .430 .,d 9 N ig

Q. ... ... N. ... 4 4 9 4Ou 34 44

.. w ~ 44. .- 't~. .... .... NN N. 4.49944 4 .

L K..* L O p 4.L 4 4

::::I L '14 MMM 4 41A~~oo.. : 94 m

K.. .4.. 4 ........ K.4. L LL L. L. L4.44 4 HKKKL L L 94 4 4.

MLKK44.94 9441 L L

LL 0304 L.MKN N9

K.4 0 0LL NL.IC LK ... .. .L9 309

Ln £aas.aa

::.!Ko... .. .. .. ..

4. ......... 4 990 1 0494 I

.. .. ....... ..KA I. . .... 44. A6...

:........4.4.V4 44~ LLV . .. X L 4 4.LL L.....4.........K4IL L . .K...... LKLLH LL

... K~ LLL. .. LNN* O*1 -. *L

Page 114: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

.. .. . . -. -p : . . * *.. . . . . . . *

LM N PUJNUJOPLM UN44 J

L1. 14 P N 'PLJO J.P

LLII LL P MN

L L14C 0 I

tK KKKKAA LL14 -0 I

*** ***........ ..... K K....."M L14M 012 MOP~ 2pwK .... a.L MMN 3- ANPP

LK..F. K .......... L"144tP .. .j N UPU P.RSRikf1............... ~~P L).K...... *' 14~P~ MN ,40P .DjdR STJ

L...K MN .... *...... . . NI4Nwt A m ' (I U AS SRL1414 LLK..LP . ... .... u.N K ON N4 I4~ N~RT*M. LNNK..C.. . ......... . G R Ng M P1 00 '4 OP w R

...KN~~~ 4 hopK A. *..m.. 0.. . aM~NNMP 1N N N3PQRiR it I

....%LLMLL... :...11K.. :::... ... KNM'M MMNNN 14 p P OEK.KN ..... . NOV:4K AK... . KL4 N aNOP

4 I?~%P R NOp~j ppP

N 4 LN 144.m .... .... K LaL. a.9' OP ipliaKKRKL*e:M No..NOL. .1KAK.-... .S. I LLL L 14 No IQPUpPjW~ 3o.K :::4.o .KNKL. K K... 'KK LII LMN94M N NOO0003A14M1

K... IC..L... .... S K ... #.LLL..L L 1. 4MMMt4Ia.14LLL.I.54...' .. M.. * L LLL

.*AL NK*.K.. I ,ZL I NOL LLL

LK LK4NN:: NO Ro p pp. Q****.KK( a.CK : UM N VI NN" RR. R

%L K LI L NL LNo N4 0 P401

MNQO 14 .4 No R i 4A . 14 P Rni

* ~*LL KK***~L * *. . L N P4 NM144 0 NNO2POO 'IM QL....... *a. *I.. La. eNM o o 1* M N A OFwNMMINM

60.......... .V ......... 04 a :::AZ La. a. a.to a. a. aP 140

... K.. A L... AK....A. LL LINM INm .1 NNN&3

4 L .L......* . ... .. a....K. .... K L H N LM N NOPW MNO

*:[ LL... . *.. * ......... .. K.. .....L 6 4 N NM NN N14141L K.....KNA ...... LL.. A *...KLI m14 a. M 14 MrJPaV

*......LL LLL ... -... oL. L...L 14 A N N m* *......ICL LLK .... . a.......L...4 N MN mm a.M M 14H N

LMII....K. 1 . K....L... .. L. .. AL..L L. L4 L L MIIOpKN ILL....;NNL -o: KKK...L1LCA aL....N..S a. 14-L LM L L 4*

II 1.K....LLLL L K LL...C'4a.o L'.. a....K LL 1.1 L H

1.a.~aK...K K..... KK L e..K aK.....L LLK a. MmLN mm

-i .* 5L. .. 9LLLLL oo~V. ... K L .I....... N1 ML .. L MNe***o*&KXL LLK . o.........K L.... LLLLLLK...K. H .KK a.1

Figuree*L 5 ..9 AGL.KL.L Makn Enelp o4 EW Sit 1nLL4L..L o .K.. K .*K*s.LL A m

hNq AZ KK : .. .LL . .L LL- ... .. . -

Page 115: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

OPIPJ usimLN N 0 Pb'j o~z

KN LX U N4;:44 ~ JLNA PU '

L .. LL Lm N;'

L 1 LA L s

ALL K.'. L. M?4 .~ U 0 ,j

*.......... LLI L..L. A.INh uU G

.......... & .. A.M N111 AI AO NM. 4 3 '~K..iC . KK*.**. ...L( N' MNOO R' 0 M0.114K...~~~ L. ..... *.KMN NNM N .P4 1

* ~ K:: .LM .vvV.... ....uCh A. P.. IN MN

.... ......... . .. V K ....... NMLM~h A. MOUP GlS. .

KKLN L91 A A.*.. .NNN N M o NO) PSP

M~~~4~ PQ .... Ki 14 NO (4 NQP ,OPk

me........ t . . .... M N N M M 14 NO 1% QJ M

K ...... ......n.. A.V ....% LI MN MN NMNNN

............ LA..K KMA3L..V .... 14I MMNINN PamN

**.~*~***e~*..........A. ....K .. L N L L N N MN4... A....KA.IL .. .......K l .. .. L L L H NAM A. N

.... KK LIK. K.......... K A.... LL A...K MMNM A 41410KLIL.L A... *.A .... IL..LK ... (.... .A.M M 4 IN NMZIL

T Kee*: ftNNK..I NI N.K.O KuK .. MML 4f..... .( KI . LL.ILK.II.....I A.P Q CA

::! L N P4

........ .*00 - Lm N Lm A 0 ..... .- o.o M . . . H.NLLN O

. . . . . . . .. . . . . . .......... .oo.* Z C NO N O00

Page 116: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

MASK performance it is significant to note that the shapes of the

envelopes have not changed appreciably even though the data base reso-

lution has decreased by a factor of nine from that in Figure 5.7. The

details of some of the envelopes have begun to fade due to the display

resolution, but on the macro scale the same basic planning information

shown in Figure 5.7 is also contained in Figure 5.10, which covers nine

times as much area. This trend is continued in Figure 5.11 which is the

final AGL display. Much of the detail shown in the earlier AGL displays

is gone, but the tactical picture has been preserved. It is obvious

from this last display that the bombers should approach generally from

the south and east.

A suggested strike route of flight is to proceed up Puget

Sound at 200 feet hugging the eastern shore until reaching a point 15

miles east-southeast of the bridge. The strike should then turn directly

towards the bridge accelerating in preparation for weapon delivery

maneuvers. After weapon release the aircraft should regain low altitude

and exit the target area with a right turn to the east-northeast until

passing the coastline. At this time they may turn south and return to

base.

c. MSL Displays

The MSL display contains the same general information des-

cribed in the AGL display discussion, except that the masking envelope is

determined by the MSL masking height and the MSL strike altitude is used.

The only difference in the display symbology is the addition of the

special symbol for areas of terrain which exceed the strike altitude.

In the example, the 7000 foot MSL strike altitude produced

MSL displays which were blank in all runs except the one which used the

~~~~~ 4,, -, .,,,-..-..q?,-.,, '.*.' .-., ,...*v.*'.-..--,,.v.- .- ,. ....-.

Page 117: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

. .... . . . . . .

...... ILL

AO4m LM. ,;4 :..Ly. L... .o.o.....s.. .*f-K 00M

*V. L4 AGM 14411P-N .A. L.. ML14 ~.

..... L..... ..V. .I .. .I . . .

OPOGpN9O .4 0L K.K..L 8LX.... L4

RQ a. R~PV Pu NN 8K..L.u H..*L 4

..7.s Y~U ... Go:K L 8.8.8 *..L M4N 14 4J 41,)OR~~~I'I9IQRURR~~~~ ~ A AmTu~T PQL.N.N N. .NN 1444

RQSST PS TV. RSV US RAQP :0 N00.. LLL.LN..K K &..ML IML '4 4',P~Q T UTUUR RSQ LC~aL.. Lit*.KV. .. K U M L L 4Jf

...... UUS0 O*....... : M. L9..E * .8.L KILL L I# 4

ftO OP N O 4 Lt. PS.iTR A Q N.o a*4 N0ONM..."o ANML MLL%. &A 4 1pQFOnN V PT. 0 PTTUSV..8P0 K. Nf N LLL K. . .. L LAN.L4 4~i

PPO * MM - LLL K~Mad.J~.MmN M . . o. . A L

N 0 0 P P a0 P R P 4 p0 tM.k1414 P M.. MM 1N o.L K A.....M 14 14__PM 0 0 3 I S Pa Qs P P00 M14 14L**4MK .LKL LL: KV.L. L .8. A14 1A N0 A SM a44 .1 L LLLP4 K.L LLL..L:*o La OMA.. N LLL 4NR AW NUU~ S s P099ONN 4.P 4 LM. AM LM*.LK . M. N4L u

N N U N R 000 P U UQQ NNV.4 LI. LL.LL...V. L :::::C-4 AML A 4LMN awN N OO N s NM vu OOM4N NMLN LK.KK..LLLLL A.M A.G IN

N N :

RTVV XMU? T Ty yU N, R. K..8K..LW . L MN .LA N L 4 44PPR . NNN N N Q N U N MV AMA K..K.K.L .LL NM 141.L 4

no NM NK &NN QL P*K o.MML.K K.....L N M M1N 4

N MNQAfTU N , 5I 1T MNTUU 144 4188.4 L Lo: L:A& LM K:IN NM:K N020. 4I" N t N NN JRT 14Q 3 4N ..L ..LLLiL . L MN A N M 414P

8. ~ ~ ~ ~ T A.8 '4M 12NM4 TRILNNNCC AP8 '8.KLLLL LL.L MN .N94NMN1L.. ~ ~-S...tR ~ IA8L.KLM * ALL o*KL.t, 4

Figure 5.1 Tw De r e S u r AG Di p a

SO a *Q A P.*1T**. A. ... 5... N41.OK. L.....-L.Z N

NN _ !*j, 555 J TURP K LLL . o.,3 K554.-:4

Page 118: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

2 by 2 degree data base. This means that the strike aircraft were inside

the masking envelopes at 7000 feet at any point on the MSL displays during

each of the first three runs. Figure 5.12 shows the MSL display from the

last run. This display clearly shows that the 7000 foot strike altitude

creates a masking envelope which covers all of the displayed area above

48 degrees. The area in the southwest corner of the display shows a

large area of masking due to the obstruction provided by the Olympic

* Mountains. An unmasked corridor extends southward from the radar sites

to the southern border of the display. This clear area results primarily

from the fact that much of the area due south of the sites is water or

low lying coastal tidal flats. It should be noted that the rendezvous

area near the middle of the southern border of the display is shown to be

masked at 7000 feet. This will permit the strike elements to rendezvous

outside the detection area of the EW radar and thus deny the defense any

early strike composition information.

d. Conclusions

Based strictly on the displays obtained thus far the following

conclusions may be made. First, the strike can rendezvous at 7000 MSL

outside of the defense's detection capability. Second, any movement to

east from the rendezvous area will take the aircraft into an unmasked area

at 7000 MSL. Third, the AGL display clearly shows that the aircraft can

penetrate nearly to the target at 200 feet AGL while avoiding detection of

any kind. Last, the SAM radar area coverage is restricted solely to the

northwest quadrant.

A suggested strike tactic based on MASK's output is to send

the bombers on the profile discussed in the AGL display discussion and

Nq

113

' ,'*,'4 ,'_K- 'L, -. :.t.-..-, ' ."•,v .: ..-;. ,-.-, .: ,- . .. . ..-. - . . . . . . - - - .. . . .

Page 119: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

OP 013NMK ... e.K ... L. *.n............V I L NI 0 4 iI OP0.q.K....... ..o..**. ...... .... o. tNU

SQN44 .. M * LL............... LUJPPIP NN,tP" RPN L - L KKL.L1P QP 3 Jet; 6

PPPJOLLV..L L .MLV ...... .. K ... L L. LL LOP@,PJ OP-17iP a 13PO NNNK.'4 *Vt::~ I.oLK ..... ;;.....L.I ... I ::*.O

000 ONOPN PM. 0 .I.K... V.... ........... VA L M4 N i4 WSW43ft 1MN LM. L:'dM 4NM. o oLK o. oL L o o. o ..........VK K L. MNMC.PPU 4P i'~

[a P NeL. so, NLA. . ...L .L&M *.oNL... .V. . LMNO NRPM 3PN 0A*.ML...LL *V.NL M MIS11 ON C4S~~~~~~ Ki!h N o to~ : a: :::. :: LN.N.NV. NNGKI IWO 14. NjJfh

WOO A ~IL M.L PO 0IN.N O

NW. :K LLa. .V.......V.i. V... .... LL.o......oo. .IO ..4 4C jw A

Q+ 00 N8NL.'LLL KL .. .. L-L...LK ...L......L KAM 4M LN '4j2.1,N' LLNttI NINNI..,LL LLK. MLN..IIK..N. LNL NL N

P~ Pik PNN0ZT~Uv M M4 J 1 34 NM N.. ...... L4MF.NM4 LL .. SA .4 .T A. .A~ ogN N o N oN.. V L . . L L.

P0PPt aA GL- TuL UKoo~ K .o NLLL Koo .. L.N . N MN N' hM4 NI.VV~U fA NL NNMLN..K ::: NL I&.-

t MMM MMLLMMMMMM ...o.NV..o.oo .oo ... N N LLL .. .4 m" N. 03I

.. &o KMd 111-.N..NLNL. -oo-o.*- * M N N P NP.000000*ftM K oo..*oo.. ooo o ....... L.NV "COVI NL.I 0

N0: oo T oN...o.... ;4o.L V.MIA aLA. A NOUQ~~... 0 R y~ I .... i .IL ... K V..AX4V. lZ

o4oososooos.. .....T~ooo SUTOL A4 MM NM*N NGNLV...4M..I..I.'44 IDOPSuAT CL. I OONd..z L, .. K I LL L; NL L'1

9oooooo***oooooP0 .'W..oooosoo N N MooLALL L. -.....NL L L41n4~! - ' i1 .WauM KsL .4 -L A'A A S Af "oi. P .01L .1 NL LLK .. Ko oL..LN LM M

,@NOPO -3 ajP 0 NP NM. L M.4NML "::L N N L -o...LN LI N00 PIII -- A PP an Fa vi *K4 INK.N LM N00 LL.. L...LN 4 N I

R P5 T PP A0 TUS2 1, 1; P1P P . NIdA-4M---M. o eL. o L.A.M...K4 . M

R00S WP3-Sw ',Pr.gb kPP MN "M *AL ... L.... .. . KLL M LLNN ~ SSI N PQ NN NN NN1N4N0 I. . .LLL *o.V.MM M LL L

N ~ ~ ~ ~ ~MM N I. Woo-.V..I.N INMN N NN LT RK *V..KLV... N M AL I.N ~ ~ ~ ~ N N4 N .V.. 4. L NM N .

N~~tL N NAL LWPI .V .. LN~~~~ N0 N::M MNNN 'I .. L.16N M M N. NM4I L LL M. o.I NML.4 AI

I. N NN A MT N. K L 14MMNLL o' 4 Mt '4.I.I LI IN LUN LLMLLM.NM ..IL NLL .MI. M KNN..4LM 4.K '4 P

Figur 5.1 T Degreej4.LK* Sqar MS DisplayL1

Te 1WoSo: KKK L 4TV tU N.o'14L L::ALALA

*1*!!M~jL A "AjI jI .LMM LtKK ::114o.9it

N t4 :::LLCKL. -#

Page 120: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

- ' .- - . - - . -- . . . . .. .. . .. . - .

,-a

send the chaff, jammers and anti-radiation assets to the northwest. The

*'- bombers should descend immediately in order to escape initial detection

as they head northeast. The other elements should proceed at 7000 feet

! •to arrive at the point on the MSL display where the area of masking in

the southwest corner is closest to the target. The sudden appearance of

this decoy force in concert with the use of chaff and jamming will attract

the attention of the defense to the southwest while the bombers achieve

surprise from the east. The speeds of the various elements should be

planned to place the decoy force so that it appears on the victim radar

displays shortly before the bombers make their final turn inbound to the

target.

Additional MASK runs may be desired in order to more precisely

define the point at which the bombers must be at low altitude. Examples

of such additional runs are presented in the following section and reveal

that the bombers may remain at a confortable altitude of 2000 MSL until

>2 very close to the target if they follow the previously described strike

profile.

F. ADDITIONAL EXAMPLES

1. General

,.~ This section presents several examples which illustrate the

effects of changing certain parameters during the input phase of MASK.

For clarity and ease of comparison, all examples use only the EW site as

a basis for constructing the masking envelopes.4' 2. Antenna Height Variation

The first comparisons show the effect of varying the radar antenna

height. Figure 5.13 shows the masking envelope for a 200 foot AGL target

115

4.' ,','''''''' " ( ' , r ," ' ,. _,'.'-' _ " . ' ......-. -- - . -. ,. . . . - . . . . .

Page 121: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

A L4141NLLL LK4 LL. LLL LL .jwJ .TS

............ A t. U Uppi nP' P3JN4 U .-. p

*s***K PU NAU4 i

*....... .. . LI. LI a. '40, .'"

I LL L L '

L. LLL LL PP .4M N

*.::: 4t L LIN .t ~ N I2P.N' 4&K L IN L 4 0 ' NP .4 J~J

V *. . LL LMN.4 14 14o~000*0*0.....0.. 000..... LL 0 .4QppGNN h 4P j P. SR

e.o.o.LL so . . s.. .%. o IL .... NN P0 .4 4PPPQQ

vo.LIK.... ...... 3 PON M 14.OPP0QAoN M :::..L 04 -43. M NM QNN NO PI4AloanMOOLLL .. K N MNNNL NM OOON Q dA f

LNL~o KLP K.... ....... . I MN. N 4 N3 0Ra.sieKI.NM L o .C ......1.. M42 0N N 00 4 P

o..KMN P4 N..KL Kos. ... 4.........10? NOP .NII I &NO. I43P,1RaRKoo.MII mLoooLL.. .....V.4...Ko... s.* MO~ NGQ P mc Pa NOPPPPI

.. ,.V41 LNLL....4::::: ::N........ :::.4M4M3NNNNN N 3PI~P 014LK~a....... 9 NOL KA..... K... LII 'L OF VA aWP3 QPPli.

NKM::::LI Le: NM ....K.L.L L.M *...kkSI. L I. N*.* IL NOL...V.Nl .. so.. .... 4 L. LLL L M 1MA3QPQPQsl.NP 5J30!

... KK.KMK....MMN.. o*KNKL..eK Ll...... 4Kb . LLL LNNII M NOOOO J 3 J .14 M 4Ko.:...V KK:::L.......K.K..... .. LLLLL.L LU. MMAMMMLIILLLLLILK...K K..."V*.. *.s.........L... . lL L L LLLLL*.....KLLKoKILKV. o.......KK ...... .4oo

0***k L: ::::: ... V... ** -;'I.~ O

........KKII..KK... *..K.L LILLLLL N0pF. Apd j aKK:...... L.....QL I.MII MONR Wi VQ

::0:o~KK~o......LLN .. .. L . . MOPI 0a 0!aK...(LL... KL L Nr N No 0W A~t. kkiQI

*.....V.KK LLI'L... L4 LsuO MLIR OPPP::::::K K. LK..... LNO NM NO ACO

K.. L LM N .... .KV L N .4 Nm N 0 AK.S L.LLLN K M....I L L M NOPP PP

oeooo.*LL@ K... KLK. o *...KKK P9 NM4 MN4 NMQOJP0'IK4.K........ 1....M LN N N aL........ *.:::tKK LL A M N MNMNIN N

............. .........*A LN LVLLM.44 L. N. M. LN I.OPQP I*............ K...K......LM L N.. NL N. MN LI LPJQ J~

... K . L.. ...... K L.. ....... V LN LLL NM. 144GNQPO4'L..K.4L..L L%....V. MN L M N -3 MiNO

L.........K.... L.K......L RM NM LNMM4 NIs .. LL..LM KK Lt....L.L NL LL N00

vs ..... KLLL ....... L... .MLM.L.....I N P9 ML L NLL M40........KL LKK.*........L... LLK .... KM N LN .N L.. KL..L LL V.. *.a...L... . 4.K........KLLN LL N N I. N

LLNL.L .... *K.... L LK..LM Lo.....KL.. LM N LN; IMMNNL...MM L.. K..K..KKK LL.-A L......L. ... £.V 14M LI LN N

... ... LLLL. .... K......L.. . L ........... NM M LN #4 N. 4N 1o.oLMoL.....KASK. KK.V........;4 ALIV 14 MLL LM 14K L N # 4 M M L .. . C oL V .v . o . .o o L L o o o * L . o . ... .. .. . V L. L M M N 14:: *o. NNOONK.LL ML L4KK....LLK... L L L(..... .. .. I. MLl NpM.oPONNK..MUL L...K....K... .A . LLLLLK...K.... *.414 M .L14

MMLFiur 5.13 X 1 L AntennaL Heigh ExampleR

KoooK9LK 116::::,M9 1 4 4

.. .. .. .. .. .. .. .. .. .. .. .. ........ ..... .... ... ...... .... ... ... ... ....... L MqOOP3PONM~o*LMMLK atd****oo. KK LLLLLLLo..atr t,.tKt L. m

Page 122: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

against the EW site with the following parameters: display coverage is

60 by 60 minutes, PRF is 400, dN/dh is -050, duct height is 7000 MSL and

antenna height is 20 feet AGL. Figure 5.14 is an identical display, except

that the antenna has been raised to 100 feet AGL. The most pronounced

effect is to markedly increase the coverage to the west and south. How-

ever, the large masked areas remain to the southwest and southeast. Figure

5.15 shows a 2 by 2 degree display of the same situation in which the radar

antenna has been raised to an altitude of 5000 feet MSL to simulate an air-

borne surveillance capability. The coverage of the radar has vastly expanded

in this example. The entire area shown in Figure 5.14 is contained in the

four northeastern grid blocks of Figure 5.15 and indicates that the only

areas of significant masking are found in and behind the mountains of the

Olympic and Cascade ranges.

3. PRF Variation

The next example shows the effect of changing the radar PRF, thereby

changing the maximum unambiguous range of the radar. The baseline example

is Figure 5.14 in which a PRF of 400 is used. Figure 5.16 shows the same

display except that the PRF has been increased to 5000. Theoretically,

this value produces a maximum unambiguous range of approximately 16.2

nautical miles. Examination of Figures 5.14 and 5.16 show that the two

displays are identical except that Figure 5.16 is truncated at a displayed

range of 16.5 nautical miles, the difference from the theoretical value

being due to the resolution of the display.

4. Refractive Effects

Changes in the refractive gradient are illustrated in the next

examples. The baseline case used is Figure 5.13, in which -050 is used

1179'4' :."" : '-'-'.'- .;, - ,"..".- - . . . .----. . .' -. , , -. 4- ' - . '- -. .-- , - .

Page 123: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

7*7 7-77 7.- 77

LL LLLU.JUJ v.4! §SK 0 w.pej F.

KI P P nJ PKKI R IU PU Ad

o4 L a .40L .L. INLm -- - - -- - -

L *k LL P '0

soNO o _~ 0..L RLL

@0***~ . * L(. .K..... 53 'L -u-nP43 M 'P a1 TI

......: s :: A :~ ::: .. LM L4 U .k ASN M UO' O~ A1 .. ..O.. o oK ****K* K AN 0KA L LN14 4 I O Aas RO00. .. L o . ... fl'4! .... ...... 0 JNN 0~w4~

LN L .I. i .ooo... K .oo.. ..N. M '4 U GO 4O '4GPPO~h 1 0"1*KL MNN.C . p. **** .1(00 0 ti~m NN '4 4NUk P!

K.I1M 14.. .. .... .. K...... .L O 4 O 4KW O4PQ RiK..N.IIMN ~ ~ ~ ~ wa aI. ..... ( . M ... .. K 4NOPIJ C P 4PP

*...KI.MI.LK. ... oLI( a..... .4..MMN MNN N P1 P ON S T

*oo.LK 0..H. *NL.K .... K mmL U1 M 14 N NOQ 4'N4ik

*....L...M L.C n .MIm.&G U ditSS

KK ~t~. . .. .... o:. o.ItNNM 4NpSP.NK M. ME:.K60440.... ** M* Ii P O PPP 2

:1-.4K:: i 4 L1NN .LLI NP P...... O . KI MN I. OPu Aft R03 0

................ L... ILo ... L4 L 4 L 4 O44 RiP: 0P

*...K 1(1 4L.. .. LL(K 14 N PI Q194 1*4 0!. . . . . . . . . KI NO & & I N o so. .... K Y L .L L 14 N 3

................. ( LKK K L L14MM NN 14 4ftOO0 POP-*M,'4'4

.. . .. e . .e . . .. M. LI. KA A .... .. ( 4L.L L N L P94 A N P L4 LLP L-PL.......... L V ... .o L *...KL4LLMN 0NOLL 1'44I

...... 1L.... .... MLII L.K..........*. L 1 4 L N 14N '4 N 4L...... *M ....t.. LI. N N 4MMNN ANdP

!! .. .. .. .. . .. .K V.... K...... I 4.K o;L M OL I. ILL MNIOOJ

oooo... .%.... *. LKA...6.L ..... LLL INLO

............. .... V. K I...a K L RX L L 14 P41R. 4 A44 N..*.s..II...4i. a..o..a..o o*......LK... ..L NN IL" N N MNP~iP

*........KKMA1A *......LL..t 4145..L 14 N 14 1OOO N0.soI. .... ILL. ..:: .......:a ...IL,.... o. 1 14 L1- NI MN NN INoeoes.. o o. es.KooI.o LL.K H.... . IP . .I .. AM 141 4 A M4 N 0

..K...LL L ... .... L .. .. o .... K L.I MI N N N 14N NO P PO

LLM.I...N LL. *.A.. ... I K...KL..L N NH 1 14 MM)OO

MI K. .. ...LL.. 1K.K...KMK..K L..... .. L .... 1(144 LR 'N N4MI. LNLK...oK A 0C..... .. o I.. LK...... .. l4 M A 1 NM 441 14

KI.N~~Ii~MLI....KL.LL LL.K...KI LA. LL~t..... L.K L. LL 4

~N1g~ 4 M .. L N. I LLK.K.. K ... *LL .e ML LLK. .. . .~.. L L44 N

OsoK.MLK ... tK....... ..L(8 .*.eooLILK...LIC.... I. .N4

Fgr.14o Mediu AntennaK Heigh Exa1Mple 4"

so... KL eo o... L N 1ML . N::::::::o .1,..1 o*L 4L L 4"K.Z: 4. ... .. *L4 14M11814 .

C,.LL *oo oooLKs*.. oN 1 L L1

:::;:::KKL LKK oeo-o~...KLos.* o $. K.. K14414M14 4 L14-

Page 124: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

L*...... ....W L LLL LO11

hU3.314 L '. L. *.-44;... ....... K 114

oX.-W&....... ......... K.... KLNC4Mlr

N ~:.::.... L .K.... N~~OPP A L. K ..:: .A.. .

*ML.... . 4J

LL N ... K. K.J(.L.

L. .1 AR1K... LNL L .K.K. "IKLo. Le :;i

-d 0I NA :k::::: :: K 2::% .AKLLMD..1 4K LL....... ... A *.....*.. MWOt. IAP -MI,-L : U.... . **........ ..... ee.( . 54 L Q.

O.ee* MN Ke.e... LLe.....e. LL .

LLAMA N LL ............. K... AM....e.. *eLPIL 446

'499 NL. A....M K... * .* 1.0KLLL*.....A.K .. .L. KK I.~4M'14P14M4L4.. L L.K ...L K .. 4.14

00T TS e..AT0 .. 0 '1.***oK~ ... .K KV.4LLN

LL LAo..:K KU AL.2N . L. L 4A 1

NNAAM NN11PLL OC.K .. LA C.*O 0014 4'LMNI. 4.

ca. ON aNO ON *O 1414L L.MN ....I4 LC. K L

N.t.5~~~KOK AN411 OIL L L 1 44MNMLK1 LM

% PLL*NI TR NL LNLLMNMMN

NP5..,UI Ru ' i : .i

PRur 5.15 Aibon Anen Hegh Example .V 'N.U ;Q TS 4LL..AAA1

CRPPOU-R4U~ T TP N 9A: 4- L A

P NST .SRSSPSjRRQ A 3O:M

00R 0f RSU j T11UU QSA QLK K: 119 4#

Page 125: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

LW4MNLLL 6 4 '4 PL.LTT

LL~~OO LLL 0 ..%15ee**o~o*..9.LL oKUPP) .2SSK

F4 0 COPJ P.h~LN 'PM 9P'4jjP

**e* oo.N KL PO NGit. 0LMN PO P0 14j

L o 0 IdPiPUL LLA. LM.44; J. NNOPWAjKA

M..A I 4.LL P . 0AA KA

.. ... ... LL KKI LL 4 K 3 U 4N 14 N#N ASTTRiL NO N 14 N uPP O. I S~

:AL 4U it~wAK.K K........ L 4M4-~ *.* . M N OuP j R' S Ir

LI'. .. K........ 00P N0I N SN N? S1.4

.I.LN4 ....... .. K KKA LL.O L05-UN MN 0 4 N P P? aowl is.. o o N. K. .. KK.... *.LLMM~ JN N NO " 14UNPSPGNN N PQ R

KALIL...PL. L .. K ... .... .... u( *' A. L u .I t siRRRiP A4KKK....... I. .NL. .K .. ...... .... Lo LLL L MN OR w QRS ST

'..... POK LL 4.6M PP0j0.0N... ~~A LI. 14.4.4.1N.UOOP1-6.

*M.. A .A. . ML K.. ... 34 L AKS. 4.M 014 .4 '40&6 3 NOWLMM LK L ;-. L .. A...01r NK MON 4. LN It4QPP4PPP tASTS

... K K L. L N...I M.6 ... LM. VA NOP i OPAN NOPA*.... L... L .. ...* KK. .... L-..KA.LO 14 ~ RAGPPN R SRPU I PCP........ KK C. .. a. :LK 0~.. L MUM MAL NOPA N N

Kt:::C. AO A...I L4-K.K. MN N L R it PC) R5K K N *...4 I(NM . K .. .... .. LM N %IM CMO'QRR.1AA.ANi.

KK 0#..*0M I *...N..K 4. M........ '.. K L NO LL M MN POP .P4P 3:PJvv K:K.**4I* : K: iK LA..L... L4 N MN U0J NOPPP M

KK.... * *.K ALLN L*...V .L.. #4M N' L ON St It4AAILLL

LK.. .. K ... K LL LL LLMILK.....S . NM OP1I#o**KL.KQ K .4.4......K...t.A.A.......A NM IJO~

w*.L 04K..Ks. ..... LA...... N 4......V. L A. . A LL. L NOLALL L.K. . LaKL......VL t.L. K NUNNA M M40 N 4

KeK LK......L 14 LL K L.. .. .K. ..K L L L LI;PPP RWo.*KX LLM LL..A... KLV44AL 4.4.Rk1.S P

eoe**KXA . .... K.K4 L....L L . KA. MNPR A. NAN*... ...L...K L . 4 LMI L A. 0 PQN N MN ~

*........KKKK .*..*K K..LL...K L...K LN N M L N N Ni... A....KAA~.4u~...... .L..LA *LK LLL&...4. Mi N A. 4.i......KL LLV. ......K L ...... a4... L K4 MN LM A. N NPJP*.......L L .. . K...AA ....... L .LL LL 1N.O N4 N NLA.NM.A....A.PK A..... .. K...!.LK.L K".SL... Mag NM NUL NM

-* NNLA....:iML LA. KKK . . .LLNNAM... L. ...... ...L.M L 14 IMN M 3 NMN A.~ ~~ LAN.LKLLK K.....M MK. .. ..... 1.AA.K' L i A. . N N

&A ML .. K . K KK .. .. 4: .K L. . . . . ..L L L A L NM 0 4 N ~ 2

....NL ... .. .LK...L Kt: tL.. A.A.A......... .... 14 N 14 N

Lt~dWPCKLNK..L .ML L-4 MLL o 4.K....... A. LL 11UUPOOI4K.L.N. LK LL.LM.A.........A K LLLL.K.. L.N L NM

K*LLi , ..' .s . . ... * ... ** * KL . . , L . .. L- . 4 L LA 1oo~~o.....K9L~~~ LLK L.... .LK- 4M ML

Page 126: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

as a value for dN/dh. Figure 5.17 is an identical case except that dN/dh

has been changed to -020 which is the value used to simulate standard day

optical propagation. With a few minor exceptions the displays appear to

be identical and only careful examination shows that some of the masking

boundaries are closer to the site in the optical case. This is not a very

surprising result since both values of dN/dh fall in the 'normal' propaga-

tion range and the radar coverage is primarily limited to short ranges by

the low antenna height. In the next example, a noticeable change takes

place and serves to further explain the similarity of Figures 5.13 and 5.17.

This example is shown in Figure 5.18. All parameters are identical to

Figures 5.13 and 5.17 except that dN/dh has been changed to -150, thereby

*simulating extreme superrefraction approaching ducting. In this case it is

Sapparent that little change has taken place at short distances from the

site, while more significant changes occur at greater distances. This, of

course, is exactly what should be happening since the propagation of waves

at short ranges is well approximated by a flat earth model (dN/dh =-156).

It is only at somewhat greater distances that the effects of refraction

begin to alter the radar propagation significantly. This further rein-

forces the idea that terrain masking is in large part a function of the

characteristics of the terrain and is only modified by refraction.

5. Strike Altitudes

The last set of examples shows the effect of changing the AGL and

MSL strike altitudes. The baseline case for the AGL displays is Figure

5.13, in which an AGL strike altitude of 200 feet is used. Figure 5.19

shows the same situation except that the AGL altitude is set at 600 feet.

The first impression made by the comparison is that both masking envelopes

121

* .,.

Page 127: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

*. .. ... .... . La. LLI.LLou j-!

I PN P P Ou i L jP

S.4 'Jk PU 1

0. .. ......... . .. L

. ... ..... ..... ... 0 AK. PIL L-44 M;4 N N P0P~

LM 100JQ14 4 NO 11

*KL~~K1 LMM . M........0 .N. 14N 0 4 MN P p W

... KLM~a...%# Ka K........ .... 4ii3M 1144 'M MP.-UFP O.ARALKK....... . OL.4. .K. .1-A UL Ow 14 MN. ;4P 3 K..

..... KK...14 N4KL. L 44 LL14 14 M NO P1iiiMO.L..k::- KK.L.....4 4 . N. LLL 0. 414 OONMCJ JA SRI

.. K.LLN M KK 4........... 0KK. H4 a. .L 6 N44a. LLLz N ;3PQ 4uKOO.. 1IM a. LK... 0 LoNMNNM14 4IINNOOPDIP

411.444 L K...........L...ly MMNN a4 G94P ~..... KK .L.. .. K ... & NO K . eCK.L44 L4 DO~F Aw'h4 aPj~

KLa.......L LN L..~. K 1 4 OU .1 rS~k~ P d,.................... ... K........ .... KL1 LK..L LLL L 14 M 0) P~WP#a .5Pa

1: :K *.. H .. KNK..K L.....%J a K L L 1444 a.M 140 UOJDA4 P'.RKK ........ o......( Ka.a.4 .4. 1414L L" AMMNOP LJ 4L .. a

............. K... o.......... a.L.LL L M140PLLP...L...................... i(a. M'..... K GNLAO'i.P.PaPj

.a :LL1L .. g . ... . av z6LL..... . L L 44 14 LI LLLLPP4P-L L............. .... K.. a .:.. .. J 1100 NMM N N00O0j.4I.................... :A'. PMLiN'.......K a.NNOL 9 POAWPd J j Ij

..........!!K . ... La . L LL.NK. .. .... I . 1 41 NNI N, Q PO

................ K .oKV.4a14. oL PON L 01 4N OPPJ 3JP................- A.. .LL 4K LK.. .. ..... a LM NLM NM 0 N.PQ NAo4

.................. ULLK.......... 14 14 N N NL.s .KK. . A ..... ..44... La. NO NM 4 144141a 4 N

.K LMM... ......L N . 4 L a. a. a.4 La. a. N 40

... .. .. .. .. . a. L L LL a.L..L 4L LK . U. a. a. M a N N O

................. K 41. a.K..L KL........K. 14A1 N. ON N N NN'0r P..........................LL L'....o.....:KL 14NM a. a. N NN I 4140M

KL ...... L.. K....... L N M a 4 LN 4 MNo.......4KKK'.4L ..... ~ ..... s. .. KK....A. LL NaM.4 aMN MM4 H N4

....... a~.~. ...... L .... M..Lo .....aK.M L L L4 La a. L M43........KL LL4K ........ ML......LK ... 4N LL N a. M4

... K.....LLL a. V... .. 4..... . ......... .a:: a.NL a. N N a.NLLML..LM a. . .. I.. L..LM K......4......aL MLL4M LLN N14114a...KIMI L . -K .KKK.VL'LK..KA aL.... A~l . a. Li LM" MN144

I Na.K....4L.LaI~ 4.4K....,4i14.4 L......:L. 4 4 Li LM 14 44fa. ~ ~ ~ L KNL... L. LV.V....4 L.V ....... L LMN1. a M MN.LWNML..L ........ .Ka. ... K a6 aK.... K .V a4L LMN N

I NNPO XM.LNa K.K.KV.......a.:KLaLK..4 M : L :LL(....... ..N . a. Nl N**ooPPNNK.aDIL K L...... . ICLa a. N .14 .aK.....4 L M 1414

..................

.... "...................LML.....L...o..LA LM 4AKLMMNNAML............ L L........ K. ..............^. ... ....

Page 128: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

I.............. 4LI4MLLI L

.......... :K.. LL LALA. .jjj 60~t

K K K 1 ., .. ''.********.....&4. .PN PP14.'J .j P1

K 14 PU in~ JI

A. ) 14 -4U. '.10 0......... L LL. L. M1. Id%

** e.e *e...* . A LL LLI. LA. L PP .4A

L LA 4.4~ -1 A .14 ., -P.P

.0 ~ ~ ~ ~ .*so .. .... o. ..14''U2U mpPNaPn.K......... ....... A 4 A.Pi 0,

K . L L MM N M .4 14 C lOPF J.j..4k , j

I..ILLIU .. PC At '4cvPO,;QQQA Al

:.... 4 -K: .PQN A N.J OP f, j Al,

.DNIDI...P". ... ... c.*. N N N aO sAt&0 NOq 'J. s

LNLOI LLK.. LP ..... .... NOj NM .4O N' QM~ N.ARST S.. LMNMK..CV. K.OO.... ..... 0 CAMAOINN4 00 4 L% uP tU ku4

...KDI N At.C.4... Koo $... .. A1U 3 ID O Q ' l MNP.AjRRK..KMMMD DILo..*. *....o F......*KG~ *KO 'NOO I Nc P0 UPP...KALLAL....K.... .L~i -4 .....o . -K...M43AtN M1NNN rd 0. P O3

IEK ..... 9.:::NOA.. : A ..... o.... .... K U4i A. P AlhiP OPPilKK**. *c. I.. LN NN.KJ. ... .... K L L L A Pk.ksRKRPJP.43PPI

..k;:ioLKNL:::.AIt4A. :*.NOA....KA4 ::: ;..... L.S A LLA. LI M .aPPQj~ JOI.. KKK...V'. t KNKA.. ~D. KK LLL L.DIMD DINOOOOOU3.'44AN

IK....K K....KV... .............KA . A.L" )-L LI.tA.L L.

* ...... KLLK::.KIK.K. .. .... o. L.4LLL

... LL DLK..I......... *K .1:: A. L AILL LLLLL '4u4L..I L L**K... ... K4 * .K LNMDVIDINMN'400PQNP

444.44 LI.K... *... ... '. a.( .:K L DMiQP PPOAQi3 3).... K A.KA(.. ... .F~LKK 44 1140 R~ 4.N

*...K.K"KAA.L. AN.A'~ L..14 PCAo.....KKK..KK.... ..... K A.44..A LA.A. NO A.P.*................. ....... V........ LNNN I. NO R I

............... A... II.KA M L DINOP RA............ ... K LUDILK.. AN A. L A4 0 PQmvi. .4AdQ

................. KL NM-.. K AINON 0.D OF .4.PPP.iPPPPI

.................. V. AL .... . ..4 INGO L1N NCPPP....... *......K K. K LK~ .. 4KKK DINGO NM 4 NLOOO3 I

......... .... K KI.M LK. .. . .... K A. LAtN 1 ANND N NOPO0 14I

.... .... .... :::.KA.. L M.. K o..... . .. . .K L M A I A N '4 DIL .K..K LLL ML AMN M DIII NDININD N

............. L K....... *.Ka'4K L L A. N .ON A . '4u.'a3j

I............. LL.AK.L.... Lt A. . A. A A. N* ............ I. LL......KA.......KLL MM A.4 MM47MMDI

* ........... .K.... LK K^ . .. KLa L L L LA. L ALt41.......... . ..A . .. MC LA. ....... A MMDi LI. LL L MMQ~

........LK...a AK.....A Lt A. L NAM

*~~~~L L......IAAAL Loo.. K.L. L..K.....N L N L NA A D A1:::::u4 K: L L :::: M .a:: .::.KL.1At MA.i I*.......KICA A.KK LL A..... LL..KD MN LI A.4N AN

DINDILI....KLL A...K.K..4.DAl.K A.. .: ..... A L LI NI 14ND .*......LI(LA.LI.K. MK4.....N.C. ML...L . A. 4.N 14 N

: L . A... . KL L K. K......o....IDI A...K L. LK... .. ... .K 14 A .N A. IN 4 DI

KI.M'iMLL.oL . - .I.F..4....KL L*... LLL.......&.. I.M L 4 1MML t.JN U(K..L .. oKK 4 ... . ALI..K4. L .LL......... L ... 4 A. AI 14

M ~DD K..L MtLL K..4........ 4KA. A. A.A.A.A.I.IoL............K L. 444 .a

Figure 5.18 Superrefractive Gradient Examnple

123

J

.2.

Page 129: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

K-4ML -- - -- -- ------

**...~*.* *.V. M14I4LL LNOUN 4 Pk,47TIK. LA. LA.ALL M oj4w

. L.. N O4 ,0 u tSaI* . a. U .iPP j w

*LN NO I'M PPL,1...jZ~p..... *.....V.LN PQ. P u . .4 J

......... .... LN M t Q u ''

L LA. LL. LAS JAUJ -N cK L L. L L A. OP N 1

KVL 14LL LU. L A. "a0 P 4 0' K...a',*..A. LAL LLL LL L Mt UPPP 4M4.*.KL LA. LL. L

::LL MAMA . NNA L L 94NN33 14 .. r-

..... . . .. :V K NALL A.M1MM OP P Mf~ U******* ..... ...... K ... 1I LL141 uO 0.a 4 MPON'3 P

*6eee .......... LV.. . ...... L A.L MAMMNU N A a-JNN 0

*...V........... I A.,4. Q4 N?010 4 14 4P C P 14AP

COK. ........ K.......... LL0 L M 14 NUI) AP N 0 FU.....KK..K ...... AN OUO M0 JAS SM,14.. CV.... .. ....... A 14N NOP Pi.4RO.~::::: AMP. cL....... .......... 1~0 k O OPOQ &

.... LLI4 L.: :. *A.4. ......... . . .1M01 A~N 14 O P R

A"AI. K..O LPV.. .LM .. V. LO LL A.S NT. IA L.MN.K K.. . V.14I . .... . A.L A.M 4 k aOOOPOMM e14A

ooK. N K.. ... . LA A.A.A.A. LU MN N3PLNA.ALL.K..K K... .... f. K.o . o L* A. 4 A.A.LOA.L*o*..KL.K.KML A.. ..... 0.

'41414o.. 144 *NN 9413 NN~ iQ N ONNO. K. LM L OP 1 03 033

....V. KLN40K. . LI.K. L. V..L 1 IIMIU aU,~uME .jN A.. .KKK L..... .. *K .~9 OI ~ ~ S. PI

LK..A LL ALAMAM .O...

N.IIKOIIOLINNN4N441414..... V.-.A.LV.K 4 NMLL A. M0P. LLLL,K .4 LJ.14.. % LA L O PQLaL L

............... .. KK. L .... .. VK NO NM' OOO14LK . .. ... K.... -..V KLL' N L. ... V . A. toN19 t

9' .. V L LM LK * '"....V.L L ALL 14 LL N ,400... . L. LLM::: : K .. ... V 1. 4 N N N O O O

oo ....... . AL... .... .. V LLACMK . K'4 Z.... V . I4N N 94 N O PQ 3.. *LAKL . . V....V V........ .. .V. NN41 0 fiat O

A......... .... V... LA MNR MM Q91A41N N

.... .. .......... ..L ... 41 '4~..a. L L A. I. L L. 4.......... ::::::K L..........L K4 A....V LN LM A. LA. P A. 400.............. K LLAVAALA.L....V. MLK ...... A. A.M L N

::I V. L LX..... K" L....VA. MNO LL NA14 NNOO................ ... K K. LLAV...M L.. ....... .N. A MMN .NM*.....*..*......0414 ... V..VV.. K.... L........KA 14 MAAN4'44~

.......M L L .L ........ L .... L.AV...A 1 14 A. .N 4*..V....LL L V.L1. .. M....aV K.. .... . K.L . L N4 14 NN 14Q NO

LLNMLL...LN ... .KAC...A A.LL. K....VL....LLL4 N M14NLL...NML LV.. .V.V.K...V..NMa(.V.A. .::K4... V 14 N N.1 AN NMMPQ JN ~ ~ ~ ~ L .K..LL.AAK KV K.eII4 LKV A....L A NM. 14H A. NN0P4 NM4. A.MMLK..... K. ... .I' ..... ... V * L . A A..4.4 AN 114 A 1

KLlI.MMMA. ... 4. ....... 4. L .. A .II....KLL A A.4 144M NINN(NNN... L LV.a4.KV .~L.A..LM.4M ZK .L4..... LL LVL L 1444 4

KMK.L . .L.....K...... ..LM A LLL.LLL.... LL. VL L 1414NNU

Figure Lo*.*KL 5.1 600 Foo L Stik Exapl

U.

*0 .:: K-* L' ' K. L. L'. AMA*. LAMw . AN

Page 130: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

4 .. . . . ... .. . . m

have the same general shape and the major difference is that the 600 AGL

example envelope is larger. The same terrain features caused both enve-

* lopes so this development is not so unexpected. Perhaps the most signifi-

cant result of this comparison is that some areas of the masking envelopes

*have not changed appreciably. This is especially evident in the area to

• the southeast of the site. This particular finding is in agreement with

the earlier observation that the terrain to the southeast of the EW site

was a major obstruction to the radar's coverage.

The comparison of MSL altitudes is illustrated in Figures 5.20 and

5.21. These two examples use radar and refractive inputs identical to

those in Figure 5.14. The displayed area is 2 by 2 degrees which allows

an additional comparison with Figure 5.12 which is the MSL display from

the last run in the hypothetical strike example. Figure 5.20 uses an

altitude of 5000 feet MSL resulting in a noticeable reduction in the

coverage afforded in the 7000 MSL case. The appearance of a large number

of '0' symbols in the southeast of the display indicates the existence of

terrain in this area exceeding 5000 feet MSL. Figure 5.21 uses an altitude

of 2000 MSL. The trend indicated in Figure 5.20 continues as the conver-

age envelope shrinks toward the EW site and more '0' symbols are formed

where the terrain exceeds 2000 feet MSL. By using Figures 5.12, 5.20 and

5.21, it is possible to determine points along the route of flight of the

bomber element at which the aircraft must descend to remain masked. Figure

5.21 shows clearly that the aircraft need not descent below 2000 MSL during

most of the transit to and from the target area.

These examples have by no means covered all of the possible combi-

nations of effects which can be processed by MASK. However, they do

125

' '. .'''.' "-.-" .""-.. --- % ....- .. . .-.. .•. ..... . ...... .....-~ ~~ ~ ~~~~ ,', ,-; . ,- - '.. . -,- . '- . . .. '-' .. '. . . .- ,- .', ., .. ,-.--, , --. . . -, . ,

Page 131: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

IP L .NK............~**...* *.....K A A.M3 f;POMLU.K.. ...***~.... .. 00wRRN MK-o-..M. A....... .... % LLMQ. A

ft.PP 3 LK ...L L..M....... ..... A. L LL. AOPIPPJ OPPP a liPO NN MK. 2 ' .A. .oLo. .. . . .. .. o... .W~. . A.A.A L. 4.OPU NP I,

000 ONOPN fpN.u 04...K. .. .. o ... S ... A L 14 N4 4I wNOWN 11N1 Lft.L.. -4NN......oI. . -oo ... ... *KK K L MKNMCPPU 4P

N A. iLL. NNM..A.K9.KJ.... ....... ... 4 LNI.2 OUKPN JPN

ORPPNM AK..LK (K AL.... .... '' .... L14 14NA' IN 40X PON LLL( U ... ...... L NNG'4N WPP M~

NLi'. ..................t. e*.AKMN.........K**o 4NOPUN PQPN .jP'p'.PPP P LNNA. .KK.........K......* NLAM.APOO..&O****s. JO3N NWjNM3 L..' ........ NA.ANI..... NM NO I' NU

0~ ~ ~ ~ ~ ~~~' ON C404 '-.....NMN. N~..... NMS.A. NO~P P M 3 ML .. ..o .... NKJ *LA.A..K....V..A. NN.K. Ow' NN14NUA-ItS 000 11.1. N...... K.L.. ..K.... .L. P .4 MPQ.wN VM

LLNNMNM L ... K........ .. LM .... A. K.L. KM N QtP.a

L ... AKKN ..... L 1P QCN N.....O....... ....... .Mt........f....L N M N.9 ~ ~ ~ ~ ~ ~ LLL ***..... ..... K... .......V.A.A..... KK. L L 94 M

MM...C : :: . **:::..KK: o.L*.o...VA ....... A NM4

: .......... K. .L A N MK NL L . ... o. K K . ... o.A.. ... LMaL.. V4..1 . PQ4 4 INA.A.oAeIe *K A.AA A.K .K. . ... A...A. N aN

-U.*.. P0G... 90TPQ 2 QNN4N MI.. oK.. K. KLKKKK14. Nu... LA. AM I00PP 00C0*00N0. k' jPM L K.....L LL.. ... MM 4.M

... P TSQ ~ o MN L.........KI.M.K N A. NL~3 S1SA ~ . ON NNN .M.K. ..... KLL ::K1 L L A l

6 ::MA.ML . NN. .A..NA. L.. . NM 4IGPNL~ ~ K.AM.A . .L ... AM L 'N M

MR 81 SkL.L S X. OKLL... NA L... NN '4 N 1NPPO tQ ~ G IRA~ff MM~.5 RoarL :ML.LK:..:LKN.K : L... M4 LNN 4

P:~S3 QJ .2' T0 R QN MM 00 ..K .AMK.. . .. e..I LK NL 4FNP-' Oc ONF O LA. 44 .1L LA K.K.. . K. M...

Q--N TO a 3 TTS ;tQ S ft QPOF MM N M NK..A...A. KA...A AM .L MANQQM$QRA _ST8 U.Q i A..K rN 4 .' .LA. ..... I'.A.A.4.LA.PP'QKR4GS -4 LSO ...t' N .A.... . ... LL.L.

Al PQSSSAP PO3 QT- . S ft RO4f N MA. NLM..K . *..e.5..&M .ft.L4 L IQG Ppoop' NQ-f T PS TAT ft Mpc MM NM..K. ... L. .. A. NM N4L LNQOR N PPOPI T R SO rfo 0Q NL *4M.L.L*.*M V N A .A.A.A.AL.M .... N .. .A. N

INNN SPR t SRSP. 0 NO N 2 NMMM.K Ma4K A.A..MI4M A. N N4 NMaN N 0P gi P i s I S T3PAP T O OM N6ja PM NM K N 4 NL A....A 14 ML NNP 00IA P LM RC P 51 4t TP R~O G N . N K..LM M N M .K K. A...K 'I N

PQPNf32 PP2 PSTT PSY0 CON R.4L.AN 30L.;KLN A. A.AL .. ... K.. M 14

N N N N 00 P OTPN MK.M .. A.A. .. AA K.. ATUT00 0 PP QNN a.. L LA * K * L.. K N

PN N A. A. KA.. AKKKT TJ s T 4L6..K .L ILA. A. N 4N. I P PSI 4 NI SSSA M.K L. ..A . L KM.A . N

NN1N NM NPfS O O MMM K ; N.K..KKKK . ...MN NNF MN4 MNNP P Is Nam .. S. it MMTR R4 NNNLN LL4 A.A.I. L L. NN KL LL N NC 41O

X Ma. N FiN N NM 0PP(P UP N M L 4KLA.AM.A.A.NNNN N30 PIL A.NN A.MN PPA.LMLaNP.NCP O O AL. MLLK4KLM L LKLL . K NNFiN NN NOOPP

14 N Fiure 5.2 5000UNIM Foot LMS L k Example I

14~* * N NII LK . LK L, M4 MM M

Page 132: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

4 .... - ...- . .. ......

4M** .*. .*. .... *.. o.-........V K . LLN

PO .23 LLK.L .. N$.*.e*. ....... L L LL. L.-P NM PK. ON AV...LJ . ... . 4.LL. LLd. L Lavur

0loom.NO -4...K....KK-.. ... ...... L. t '414001 M.1 LP.L.% A4 .... LK...SL...o.9. *..e..*o-..KK L MN U4

* * N .. ' 8LNMA..U6L.jN..*.. ....... . LN~t 144 .k

.. .. f.4.... L1 NNr;.

L*K.

CON NMV. *M..... .. . .K4K.:.4-00 030L :LLK..I .&... Lo.. P........ . U

PC o L A ....LNL .V.K ..rPL L.L. L'43OI.J3'4NI

-- K L L-

P PN 0 3i'J LLLL LK .. * o L.. K.LN4M.K..K N4*POPO0 P 0 0 0C141 IL:V :K. _L~. A 16C LV.' I. N

4.. . P0MM OOON# ON A K.!K.KK.............. :". .. iKL. LI.tLM~N I MLLi.MMENM '4 o.. ............ .-K Li(.L AMN LI

*9.K. KMILN...NL 1 ... 00. .... 4LiM... M13N N4?q

LM h K; 0.0 .0 0 .* * .**K ..... ... I.CO 400 I

.4'.'~~o MM . . .... K ...&K ... .54.. .... ML No'N NN ' .~ *.....v.~ K. 0. .. LL .14 &.... 4I. 04 N

NI.N ~NILLK. ~... ..ZL M:k. U: L N4 L N1

0 ...N~ M... K K. L -AL .S L M .J

N v LLB.Z A3tuA K.O "00L~ I*.- N04 #.M NOn0UJ~~ ML.4..K LL. L404 . .. LM LN '4M

iaIOOQWUO~s.Q'SB 01.LL L . .K K. .L

* O GP A N N 3OQ MMM *LL NF NONN LMK. 4 L. .LM '4

POUPPNPC 0~~ P~jQc M. MI aONI. L NO LL ' NN 'M4

MN~03P .... KMN L.NN A(.I 'L4LU..(N 'KL~NNiL SS..SL..S.....K.. AiLS L N

N MN TL

cla N6djEa W N4L .4MN LM. ..KAK ....L N 4K N MAM4IN ONNWI N 4NiN saS.. LS.VJ.LN 001% LMNL AOO 1

FuG 5.1 00Fo M.L ExLe . LaF

a :.KMMK L..KL

127K,-K "so8L..K LLK*.L I

L h",'.%~ ~ ~ ~ ~ ~~~~~w 0j~ .. ti~ MK L - .'-' *. .. .. *-.... 4

Page 133: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

,'-.,illustrate some of the more important changes brought about by altering

'' the input values used in MASK.

im.'

*W

A.128

.AJ. ' " ' ' ' ', ,_i ' '_ r,,,-,,. ", ', ,," ."" " " " " '- . . ,, , .. . . """, - . -" ,.,.,- "" -..-. .-" "--..- .-.- " .- -. . ''.Z..;'i'.-.,.i..i..,. , , ._.

Page 134: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

VI. CONCLUSIONS AND RECOMMENDATIONS

MASK was developed as a thesis project. As a result, the programming

expertise brought to bear on the subject was necessarily limited. The

author makes no apology for this but recognizes it as a fact. More effi-

cient programing methods are, no doubt, available for processing the data

used in the masking calculations. In particular, the tedious means of

combining several DTED files for large area coverage needs to be stream-

lined. This and other program refinements could easily occupy a student

in pursuit of a thesis topic.

Additional recommendations are dependent on the final selection of a

standard shipboard general purpose digital computer. Although the HP 9000

appears to-be the current favorite, this is by no means a certainty. De-

pending on which system is ultimately procured a number of steps must be

accomplished to implement MASK aboard ship. The source code must be trans-

lated if the shipboard computer cannot use FORTRAN. At a minimum in the0%

case of the HP 9000, the program must be slightly modified to conform to

the UNIX operating system. This can be done at the Naval Postgraduate

School using the VAX system already installed in Spanagel Hall.

Additional work needs to be done on the graphic displays. The dis-

plays created for MASK were designed to be printed using only a line

printer without any exotic graphics capability. The newer systems avail-

able have various graphics capabilities which would improve the clarity

of the MASK displays and eliminate manual operations such as tracing

envelopes onto the topographic displays. The output generating code will,

129

% % %*

Page 135: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

of necessity, require extensive modification depending on the particular

system procured by the Navy. This is another area for consideration as a

thesis topic in computer science.

Finally, some systems must be developed to supply user organizations

*with the required data bases, either in an already transformed status or

as raw DTED tape files. The capability now exists at NPS to perform the

required data base transformations, but the same programs are not likely

to be compatible with smaller systems.

Given that the steps mentioned above are taken, MASK has the capability

to significantly upgrade the effectiveness of the Navy's tactical air

striking forces. Installed on each CV, MASK will allow the strike mission

planner to more easily devise routes of flight to reduce the susceptibility

of attacking forces to enemy air defenses. MASK will provide the capability

to respond to urgent tasking in a timely manner without sacrificing the

accuracy required to perform thorough preflight mission planning. The end

result will be a greater probability of survival for our attacking air-

craft and a consequent increase in the weight of ordnance delivered to the

target. On an equal cost basis, it is unlikely that any other single im-

provement can increase the effectiveness of sea based air power more than

the introduction of computer aided mission planning tools such as MASK.

Mention has already been made of the applicability of MASK to the air

defense planning problem. In particular, Marine Corps air defense network

planners could use MASK to compare alternative missile battery deployment

patterns prior to landing the assets ashore. This capability would speed

the establishment of organic area air defenses and could additionally be

used to plan for contingency redeployment of air defense assets in case

some of the systems were destroyed or rendered inoperative.

130

Page 136: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

Additional applications of MASK in the areas of electronic warfare,

airborne early warning, remotely piloted drone control and communications

planning are numerous. The salient point is that MASK can fulfill an

outstanding operational requirement to upgrade shipboard mission planning

capabilities in order to meet an ever increasing air defense threat.

Ignoring this requirement serves only to limit the effectiveness of the

Navy's tactical air forces.

131

-4~

.9

.4, , -', . .2. .;, . ;.i. .' .',,,-. , .. -- ' .- .i . - ;." .2.i. . .. . . .', , -., - .- ,-.- , ,. . ,-.,.-.- .

Page 137: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

.2-

-. h rgascotie nti apni r.ite nteodri

5...wihteywudnmly eue neectn AK oreape h

.

-..

Th1rgascntie nti ppni r itd2nteodri

whc!hywudnral eue neeuigMS. Freape h

Page 138: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

lk7 ~ ~ ~ 4.: K-W %. T 111,-

013 LiUU JL

Ii( 0 -uk -. 3Lilu~ b"O

ULUW '.1.UN

Qi -0..Ji Coco

QI- O-0 I03iZ Q Li

QU U.. l ui

ad3'.4~41J in

06S..L1- L3 ULC

Q OA.4Q z At

(.31.30-EU x 44.UW .4Q Uj 01-0

"u4acc"i 4C '0 jUrn QCLWU 0 4 OU)p

UI.W4U.U 0 zO11

U.jtW Ug Luc Co ON941

. Z~l Uj cnaeto- -104

UZp Li~.jU P4 U uI

uA-U Q "40i~mo3 qI-U J-Jcg1-

%: oUiw IUZx 4"OUJO0~li -#0-g. ZCJ

U ~.U4I-U .UWW0ZCL

U i40Uic 0I-OWu-j.j CCWZ

% 133

Page 139: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

W~ % '. .J.-- .- - ---

%,Jz-q

Lin04.49

Q'4 U0~.- IL

0-4-Cl -4 Q AF 3t - -0 U L

QUZ UZ ZUJ4.-u u

oft- UJ)4flj9-j u

-, 0L.11LI~f0Z OU N

o i' -A.0-x U401

0 0 UA.JZIUMLJ quU

Q.~ W% ft 096"U'-W .J U6 -4-4oU -. LWO.'4~z- %jOt

CZII- Z'-0 Q

UZ aLUaCO - ,cuUos. ZWO-44L X(u .J--itJ..JWWWWWWWWWtuut~t~uJLWUJWWWWWWWWWWUJWWU

ufuwW".I44 w "r

' m .lL-inl4o ZCL4Q.Q.

U Omae 1- 1 jU

QuW044u- U CLO 2U4444

Q o".4 eWU#3-WutjoU 215 WZM'-ZPQ ~

U JaUN -0- @)Iw 00 Im0O0O0QQO

UL 4W0O- U.4ZQ x(.2

%I W.J1-OUI.JCin W~U

14.NX. aO4L0.DQW~a --Z~ 2 *j '.J1 U.J

Q-0- da h4UuLL U.U6..LLU6JULL.LU.LLU.LLL6LLAU.L L.LL644f~mMQOW)( .UWWWWWWWWWWUUwwwwwwwwwwwwwwwSl~ULUWWWWUL

UXUUUUWUUCJ ULLU.ULLL.UA L 16 L .U. 6LU L L LU. L L U.LL L-L L .LL LL L

134

Page 140: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

IF-- .--

tVmiUUJUU IlujUULLL

IA-

tUWAWWWWUWWWtWWUAL J

513

A.E J N NNJJI(..*S

Page 141: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

000000000

(.-%LAOI00000000000000000000000

LU U A

Li -VQiW

ki xL C

Liz Liz

QW.3Qw 00i LL.% 04L4QP Li

Li LiQL Q LIOZ

Lum W(-Li 0LiQ 0

LiOZUUi L0iU~i

Li~t-Li36

Page 142: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

.J~ 4 L . . . . ..

uJLuwwuuJ Qw~~wu

0-Lii Li)(JO Qi

t LZ L3

tU Li

LiZ LiLiW Li

Lio Q., " - .

QQ Li 0--U U~LU 04WO

OW Liq 4-

u- u fo,:Ipc

Li~i Li 0 -iL0

QO>QLi P-O 0 0Nc

UL- g ai~l N e-Des

Li .'tc 4CN .JWO

U UT0LI- .J0lN0-

QL4lioc 09= 0 *

04-40u04 N ozQ o.0LiD 80"J

Li -L~i 0WC0.N

Li.WZLi00 200)1 )M )IL4u.Li0* VI(tL(A t

LiI-t137

~Jtu~D~w~1%

Page 143: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

LUJLWWWWULUWWJLILUIAJWIJUJWWWWWWWWWWWWLULLUUJWWWWUIJULUJUJUJWWWWWWWWWWWWW

U~~ Q UU

U4 W)CW U u UJ _ u U

On 2-ow, Q U u U- U U2-1 U U U U. U1 U-

04- U U UUL

Q0.4-.Jcin U U U Ui U UL3 1C~f4tw U U U L. u U

UZQZ U UP U U UQ

i 34..1Owc U- U3 U U Q U

ouj- M Q UU U

(-"LUG 0 U UQU(JUW" -U U UU UU k

U .JU U

UI-4 WWI- 0 3.ZJ0 U U 0 0 0

WUCoz~c 00 000000 U u U U Uj Ln iUUJ.4-. U I-- aeoUckUad u U-i. U) UQ

U COC11184L m 000000-4U UuUs Li u 1-4 -

U0.- m" I-wu LL. L6U..u.U..LW U..JU u u 0 I0

Ui Lu40)CUrt UiJwUJJ-J4U QUU UJa U zUe~uu wUUWwom J.JJ.Ju UWUQ LluU C%

(ju.WIUUgu Ok U UUlU

Q4 UV) UN..ee.-w OUt-U U4

U.)MWZIZU wo440 zU UZZZQZ"Z UON 0~uo 0 IUcet A -J0- U" .. '?"Co- u U UC.Uf Qx.t-4 4- 0D

ow ~ ~ ~ ~ ~ ~ U Io~ I. 08 ~o Mu-Q4- 4n)Oa

U.- CO 0U U CD0000 - UCU4U 00 49W U Q0 - S" 4I W -4 WQ l-00- UJ Z WZZZZ (Z-UU eoNP UZUO.Nvm 0.H 0n-mU~at. "4 CL W-JU Iw4 .-..- e-'.-O Q- -m -4 - z ml .- z 0'4UWLQL-o W0 4 )w U~ QU4U 114 "qUI-U.4O if 0 NOZ10 "WI

U4 .JS 4-.)Q It U00U.40 UUO. UOS 0"0 0"OM 0

ow 0wUZ.. u . '44 4 Ls-e4%i U4 04 U U 0 -4 00-4-

UU 3c.U0U4 ((.J0 0'UO 0.U-. Q 00 'O 0Q~ ~u Li .J-O J (-) CJ-U 2 t" on 0

UUI U 44 UZU0-J0 O4UO1030

* ~I ~ 2 ~-eZ0-.e'AL. UW O UO U

Page 144: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

LUUWWUJWIttullUWWUJWLWLULULLLLUJWWWWWWWI UUWWWWUJWWW'JUUJWW UWWWWW

Li Li i

U j uJ~

L.2 () L Li

C-3 L Li Li

LIj UI C3 LiQ iQ Qi

LU 0

0 UU IA IA Ln QA (1 0 0IAU)N N~ N N "U'- 4 .4

Q U C)U

o Li . 4 0 - 0 UU N 0 4

N UJOU N z Nl LiOU nfw ~ U.U ww Leu~

* zU * * UZU *

009(1 o4 .4 2 4 .41 U)-8U 0 0o U08 N 0 UO.U

*.00 (1 O u011 o 00 00 U Ug 01 00004 Ul-U uc% ox ~ U S-Uo tflh- 03FtVNw Uit0 .4W0 Nw "4w N UV)U Nw r4mw N

J Ow U40UO Ww 0 w 0w 0'-w U<4Uo pa. C'w 0w 00. O4 N UWLUA.V4 IA-4 N 0-44 0.4 4 UWUuA'.41 It n.-. I 0"4 N 0otn-m CJUUNO- NUN- ino C)-Mt- QUZjr4(O- (In -- _t

N.4 U-Uin-4 m4'~ 4 .42 Us.-U -441 ON-)J .. 2 SlON * UQIl.4 0 v.411* .1 .411 V4 If wz~i.4W - r4 1 0 .4W .4"42UJ 0cuO0ve4W onzw IA2'-ft tnzzw u0wol'..W oliuj uZ"-W Inin -wz UZUN wn N wz N wm N wm UU)U4 wM Mf -wz Mf %w= M

woo 11 'WuwU.N "OWM'4 ""W"-e. 04UJZw .4WUWU.4 P4W N 6-w' '4W2

2 22UI-.uo 220 ZZ0 220 22U1U-(jo 22z0 Z20 220'-00-eU C-4 0 0-msl 0.4tfl 0'-*- Q 0'U U(7%0 0"".4 0" os-rtl Oes5-0uI-uWu&L4Q 0 U-40 Wo-"4 0 Ut-4r Ul-QUWU.40 4-4-NS Ut-NO Ut-_N

2 puS-mu z z 2 zu IU z z 200 O4UOd 00 00C 00 0'.JuOt( 030 00I CcLUO u~Uiua U0 QO UO UQU(UO U0 i Q

0 U 00 00 00 0LU 00 00 00* 0 OOUU N4 IIA 0I"U U 0 N.4 m

w4Q0li U -4.4 .4.4 F4.4 -4v-"-3 U N.4 NN "N

1'39

Page 145: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

* - .- W * - - - - - - . - - .utu j~UJLIAUJLLU J

QQ .u. Q L

Q C.

000 Q 4--44.4-.4-4.4.

(JUU tU Q QL3 UU 0uU

LQU U QUQ

UUUQ QuUUOU Ut-I Ut

U4J Ut-I QJ

2 LiL)u LiLUCU.JU MU UUZS

Q U owil U4Q3

coU U10U1 MU00WaUJP

%nOf Lt1w0x ac u~qoU U 000

o Ub die &I"- Ut-Uo ' No Q_ _r

5.4 UZUJol UOU UOQCLn U4U0 UUU UU 0

o U 0U a Uco U U ONo UN C"lU U MWU I) t

Q* ~ f'U- P UW 0 UUut

a.- ~ UU0 0U~U 140 U U

Page 146: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

43(~a~.9'4C 443 43434 -tc3 994 433aaa~44Lk4 44 .4(J'- 4

(3 (a L3 (aJ Li(aU oa ( Li f-(10 ~(aC (a L QZ us- Q w

UWa 0a Q i L0 a

(Uut- (a I- aUJI rif I.-- rrl (IaUtl jlJJU4i Q 4c El% 61Ju Q 00 (a w(a Ji b

04ao (a 0 tr3 UZ cc39 (aj T oa4 (a 0Ua-4 (a OL. I--Zac L 00 (a ft 13 L34C WleI I-- U 3 U (lcf0 0 Zcd Li Z (16 L3144- f

434.4 J 40Q3 0 (a U< aZa0OZW(a-J 3 5-0 wo~f W43.-Z Z l-Cw (a )U. (a0 0a02490

L24L) (I M (4,U 1-. -0 w Otu C3i 4- Li3f Li M4 =L0t 2 Ll L UR I--' 0 E-q - Ze. L3 3r . L3 LX3L5'nQ444U U.7c ~OtnU Z -4 :V-0 i a Q 4z (aWLU Wst.-00(30 Qa 0 mI- ZWR3 0 I- C4WU m 0 (a (a' (aZOfZQl'A12(Q -i- a3m " 4 022Q43 j XWLL~ (a4(Joe 0C

t.3L~ -4l(4 U~20Z1u, ... J3a2l (a(aQL4

4043, W'- CA OMO xlU)4WinfLLcg4 0144 -0*141- Q4 (a n~ (J-'ULU- 4 0 JL U 014 a2'cs-u.1- cf^# CL =n Q o431-c4 (Ai~c 0 -2210 0O' -2a f-e A z W849 8VW

Q w- <Z- 0 -o.J0440 0 -z Q . UaIJ t43.124oQa.4 Q (a.0~494-0 Ocgcg-3 LW -J4 o4- Q4 OQOwO430Q z4Z5- OMI0.L -iuf-el0I- 4I-aOO (a JZ Qo QLX

435- 43 I- 1-000. "Nlau OCO00 0 M.W 04 4 .4S- ( (a. zS4cW (a U- "40 - _J40 Z-- L--2-4 0. (a< U 2 (a Z Q,<ubCc--

Q3 a Q3 z 4 '-.--30 Cie -35-L4CAU ap- 49-w Q3 O5. 433 0:aS-.4U32- 0 (a I-c4 c U.Al LL040-9490 OO CAI- (aP. .2 (ad Q0 (c=

Q3~ xa Q 0 5- - '... L49.4cra Z 0 !'d 043 0~% 43..kwWU .- 0 43MC z34u (A W Ou.IU m -UZ CUAQ 4A .0 Q"443s Q-

Q 0 U-AO wwO4 -J-539-4ZZ aOC.-.tL *uJOZU Z(UJ (a- U4-'47-oa0Zn U e4 (a 005 LW-9049~0l- U0 1 !19EW U-Z ~ 43WW4QW'-s43c Q OCOjU U.04 C9.. 45-.qOZwZ of^ W-COW-U(LO 31"0 (a QQ0a ~a00 Q U 44 '-(j ui 0~eU.W~Kc0LL t LLt U-~3 00 (a ocZc 0"

4cl)"" 0 ON. Q -fO

Wo- 4" f NQ Kw ft6 wf.LU '-f -w

tj " t-n e~(ka 0 a- J04'G 40(aU Q4J M3WW.35U45'W=O"4( 4 .3 2-1.3i3 401(4~(a--9 2(a -- QLUcQn~O.) 15- - (5 -Z.43w5(a2200

0" - .Q W -z 40z zx'-'- 0,Z.444 QW-5-.-43-4(aZ-.

U n 03-I( w434c 0z"-

4 mo 43 X43- LiZ-o"43344 WU ta MOM4433I4LJJULJU.M<I3L (LL

141

Page 147: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

10 101 10 *, 1..* C000.

V..~AXt 0 0 0 0 00 00 Q000 000 00 001-)000 0 1-005

'-I N r 0 LU m~ 0 UO 0 UU*

:3 Q 7 0 4j U) QLJ3LUAI U. 4 00 U. '-.1 "'ZcO6 0U U Q4 u (.

1-f Li 1-31O L3 UO

Z NO-= I I 4LUJ ULU4 0 Ol

i-.2 T (A 71 e en 4 .) UC.DfA Micn 4 39 Z c 0 QxU2U 0N. 00- 2 x 0 U'-. ti1-tia L (JO0 CALL le L3-% -. Q (-3z ( LiZ

0e M4 a - lJO C Ui Li4din LU(zL a 0 CA- . LnP 1 s 0 U U 6J

LU 1-aC4 Q Zo Wi 3-4 (j.JQZ OOi0" ~ ~ ~ 2 UU. 41 z (0 "qin ~ot JUe

a 0..j b" 2M Uc-44 :) JCenU ()Z

tW n MR( 3 1282 8-(A 02 x -i WUO Uw-eU-. U4Uw-

3 -Luft z 0 le Wjo mtU 0U* U>UO0 '4% 4.4 3 xU 0 - 00cle (C

-1~ ~ ~~i 01- 0UJ juj:

LU OLU a4 let0 LLS" 04 QiO j UUO UU

1- 01- 4 0 -0 -a UU(O IAUO0LO4L tu 0 u04 -J UOU 9 IouNO

I-'-. 0. ULU 1.) 0IA mLU WO LU UAQU UOU00 -J. - M .. I-t U4U4fj U4

0 LU "31 0 00 .. Quto u U..inC WC 7000 0~U-t U(3c'

1--t 0-W LU Wf- IlU LUOl i UUL UQ U1 Uj.in31 - 0 1- LL0 I- 1-Z -402 QiU U2U

40 Z-2 2 391 242 UiiU UOUZ-N^0 LUUMif ce Of3 no. ae.J au.. Ul-JUCO LIUtn IA

q m 49I--g Z(3 3i L" La3W .- LUA Z 0 QJ. U Z014 1. 0Z-490- 00-- 00- C rn . 1-0. .4LJ 00440 004.4N.4 Z~fI. Ut-e 4P-. zz %O- =4 OUOU-I UOUI-WO044-. WON WOWI~ Wen- Lsgv- w-LfwW1 .- fww soa O-U4 .02-- 0

in.WO qZ -A0O DW00W0 ftzw -x U ULL.4 U Uu.CO

OC-404I -- pU&LL. UU..U~o9aw-U9= t 00 0 0 0 0 000.;2--4cLd CO1 4 L

fZO.- I. I tU L

,J=3 -. 4 " .4.4. U -oo4-4 .4 zucu U dCIJO-

Z4acc-3icw jaou~e3Liu lcuca( U30orju UL- j UL

MU-%0MIUKL U3U.CU .g.U-CQ:U.UZLJC -A Q9~rJJ uto

142

Page 148: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

LiLU L Q 1i L3~ L) Li. i L.) Q L i LiQLQ Q %i( 0i~ Qi% Lii LiZU L-) uiL~ L~ Qii 0 iiij LJ Li L) Q Li iLL U iiQ i i(i Uit U i-L Qi LI-)

LiQ Li LiL Li Qi ui Q49i Qi Li LiLiWi iU uii Liu i Li4Li uii uLii

U f-i UMQi LiQii L Liago uiL .ii3 u iI. % ( I Li-JLi -4L3 (i Ii ( I C 1,L ( LiU t ct3 L3i

u i Lo~ifr-Q QL~ Liu LiQ L Liii LiiiuLi L3 U U Z U 0L Li Li Li i4 Li ii Li Li(L3 t3 L Li3 10 -Li I L3 CL LiZUi L3 Li (Li Li.i ui QZIi3 Z IL3%i Li . i Li. L U09 Li ) Li

Li LI Li'4Li cw t tLiL C" -fLi0- Li L Q Li Li LI LiUi (I UL~z I-OtLiL ot. - tL3 L u LiLiL Li LiLi QLi LizLi 4 GX3i Q LWU LiCL ii Li i Li

Li ui La-eL 0 (a N%.(Jii QLiu Liu u~ u uLi Li LUJU OQZ AL0L I-%O QzL u Li Li LiLiQ uiLi 0 L~LuL LiQLQ Lij Liuiiu u

UWQ LiJLiuJQ j~LvL Li0L Lii QLiiuLiLi Lt-Li Z %.LUWQ .w 4u<U LiOti Li LiLiL

ULiQ tAi Qi~ 0U2LiU " LiUCi we) f LiJj Li LiLiLun-li Qii~ i -JJO 1 WOiU LiJO LiZQ ui ttUWU Li -j' u . QU -~~~ U) Li L0 Ui Li Li

Lit-Li LWUu 4 Liu 414 1- "qLi1-L ULUJ L -Li Li LiLi Li LiO3i 04 LUULWU 4 Iu Li Li a (LU 0iL LiLLiox (LzLi I ^)Li0L -j LiU)Lij Li Qi QU Li LiLpie-e t-i l %L qcimtj Q -UZU"4 LiO3i Licgi ii QLiu U Li-eU 2 --- -4L OCUZX I Lie-Li LOL Li Li)U-Jui LiC3 0 S Li-.i Li -Jfj~ti-m U Li LU.L i LiU49U zi -Z J -li-4 JJ OI~iJJU QtU QvL Li Li01i:LO LiOUi 0 2Li4Li f) Q-izQ~iuL Li Q LQLticei Li.joi - 0L.JUi 4 Li~i~ut-QLZQi Li4Li LiujuLU Li Li Li JU Li " LUL) Li* .JUb-ou LUQi (Lou

Lk-Li0 QC4L LU CiUUt.L- V)Qi0U-%>UOU Lit-L Li4cUZQ f000 tn WUioi I- 4LiiuIn-L. U u U LiLUt i-e"i L Li 4 Lii Li 4c Q-iL~~ U iLLO Qzu

Li Li j~ PWO - LUU0UO w-u Li-J4Lc LU Li Li zOW Lit9Liow UL4~i,. l-LU)O'%L.-L Li U LW 0

* In.) iW-tim- 44iWjo U. 4LQi-04L LiRAi LU)USl-Li UL) 4 e-.LiZLic5 OuCuzounfi LiO0i LPILi I

*IJOQi LiC.uo0 w-iOLQl-( JuicLu.-q.Oj Q UN~ooieLi LiCLi.j fQi Li itlji-.j I-tiU)O Z ILLi 4Uw("(lLU -4~cv 4 "Q Li Li Q> Li

L-Li LewO% I& 4U-Keo0c WQuU.L -4Li 4 N U N CLuDc uLilt- of-(0100 LilUOw 0LiZUXi0 2Li04oCi Li- 0~~flZ Ut-LiZ M .JwqLiqjO (itutio i us Li 050 U) i 3fli4i44~ L

tjwU) Izclj38 4jmJ .1 womif(d

ulnt NZUZwoz 02 %OZQ 0" -Eit Umzuwti- * 0 00 0 ie(-"N i:LiwI-w-

LiI-ZI-Xp-xLW~IZLUWL Z-0iiu. L4iLI W -

Qi ii u Iii UO Q U LL QuOOQ0u QInoLU 0 0L30 ouii Lii uLi( uui Lii%j

143

Page 149: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

Pap-.= .- F-I-...

000 00 U 0ox0

U00 Q00 Q01 Q020Q 00Z U0 Q

UpL LJ9-t 0U O

040Q Q-0 000000 0 0t 04 0d-.40 0o Q ~

* ~~LM U~tJI

Q0uu 0 0-0 UZ U000 N Q.0 09.- w0)00QOu P4 U00 ULU Q4 0 0

20 000 Qu 00 0

Q.-U Qixo 001n leOQflO If-L .4 Q" Q-W 0 4 -Q 0 040. QU 00.+0cf No U U-00 0 . 0000. tn QZ 00Qia k.0% 00*0

tn 40o.- 000-0 0W -o ' W -L)Lx 0ea CIU.0~t OW Q ee c 04 4 ~

4 O Utum 0.W 09M-0 - 02" 0 O' 0. %U.4o00

0(30uUO%%o NZ 010 09-01. 0ocj 0t 0 0-r--c 0% 0-.I 30 * 0 -J NX NX N NX N%.MA *%40 4- 4 030 oW 0 '-4 4 4 4 oc .I -4 W=4%a

000po~ )~ 0 ZN *Q00 4 0 0 0 * . . *o.

00q NPU- N 00 a~ Nq *4 I 11wIcm0clZ 4Q0 09-0jjjc 1-0 0- '4a 4W <W4 P49 A4 .4w%

L 00 *zx O.MAo 0U0.* *

Af 9-0 PNJ 4 ~ -- Q'4 0 -WO Q 9. 4 . 4 40ekrLO4 0 ~ ~ u '.U.0100 0 d* 4 4% 4% 4

0 Q0-W Q Qn 020 U90. L Oa 0 0 0 0 0M 04 U( Q0'- 0 04 0 .40o CN U 0 P0 =~ 0o 0no

NS N-(3 UJ OUWO Q A Q 009 00 .- dt0 NC0 fnt0 -ON -4.0 -4.00

% . . ~0L0%@ 32 00 .29 . .~9.~ ~

Page 150: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

Q qj

QU

Uk)L U UJL

Oi L3 L U0 -i0 L QQiXi Q Q~QLo Qi Qj

LiC4 ..i "4(j Q

QiO.Q 00" IJU IJQ~ Q . . ( irj

0- .4 UMQ

U44U MN cm N N N. N 9 L

o*i 00m4J-4 9-4 - -4 V4 04b4 Q-U.) .

4U~ j l 4c uI O I I U Qvkiw-QUO w4 w lb Q~~ iu.jQ

N 3 Li-us 0 0- -~ -f - 4 UM/UZ.4c U0 oLW-97 '..4 a4 0.4 Qi

0 04." -0 1 ol 00'o NOUam

OQ-U JW 00-o 00 0 (1 g

4c ~ ~ ~ t owlu Ci Z-0W)- -:-3qc-OJ L)UkJU

wmmzLpwi Im-)4 4 4 4 4 40wZQQ

~-u d~UZ Lo. w NO'* LJWN-6 4U-Je '- 0g FLiUUu .

4 064 .4u 0 4CUWhI K J -

dl 4jf".~ aW W xtzj fu

ou 0. r-1 0i 4 4M 4 n 4 o-(N Um.Zt~~mZ U( Li zc m f"W0WOW0W0WomtULim-

0 ZUZUU145

Page 151: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

7- T 7

0000000000000000000000,0000000 ow%0WC~~0O O~ N(QNleNC wN rf( l1Wi4..

kOOO000JOW 00000002 * CZ20 C( IV L3 0U MO L A QO0A LoW 1-0. * (A04e 0 0in ( Q~. 0 z~Zl..ctzx4 LU

(04 0 u1 (440- ce- ~w 401)-

0LUI 0j 09 C0Oi) Q00U."4cl 0 d4 Z 0

OJzl-w 04u 4j 0 0LIO 0W1--1U. 1-.-w 3U)44T n 4M.) Lii QM4 Q '4LOL Or'l W-.U 0 a 0

L.je 06 UIfl. 1- 000 04 Z1-4Ic Z 30~ 0 ur

tO 490 0 '41 MO ko-C0 01-ZW)U.,- 4 (j.-u.. -- u.

049-44.)J 0.- 4 j 90 004z 0-01T 0. L - ma

044000 41-T 4c 034 Q0 -WQ :3450"w * 00~u. t1-4M- 00 0 44r. wrw .

t- w MO 400 20 ki-J l)Acte iu-l-

0i 440 U09 2 oo .0 I.- O L JWWOC %.4%~gc Ou.e LujCe UQ"ef-. 0 usw zi. 0-.u. zs 4.. UC

00440c~ z -c..a 4AS' to 00. 04-0 Q ..cOWn4 0 . 00 1-Li 000 0O. '1 00 0z xooc0CLLAI 00 0- 044u .- et0 tup kjeILj-* u

QA~jj .j 0-1 .0 -C-O 13Q 4 Q1-2umOqi"(CQ zc' Q-1-1 0 0-aco 3us ~ 20u. 020 4c 0 &u -40 L -Cl'

0AM 1-3o 1- bt Q- UJO OLOM4-o m O44-C 4(O L

f4j, OWog 2AO 202 Qt 04 .4%w02u4z 4C.9f 1

u4-i0 0LO (1C4 0. co44 2 00 040.0 LL Z00Q 00o 0. 2 -WO t- gO 0 0jl.4 Q(*-tz4..jZu" XL -W .00420IO~ w w4u 04QO4X. M

04JJ O0L~ 0.j2 . 00 > Q00 j I wwNW4-u0' 4900m4 S04'.J g>b-240 -Qao .0L 004Z'*%Lu2(-- 040

000c6Lk 0$- .0.o000 0 ft- QOwO 0:004 at*- aml~0-u.4u~j u *3J u.I-u..U.- XIMM 0 . O...l 0 U. 6- m u..004.3 4410u4O Qm. Z ubo- aw 3Mn QOV) 4000-A4) 14ZW..4--zWW4Z0oz 0.JO Qfm#w2%A W1 3 w . 1.-MQ0 .g*- 44z..4..J.. 0.42 0 Z'- Cie 4W-44 09tLo

0140fL-W~0 W0tJ . 4j 8 0 -. tie" viz1- 00 000- q0 u.444 C-44 oq020 QWG.4420-'4AW"44Z OWa~ 01-.4 .-. 411Q IN 09LOW 0ZZI--NZW W LuO O-N4

002'-J0 Lu 04wc Q-~~ 003am-r *MCC..~(L 4"4 2..

0 liij co I(.!U3L-J 01- o m 1- 0 -02ttf 44

kIW O1 --00% L

Q 0W0 UQ Q1-4- 034 4.1-% l-Li.-.04 .J 0'.30Wjt44 04 Uf.'1-2*L1-u* W4 w4L

* 0U'uU0 4 u - OWW-0(2 0. 201- -44124146-

Page 152: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

u Q --

09. U UUUD-

(4W .4 W 0 U c-

a ~L) Q (.l)z Li

Z2w w4 zU mIU U3("I-UPme m . U Uit 6O4"

024 1 0 U U) UCfl4(3UQ ... UP U L) a cg(

Jo "W4 Z. 0 Uj U)O U.u

LLU ZU C3 Q 4jtlozU

WIg u- u u um -JU000

(4 OZ UU4

LLZ: z OU ug4~1- 0 C3 0 U JO4-

- W -U u 4aU- -

_LU j WC- Ou..u QlbA3jU 0 aZ: W' O~W 0 UWjuU UW.JUQ 0 0

0 I- U.)4L) UIl-".jUj 0 0 aWow I- - tj.-. U2LL000 N C%j 4 4(W (40 40 C.Uc U ZUa 0

49 1- Z 4U4 UUWU "4 .1 N4 1& 0 U> ZI-IflU I If 11 11

I-0 W 0f.- LUJ ZQ fjl-'lc

00 1- LULU 10- Ue-.OIN U0 U a a aZ 39 4UW I wUccel-4il- '

LU Uc W UU4UZZ QiL.U- J Q- ..I-2 - -0 I- uacU'-' Q044( 60' ob Ow

OW 26.- 2 Z2U04j--P Qz UZQ- 0s 0LUC. WU4 LU. LOU U0'oA m"- U4T OUIA 00 *a 00 404Q-Z f ZO Aa LU1 30JtJI See %ec!--U a-CJ 4 d .4

cca 00-of 00-MAJU(7 %%." -90UO . 000 a 0 ft w 00 ftZN4 00--ZO2(O~m0tZUUWLUW-%-a42Ug~"" ONN 0406 ONt0 1 acm(Ju Lnl-.4 4f,-04"4 ,mum'j 0 0 SPC4p..004 4 -N 4 N if "4 N"4 N of "4tUP-(2-44 P'4 W"" J44 - 4 J-'4~ LU..JU -- 2-w ft .tw

Im- wwMrl- an-f -U%-m kJ4 > ww 4Jlg U m" 0:)N OMM c~-- 0

mw4w-s4W44mWqacwU UZZ24u-w,4'.%mixu0z fWQw<.z<w4z< Z-4

LU0OW~flUL0~OU U.LU.OOOLU4UOUOOWE0 OWO) OWOWU UCX Ujac UQCC

* UtUq JU .,)(

Q4 u4"4 .4 "4 U " NNNU~ U " N (1 (1U tU fUL.Ut i3i

147

IN

Page 153: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

I-M30 " V r 004w% tm r o0 O%( " vt

LU

C3 LJ

(j U

(JOfQXQ0 0

00fta0C

Q tI .4Li

00U 10 1 10C.) of NN1 f IU

* Ci b"

Ql -CI

(JOuu00 0C0 " t 0 m n

8W N9o 1 w4 - tfNC4 Q4 -

mpwix~~~jin~ 0=1 0mr 0nc 0= OoO)4OM M =r 0

0 0 Q 00Q0 Q 0 -t 0 0 . .0

0 QC" m~- . . .4 . 4

-j ~J~(J . . . .0 0 0 0 0

Page 154: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

~~1. l0o(J4 1'Or 410--4N

00 a00000000OC000 000 OJO3(:i JOO~c OO30

QLiQ Q

L.3

* (JOU

.4qt (3 g300 ao

U(i 4 3UL U 1 Il f 1 i

O(JO

-*2 0 "a40Q 0GoN

(1 4 c fcm MN 4 OUJON"I "I !M N~f mI " r t

OZO0= OM-KZQO M M MtO~ M

zqc z ~JAX4C -4 Zcc

owo CIAw4ca 0 0iel 0Ja 0W 0OWW ocoQW W C0

N 0 0UI 0N 00 Gofl

-4 t 4 t 4 Ln LA -4 0 0 Ll 0 0 0 0 0

o 0 0 0 0 OLO * 149

Page 155: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

4-44--401-NNNNNNC4%NNNNNNNNN NNNNN-N NNNNNNC' NN NJN N N"NN N 1

00a0a000 000 0000 0 0 3000000000 00 00

10 a0 N N N 04 ( " r* ~ 1 "4 ft- 4 . ~ 4 ~

-4 0 0 10 Q0 a0 4 .M Go (01 0 -4 .4 e4 .4 N N Nm

* a 0 a 11 If N f 4I0I

N- 410w

1040 cmO C"4 to 0 00 NO m;o 40 0 loo NO1

a mN ~Iftwl VoIN -ftcoa('J 04% a,4N la.4'. a,4N a(%34*J a. ON a..40'404.a 0 04b Or4Ja .0- , i m.0 Ob; ON- 0-0 0" S. 040.

00P. 0.340 ONO Om0 0"4. OWN 004M 0N- OMAW' 0,.4'0 OWP- 0..NW'4 (" N o f NW4 " " k4 f- N "-t NW-4 NIS-9,Mo N~-r mi N -P N " ? N"l- N"4-

LW a5,2mW GD-2-ww -a5,wWC P5,wW a5,-wW ftwIJJ 6.1-)W 0-5,.w a5,lWWJ *a5,wWL 0-wuj 05,wMfl amco 0O( 0=0 0:)-4 o=N 03'1 00'.?t 003l C3:50 amp- (am0 a

Z4 Z 4 Z4 Z-o Z49 z~ Z< XAX4 Z-% Z< lOWOI OWOJ( OWLI 0' L UC OWOS OWO O3LUC0~~ OU'. 3UO OWOUJ OWOM

QJ90 Qgyo ~aoUC9 ui~ je. QW o Uw w C0 QJC0 tuc

N --

150

Page 156: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

0O000ooC OO~o~o 00o00000,0000 3ccoc:oocccocoooo

U4

UUUQ

U41U

U

Q(iL

UOL)

QUf. -Qtizo

NJO

If 1 0 0u 0 If1-

* . . *U J 0

N~L N (n~ M~4I-

MO 42 00 040 swo -0 Uc U IIjo!.9 0. i 19 -1. 4 -r- - '.4 U-- N - 40 Q WN- WUOUfftf

0* am a OV Oc - UWU O . MsON.. ONO o - S- '.. 5.4 A 4 0 UI ZSU o 0. -J

4 Z-4 Z- Zc - - Zi -4- u4U '.OWE4 ('JN ows Ow Oo own NOWE 404cf 0W~ .4. 0Q'O Q0- ON. 0EIW oui-U00UM0l.W

oe~aa~ goO 01- ONN 0g~i~ Ou O -)CU-f OU

I ol15

Page 157: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

-4.--. 7

0000000000 Q~ OA

Li Li0C c

ui Li -j 4 :oi "4>Z >- U. 0L O w I4-3 OLU Q z (A w.tU'.4' "" < 4 fn m~ OU.

LiM0Lilv 4 U. 4-IWA - -0U LLLi4~~-Li 134 w- 3~4a2L

ui4 Li '3 0l 04.r0404 0 dm I- w 0(JU-111. L3 (I w -s LU 2 0 -.. -3 - 2 ~ ~ U

Li i04 0-1. W" '. w U)U) UIA cft W - -Z LULiS -U)Li =tU z 4i LUU)4 Z" (n<" 4 "'. XL34U LiL.3' ( 0"-. "42:N 0 U) 2 4 m. I-- Z

Q0-IL LU -9 0tu z :30 Ix 4 0(i4 LuJ40 Zm.>0I -Q u.4O014 -1 L 440

L,!1LULU 0 t- 'UJ (3 40:2 42Z LU..0U)4c00z U. 0CJUwoou *i ae '4 it co f4 4 (11 V, 2p LLU.(-100 0 O4z m wt()4 I- -4I-20 (03c Li :) 0 0 OC -LU-w CW4.4 cLU zQ004A 0o. 04 CUP--) -2LUZZ 4 Lu I-I- zLUWLUW

LiU4" i .4IUz cc LicL0 xiooLtimfW. Liz LL> *Z 4Z ~ Z I-4m.0>QU ZZ I- U) ( a

OW- i 4 .- w.R(3 U3Z.uJ LUUWC Z LU LU 4U01~- ccLi-w-J 00Z #ALUMCg Ui0 XL 2W 0 (J =Li0 ' LA i ( LU -ftJ -LU b I- QL (3I44~ 001 -LQ (LC.L

Li 0.w L Li 0"1J.- 0. ULRUWU " LU-0)"iPqiU "~- U) U.U.4Li AU)Li 3cm LULlXb-0 'LU CALL- l.e 444 X (

Li .- 0. Li At 4W20- -4LU..--.-.2Z Lu.zczIzuI4 U 4 U L LU*(Joe:)0 Qi W.4 w. ZIO-40wU0I0w 39M 0iu 4 003

0i4L Li NO- Q ~ 4s W4ULI-) LUC3CLV 2 Zw4Wz~~t~c)QL m U

Q-00- Q. Li LU'-'LUQI gs L LO. -0 - L00aw 0 - -:2 0 C3 0 -- l-4

Q ^4 Li Z -Luce -C s 0 L )44I U. U.4)-i-.-I 4m 44400 -.J Li M ( UJJX421-I- CU"X-Z LiI-Id I atW4 41> 444 U.> >>LiLLi2Li(o Li LL =U0I=-U=uE....4lu.I-fnIau0 1~UU c444 L LU-1 -1.-Li.4- 0 L U.0ZU"LIIU.o OOZ- 2901-a U. U.C 040C c 00 V)494I-9-(Ja get8. .4ft -0 4 Wuc-f W4-Ao >4>X 444Z0td~ -4 -C WO00440 Li .jup4 L UW4CX0I-I"-04404 U 4U~Caf1-w~ :) 0L-U44-0LI -4 L Q ~ 9OZ0Z _j LU2guW-s.Wixm~ 9--- .i 00AC ToucJOia Li -=-UU-Ma CUU 0 (DWec CLuiottfa- -0C 4-6 4'-. (jI

LiUzvo( OOcO.LUL .ZZW'-. L = C.- I 4024Z4u 4c4ZZ44O4Z~q44LUW

04964-Z.Jt LUI )DL0 W#O-4U Q 0. c44 Ac. M4-.9 -0-LIu 4- i.-s MLtOu O'-Zr LUIiuu.o ~ j~L3Iol- " u (j

Li0 .I4Li LU

WI. J0i.. 04 4 UU) 020 U)0 tU

000000 00U.( 000-04AUL UQ O t~jct a t'-< i-tLi~- QfqX O. 9 U. L 0 x o (54. V I-

Li cc42 -0.)-LIZ Z ' Azj-iiim

Is

4~ 152

-4 Z

Page 158: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

X~~~~~ x .zz~zc~ xx c cxxc3z~

0000000000000000000000000000000000O~04e11fl ~ C~~i U .f~.OO O 0 ~ L l ~!' O~04 ~C~ .~f '

'44 '0 4

4 C3 3 0W 0 Z _0'.U

z-1 1 OLU Uo 4 WU (n j

00 QU. Q1'- "" 0. wLeWU WU Wo XUu 0 '. 1-0 *C3 0 1U4q LU LU o(=

ZZZZO .4 4A LULAWM -(L~ (L 0>C az W4-I- * - 00 lu Z I.-luJU) -1. 0O LU m .U 4vm za WLU4W 0 "44 4 x4l 1-

02000w~.- ZLU>Z x -- I 00(A. 0n- .4 4 ::p4 9 1- .10

I- 6I.LU.-. rf~n 2 4 LU -4n M -M 034 Lu eo1-9-1-4 CAO 4 (3-LU(A w.J) 3.

222o 42 U9Z L.I 44CLUZZ 22 z ~0 44(40Ui a W W 4 00 0 1 LU.J0zZoo0.0 40 XLL W aw-0u2z z z WW~ q-j s) 1.-CL -LU47-.4 Q-9040 >1 4W w

LUw ULU ZG ~ ~ " 44~dWI- I- M~U 0 mo-44WJ

LU-ULZ4b4 LW Wx 044o -4 -C ad 04M4U-ZLUu

"UL L W l, j i U 0L(4 0 (4 4 LA. WW U6U. m3 a0Q.Q4xWZLW LU I- (-JOG W~ 1--WZ I--4 CLo44o 0 zz00 20. 4002o=Wm LUwz0.J( W 0 0"W

LU- 00 .JW LU.-44 4~4 OLU LU ZOLU>X LU WM0U74WZ 4LU4LU0 4= 1- 4 LAC3l ZM>W LU ZA-JM WU z m-.-M z

1-- -- 11. 1 .10- W-~n 0000'uZU 3 x O-wow (00- "4"o 4,444 1 I a wdc - 4Wu LWOMU Of.- I- (jK 23 W W4WjuoOU)U. 0.0004> -W> -2 1-< F- .. 1I WW LUA LU4 U - w> W)

0 )x(e1- - 0941-- =LWcg ZI~ d m 0 (0 U. x:I-a 1-1Z- o~2- 0WOW .. jou.1mo4 4 m00o IU- 49 mo -(44(4 44442~ wwU.".z S U.0 "O.002 a1-mv) W4 1-tLI I z R-OT 0wow WWOW 10-0 W LA. 4ww .I~ w ac 1-OZIW 2 cc 1-- 4V(14w u)4m4c.j 44 Z.j Lu04 .- WU00 1 LU LUJ M-W W LU4w4 w.OICO- occo0c4 lcwt04c LU.. 1-- f-jaLu -I.- I.- _JO_ -ft.J 1-0 1U4

.J # a. j > -0> W c40~wJ~~L 49ZO4.(44 Z .-. "Z(JUjwip J .-i wU>4<O#AOw x 4.40W> 4--'Z 1-

X %c:)W44ocLuo4q 0f-- .4 J cf LuZ'-. cr 0LUQCI1- ccF.-Z WU.0 I -tL0(0-->C-->aC2Z4CQLU (4W.,U- U-LUdMWLUUC U.IL cc Z -C

0o -0&40 0 LU0.G.C acuI4 4201 .044 w0 0-0 06U.-mLUj Lu

1.-O0o-Q0l-O01-0o -LuIlu~ LU 1-OC.49 20.0-4 owncl-t-M 4t -4 1- P-9-. a.Ir 7 o" OMO 5 tutul 11-12 -m

LU4L4W4WWW4l 144Slztcc 44zz0..-ZZ4Z400UZO..W00UW0 3 Wa4 Z -0- C "- U4 04"d 0 ZX 2.Z.jZ Z kn = >U.LLUw0 4

OWn *i4

1532

Page 159: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

7 7

Q 0t4t J(J QfQ L

U .)L

~C

C- kjgU U .3

fl Ul -- LA U L3

Q2 U o I-. .J: Ub (.3 iu'w 4 e Q ~ 04 QC~ULL U)

LU ow- 4 Q~ LL I I-o (.30 34 4

a~ 2-u uZ4 U-)C. Z oz 1. U 0 A C*_ >U LU i-. 4 oj U2 - 0 a- Ulu") 0 0

-4- LLU U'Z'-.A L3 S2- 0_Uj 0J 1-iI1 -st..0 IL .u. LZ)"m ea (3 0"49 (J UI. Mi 2

I.- ZWO Zoe at Ue o a .1c U(4Q. U "-C ot4 .- Wua~o u. 1% 64- 0 4 U.j - 0 i-Z o- Qx(~ .J UU Qa 0 Z 2

2ag OILU4W). Me Q4 Q Q (3 0Z z'u =Z 4Wu M~0 Za0- ILJ33 (_

1'-0 P-4 1- (.3 -%Jl- QUd Q ~ % a 4 U 1.0 1-2WU We-.Z.-4 U 0-abz am X O Uct W U '4 '

I- I-4.e44 WC C3 U .2). - (Az QWX U4 4> 43 UI- 6.0 Ut) U

.j04c02Wwu I--Z- t-j0 -:D) 0:4 U)I- )OUJ-.4 =Mo4AUUUU *O(fl-J -. ozo UCO U .48 .4 --C 4 I..ac no~4U~ W~ - ft Q U 9 4 U G~..j ..JWUICC 4I..wuAWjccC U of~t - 4 .Qo-. Oi-Z UJ *- ft0.a >U. 044 col-.4 49ZZU).J .z 0000 OM U 0mnus-.WL044 LUZMm~tZo ..Jm U 00 a a UO.Z U.-.J0Aj etus-.uj0 rWL UU..J.Q~=%. a wa-2 QZQ U v)a .JQ L" U Cad. j U(ysU a -4.-J (#) a a U'-.- U Z-

S" LL LUMUCC Q~~W 4 -- Joe - -.Z. Ui x U Luz LU Wam

Z4Z44 C3 1-:4-C. am)" U=Q U U"1 -UOi UJ.J0 >L4>ZO aOg.Ji Qja ULL "Pu9..0 U o 0 IZ

04=68434961._0. (UO U 4cz 4 4.1

=N- OZ _Z3 .JJQ~~(4C.:E- - a:U(3 Q 4 c 0

t0! U MI

uZWZ4OZ4 O)k-I. 3-wo-cx '-.O#ALj coUZ U M-41- :)~.~.~~~flu)U444U .Z a o%.4...~~gO Ui M.w CL A 0.4w

-J- ea)Z. O0.4cf^UL3 U Z 0 f) ZZ.JleZWX8-IOZ~qC .Pqa l.. UW4W -e4.4WLU

UO 0Z44 Te 0 WAAQUU1 Q 0 a - W - w efQZ.JEZaI UojWU U N *,Luc..(" bio a.10 0-

UI.-OUUUhw~ .*wgZ CJUWWWWWLLUZ WUl wLUw10 -Z 0tl.

V( "CC()U 0 aIJ.Z 0 a

UU U. N (1 fl" 0UL~UUU J~t(J iU tJUIU -4 (3 Q 0

154

. S7

Page 160: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

u' (04 4 t0% 131-4

C3 0 GAL 1-4z Oex N.4.

4 0% "4 1( .4 LU X:DU Z. f'.9 0% M4* 9.0 Ow

I-~I 0% zJ l u ..U. a. *%* 0o.U

cc 06.0-.41-04A 2 Ox3 0 W- LUJ0 2t_ :) Ly.4 .1- u "C

'W"-io LUJ L3 L) LL 7 U..LUU)0% CO10 5-0% Qu. Q"u W cU) .j 0% UJZWO z u UOU-Cg

o 0 cc (ae UJO UU -200 LL LOW =0 i-Lu Lic %- 5-M -

-M ft O-flS..9 -U .) u =0 . ro

Z- I- COJ"(C QU *Q 0-0 (.5U6iU U. CM ceus - UX090 U. P0 OIA p 4CC00W- Ce-i QI-Wuu Cie Q

.411 449 U)%j 2 z0.0 l-4 Im- 0 Q MQ J= J"'.4 4 2u 0.W 40~ Us U 30 (Mto 1" Z -4 44- QCW QO.WQ 4 9 MU)

LuM a M4ei. cl .4 jQ x u-j.JU tLuA (74 0.J 0 Q" )IU 2 uj0 (A~~ Onaccrb OIL U.-OOUL-J LLU)

M L 01. 1) qcvLUOWI POO0 U:) Q i (3* . 4,"4 co -W3 I- uaOQ2 2<

.:2 2 cez20a U2UJ u'.40 "P-.4 4 cnt44.-. OWU uft.let 0 2

ft z 2 o 2011 0Q UJLUZ Luft 0 ex OOC 04-~Ja .42 Q.Lu- Q OI

0 6 . I- uW14 c U.-Wu 1-'..4

L ~Oo 40l-- lb LU -0 0 W QI U 4 D-.0%LU W'4 m'j -Jtuws4ca P.2. t- Q dIUj t-06 1-0

1- i 4w =4'- UJW Z) 0 uaWuj ~ .J(7 '~0-0 i 0" z Lsz0-in Of W2~r 0 8491-4 490% 40%

1 4 O'-.i O91AQ UiU L LU

c0- Z ,-0wuj 1- iA * W.JQ W(. OCC44 492 -CU. '-'.JZ3xl- ZLU I- UZ4Q I.M 2 -

- 9" a.-. ow.-ft 47~01-4 U). 01- U tA.-. tn.-.eg 1 -* 1-0- 2f 30-. - u Ou

I.-w 1-S 5-Q14W ca ;Oz 9 -. UILP-u 1-90 5-0.=04Z z- ==k 004 2Winw- 4 0- QoU.J u -- j NiA96 0 Z o.4W % .0 0 inU CL 1 3 CL 110

0 80UQ2-44C .Z4z

0. M- 00 Z; 00 2.t in,& 499L W1O-f OIL 0.. P4 (UW-ijUCA- am w-i 0

aw4UuSq w,%4 .cO"* W-W0. 1-LUq='x-Z40U24U "M p P .'4cc'4'

39 w LW0.XO.%W0U0W0aLJ0 WW0ILLLML60.Mo'LuU."U U UO-q L.- C.0urs -. W0

a00a 0 0 OA in 4 0 U'0 0 0 04 %P WA m% mA a0 10 u u~ FT- (0 co

4 4 4 040 LJ)LIUX40 c 0 0

155

le

Page 161: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

7 .-v-.N7; 7O-77.~

~OOOO OOOO .4NNN NNNN C Qfl(3 4c 0 Q(

.2 tOO"o Z oOOOo-oo0o (Aloo okooo 0

=20.1 (i ag(5AZ ego Q i (j oi-

~~JsJ.O (,)Z0 O LiZ LLUZ4 CA LiO uiLi

o40' LL. 1 0%1- a A 0 )I- Iz 0 zm - 0 UZZ Q L4 3000.40 z2(7( UO0L i-40f Qi LU-jOCW6INr4 0" .zZa IJ ~ 0 C-)UO.

I..I. C4 Sl Z ( LWH. Qi Ui90UOLLU(c ~ t I 64W L 49 QifC Ui L3 "4

Ljo.3"3 4 -. I- ILA tLi4~ u Li~CO xWZQUc qLWL uLiZ

jAU(tLJ .- 4 ca- u QL*:

8-=D- Li4JM On QUI-UQQZ-1449, -X C3 44 0 j:1.

liO~ *-j3$j" QQ!N8- 1L. QiU

.444 -@--WO Q cUWZ U

LU c8-ZJ U. 3400 tiWxwq Q4 L.) -ZZC944 Z-4.'-e..J.* -if. Oiz Owe~ (iUW~O0.~. 0"I-Z LL ti C34AU x OLi"O..z Q 4o- A-W IJ4C tL 4>Li -. Li .4

49u 433 44-4 a"O-Ou 3c Qi?144

W9 XI- Li 4cL *-ui W i408* 444 LU 4WU-w -4 4 94 L) - LWJQ 1 Lio"

OW~4'4- a 0w-4 Lio 3co" 0j(Z v U(%J fi0ac* 1. 1.~ Li040 3t OW Q1 Ou Q4 Li

C~e- m" wJeW 490 QI- LU~Li Q" - i4=0kzae W 4 ZI&. z )-0. LiZ44-0' Zr- 8 . i

I-W s4. 4 % 2 L 4Lii8 LUO.u74 )4 - U -4914~~~ ..J ZCUAS. I.- It.. 4A iunZ

mb-07>9j.L % to LU..~ QUM- QLiZac. 4- O agil"4 1- a2U' 04 QZU 44 Li0' 0 eON t.WO Li04

Lu(* I *N 00.8-68-iu Q'o ~ )e4LJIZ8-L -Li.JP4btJ% C4~U u 4A~>9s .4%. 000'- C440Z Q>-8-f m4.w'4i M0 a'~-O'U0 to OLi.

ZOO Lu~f Zlfl C"@4 IMLw8 #wjx(cQ u.O - I.-O - 4 iCA08 -'x %. 0lw- 4C-48A-484f8 L0Li4-48-48-44A4 20400 u1-5140 a U3.-e 8'ZUQ Liw w-w1 §. _ O 49 4 U W

4141*4 4141*14 >to OwJ8UJ --tLisuf ft zga J

046 0 oU f~~~~0000 0"4cz UD"-U 1Li"OI4

9-O L 49 * 7'LiL 1000~a~~fqj~ OX O XX- Q%-L

c9-zcl-cc~cf- 3*zf-qael4A 156z

0I0w..*~%O*-wA ***OULO Z.~j~'~rLiL3 M* Ol'..

lq CU9L~Lu X *- C.. .* 9. 9 * Zt i .*C~iLC--UCLLC § OUs

%~~- Q*J-1.At *-Jl -

Page 162: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

. .. . . . .. b..

Q L3 U Qe 0cj~ 0 tNNNN~NcaNN~INJ'.4~eINN NNNN"cPJNNNNNCJNNNNN.

oooooooooooaoooooo"ooooooIooJZoooooooooo

UJ0e LLjLU CLI) 0= i 0

Li LIWQOI-- Qi 04~0~J

Li~ LiLij Li g~ Qi Li 0 L iQLi LiCi4i lv6U ti4L-J~ Q Q

*~~~C0 Q QI LL -4 ILZ ILLi i imi TO)L tl4-.1 Li Li M

Li _Li. iW~Z~i-i C3Lif- Li i 4Qi dft 0"(JLi i- - Q Q. LiZi kLQ Li

Li Q<U Q0iiZL LiKj.iI- Li Li

Li Q Li ~ UZLI-L i -IKJOU Li LiLLi -4LiJiLi-.. LiL i4Li a %J LiQ 0Lia

Li 4 Oin LiQUCI.LI-3 M LiU w Li Lo ad

Li 0d. Lica i--.i Qi- Li 0, U. 9~z

Lit 04Z U LiriM t~-UdWUOC 4CUV 4JWi.J LiM LiA- qA 044z Q gj~iz'jJzu Qf4J4Li L i

Li,* C 0 Li944c j -ItAj-ti Li4" U.Li4Lia Qi~

.-e 0Q"ULi UWi -* LiLL Qw Qi.i(iU4L Jw Q 4i Qi-0 4

b Li 0 ~ ~ ~ l UOU. QZ w -4LLi U0i0Li .J~ L LiU U. Li wi0 wu U Qo~ ~~ ~ Li. ui ) tU JO w- JmLieUT

Li N L..W~LI~U.~L U.LiU~TiW~ 1570

Page 163: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

Q Q LIP 0 u Li L3 - f-I U .i

Q AOj

;. QV~jQ %J %J 0 0 LO) 0O U Q Q Li OO OiOOOOoOLO-t04(1 0 u Q L i L l - (O

ULL"i ( UUU i ki Q U Li li 0 L.3

U3-U UZU uLi U 0 1 L UJL ULi ft

Ut.)p UXLiUL - lL 0UU 0"Ui ULiUUy~ 31i Li ~L.) (3"L UUU UIMLS Li0LiJA

C-LJfzoQQQ QU QUU UUU UJo UtLUS-kUaci Q UUU QUU %J IU Q Q 0 UQZJ.Q44 (jj ui 'ij~ lig Li Li i Li 810.CQOI ki Q u U Ui U Q U Q Q3U (30LiS-. Li- U i Qi Li i o 049 Q490 Li2eeitiou 01-0 Qi Li Q Q Li Q 000 LiL#~Li aC

UG.U U Q Q Uq U Q U490 0=0 UZQ. Li(i Lij(Li Qi Li (L i Q Li LieOQ LiULW 04iUU 4imiJU Li LI Q) i Li Qi Qi~L Q Q Qf 0 L M

0041 QZ U Uj-( UJ~ U j UUU QUC.LieO

UZU d UU U U UOU QU Uoj (JU 40- 0UiOUi-miu US-UU UZUUU0 4JULU %JUtn-UZO 00--

8 t u Q4" -l LIow QU " "N"d 0P4000I ow4l0 U-U 0~a

UZUU UU UU0UUOU UUUOQsZ N No"CcaiU4U UZU U 000 UW U - "uQUZU-."Qo 04 c-

06C UU--jf~ U UUacu u U-.UUOUfwleaf 0J U~U3 6~0 0~41 3 fiUS-Uv Q~U0 Umjv 4dz~UUU UO0UUO 4-0- 5"OI-X oo.

- U.JCJ4 60.1-W U.OL UA U U SU.UU

o.J ZUJ'~O UU 1~ (iOj UWCJ UW fl 4 -U

PUli JGLUU (J U UW QC UU a0 WWW.U Q(LQ NWWQ C3.-G-4-UZ..Jet.)~ WU QLCUQL Li~u -~n UiE~u . mle I.-fO.4lf

4ZUUUAUC4JIQWj w UO.4UUUOZU OUJTW S20.20.

M4 U 0 41U-UU-U 0 1.3OQ 41-e0o QeQ.u uQ 4UL dUIWU W~ UW N OQ. QZ u~ * ) utj LQ L.S QU ULJC1-Jw 9)U "J UeIJ..JuCJ UC.JwwUu.~ *

~W~t4 @.J4U U~U *~dP UU~U~U-eUN 158~

Page 164: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

t(vu0u Ci 0 00002M 00

-x 0 U .0d 0Q U N) 0 U4 u 4o ft Q L U

u LU * ae QWZ0 <u 0

00a 0 Q IS 040 4 0IC.etjU'0

- . .90 u 00% r4 UA *0LU <uqA (iU-t~t(4. o-eo (.) IL elks LIAtL3 .1 00- i-04440 0. 00 *(UJ.JQ 0 (i a 0Jim 0U-4@O0CU 2 I I- 1.-JQ Q0W-c0' -

28z." * -ft 4u Qz pI-Muz 0L3 0 40L NO'J LU (.3AUL (A '4 u4m"'-I- U

Z2 d2 u z 4 0 QZ<OQQZ U- L - UW-*L3 U 00 O-L30 0

f.Seo0 :tP3 S I- 2 t3ll UL W!A( M 41 U - Uu * oww A to U -120 4 4 (UZUL2O.J tU'.5'Ucg2c 0 c I 00 0 g- U002':-U1 Uu (.3-w0 J i +1-- 4 01*Z U-J72b- U2 uI-j 2Z U L . -0. 0 U I-Uj 4. Q t- wO' U0034 wk.) I 2. .J'm OW4O * x ua" i--j 30WZ..u 1. .-- +J.-m un-J u- Q 0-00.

unwl-8 T cl is KS 00G. u CL0.U5- U

044Wco N .w -44 UCDM40 -0 zfC b- U14 UJ.60U2 U01-14) LLO + c +0 u4c~U I- 00i 49 U42."culm Uup" 40 -. 2 NuO UQ 4 -.- 1 U.JC .Q -

U20'-@Uk0 s.. 0* 401420 0 0 C. U I1-C34013 u0'..2 CU 4 4- *'t 00-60-u -J 00- CL QZI4Z 0.-

.4 0 4W:3 .j wOf dtl 0.400 U. (%Do0. U 00 -4ujc U01J4 (200 (L 4W wt 0,..N u U I C. 0IW.JC20 U-t.-.C.ztx CL NC4 Luce (001 Lu. u -) 2Mb! tI.LAU1-0mJ UU 01400 2 *4 ,& ft1Q L U.-d &Q %a 2w 0 u x2r U2z UOUo Ci u * *1. w-OMOZZ u 00 DO% 6. . U> 200 -u

.4 UO(J (40 -ft-W 1-2I-000W Q UQ-440 C. QX)(OWO2O.3Z404cz)-zf -tobw 4W0 *. U0 J~' 0We1jt" U4 9L 04202Q0 02uza-Z'-. z wIl- 0p-f..0322000..j~rn 1 401-2z 0x Q3E49U13Uk 4.3

0 49.J 4 -W 01Q0W49 .- -200 10- 0 -- 0' U (JQ 0Jk . cl L600 -- UI-000C IV O*. Q..J: 0 Q.J140 00WC36-~40 49 1-44.j0 01-w lb f 00 .J0130.140) 00QOW 00 O~ 4 t1. 13U. .--.- I0010 -02. 1-1o u 42404- u

LI4$WIJ.00 0..djuJO N"e-.+-'. uo.000M~ .9 49 0 Ow 0 OC. Qw

UW'- OC 00 0(SO1Q OV104- u-0 U "W0U30 02U0'L3 U %'--44.w42 . Q LU02PU.0 W2O - 0 041-L UC 04u00QQ U.4w1wIw *be 01414Q0%0wI- 049 lz -j F- Q> 21400. 0)1.4W(.3SUuZcLwO4* IS w*Ww~ Qs..ZUOcN Crw M .J 00 1--WQ2 u0u0 2220j .--.- 1-'.u U 00W200W4L * 420 OUWO ocio-"iU4-496-402 I I-IL0-ftA4(.3f to" 0W%-JO 04A(39-4 *". 4, 0(3002231-L3UX00W Zw :)VIJ3A(7'%w WOW Uri W03- W'-4 0 ; 'K C101- -0 S0 0

0=IL09Mul2o 0 L-. 144-.L f000'.~ =LL 4Q.-. 20tL c00.02W* m44 QWJ W~~ LU(>D Jwi&0W0 u ..J 0iU400 0142040( 4,0c

timWi.Oo LA. U. U0-U Q-4, 0- -ii .00Q I-bzu + + us0 ) ,U LUJUJOU "Q.0QC.:24 13 (.3 u0.-Ju 4 -' jat2.140 "quo"

Q0. 04 P" - opq-0 2 -4 0<30-u sou02Cie00 u...m 2 b-s 00. cco X014

WUOLUwo 0 0 0ac~0 . o 0214C 0j 40'-.U2UQ *gt * UOLUU Qa. *W 00 Q0*01.- xwx4j 020 Q uzWI-90 02

u 4AA94UM u Nf Li QU1 -tuOQ 0 4

0 UM~JL L.) um ou flJ0 iIJ' U0

159

Page 165: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

Q 0000000000000QUO 0000 00000 100000000

%i~ Q Ui ~ L~ LiU 0 U U U Im 4 ( :

zii~ UJUUi U~ ~ Li Q 0 0

Uii~ 0 ii~~ Uiii~L U)0QQi 40 U)ii0~ QLiQi4L Q -Qii~ 00i~~ (1i~ Line-4-40

Li (J Ui <Ui Ui QOU LiLLI.- = L3 0 44'Ui 0 L3 cu Ui LU^Li Qi (.14M Li Z *0 0Q 0 U 0 UUUZO Li U i2 Li .4 xLuULi.i) *LiUU4L QLi Q QU (A 0 0 0 Z0 Q I OK 31-0i LC3L% C-3 U Li)'. - Li 0 Y (3 oQi L1 Li .4 4L(. LicuO Ui Q ()54V 13 a Lu LuUi Qi Qi 1LiU)Li Li0Li Qi Qi LiJ U Lu * -

0 ( LiJ Ui -L U QJ QiL LUmm Li z -Q 4 Qci 0LiULI QMQ Qow .U +000

L6Q ' Qi-L'..-L Li'"( QLQ Li Z Z *~Lioiu 0LiLi (JL Li-Li Li 00C3 4

Li Li Li Qacti Q.Li LiUO 0...j 1..) 11000 kiLie~ 0

-Q U -8-8 8-18 8M18 LZQJ T S S 2Q Qi Q .4Li:iDQ L Li:DiQ U U m i w~ w 4 ,l0~iiowLi Li Ui .-. OCLU QLUL UU UZC3 Ui 'A U') t 0 eLi Li Li sUzU JiM-Li Li.L Ui-..j U "i - 4 '-" 4W(. UQ ~qiQ Uo i UL..iiL0 LZ uJ~ 00. 0 QQ"Q 0Q QQ QQ 0iiiLs Of-Li Z:1, 4 44 <*eQL Li Li okiI-L Li LiNN 0i Li LOZ QLi -4 Q-rnU

Li QiL L L i.'J 0 L0 oUGOLi L ii- Li 0a .040 0Ui U~ QzQ LwU4-4 Oidu Ui'..Q Z Z =Z *a**4

Li Li Li Lui Lij Q4.00%,0411 LA~ LiuZ 00i 4 4 4 X(.-Li Li 0i 1-LiwuUWm Li0. Li Li i0.a a 0 0 ofILi Li Li WOiZU L-JQ.f Qi-Li QLO1.uui N. 0 Li P-4Li Li Qi -JQ.-Li ULO~U Qaw Li U) i * . ZO)- 0Qi i Q MOL0UZUWU UW0i Z4zu Lu (3(30-Li LiZi MUOUi Onr~ww LiaLiAQUZL Z LU LU -"-i) LULi LJO OQl-Li LiU0U)U Qi-.LifQi4 -JQ V -4.-'Z0i LiEUO LiQ Li Li Q""~ L)L LUJ.JML +C0Qi Li Li Liciti LiUjUo UUOM (3 Li Z Z Z Z-4 o.UiL~ gwZcL LiLic i0iiLi4L 0 0 0 0.-2QiiZ ULi-.L Li4Li1- Q 0iLO 'ECi 6 0 tfbOoLi UCoi * .> UL~ Li L4x UgLOXuLUL (2 cicnzmo.pU Li Li 0 "000~ Utiumi LiC,)uc(LU M Ui M nimn Uo7 4i

Li LiM. 044U Li Q43UU.IL Li Li-QiW COLi(ZU 4)0U)0) 90 )(XULi Li Li j2JU -w 0 Li4U* * ocoiL.W04c~-qi.o4 4-

Li LiWU m) %JUWLU Li41U46L Li LiO"U44WUiXN4 49040.4w X2N4U Lil-. * x..jw1-U QJQi..J.jr 4 03ow I wo-owu1JCJ If "nQ"Qs. Q of o"UiWUZU 0.-.4uzw OML.O. Li44J GOCICCZUi 0~iw. L" e*ZllwtfUzUWLi .-Snfi~iWUQ OOLL.-4z QLUULiWLC%1U. U.L~(&L :) NQ1u.UzUZU Oe 0C Li2L Lioi2 it0 0LOWUMN Li -640" 0" GP"Z Z If 0.0-P

Li-jNli 4ln-UCUiUQN N 0cc~U-Q.j~aei-ZXQOIn Lu LU - -M0i i-:Li2LQi'z'--LiUQizQU L-Z <ZOCI0i("Li i-Li LiU ZZ zz

Li Li Uzil-4z QzL-'LQww Zuo(-LiW-U()g z I a 0 Z 2Li iuU0Z0LU)L0L~LiW0OU4iLL-.)0i 0 . w 00 0

Li Qi-~~2UL-Li)i~ Li0 (J-LOLU.i 0 0.< U)A. LiQ 0UiL Li xL4 LiL.UIU Q 4 * *

0 U Q 03 QA~ 0J~L Li .- )U Q. L Q .ntLUU ..iN LMOiu tni-3 Li -@UU .J iQ i j.ntAiL

160

Page 166: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

tj~~~ --.- 0=-Al--OZL

L) Q cc-OIU- -0

(I Li'j~m*.2. ( - Lij L L3(1J 0 4 0Q_ ki CA;

Qi Lim 3. N LiUN L*I 2U- Qm u -

Li Qi TCc Cie- -. fL2 ULI-- 0i 0 < - 0

Li~kJ-0G- 414 IU. (LLU (1 0 *Li LiIS - 190.-.U ofIt4 Li 0 Li '-4 3 23t 6- 3Lift.%U "044 .4 =1- t 1 Li 0 -4 -4

uOcZU.LU-40cos I- ob 0(31- 00 Q '-.0041

oLicec 00 341 IUN *. u.P(4 00-4 ui Z ZLi 02. 1 .W1-fr- 0 c-* i-:b0 Q8- L 0 Q 00)LiL i0 U-1- M0-00-6 8.. ob LU64 LI-. (1 0 * a4

-0)20 ac0z co 00" 0 + 930

u40 eeaC-.. WX N ae- U)00:) 0 LU * -ZP

(JJLeSAt5U ,%WC 0 b Vex -0 I-.JL i .* 000

QQLW.4C 0"g.tn-ea 09P. LUZ%%U Z LiQA A 0 a0 <0qj04t -- -cm4 4b w). X-4 0 z cli%-. Lig~ Z Z Z 0

0LDO fll-20Z)(e 1^4 w204A z0 0 -iag- * ca04020- WO4U.ML - oxZ 4 ZLZI~C~ u dU(3 (F0.

41 tj (3 I,- --- CL -X LL).LL jo 0 00 a .4Z

02Jmg- LU004-l .J pq 0 2-4 of00.L Z . Z.22(it-k m - 4b Zc 2 PI4 '.0(4 * 080 0 0b 0- 4.0

Q402-o.4~a.% j a. 0* 0ft 0 )-OOWU 4 4x 4 (,-*

Lio -4. e( UJ% -4m 4A AtI -4Li.JnOl AM M0 Li WQ4Li at '-% 0-L P" "W4 0-j-&Z f 0&% Z i2 Li

Q5q%'c,%l-L a#e~ W - 0d - 20w - QWL u x 0 IA IOAg

U31-u4heUl..fnt 4c*-JJ~6i- .X.L0o 03c i 401 000 0 0-4ZZSO

C ~liLi.JJM %- 0(3 '- - Of .-. '4 0 OV4 OQ~UJU.4UQ'~.U 4414( -%$Nb. 0-4 JCL(fe ->),- ZUJ(t4% O.lZF-A ~4..4 (00. Li@40(740 *-'X-)(sUp Li 04M4o-yWN. ."C~4U-%NF0 - -ZLU0U 94J4 Q~LO 03C(r- 0 O 0 P"

CLZ I-- of- -m L L i-00-04.). li0',0 "nz Uon 0-eCi@O Q2 2 z2

0. 440.4. e L Z'.Z.4O t-9X~-*p44r4* 00lo (4LiQ0U =4(. I* ~ ~ 1 4 .. L 4Ue1m W4.V- L-%u 0c4N - ~ L 0O O gw. Olffj .I420WII '-0. zP4 *'

'.~kj.4-jx.M~. a -W4 Q ""- Z4U.4 L 2 .

4QJOW4 Z -. 4 -0w U000-204.JL0Jr- LLUe01 0w.04. U(4.2O. CL .4wO. 40'i .QW40.JiW Cj 4P~0-W *- .- LwZZ'wn0.0'0

V- ~ ~ a~t 12 I(.J- Q6 3%4-7% at coo-4f' 0u.L '40LiUn VU-2 2

* e~i4L'-4~ 0.JU.'~J .-. ~2'--o ~ -4(0 40 2161

~00L~0tUfl.LU'LU00~0~g..4~~ )(.UU.~ ~ *L

Page 167: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

-v w.-w .- uv-rr-~-. * r' ' . - .~7 .v - -' - . ' * -' '' *- 1, <- 77'

'Ue-z0ce

1. 02.e-14*%ALX

ozLImwL '-9 0*-u

t4utfl% m0. CL* -i.eMLUVJq4 If 'o -ca M43N WN LL. WUX40

Z"Os m--" 0 -f 1-0 >1

.Jw m ""odr40- - 4 = .J

IA -lu. 0,aeZ 2. 0(.-WC9CA .9 ad - le-L

0 -Clem mor"O 9 2406nc co

z * W_ iflD . 4 0 tW 4. 2

CA 4 w4c.j -%- 0 vkq(3l 4-4 4

0a 0-4 (quAlN( ad qbZ%%0 Z Z2N0.Xl 4ca %m (m 0% O

OtA Jqw em 0g w % W9 NbCce 4fN .. J"@. wx(2 WA% - %.L)t 4C II z -40 Q04AX(Uz-(3 14 a ""N z In U

*y a Pwep4 U. 2_L 0140q 0 - 2

* ZO5 I'%.m -WL.G LI Z*w 0~t; 3

z ao A 01-4m .4. a W4o X0 0 4A 21,9u a I- e -r-e:;.I I- .JxtWInW -m

*~ l MU.3 to- r- 4 .-0o%fo W4 0 -.

Ja**# S43.iI 44 OX u

20*%.- -- 5 11MA4C -0 24d p

fbZftw 00. so 00 1. mm M4>:), 114040 mc 0bfm0mL=. 40 e )mml ZW"2.4'O 0%2I-440%0%o 00 "qZ M0I' 4 0O'aOO N %..~0 - ll. 0%

2 ZZ--1-WJ4 4J4C-wg..I*4C.0LL -Z

0-1 Z-s..Im 0NI%. ( 2 - -ZO

(Po 00 0 0A

162

Page 168: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

0 00 t -

liu 00 0000

SJL Q4 000 U'..) U U1UQ U 4444) QU U U"U U U UU UU~u-I -

ti QUX U 44 UU U U . UUft~U 0 LUC4- U - 444 UUUU U UUO JuoJUZ OZ3U 4c-u)Lt a U 3 L3 L3 444.luU L3UU L

O~U49 JUP-.-f 0044 UZU U u LUU4Un UUSuL'at U Lu-u C 11%Wc WADf .- 4(.J) U U U3 U 44.-L3 4 4

OCQU U 0 0I-.UJU *-t U"U U U U U 44>44 U U(40 Q.. LU I- 4..J- *4 UU o UU UUQ Q444Q4-J

okp441 U jC4 >WUt ft 4 44ki Q4444 Q4( Ut-UJQ Q

c4U U 00 COQ0uoUQU UAU U U QtLO UWUQ00.)49 UJS-IUUO cj- U U U QJnQ Uadu

J80C. U 04L 01-440to~ 0. I-L U8e U U 44.-e QU-UUQOI.- 024LUQ -4- UU( UUUUU U QU

(jUO U 0 0 1-WWU -5%Q- 4UoQ U Q Ua U 44)" Q, Q

oZUcok U 440 1- U"WOZjUA9 mQ Q U Uu U Uj UU UQ-4U

0U4 UO ZJJI- -O. J -Uom '..2 zU U U U U "U 000U Ut^(4z .MQOO U s-W 400-44 ( Q*o 0. Q44 U:C Q.tU U"4 U s400'4 U x Z *-0 S-U4J~" Q* UI-" 'J U MI UOU

gU-00 OSum -if-oo -4U %3% ~UOUU U- tU U 0O U U-114444 Cie ZUJ t-W4(3'4UP" iKWOU U UZ U U U UZU v4).U3BU *00 4-e 44- QUJ.-.44 a % U-4U U<U Ul QUtU-JUo.4444 Ce in. LUJ2.04QS 1 F0 . .U4UU U Q U U1-U Olt(UOtUXUP44 244 i .J. IMmJU'w. eu~ 4 U UNe U u QLU U "U U )4CQI- U 0. U Ll-Q- .0 44W*m -.. wUQU U U UQ4 44444 44.-UWQ.44Cx OfU O.-euJ IuQ -ftOOO C7'-'JQU.jU UUU S UU Q~uuQ*,UoUUU U =3. 0Os-444.-e 0 -.- JW SU. UUUU 'U1UU

.4421444 '-('04 a 30' 49 OUO Ut UJ-( LUSw-44r-(jI I 4U% 4(Us-eOU wz 4zzz0>44 ZQ CL- -"Lt U>af U 0444UU U-esU U

,"4^ U ). W-4 %sZ UCC USuu U U4UU00ULu 0-P U E uu 0s- MOCI- 0U00 04 W QU-UzQ UWUWWU%%UOU-% 4 140 U .ZU 0R 3XZ24Wm-U4CC- 0 .me 4UJ44 U U U>UCQWU-m AsU.PUO

IdU490-e I-q LU-e 2 .- U -00 ft%%.Z - ACQuuU 4.JefU-.U~lURU-e.- U.)(USCWU.( *.3 aC=u4UZ e-Ui WLOuU-@SU I4)08 0U (3 ZZI 4 coa t .('.UUU>eUUUU4fuWuw

% )Q Ou A *:J EU0U-U0..J %"%%JUUe4ZU U QU.U2U %"U u442* 0(J419I US'' N3 4140 m .4541~4 404 UU-4 u404.

ZUWO0"U 144u 0. UIUZLUO(JL 0LU LUJU)(44(3U4U(3U UVOJ-J UeU>UsCOO44 U '41w z- QE- U U4UUUUU U 0U

'p S-UI-u 4 J I 44AT Ul

LiUmZU CC~ UWWW2WWWU)(UoQ Q44I-oUJ 000 ZUI

Q 144'.U >we 000 14UQeU Ut-'e44UU Ut-QU 441)4Q

u 0 Q444 Uu U U U 0U L)UUULUIjLJ)JU 4444 LUL Lit4 IL 44 Ut it- 444444

163

% n*~ ' . . . . . . . . . . . . . .

Page 169: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

00000A0I0-A00000 1-000I AJ0000000000000000000

QQQQU QQQ

U UP 0 0u NU o Q 1

LJC.eu - QU.L 0(.I MOCL) i-gL()1-LLe.U -4 U-j Q.

tj(X &)Ca~wW>pX - U:D 1--u I (Ua.U C0111101 11111" il if""~g~ I'f'n "-0 U0k.L

L3 .-.Z "W's Q 4LU1-QL IOU 0--o

SuleI-0J no (i uLiz LU r~i- U Ul) -t 34 P() S 4. o1L3 0

000000000000000 Q 0nAu O-f QzQ : 0u00 QO.-u Q Qu

000~~tj p"u 0000 C%(j'Jfltv w .'u*- ** * e *000S -4~. QW0 I '.O LUW

-u z U 0 - U Qr za

zzzzzzz~zzzzZzzu QU04usu 0 @r U00 10-0 " 0**.Lu oc...e. ~ U'W fr- Q UZQ -4z 10 10

ZZZZZ-0 "..-. UuU 0--d4") u 00 ~ . 0 Q i-o * 0 0

0900000900000800-. U0...iLu * *4 LU UIZLU OeL *00

440o Qf- QO Cy U.JU -42 0Ce eeQeeee UwZuL -a u u u Q 04-

Qoo ooo ooo ooo u...i:3 0 Lio0i 0 so -aOmOOOoO~oo Q U1 -200 UQ-"U LUJON00(.4'ZOU.ULU .SO Ua0 605 C Q 0 LUCO LU0000 O-g...4WN~ OOOU -4- ce of WU) Ulsu l If fZ If* .. ago ** . .. u Ou wO0DO-q (j U *Z--- O~a *

l-WWUJWWWWWU JWztLULLZUWW U Q l-tij 3- 0 0)-2" QLU .05'0O-S -2Q UI4c Q M-f 0- QJZQ 0-0 ft 0 0 0)a

z ,Zz~~zzo;Z"Ztu d"'C ii .0 Q Q X(..4 g-..-

ZZZZZZZZZ IJ -U W4,10-U UU)U 42 "..* UU* . ...C bebe .. Q.Ji- U Mn- ""LL Qmw

QwLww w.. w J UWUUtc N LU Uj U'. "a w LUL~L &LU.L U.LLLU.LLU.:) OXIs 0 -",)u.0 o Q *"'U.Lu. U. U.

.*~.~'o~.-~..w'. 2 U-T (noSU-4 C.L- a ZU ' -l s -"I"U(. UAW~ N 2 1.- O" Wjc'-vIj O

ZZQJusUo.u zzQ~uu zO-U4-.Juao OD-.uwu00 0Qe-Q4x omc1 "I Qf-UUQxu8 U

Zu MOW zo ZU0JU :30 MOVtnUDIJUQIUSOU UQ-Uo

Ouu ON-uo u 4tctu U a 0 10 -a

164

Page 170: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

C30000 (3000 0000000000000

000 xotn4-44-NU 00) 0CA44--4 -4 f

u LIL % - 0:10%

QI L UJ% -4 fLI ZIW.J)(.G me4 A

UI u 0. LU .41(..UI U LI a-J- -4U'%*

t-I L LS -Ow. .0

LIzLI Zn moo-

ftL LI -- N. -M-al-s. CCN%" 4)(

x ~ L LIg *c-

4 "4 LIOL G..Z--4. * N

* N [email protected]'4W 4 a a U

.",jv* %.I-0Z .. * --- M

-, - wU%WuJ'%,(4 fl*L-"~ 00 ~vfs-x - ot. &a -M

a-0- ti.J a n..4. a

o4N3IL ".4-2 -4LIOtI'4N"Z. a. %.v4oWU -0 WN-LW 6.0""oI-1- a).)(Os .0

21 Z"" L..~" xC ".0-0

co U .IJ

165

-e

Page 171: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

~~0 4I.WQ U&J(-Jf .OPS

-1 009000031 00000Q0U00Q400U0000000000L0000

W" 00" (1U4 ;.j UU U L14U UUU UUUUJU3 Ux U L3.4 U UjLl"l.

.iULW~ 0 UA Q 1.30 Q4 40 Ua QO.zQ U QU u Q

Q UW0L. Ue C44 QU -- i u U -. U= 0'.-0000 ZLlU U- U- U. U U U Q b"U3.

- U L10 US 4U( U UUJ0L U 4 LJOQL) LA .4 ULUUCLUjmjcc utf a 0i U- 2alt *o L U41U0

Z &4 Ifl4 U 44 = u U 0" 1-- -% 2 UQ Q

U~0 JQ Q- I-U U W U 4 .- QxC.3

0 US ozu )j u) LU '4 U 1 (LOJ -i U.4a.U I 4 u 4-J U0U06CD UAU = 0 Q U- <Qm uJ- *0 OU U U41

U" -eu LUG I- Q- 0 CO % 4QO 1~' 0.j4Z- U. ZZUQ. I.-4' U= wo 0 u QU l QZi - U4-m I.- "% Ub" U

4j 040wU U - QUU..Uv-.ZI~U (50 - U -Qof-U 4cu P 400 U 0U.UJZg-C3 Q SZo j U40kU

.i o~ LUQWw Z U Q U-d)W _j -f~u-ja -;JSUs..uVt -U cZO Z -4 U- Li xUZU 0 ZWU8-'U w4c UZ4IU

Uod.-uk-U .U0- LU LU0 u Uc UI)U U I-U U Q Uj U4 U L- UG U. W001--"06-0 Lu% -L U. LL I- Uw.0U 'i 0U.-.oj U a '4 UZ

tic UUI-ms0I- "0 "q Q. U. * UWU tU WQUZU LU 0 'UtQO

* UUIL C94U4 4W U U U T U%.L) VK A wOUCJAU 4 U LUAUQfU. 2LUW U 0 C LU LU U CC ILUU 49 QoU.LUU "4 LU UmtjoU ZIQCU LUi CL CL U- ft 'e~ tba P UZICO - V) ub"JjUi

.Uc0W- Oti -Cl W4 U 0 .IJ2Q~cW I 04jUWatUl- U44>UccUW0C I- U 4 LU U -q- LU0 4UZU=Q 4 -400UJZU0 -t

*jju.Z. )I' L LULUU JU(UU=UxZ "U U000 . .04oui.- ao3U.JI-0 cad icv N.0uI-.. U UJOO 1IUZ u41bU I-OOUouu 0

wi tj4.-'q ..- 0 ZZ MO--M:)Q %%UJZm UJP. -Oa- U L. 4OKU. Q0 00.UOU ps-4 0"- 490-.4s-UW UUfte"0U W ZUW.-Un- 044U LJU(S M

LU Uj goo04 I-- *-.4"-U -2 -,uW.U- 80 0UT. Us.- I U3 Nf 11 U.mfl4 *I- UU0Q=> CA W. W- U-- *%U- U-U% UJ- U - 146--Q 9U- M~

4C04I9Uzs OUL0 U CUMOLOO4 I QWUU-4okZ W00U0UO0 U

Z4 ( u* "W4~ 0= U'JU"2 UU' 4tjt8z -* HQxu .''-04WOU I-UJQ- WOZUw44ZUw 0 I4UaceLLOI- U 0-U u0f U URU-UW-NU-UZ-ZOZU.0-

Z=U,3tU Zb-.U -4 0. -e "'eJU4U. es ~* ~,OUUIp-WqjW~z U W 0- U c U2UI-4-U UZU-Wl-tUJ-- ti-

4LU).rnLUL9 uIL U LU U. UJU U U 40 LUO.

Mao 4018- U~ 4z x Q4I.U4U- LLU.4 UQ-0 LLw-L U.0--:3 UiUoo.4U - 4 3 (A tUJZZ.ALUU. if UnU&OL N U..LUIWA4UL TI^t4U- 0-4LLJ W 0 Z LU Z QCt4q I-Up". no a-..J-L U.c*UZ -" :34. 40. U U.4 U.14U Q =U

QU' UI-U-UU -VI u 00".U UP-U IQU4949=490 a U Q~ )u QU:4Uu> -UI-fU >0 UL U UU u U U >Uu U U U Li OLI Q0 00 Ui u 0UI3JUuuuL)UJUUUUQULJUU% ULLL UOU UN "fluue ULIUL) Al

166

Page 172: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

*r -r -r b o-

0000LA.~~U

00000

00000

.-. *,-J.-J*

4 oIu

xx uwPjI a"&LXUP" a i%4

416

Page 173: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

00-4O O00OC (O OOO 0O- O0 0 CA.O0O O )I-OO o0QW1 ctu z X- I-

-, zaz yU (J-W Un LU u %U

.4U(3LUPIZ z -J z

ujz U2 ( 1- 44 4 <(fL Ju..4c 1.14m z :r- -U2 (0 49JCL" i- .U

ofaKt 1.-~ *.1 4c tUn OuW L* l -Z~4 x z z 0o bSLOQ - A W-U * 4 MO -LL..'- W W .4 41

-4UfWZ43A.Q - 0JJ L#)Z I-e CL 00 Z09 7 X 4Q QZ2. r* IC 14LX - LUOci LJ LU tJO-

850i4'4ij 2i I- 11 Z: LU 2 4~.Q -1 Il .'-u

4 -j IJJJ 0 0 a! O.J OI- 0 aw(4 q 00.- 44JW.".:E i u. LUO 44 4d~ Q' a. 41' Q-00. i W-o'u

83UZ.fU'4 f .=CL OWA. 0' 0 -00w- uU4Ul w U Ceti

z OULULU o -4 40C6 OOO 4LI., I.2.(.m~xzzj O 1ow , = 4(3 ZU. " .J 4 .J

*UJ WW40 W 0 MOZ40 WWM *(3WWLU Z0004uL'2(Z - L40W0 Uo MK-4u WU mm2 Ze4 mj MM'...- 0a -i- 0

WII' zJ.J 0 < WZU

Z 4 41W U- =o099 ZW.0s. MQ 9M LL WWW O.OJZU-J QU LUjf-4 LU- 0. LU0240 LUZZZ$-3 UIWWW 22 4 a 0. M u. (9-631-K 0 U "Wa - 0 Utl 0.J.JJoJ.2J a~l--...4 40 00.00.34u

V.U 2 4 LW.. o-I444.J x cow4~I02 =4m-o

z. UW.O I-u 4.1U. MUU 0449 LUZZZI'-1 ZZZZ.J- -J~4 j0.t. OWQ

Q8.oju = LUWC~f QQ(00w. FZ04U .JCOC>kDW1pU-9

5 oau Ku i LUj..q(Lj AJ~cl- UUU..1 1-0000 -Lu4 0 = VW40

CL(j)OZ(Q 0 .4Wo4A.A.AZ"9W 00.A.A.AWW .1 WZ2O 0u>.( zUI~ )(i CZL- Lufl-j .J.j >0 - ..- U.-qKU

K U 41- _JZ 4A44W)'.04WWWZ 14 0LURWW44CL 00I0-l

ZUtI .0111 "440 a. 40 r3 20Ce 002 t O~00Z~ 4J . -0 Q

pq.t8 J..J .-W J " )I-

e-00I.-WZ U ac~

04JZOO-04Z2A Z CLI 9j Ac0 49 QM*UUW IAU 044 -4 LU -44 04OL 9ms24N- dX~ > Uql0U4WWWUju ccCi 0Qto0000a 0 x=99bea0Q

.*Qz.d0 4(3Op-OW(3) >0 Uj

168

Page 174: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

W i ww 01 L7. - -

00(i I0000 QQ Q000000(00 E000 U000 00 Q000 0000

U 0 U UUU UUL)UiU U. U L.)ZUU U U Q Q u UU Q U C-3

Q'. U Q U u UUQU U ULUL3 U U U U UU U -CULU

UU U 4. ULU L. UM U Q Q 00U Uo

U* U U.U U4 U UZ QU U U U U) U UWI U U Q u'-c ULAL9U U U tj tLUi CJILLO at %.

UQ UUQUQ0U U- Q Q Q U ILgU0 OS0 1-3Q U U UU UUQU UO0'u-UZUJ

.0.U U U (3 U UO U U U UO .- 4 '-UQ 0 UU UZ QU%. U UWU 0~-ZU 4CC -

Mae D '- U *UU Q"n Ul U.10 U- U U UUZ--pU.~(I~U L2 * U Q U U.$ UDf2L L U U U t)~ UO %2-(.

-'U Q U U U U" UO 0U .J..J LUouU__ U U UQ- U U U -J.JWU-f

OQUO U U 00 U Q~ Q QO ~~ ,-

0U4.UU .UUn.U U ~ U U Q -4zuz 0.PI 0 2 Q--0 US QU UZUi U4* Uf- UILQ U1 -U-=~C9 QtfiUI Q .~w U 0 UI4Q l U UZU~IW QQU I- Ae

-~~~~~o Q *44 .DD.U UO ZwJ-. UOU.U U U CLZUN 011%

Q U, 0. t QJO *UZof U U4-L UUJ Q UQ UQ-' qU.J -S-4 0 wwU U'- l - UUU ..a UO U= U UnQU 'U~ ZUQU. a S0

C.) QU U o* QZUU UO- Q U -2 I U00u X~UO *I---5~ U J *UZ UwO U QD UJ UU U UOO<--mQS- W4L

Q (J~U Q U~' UU m. U U~JZS0Z S.5UOU UU0 U- (-)

0.UZU~0 -- US-U-.U UQ 0 :2 U UW-u u 4

~SU0 *U UW UU Q Sul4JUU uqw UO N.-WZ= WW-U UZ *-.- Ul4Q 0A Q Ut" U US-U .ejuz-Q 0 --

11200-.4 U - J-f ~U U49' QU- 2UZ U Qu'~ UO <Q- U IU4" QL =U"Q UUPOLLI .4Up- Q U0U(J.4 U'4U= )(

Ol""SU (UUJU Q UWGU U fU UZ jWU4 *U UO %,Umft UU U5 ZU 00U QTuS-WZU~v .

ia-uUL" U U-UZU Q 0U~uQ U 4z

-S. UU UU-iicoua w 0UuU QUU US'-OW..JU~UL) ~ OUUU U-p NU 0UOU Udw00U UL9

49 UUL 04-.4.LJUUj-J U 0 NL UOU~~ Q 0 QdI QWW ul) -+

itcwlti Q0 tjj~I,- U Q 0 IUN QZ169I-

8 CL M -Lls4- -.L~fUf~v4L.1-0 U U Udo~xt.3 vo*U Z.

Page 175: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

- -J. 4. v-. v- .. -. W W-0 . ~ , . . . . .

Q w00000000000000000(00000Q 000Q

Oz(.

I-- i L2 ~ Uft Li Ligz _j

0 0 ii LiL L Li. Qi ULI. ()% o Qi Li .J ut" Qi Lie L

71 4Lil U 1.3 QLin Li 01i OLiU4 1-2~ Li'ULi t ) Li UU-J4AU

*Q Q. U LcLaii Li-4 Li 0(20I LIi w Li Q:2(i (imi~ Li-ZQ

C3i Q- Qi O(MLi Li~ Li L 40L-' i O U4 Uo Q1.0 Li Uin X0

Li QNi QIU Q )I Li x i .-JAJ

44U0 QAJi QW LiQL

%%L Li LiOji Li Li Li in'o-Li

4 0 LIOi0L QLi4L Li4Li "Q~fwzu

C3 ides- i Ut344 Li u L C3 (AU4ZU3L-iN ~ LA. U Q'-Li LiW 0- + 4Li >Li666 -0 lln - LiJ Li ~ c LiiLiLi w0) Li

. 1-. 4 - L QV L4L Qi (JA -4 Zuqi-4LiI. 4L " 40 jo~ac 0 490 0iL C9e- '-UuzZU .Z 0 1 4- ..JU U i Ut.L-0 00-~ IflLic=M 0 A0

4.J w Q L --% Q.J~ QW Li- QL( 00X00 We*-*4)LiU.M= * - fi Q Q-w +W 003Li C.itO(Ut *CC+ *UMl- A i c- -m a (7 tI)Qj -boS0 00-UJUa (21JU9 e-9Q 141b24

- 4U - N Q934Li 0Li Li0 Q4Q0 OA c~iu UixZ4 b"4 149

.j.J-mv Ni ac Qu Qf.0 "%N 0iZi10 O uie-ei ji4i -39tLU.- * q ..J LiUC3OW 0ldo ZL~ Li's-.Li*cdo* *i .U 0.+,1 +49f Q00 *U> L-J IA~ +iLiL Xi.~-'~i4 4

2 ee.o * i Qi 0000(3i4 a'4- UWU0 MoQU...j4Li..J-Z4*J- "p IU-4Lii N so-Li 0"U(. Li..jS-L)0w CO~u~gwi40a -

~0 129 1-O UOW 044 0UWIA.i u 2 Laciz 0JUZ0i-Z.iil

2 JJ 22 ~4 .- 0W-iO Z U) UU)OZQ4c) w 0OLiWQtuztj iufl4-q0 a -. ee O CP0-1 04 tAOU N090v mpao Q- UL (AU J-KJLN 11 UOOZN

10,+w(.% a- u O'(zL.U2 m0 00iLU0~e.~..4-C* ~ ~ ~ ~ 4 *3TU Q$.-o0 Li* k .O 0Q049-N -L flie wU~C. Li I00

ww WUU*UW 0 uSo UZ(~4i b"Q UQi0>-Li0

u.Q~ QLzi Q UZLLe. 49W04I L * o Uts- u) Qi 4-Q U0. u uj

in Q-14 Q'-L u Q t.3L L.) tip-

OL.U QL3 uZuu LLL4xju

170

Page 176: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

* uu

uJAU4ZJ

"CluuMeL)

u 0-

80

JU

L)ZLSu Qiu

L=0ki u

U0'uuu

tzwustiouuwuj

S. uwQ

~(J171

Emmau

Page 177: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

000000000 00000000 o00000000000000of:0000000 0000

L3 0*u 4 Q si

4j 44449. Q

-j

0; U)ZWZ'4 Q a ... 1*. J~cc- w9 LL

Q oe- .5-

2 LJ4I.. *4 Q eQ +

-;t ZU~- LU d~b)(V - 4Ub 0.-1.N C4 4b0-i X 0Jj-t@-2-z U Q(1 ++ 64

o eiZOW4U:: 00v- 0 *CL44~W Qc. 0m* Q 0-o f A Wt2as0"1 . QI Z -13' 2w I.- -J I.- U 4*z U6.- C34D UA 13-11044 * 4 -ft.J-.L

9-1r U- 04 .4 j 4 - j 1e 04 .G~o. UsS =02 .- r4 *11" d.34P4 _j S~- U

-A US-li-9j 0.CLj M-00 0.c. 4J i - 1-- _U. mCL 8aztol jw

0 3 4* 9-Nt--20441 mI

U'. 0.4. 1-4- 6-6- 6 x A z 0 - N-1 041in.. - U~A 4W. Jcowm -a P"0 0.0#- Q

Onog LZQ4 9 (21C.9 w4S-(3 440 ( ' I LLL4 + 4IU. CL O-.-O +0 444j ".44-..4 -0 N _4 44.Q Voiz-o0I- tU4 122J- N400a -- u6 1 IS UOi-I-.J UC LIM44 4 M4Uhm"W" C(.w e04z* 1616(" 00- "4*-0 1 OaZzu. * %0* -.00U90L..s-AU go-"" eW * q g.- U2(S23 0 0-t: 4~~df

l.-UJ- Q muv~df--490-W2z -a 0IS X COUMOO

Un 4c.Z0uFj 0.UU20zzO4.. 0 40 n N UJ(w 0 I- I o-I6-WU *0544. 0 a.WvjCUW e404Jo.w-w M *9-p4 (A I.L -.0 I +fw S-044(o-42-.UJW 40UN4TlrcglCU6.4 0...Jc" .. 41vlvt6- =03V~ICC MOC.30.24u201-.4 U* CL0. e0.0Z~c * 0 N II III- --N 4w4

m SO WUUuj~WI WWWutzl 0-444hqoo ifw 34w a4

II,,goq~j~ M-.u I U.t c.- u'0-.usac -i 4-9 UU0

U '-1-q4U.U~owf~L 0W.L 0IN - 0f

U U 0 N

172

Page 178: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

'j --- j -4 j-j-:jj -

K' a - .

am+-J4 ~x .d

z -* -4Axw

*.. cc * OcjqQw*4 (

.o 0 ~ .mmcm 0 .Qi

0 ~ ~ p "0 a10 L4 0..1-Z4%ZZ

C3Q 2

w ~ C~w.N~0173

Page 179: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

0000000000000000000000000000000000000000

0N~)~0o-4NYL3 oNO0.j'O0000 .N N N 'JN N N N~. 4'~s(23P

Q4 CCK u a Ut 9 -( .tL440U 0 U 0 X .z ) Uo tut

L4Q -WU0x oZ 4U ac-0 UO 4Q

oe .4:30)L U N COL U>0. cLU -J3 UL bfAUO 4 34 CL"3 A4 -x( cU 4U .

"q QUZ41.4c-U A '-WJZ - " WWria 0 UUM CU.. LU0 0. -c) u 3D c) t L3

001 4WC Q 0- oc I-'4U -- Mtj" 4%. o Nl U

tUW204 U' - 4'-LUZOn- UJUJUJ :UJ 4c ()a

0 Uio"-.'flg U Q me 4Z 0>- JU U 0* U> e4W(3 0 42 u 2)-P"-Li * em L

Z O.IU-U uLI I-- J . ~ ~ J LLO. 4--k :c-c-I"*~cQ C . 0-J tZ2-4LZw Z -Z ~~Z4'4OZL.-.0U O" * U

,.Z UNi - 8i 4A 0..SL UU JU ~ .QV~UU)2 9 0 1 ISMTic. wtuu I4lull(W~ 4 dol- 0U

* OZ'.u Z fA- 4L B-U 0W O4 4'-j4ZZ.."U a a. U

Q Q O-om)4 U OL0 U - 4C)OW WU)-4-1 "0U -0 L, . UQ OU).J U" Z C I-mm. X- Z 1-9.-Uus Zi- 4Z44dU)U Q

Q ac U4 "4.j Q 0.~ Z L 'sCC L2 0A,> Zwg-ZJB-- 0.4 *

* UWeO)LoQ -U U).J Zw 2 -J=JL ziO'.J2LUfAQ 0 m Qa- U.- Q-0U LUL LL U .-Z =U)'LUI.U3 O ae*-ZJ %WOOL a.O 0 ~ uZ UU)O W CU ..JX *1- mU% 1-ZOZUZ=. ""UU)u 4A ft >0 UN*a- U(-U)A9Q U t Wj 2424 U) 2'0 U -J-- U J0

(3U0-9WB-2 U -Z I 4l)NUI m" t'.e.J43- 4c 3.JLUw4U)Ui 4b ft Q.. U '-...J U u'- U J WO. u0 49.9>t.-. 04400.9~I~ Q creQs4Ut U

X 0 Utuo~t~ 440OO .UCzl- 0>LU-OLU~LU.2.J U 2-!.3)U0 JLUO0M Ucc UWZ -440U W4 . ii., tW Lul 2-&!-j zwwU-141J d .'-.Z.JU wiq W . U2L UZOP"010 Z D"( I-2W i-~zcla-2 4 - 0 sc-OUAWJ40 -U) -a 0~~

2i Ua - 0-00 -J C2 12 . U.JZ 3D .J4o t2. jZ 0o.2 .Qx u*P04t U 1Zaext 3mJU onL "m4 inane." .Jwa of-#" 2003-Ctzj 49W QW Lu I.- ~ -. g Q*Oa W~4U CL I- U

-PI Uo-" 0 22U -Jo 4'.WI ac.-.q Q~~'. 2)LU-U0*4)U 0U1-0- Z U oa f(~zU Uj~iwOUW 440-UUC3.4 4. ar

d cc09 Z' ) a- (U Luq ul-es-COUQO . $- U ft

1i~ U U~en U

~ j) U 4QZ174

Page 180: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

-4,, %Q"M4.4-My 4 M 1o o

UU UU tj UUU QtJ UUU Q UUQUi

Q tU LI U UUo 0UUZU UU !

U UU tic QU LiUU tUL0Qu j) UU (i4 U3U ts UUU U f.3L

U UU UO U UO-- UUUU L3" UQU .Q Ut. 1 2 0 0f l )ZL ~- U t- )(i UU

UN49 11A U40 UUOU(SU u (Li 1- (m L) U U 'U UZ U tUU t-O3Q0 U 3 U 4U L W U u L... OI U C 3 C- QUi

U Q U x U (cS 59U fiS UUU0 U U Uj U u

Q ki Q M -QQUCJ3*j Q Ui Uj Utq LAOl~ WWQ 0r Us Uj UQ

Q Q Ui U JCI U9UU tib"Q U UOCS i U Ui U

U 9UU UJD~ ULU (UI -b"%oU9Q0Q UAU 0"S- 0 UWQ -WJi- OCCL Q QQU UU UZU- USU0 'ULUUu~ UU % Q

U104 (1S 00E Q490 1O 0.9U0U U" Uu UZU U'. j U *. UN4 U u fjU U cU jt QU %iUtU UUI-UQ x tlewU j;UU U U U QUe QU~m UUUoq 0Z US-UJ iUc3Uc~U U U UU3L Q UUU -w U4UOOU4 ILJu4 U UUc ~ .

lU tiU U J3m Uat Oc l-UU. Qe L.)-q u~~

utU Q Q kU-0~ 0 C0 UO'.U 601-41 O Ui Q

4LU CU4U JWI-U Uu UU 4wU-WUl~ u U QQ90 ~ UJZ Ucipq U 0 UG.Uj *U-USU UJ2u U

Ui US-U (JUJS-U w U UV 4UAQ-n U U04U(ZU 0~4' 0 . QO QUQ + QWU UQ

Q4 tiUA L"U 04 xx USU 4UWUQU.QJu Ui QUZU Uj~ UWA 0 0 U0 U '(tUUU

04U1 UWUI I6 *mtxr~ 0001U WUO9-UOUSU Um~ UU U( Uj U4 3 -QJ.4~ F800 UU

xi- u-DU (UU-pA0U c * jQ&"jq *A.-44) Vl.JUZU U

U- 4 QU3U. UWO40 UZ Q41 Q~UU>Q0CC A(

U)..U00U.jjztu-U.UZ'54 000*03cfo 1'-UIL.58.-~U.JUN a QuWWUQ~dozUjWlU ItZ~UU5 OOC*U UQ%%Pm.-JUN1 I ISS I ifiU4U WU Z4--0 U,4UWUt '.Ju U 0. 0 O*autaon.

ki0 6 Uw U Q~ U~j UJ Q QU U U LU043QU QU U'JLXOQUU. U)U u U3 -4U3U U U

UtLJ tiUU tLuLt) UUUL UI JU QuLj L)L.)U

175

4 4

Page 181: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

-0 000000 O0000000 00OC3000 000000000000

QLXJL" J4(.JuLi L3 U L3

Li i .i 0i41 Li LUL

QUi QiLi~

Ql.-4W LiLi0

Ql2 UZOU

Ai Qi U-JQiooz Li L)UU

U.AW U"Q

44 i Q 8paki

%J4. qLiit

Li 0 Li ULi)LiLi, Li~i

Q044 U" U~oUC3oA.i QiC3L

Q(AU UZ0inN

P"0'- OOLi Q0 0li0

8420410 0~ U mf A0-o.L-4ial U O 0 o 119 10j~~tL

m01J4140aUC LiWQ a

Li~~4 00 .L0iLl0 [email protected]*Q 0 0-x 1_ 4 0 o0 b ao

"M J JQOQi'IU L 4 O iO UIAM

Q- Liw 0ijo I~u 16" l- "o06-06o

I tL~ 004'.WU 0 0 u 00 WZO 0~w~ UUJ *30 uu000 NO NsoA100LZW

I ihU.W~0I- 6-( 6-( *- 00176

Page 182: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

0 -. - 7. -- m-, -- , . 6

~.9-. ~ . .-.-.. . . -- . -.. - - - - . . . - - - - -7 0-

.1zcizzzzzz

aw-wwccaa,~w~

oOOOOOOOOOOOOOOOO-. %j-Q (OOOOioo

Lim Loi

4it-U(SLi2&W

041~Qfiw Li

Li4E i

QZ= J Lou4 LiLi(Th LqJW O.e fib4JUO~w O

uLoiL) 1W-L

o*zw amtg N OP4

LjoI-zu:j Li Lafv

u 0 000

917

Page 183: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

0000000000

00000000Q0

(JUL1 (.2

U0 4A

QIM L3

LISuU 41

L3.40 Li

titfLh. C)Li3 LLijL

QJ~ Li

LJii- Qi

Li. 1so-tb-ft-

4jlcZ U %. 0

Qi- -e'tJ-QA ( 6

l- 0Zoi * '4b*

ui OW~L.. W4O4ZLjv1-XL- 00 ~cc

0-I-v LW-JN 0:

w4 .0-4110

178

Page 184: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

L3.- 0000000

oa 0

MU

tj 0 0UOLUQ

04000

00,0

C..

02220g040~zjqjnWUL

VI W(ACCO"O

(tufl4Q

0tj0-m 4-jm"LUd

ti- 02*141 -Jqj10JiJWO L *~

V 0 -~179

Page 185: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

.',, . . . ... - . * *"

I(

LIST OF REFERENCES

1. Attwood, S.S. and others, The Propagation of Radio Waves Through the

-: Standard Atmosphere, Columbia University Press, 1946.

2. Defense Mapping Agency, Catalogue of Digital Data, 1982.

3. Defense Mapping Agency, Product Specifications for DMA Standard forDigital Terrain Elevation Data, 1977.

4. Long, M.W., Radar Reflectivity of Land and Sea, Heath, 1975.

,4

180

2e

Page 186: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

o INITIAL DISTRIBUTION LIST

-. s-- " No. Copies

1 . Defense Technical Information Center 2

Cameron Station' ' Alexandria, Virginia 22314*

.. 2. Library Code 0142

-. Naval Postgraduate School CMonterey, California 93943

3. Department Chairman, Code 55 CDepartment of Operations Research

',iliNaval Postgraduate SchoolMonterey, California 93943

4. Professor A.F. Andrus, Code 5As 2

Department of Operations ResearchNaval Postgraduate SchoolMonterey, California 93943

5. Drtm Modes, Code 72Mf 5Computer Science DepartmentNaval Postgraduate'SchoolMonterey, California 93943

4. Commanding Officer 2Tactical Electronic Warfare Squadron

One Twenty Nine (VAQ-129)Attn: CDR Dana B. McKinney, USN

NAS Whidbey IslandOak Harbor, Washington 98277

7. CommanderNaval Air Systems CommandAttn: CDR Chuck Sammons (AIR-413)Washington, D.C. 20361

.-

~181

Wahigtn D.C 2036, • , , , % . . , ,- , - - . . , , . . - . . , • . . . . .I, , . . . ,

4, ~ a I I ii l l l u

k!'- - }

Page 187: NAVAL POSTGRADUATE SCHOOL MONTEREY B NCICINNEY …

IfI

Vim*

.ok . ,

kf~

l'- 111 1 11 t

5' '* "

a' 7M .*

ZJ A .at., .s ~ .. - .-- -- - . . . a - . a . -'.'