navier's equations

Upload: subhan-ullah

Post on 04-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Navier's equations

    1/10

    Page 1 1/26/2014

    Applied combustion engineering(Prof. S.noda)

    Student name: Subhan UllahStudent ID: M135117

    Department: Me!an"a#

    $o%o!a&!" 'n"er&"t% of $e!no#og%

  • 8/13/2019 Navier's equations

    2/10

    )))%)*

    %)%%%*

    *)*%**

    Page 2 1/26/2014

    Navier-Stokes Equations

    +e ,ou#d #"-e to der"e t!e differential form of the momentum conservation lawfor

    "nompre&&"#e f#o,&.+e &!a## f"r&t !oo&e an "nf"n"te&"ma##% &ma## ontro#%*/ = around t!e po"nt (* % ) and t!en &!r"n- t!"& o#ume to a po"nt %

    a##o,"ng 0. ea## from t!e Newtons second law of motion:

    ,!ere t!e left hand side represents the sum of the eternal forces and the right hand

    side represents the inertia forces. S"ne ,e !ae a#read% der"ed t!e e*pre&&"on for

    Dt

    /Da =

    a& t!e ae#erat"on at a po"nt,e## u&e t!"& re&u#t !ere.

    et u& re"e, &ome fat& aout &tre&&e&. $!e &tre&& ten&or t!at %ou ,ere taug!t "n t!e

    &trengt! of mater"a#& and repre&ented % t!e matr"* e#o, !a& omponent&.

    ote t!at repre&ent& a normalstressand repre&ent& a shearstress. S"ne &tre&&

    "& def"ned a& a fore oer an area each stress component has two subscripts. 8or

    e*amp#e*

    ***

    9

    8= repre&ent& a fore "n t!e *d"ret"on t!at "& a#&o at"ng oer an area

    t!at "& "n t!e *d"ret"on. o, an area ma! be considered positive or negative"depending on whether the outward normal to the area points in the positive or

    negative coordinate direction#8or e*amp#e "n t!e d"agram e#o, ,e !ae !o&en apo&"t"e and a negat"e %area.

    $!u& t!e &tre&& due to t!e fore 8%&!o,n on t!e po&"t"e %fae ,"## repre&ent a po&"t"e

    &tre&&. S"m"#ar#% a po&"t"e &tre&& on t!e negat"e %fae mu&t e due to a fore po"nt"ng

    am88 S; =+

    $

    %!

    &!

    !

    '

    http://var/www/apps/conversion/tmp/scratch_1/conteq.doc#IncFlohttp://var/www/apps/conversion/tmp/scratch_1/conteq.doc#IncFlohttp://var/www/apps/conversion/tmp/scratch_1/accel.doc#acclhttp://var/www/apps/conversion/tmp/scratch_1/accel.doc#acclhttp://var/www/apps/conversion/tmp/scratch_1/conteq.doc#IncFlohttp://var/www/apps/conversion/tmp/scratch_1/accel.doc#accl
  • 8/13/2019 Navier's equations

    3/10

    ...)2

    %()t%*(

    %2

    1

    2

    %)t%*(

    %)t%*()t

    2

    %%*(

    2

    2

    %%2

    %%

    %%%%

    +

    =

    Page 3 1/26/2014

    "n t!e negat"e %d"ret"on P%. +e ma% e a#e to repre&ent &!ear &tre&&e& t!e &ame ,a%.

  • 8/13/2019 Navier's equations

    4/10

    Page 4 1/26/2014

    0erivation of Navier1s Equations

    Now let us focus on onl! the forces that act in the !-direction("n&tead of t!o&e t!at aton %fae&). =ne t!"& re&u#t "& der"ed ,e ma% e a#e to ,r"te &"m"#ar e*pre&&"on& for

    t!e * and d"ret"on&. 8or t!"& purpo&e u&e t!e fo##o,"ng &-et!:

    ote t!at t!e aoe &!o,n are t!e onl! possible surface forces in the !-direction on thecontrol volume. $!erefore:

  • 8/13/2019 Navier's equations

    5/10

    Page 5 1/26/2014

    2od! %orcea#ong )%*%;;%8% =

    o, ,e are read% to ,r"te t!e !-component of the momentum equation:

    S"ne t!e ma&& of t!e &ma## ontro# o#ume !o&en "&%*/ =

    and

    ,

    %

    *

    u

    t

    Dt

    Da%

    +

    +

    +

    == t!u&

    +

    +

    +

    =+

    +

    +

    z

    vw

    y

    vv

    x

    vu

    t

    vzyxzyxBzyx

    zyx y

    zyyyxy

    ?ane##"ng from ot! &"de& ,e get:

    +

    +

    +

    =+

    +

    +

    )

    (,

    %

    ((

    *

    (u

    t

    (;

    )%* %

    )%%%*%

    $!e first three terms on the left hand side represent surface forces per unit volume and t!e fourth one is the bod! force per unit volume#S"m"#"ar#% t!e r"g!t !and &"de

    term& o##et"e#% repre&ent the inertia force per unit volume.

    et u& e*am"ne t!e term*

    *%

    one aga"n. $!"& term "& t!e &urfae fore on t!e ontro#

    o#ume t!at ar"&e& due to t!e net shear force between two . surfaces but acting

    !

    '

    )%2

    *

    *

    *%*%

    +

    %*2

    )

    ))%)%

    )%2

    *

    *

    *%*%

    %*2

    )

    )

    )%)%

    +

    )*2

    %

    %

    %%%%

    )*2

    %

    %

    %%%%

    +

    %

    *

    )*2

    %

    %

    %%%%

    )*2

    %

    %

    %%%%S%

    8

    +=

    )%2*

    **%

    *%)%

    2*

    **%

    *%

    ++

    %*2

    )

    )

    )%)%

    %*2

    )

    )

    )%)%

    ++

    )*2

    %

    )2)%

    2

    *

    *2)*

    2

    %

    %2

    )%*%%%

    +

    +

    =

    )%*)%*

    )%%%*%

    +

    +

    =

    %;%S% ma88 =+

  • 8/13/2019 Navier's equations

    6/10

    Page 6 1/26/2014

    along the !-direction. "-e,"&e t!e &eond and t!"rd term& are due to t!e norma# fore

    and &!ear fore et,een t,o %&urfae& and t,o &urfae& re&pet"e#%.

    ote there is a pattern which emerges from the summation of all the !-forces on thecontrol volume. $!e &tre&& term&@ &eond &u&r"pt& are a## % repre&ent"ng t!e d"ret"on

    of t!e fore ut t!e f"r&t &u&r"pt& t!at repre&ent ,!"! area& t!e fore& at on !angefrom * to for ea! &ue&&"e term. S"m"#ar#% t!e der"at"e& !ange a#&o from * to for

    ea! term. $!e etor omponent "& repre&ented % % and t!e e#o"t% omponent "&

    aord"ng#% . "-e,"&e t!e *and t!e eAuat"on& ma% a#&o e ,r"tten rat!er t!ander"ed. 8"na##% a## t!ree eAuat"on& are repre&ented %:

    $!e aoe t!ree eAuat"on& are o##et"e#% a##ed the Navier1s equations named after

    t!e"r or"g"nator. ote t!at t!e&e eAuat"on& !ae 4 "ndependent ar"a#e& (* % and t)ut

    34 dependent variables +u" v" w" and the stress components, . +e &!a## a&&ume t!at t!eod% fore omponent& (,!"! "& u&ua##% due to gra"t% "n me!an"a# eng"neer"ng

    pro#em&) are -no,n. $!erefore t!e Navier1s equationsare notsolvable &"ne t!ere are

    more un-no,n& "n t!e&e eAuat"on& t!an t!e numer of eAuat"on&.

    $o ma-e t!e&e eAuat"on& &o#a#e Stokespropo&ed a &et of constitutive relationsg"en

    e#o,. $!e&e re#at"on& together with the continuit! equationder"ed efore ma-e t!e

    a"er& eAuat"on& &o#a#e. $!e Sto-e& re#at"on& "n(artesian (oordinatesare:

    +

    +

    +

    =+

    +

    +

    )

    u,

    %

    u(

    *

    uu

    t

    u;

    )%* *

    )*%***

    +

    +

    +

    =+

    +

    +

    )(,

    %((

    *(u

    t(;

    )%* %

    )%%%*%

    +

    +

    +

    =+

    +

    +

    )

    ,,

    %

    ,(

    *

    ,u

    t

    ,;

    )%* )

    ))%)*)

    +

    ==)

    (

    %

    ,)%%)

    +

    ==

    %

    u

    *

    (%**%

    +

    == *,

    )

    u*))*

    %

    (2/

    3

    2p%%

    +=

    ),2/

    32p))

    +=

    *

    u2/

    3

    2p**

    +=

    http://var/www/apps/conversion/tmp/scratch_1/stokeslaw.dochttp://var/www/apps/conversion/tmp/scratch_1/engsym.doc#cartesianhttp://var/www/apps/conversion/tmp/scratch_1/engsym.doc#cartesianhttp://var/www/apps/conversion/tmp/scratch_1/engsym.doc#cartesianhttp://var/www/apps/conversion/tmp/scratch_1/engsym.doc#cartesianhttp://var/www/apps/conversion/tmp/scratch_1/engsym.doc#cartesianhttp://var/www/apps/conversion/tmp/scratch_1/engsym.doc#cartesianhttp://var/www/apps/conversion/tmp/scratch_1/stokeslaw.dochttp://var/www/apps/conversion/tmp/scratch_1/engsym.doc#cartesian
  • 8/13/2019 Navier's equations

    7/10

    Page 7 1/26/2014

    In t!e aoe re#at"on& "& t!e d!namicviscosit!and p"& t!e thermod!namic

    pressure. 9#&o note t!at &"ne t!e &tre&& ten&or "& &%mmetr" (".e. *%B%* et) t!e f"r&t

    t!ree re#at"on& are ,r"tten "n a more ompat form rat!er t!an u&"ng 6 #"ne&.

    S"ne our fou& "n t!"& #a&& "& "nompre&&"#e f#o,& ,e ma% e a#e to &et 0/ = "n

    t!e aoe re#at"on& % t!e u&e of t!e ont"nu"t% eAuat"on for "nompre&&"#e f#o,&. If ,e&u&t"tute t!e aoe eAuat"on "nto t!e a"er& eAuat"on& and repeated#% u&e t!e

    ont"nu"t% eAuat"on for "nompre&&"#e f#o,& (t!"& ,or- "& #eft out for %ou to tr% a& an

    e*er"&e) ,e ota"n t!e &"mp#"f"ed form of t!e a"er& eAuat"on& a&:

    In t!e aoe eAuat"on& popu#ar#% a##ed the Navier-Stokes equations ,e !ae on#% 4dependent ar"a#e& (u , and p) one aga"n a&&um"ng ;* ;% and ;to e -no,n.

    $!u& add"ng t!e ont"nu"t% eAuat"on to t!"& &et:

    +e no, !ae a &et of 4 eAuat"on& "n 4 dependent ar"a#e& or un-no,n&. $!erefore t!e

    f#u"d d%nam" pro#em& for "nompre&&"#e f#o,& are no, #ear#% &een to e &o#a#e.

    +

    +

    +

    =

    +

    +

    +

    2

    2

    2

    2

    2

    2

    *)

    u

    %

    u

    *

    u

    *

    p;

    )

    u,

    %

    u(

    *

    uu

    t

    u

    +

    +

    +

    =

    +

    +

    +

    2

    2

    2

    2

    2

    2

    %)

    (

    %

    (

    *

    (

    %

    p;

    )

    (,

    %

    ((

    *

    (u

    t

    (

    +

    +

    +

    =

    +

    +

    +

    2

    2

    2

    2

    2

    2

    ))

    ,

    %

    ,

    *

    ,

    )

    p;

    )

    ,,

    %

    ,(

    *

    ,u

    t

    ,

    0

    ,

    %

    *

    u/ =

    +

    +

    =

  • 8/13/2019 Navier's equations

    8/10

    0/= +A,

    /p;Dt

    /D 2 += +2,

    +

    +

    +=

    +

    +

    +

    2

    2

    2

    2

    2

    2

    )

    /

    %

    /

    *

    /p;

    )

    /,

    %

    /(

    *

    /u

    t

    /

    0/=

    Page C 1/26/2014

    In #ater !apter& our attempt ,"## e to &o#e t!"& &et of 4 eAuat"on& "n 4 un-no,n&

    ana#%t"a##% for ar"ou& "nterna# and e*terna# f#o, onf"gurat"on&. 5emember that these

    equations ma! not be applied to compressible flow problems# %or those" we need to

    derive the Navier-Stokes equations without the eplicit use of the incompressible

    continuit! equation#

    =ften t!e ont"nu"t% eAuat"on and t!e "nompre&&"#e a"erSto-e& eAuat"on& are ,r"tten

    "n etor form a&:

    =r &"mp#%:

    ote t!at t!e f"r&t eAuat"on +A, "& a scalarequation(S"ne

    ,

    %

    *

    u/

    +

    +

    = "& a

    &a#ar). >o,eer t!e &eond eAuat"on +2) !"de& 3 eAuat"on& (one ea! for t!e * % and omponent&) "nto a &"ng#e eAuat"on. $!u& ,e &t"## !ae 4 eAuat"on& "n 4 un-no,n&.

    +e !ae a#read% d"&u&&ed t!e p!%&"a# &"gn"f"ane of t!e eAuat"on +A,. Auat"on +2,"&t!e etor form of t!e e,ton& &eond #a, of mot"on (e*ept ea! term !a& een

    d""ded % dur"ng t!e der"at"on). $!u& t!e #eft !and &"de repre&ent& "nert"a fore per

    un"t o#ume ,!"#e ea! of t!e t!ree term& "n t!e r"g!t !and &"de repre&ent& a t%pe of

    e*terna# fore per un"t o#ume (od% fore pre&&ure fore and "&ou& fore

    re&pet""#%).

    Eample +use of Navier1s equation 6 Stokes1 laws,:

    &roblem:

    /he velocit! profile for full! developed laminar flow between two parallel platesseparated b!

    distance 4b is given b!

    =

    2

    2

    ma*.

    %1uu where umais the centerline velocit! +at ! 7

    8,# 0etermine the shear force per unit volume on a fluid element in the -direction#

    %ind the maimum value of this quantit! for this flow" when b =1 m, umax=2 m/s and

    =10-1N sec/m2(SAE-10W).

    uma*

    *

    %

    http://var/www/apps/conversion/tmp/scratch_1/PlanePoi.dochttp://var/www/apps/conversion/tmp/scratch_1/PlanePoi.doc
  • 8/13/2019 Navier's equations

    9/10

    %

    u

    %

    u

    *

    (%*

    =

    +

    =

    0)

    u

    *

    ,)* =

    +

    =

    0

    00

    Page 1/26/2014

    Solution:

    9iven:

    e#o"t% Prof"#e u(%)

    9t % B 0 u B uma*

    9t % B u B 0

    %ind:

    ("))%)*%*

    +

    ("") $!e ma*"mum a#ue of t!e t!e re&u#t "n (")

    +0iscussion:$!"& pro#em& #anguage "nd"ate& u&e of t!e a"erSto-e& eAuat"on.

    doe& not !o#d ot!er,"&e owever if the Navier-Stokes form +2, is used" we

    must test for incompressibilit! since +2,.

    9&&ume: B 0 B , &"ne t!e e#o"t% prof"#e g"en "& on#% "n t!e *

    d"ret"on.

    ?!e- "nompre&&""#"t%: 0

    ,0

    %

    0

    *

    u=

    =

    =

    0/ =

    $!u& t!e pro#em ma% e &o#ed % &"mp#% a#u#at"ng u2 . +e &!a## a## t!"&

    part Met!od II)

    ;ethod