ndt related quantitative modeling of coupled piezoelectric and ultrasonic wave phenomena ·...

44
NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena R. Marklein Electromagnetic Theory, Department of Electrical Engineering, University of Kassel, D–34109 Kassel, Germany E–mail: [email protected]–technik.uni–kassel.de Dedicated to Professor Dr. H. W¨ ustenberg on the Occasion of his 60th Birthday Abstract. This paper presents an overview of the development of numerical tools for the computa- tional modeling of acoustic (A), elastodynamic (E), and coupled piezoelectric (P) and ultrasonic wave phenomena in the time domain related to nondestructive testing with ultrasound. For this purpose, a numerical method, the Finite Integration Technique (FIT), is directly applied to the set of governing equations of the underlying wave propagation in integral form. Space and time discretization of the governing equations on a staggered grid system results in a set of discrete matrix equations of three explicit time domain modeling codes acronymed PFIT, EFIT, and AFIT. Each of the discrete matrix equations has a one–to–one correspondent in the original set of equations. Analytical properties of the original set of equations are conserved. Mathematical properties like consistency and convergence of the codes are proved and stability conditions are derived. The sparse matrices are highly suitable for high–performance vector computers, workstations, or even for personal computers and state–of– the–art laptops. To handle complex geometries, an IGES interface to commercial CAD systems is implemented, and to solve arbitrary initial–boundary–value problems several kinds of boundary con- ditions can be defined. The numerical codes PFIT, EFIT, and AFIT have widespread applications in quantitative computational NDT, for example starting from piezoelectric transducer modeling and optimization to ultrasonic wave propagation, diffraction, and scattering in inhomogeneous anisotropic dissipative and even statistically heterogeneous materials. Some of the analytical and experimental validations and applications to real life NDT problems are given in this paper illustrating the potential of these numerical modeling tools. 1

Upload: others

Post on 27-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

NDT Related

Quantitative Modeling of

Coupled Piezoelectric and

Ultrasonic Wave Phenomena

R. Marklein

Electromagnetic Theory, Department of Electrical Engineering,University of Kassel, D–34109 Kassel, GermanyE–mail: [email protected]–technik.uni–kassel.de

Dedicated to Professor Dr. H. Wustenbergon the Occasion of his 60th Birthday

Abstract. This paper presents an overview of the development of numerical tools for the computa-

tional modeling of acoustic (A), elastodynamic (E), and coupled piezoelectric (P) and ultrasonic wave

phenomena in the time domain related to nondestructive testing with ultrasound. For this purpose, a

numerical method, the Finite Integration Technique (FIT), is directly applied to the set of governing

equations of the underlying wave propagation in integral form. Space and time discretization of the

governing equations on a staggered grid system results in a set of discrete matrix equations of three

explicit time domain modeling codes acronymed PFIT, EFIT, and AFIT. Each of the discrete matrix

equations has a one–to–one correspondent in the original set of equations. Analytical properties of

the original set of equations are conserved. Mathematical properties like consistency and convergence

of the codes are proved and stability conditions are derived. The sparse matrices are highly suitable

for high–performance vector computers, workstations, or even for personal computers and state–of–

the–art laptops. To handle complex geometries, an IGES interface to commercial CAD systems is

implemented, and to solve arbitrary initial–boundary–value problems several kinds of boundary con-

ditions can be defined. The numerical codes PFIT, EFIT, and AFIT have widespread applications

in quantitative computational NDT, for example starting from piezoelectric transducer modeling and

optimization to ultrasonic wave propagation, diffraction, and scattering in inhomogeneous anisotropic

dissipative and even statistically heterogeneous materials. Some of the analytical and experimental

validations and applications to real life NDT problems are given in this paper illustrating the potential

of these numerical modeling tools.

1

Page 2: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

Contents

1 Introduction 3

2 Numerical Modeling of Ultrasonic Wave Phenomena with EFIT and AFIT 4

3 Numerical Results obtained with EFIT and AFIT 12

3.1 Analytical and Numerical Validation of EFIT . . . . . . . . . . . . . . . . . . . 123.2 Experimental Validation of EFIT . . . . . . . . . . . . . . . . . . . . . . . . . . 133.3 AFIT and EFIT Modeling of Ultrasonic Pipeline Inspection . . . . . . . . . . . 173.4 EFIT Modeling of Ultrasonic NDT of Concrete . . . . . . . . . . . . . . . . . . 183.5 Transducer Radiation Modeling with EFIT . . . . . . . . . . . . . . . . . . . . . 203.6 EFIT Modeling of the Ultrasonic NDT of Fiber–Reinforced Double T–Stringer . 233.7 EFIT Modeling of Ultrasonic Wave Propagation in an Austenitic V–Butt Weld

and Notch Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.8 ULIAS — EFIT Modeling Module . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Numerical Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenom-

ena with the Piezoelectric Finite Integration Technique — PFIT 31

5 Experimental Validation and Numerical Results of PFIT 33

5.1 Piezoelectric Pz27 Disk Transducer on a Brass Cylinder . . . . . . . . . . . . . . 335.2 Piezoelectric Pz27 Disk Transducer on a Brass Cylinder with Backwall Breaking

Notch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Concluding Remarks 38

Acknowledgements 38

References 39

2

Page 3: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

1 Introduction

The numerical time domain modeling of transient waves of all types in various disciplines ofscience and engineering is utilized for increasingly sophisticated applications to communication,remote sensing, medical imaging, and nondestructive testing.

In recent years ultrasonic nondestructive evaluation has been more and more character-ized by quantitative methods, which is particularly true for modern diffraction tomographicimaging algorithms. These developments and their appropriate applications to increasinglycomplex NDT problems — complex relating to materials as well as to geometries — like in-homogeneous anisotropic austenitic welds and fiber–reinforced composites, require a deep andfundamental physical understanding of ultrasonic wave propagation, diffraction and scattering.Consequently, numerical codes to model these phenomena should be as close to real life aspossible with only marginal or even no mathematical approximations. Only for canonical prob-lems, where the geometries comply with coordinate systems in which the governing equationsare separable, analytical solutions can be constructed, but, for the general case it is necessaryto turn to direct numerical methods.

This means that a direct discretization technique has to be applied to the governing equa-tions of the underlying physical phenomena. Well known numerical methods of that kindcomprise the

• Finite Difference Method (FDM) [e. g. Alterman, 1968; Bamberger et al., 1980; Chin etal., 1984; Temple, 1988; Bond et al., 1988; Harker, 1988; Harker et al., 1990, 1991],

• Finite Element Method (FEM) [e. g. Ludwig, 1986; Ludwig & Lord, 1988; Ludwig et al.,1989; Lord et al., 1990; Lerch, 1990, 1991; Stam, 1990; Stam & Hoop, 1990; You et al.,1991; Roberts, 1991], and

• Finite–Difference Time–Domain (FD–TD) method [e. g. Madariaga, 1976; Aki & Richards,1980; Virieux, 1984, 1986; Stanke & Chang, 1989].

In this paper, the well–established Finite Integration Technique (FIT) [Weiland, 1977; Fellinger,1991a; Fellinger et al., 1995; Wolter, 1995b; Marklein, 1998; Bihn, 1998] which is a generaliza-tion of the Finite Volume Method (FVM) [e. g. Versteeg & Malalaskera, 1995], is applied to thegoverning equations in integral form to derive numerical codes to simulate typical ultrasonicNDT situations as shown in Figure 1 including the piezoelectric elements and external electricalcircuit elements [Marklein, 1998]. Figure 2 relates the three explicit time domain modelingtools based on FIT [Marklein, 1998]:

• PFIT — Piezoelectric Finite Integration Technique,

• EFIT — Elastodynamic Finite Integration Technique, and

• AFIT — Acoustic Finite Integration Technique.

PFIT is particularly developed for the modeling of the excitation and reception mode of apiezoelectric transducer including an external electrical load. Furthermore, PFIT includes thefeatures of EFIT and AFIT. EFIT and AFIT have been designed to model the elastodynamicwavefields in solids and acoustic wavefields in fluids and gases. Besides that, AFIT can be alsoused to model scalar approximations of elastic wavefields in solids.

3

Page 4: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

Emitter/Receiver Unit

E

R

(NetworkAlgorithm)

Emitter/Receiver Unit

E

R

(NetworkAlgorithm)

PiezoelectricTransducer A

PiezoelectricTransducer B

PiezoelectricElements (PFIT)

Backwall Breaking Crack

IncidentUltrasonicWavefield Diffracted/Reflected

Ultrasonic Wavefield

Diffracted/ReflectedUltrasonic Wavefield

Elastic Solid (EFIT)

Figure 1: Typical ultrasonic NDT situation: Nondestructive testing with ultrasound of a block of steel

with a backwall breaking crack

Excitation,

Reception,

Propagation,

Diffraction, and

Scattering of

Ultrasonic Wavefields

Piezoelectric (P) Materials

Elastic (E) Solid Materials

Acoustic (A) Fluid/Gaseous Materials or

Scalar Treated Elastic Solid Materials

....................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................... .......................

................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................ PFIT

............................................................................................................................................................................................................................................................................................................ EFIT

............................................................................................................................................................................................................................................................................................................ AFIT

Figure 2: Numerical ultrasonic modeling tools: PFIT, EFIT, and AFIT based on FIT

2 Numerical Modeling of Ultrasonic Wave Phenomena with EFIT

and AFIT

Historically, the Finite Integration Technique (FIT) has first been applied in electrodynamicsto Maxwell’s equations in integral form by Weiland [1977] to model electromagnetic problems[see also Weiland, 1986, 1990; Bartsch et al., 1992]. Based on these developments a commer-cial software package called MAFIA (MAFIA: solution of MAxwell’s equations using a FiniteIntegration Algorithm) is today available [CST, 1997].

In the time domain the resulting discrete equations of MAFIA are similar to the equationsderived by Yee [1966] starting from the differential form of Maxwell’s equations, which aretoday known as the Finite–Difference Time–Domain (FD–TD) method [e. g. Taflove, 1995].

Fellinger & Langenberg [1990] [see also Fellinger, 1991a; Fellinger & Marklein, 1991b] trans-fered the ideas applied in electrodynamics to the linear governing equations of ultrasonic wavesin solids, the linear elastodynamic case, i. e. Newton–Cauchy’s equation of motion and theequation of deformation rate for the homogeneous isotropic case and acronymed the numeri-cal procedure Elastodynamic Finite Integration Technique (EFIT). With EFIT, Fellinger has

4

Page 5: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

furnished a tool for the modeling of elastodynamic waves in the time domain, which has beenfurther developed throughout the following years to handle arbitrary inhomogeneous dissipa-tive (viscid) anisotropic materials [Marklein et al., 1994a, 1994b, 1995b; Marklein, 1998] andcomplex geometries [Langenberg et al., 1996; Marklein et al., 1997]; today it is widely used asa well–accepted quantitative modeling tool in NDT.

AFIT, the acoustic pendant to EFIT, is generally derived by applying FIT to the governingequations of acoustic waves in integral form [Marklein & Fellinger, 1990; Marklein, 1992a, 1998].

Stimulated by the developed AFIT– and EFIT–code, similar algorithms have been imple-mented in the above mentioned MAFIA package by Wolter & Weiland [1995a], Wolter [1995b]and Bihn & Weiland [1996, 1997], Bihn [1998].

A CAFIT algorithm for ultrasonic NDT problems with cylindrical symmetry has been de-veloped by Peiffer et al. [1997].

The underlying governing equations of elastodynamic waves rely on the following two fun-damental physical laws [Achenbach, 1973; Nelson, 1979; Ben–Menahem & Singh, 1981; Auld,1990; Hoop, 1995]

(Newton’s 2nd law) force = mass × acceleration ⇒ f tot(R, t) = ρ0(R)∂2

∂t2u(R, t) (1)

(Hooke’s law) stress =stiffness × deformation ⇒ T(R, t) = c(R) : S(R, t) (2)

with the total force density vector f tot, the mass density at rest ρ0, the particle displacementvector u, Cauchy’s stress tensor of second rank T, the stiffness tensor of fourth rank c, and the

deformation tensor of second rank S. All field quantities are functions of the position vector R

and time t and all material parameters are assumed as time independent. The colon denotes thedouble–scalar product with the property ab : c d = (a · d)(b · c), the centered dot representsthe scalar product.

With the linear momentum vector j and the particle velocity vector v given by

j(R, t) = ρe0(R)v(R, t) (3)

v(R, t) =∂

∂tu(R, t)

Eq. (1) reads

f tot(R, t) =∂

∂tj(R, t) .

Then, Eq. (2) and Eq. (3) are the constitutive equations of a linear inhomogeneous anisotropicnondissipative elastic solid.

Introduction of Cauchy’s equation for the total force density acting on an elastic solidparticle

f tot(R, t) = ∇ · T(R, t) + f(R, t)

with f(R, t) accounting for a given or impressed force density, yields the Newton–Cauchy’sequation of motion, which is in integral form for a volume V with the closed surface S = ∂V

given by

∫∫∫

V

ρe0(R)∂

∂tv(R, t)dV = ©

∫∫

S

n · T(R, t)dS +

∫∫∫

V

f(R, t)dV (4)

5

Page 6: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

with n being the outward normal vector of the closed surface S.According to the law of deformation a particle flux results in a time variation of the defor-

mation volume. The equation of deformation rate reads in integral form for a volume V withthe closed surface S = ∂V∫∫∫

V

s(R) :∂

∂tT(R, t)dV = ©

∫∫

S

sym nv(R, t)dS +

∫∫∫

V

h(R, t)dV (5)

with n being the outward normal vector of the closed surface S and the compliance tensor offourth rank s being the inverse of the stiffness tensor, which yields Hooke’s law in the form

S(R, t) = s(R) : T(R, t) .

Like f , h is a given or impressed source term, the so–called source of deformation rate accom-plishing the symmetry of both equations. The operator sym nv(R, t) gives the symmetricpart of the dyadic nv(R, t).

Elementary

Material

Cell m(n)

DiscreteMaterialGrid M

........................................................................

.......................

ContinuousMaterial ........................................................................

.......................

”Continuous“ SpacePhysical World

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......

..

....

......

......

......

......

..

....

......

......

......

.

.

.

.

.

.

”Discrete“ Space of

PFIT, EFIT, and AFIT

Figure 3: Discretization of the ma-

terial in elementary cubic material

cells (m(n)) resulting in a regular

material grid M

A given ultrasonic NDT situation is generally described by a given material distribution, forinstance a homogeneous isotropic nondissipative block of steel. Discretization of the

”continu-

ous“ material by elementary cubic material cells m(n) ∈ M with the volume V = ∆x3, n beingthe global cell or node number (see Fig. 3), yields a regular material grid M , which defines the

grid G (see Fig. 3 and Fig. 4), whereas a dual grid G is staggered to both (see Fig. 4). Thematerial parameters are assumed constant in each elementary material cell, but each materialcell can be filled with different material parameters.

Figure 5 shows the EFIT grids M , G, G, and the allocation of the discrete elastodynamicfield components assigned to the node n, allowing a consistent implementation of the continuityand boundary conditions.

For a source–free interface between two solid materials, medium 1 and medium 2, thecontinuity conditions are

v(2)(R, t) − v(1)(R, t) = 0

n ·[T(2)(R, t) − T(1)(R, t)

]= 0

6

Page 7: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

"! !$#&% ')(+* ,

-+. 0/ -21 3 - !4 3! !45 % '6(7* / -21 3 - !4 08

93! !$:# % ')(7* :,

;&< ;>= ;?

@ ;

@ ; @ ;

93! !$# % ')(7* ,

-+. 0/ -+1 " - !4 3! !45 % '6(+* / -21 3 - !4 08

93! !$:# % ')(7* :,

A

@ ;

@ ; ;>= ; ?

Figure 4: Material grid M and the staggered dual grid system G and G

with n being the interface normal pointing into medium 2. v(i) and T(i) are the field contribu-tions at the endface on side of medium i with i = 1, 2.

Replacing medium 1 by vacuum and suppressing the index 2 the (homogeneous) boundaryconditions for R ∈ boundary and ∀ t are

v(R, t) = 0 motion–free boundary condition

or

n · T(R, t) = 0 stress–free boundary condition

with n being the surface normal pointing into the medium.Generally, each governing equation is solved for each discrete field component of v = viei,

i = 1, 2, 3 and T = Tijeiej, i, j = 1, 2, 3 on the left–hand side of Eq. (4) and Eq. (5) for a cellvolume V = ∆x3. For example, the first Newton–Cauchy grid equation for the v1 componentis (see Fig. 6)

e1 ·

[∫∫∫

V

ρe0(R)∂

∂tv(R, t)dV = ©

∫∫

S

n · T(R, t)dS +

∫∫∫

V

f(R, t)dV

]

ρ(m)e0 v

(m)1 (t)(∆x)3 =[T

(r)11 (t) − T

(l)11(t) + T

(f)12 (t) − T

(b)12 (t) + T

(d)13 (t) − T

(u)13 (t)

](∆x)2 + f

(m)1 (t)(∆x)3

with m = middle, r = right, l = left, f = front, b = back, d = down, and u = up. The dotindicates the first time derivative.

7

Page 8: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BB BBB BB B BB B BB B B BB B BBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBB BB BBB BB B BB B BB B B BB B B

CED

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB B B B B B B B B B B B B B B B B B B B B B BB B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBCEDBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB B B B B B B B B B B B B B B B B B B B BB BB B B B B B B B B B B B B B B B B B B B B B BB B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBCED

FG H)IJ J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J JJJJJJJJJJJJJJJJJJJJJJJJ JJJJJJJJJJJJJJJJJJJJJJJKML N"OPQPJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ J J J J J J J J J J J J J J J J J J JJ J JJ J J J J J J J J J J J J J J J J J J J J J J

K L N"ORQR JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ JJ JJJ JJ JJJ J JJ JJ J J JJ J J J J KSL N"OTUT

J J J J J J J J J J J J J J J J JJ J JJ J J JJ J JJ J J JJ J J JJV V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V VVVVVVVVVVVVVVVVVVVVVVVV VVVVVVVVVVVVVVVVVVVVVVVW L N"OP

J J J J J J J J J J J J J J J JJ J J J J J J J J J J J J J J J JVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV V VVVV VV VV VV VV V VV V VV V V V VW L N"OT

J J J J J J J J J J J J J J J J JJ J J J J J J J J J J J J J J J JVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV V V V V V V V V V V V V V V V V V V V VV VV V V V V V V V V V V V V V V V V V V V V V VW L N"OR

F K L N"OPXT

F K L N"OP R

F KML N"ORQT

G HY[Z R I

G HY\Z P I

G HY[Z T I

] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]] ] ] ] ] ] ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]] ] ] ] ] ] ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]

] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

^ ^

^^

^^

^^

]] ] ]] ] ]] ]] ] ]] ] ] ] ] ]] ] ]] ]] ] ]] ] ]] ] ]] ]] ] ]] ] ]] ] ]] ]]] ]] ] ]] ] ]] ] ]] ] ] ] ]] ] ]] ] ]]] ]] ]] ] ]] ] ]] ] ]] ] ]] ]] ] ]] ] ]] ] ]] ] ]] ]] ] ]] ] ]] ] ]] ] ]] ]] ] ]] ] ]] ] ]] ] ]] ]] ] ]] ] ]] ] ]] ] ]] ]] ] ]] ] ]] ] ]] ] ]] ]]] ]] ] ]] ] ]] ] ]] ]] ] ]] ] ]] ] ]] ]] ] ]] ] ]] ] ]] ] ]] ]] ] ]] ] ]]] ]] ] ]] ] ] ] ]] ] ]] ] ]] ] ]] ]]] ]] ] ]] ] ]] ]] ] ]] ] ]] ] ]] ] ]]]] ] ]] ] ] ] ] ]] ] ]] ]

] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]] ] ] ] ] ]] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

] ] ] ]] ] ] ]] ] ] ]

] ] ] ]] ] ] ]] ] ] ]

] ] ] ]]] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

_S`ba cdef fhgi L N"Ojlk6mbn e_S`oa c gp]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

qr m e`oa r"fdef f)s L N"Ojlk6mon eqr m e`ba r"f_S`ba c Zr"t2c_S`oa cdef f i L N"Ojlk)mon e_S`ba cp]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

_Sf j"u r"f_M`ba cwv j c2e H]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] ]] ]]] ]] ]] ] ]] ] ]] ] ] ] ] ]] ] ]

^ ^

^^

^^

^^

B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B BB B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B BB B B B B B B B BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B BB B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B BB B B B B B B B BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B

B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B BB B B B B B B B BB B B B B B B B BB B B B B B B B BB B B B B B B B BB B B B B B B BB B B B B B B B BB B B B B B B BB B B B B B B B BB B B B B B B B BB B B B B B B B BB B B B B B B B BB B B B B B B B

Figure 5: Allocation of the discrete elastic field

components assigned to the global grid node n

x x x x x x x x x x x x x x x x xx xx x xx x x xx x x xx x x xx xy y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y yyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyz | ~l~ x x x x x x x x x x x x x x x x xx xx x x xx x x xx x x xx x xx xy y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y yyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyy

z l~l~

z h~Q

z ~U

z ~

z 2~

) )yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy y y y y y y y y y y y y y yy y y y yy y yy y y y y y y y y y y y y y y y y y y y y y y

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxx ~

\

Figure 6: Elastodynamic case (EFIT): elemen-

tary integration cell of the v1 component

In a global node formulation this grid equation reads

ρ(n)e0 + ρ

(n+M1)e0

2v

(n)1 (t)(∆x)3 =

[T

(n+M1)11 (t) − T

(n)11 (t) + T

(n)12 (t) − T

(n−M2)12 (t) + T

(n)13 (t) − T

(n−M3)13 (t)

](∆x)2 + f

(n)1 (t)(∆x)3

with the global grid node n

n = nG(n1, n2, n3) = 1 + M1(n1 − 1) + M2(n2 − 1) + M3(n3 − 1) , n ∈ 1, 2, . . . , N ,

N = N1N2N3, ni ∈ 1, 2, . . . , Ni, and the step counters

x1 direction: M1 = 1

x2 direction: M2 = N1

x3 direction: M3 = N1N2 .

Performing this procedure for all components of v and T and formulating the grid equationsin matrix form yields the following Newton–Cauchy’s grid equation of motion and the gridequation of stress rate, the discrete Elastic Grid Equations (EGE) of EFIT

v(z− 1

2) = [ρe0]

−1[DIV][RTv ]−1[AT

v ]T(z− 1

2) + [ρe0]

−1f(z− 1

2)

T(z) = [c][RvT]−1[GRAD][Av

T]v(z) + g(z)

with the algebraic field vectors f, g, v, T, the material matrices [ρe0], [c], the topo-

logical operators [DIV], [GRAD] containing only the values −1, 0, and 1, the matrices [RTv ],

[RvT] containing the line elements, and the averaging matrices [AT

v ], [AvT].

8

Page 9: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

The staggered grid allocation of the discrete field components also requires a staggeredallocation in time in full and half time steps ∆t according to the integration schemes (seeFig. 7)

v(z) = v(z−1) + ∆tv(z− 1

2)

T(z+ 1

2) = T(z− 1

2) + ∆tT(z) .

Scalarization of the elastodynamic case yields the acoustic case, therefore the hydrodynamic

$ ¡ ¡ ¡ ¡

¢

¢

£"¤4¥¦ §¨©Qª £>«¤>¥ ¦ §¨M¬­ ª £"¤4¥¦ §Uª

£®w¥ ¦ §¨ ¬­ ª £ «®¥ ¦ §ª £®w¥ ¦ §U¯ ¬­ ªFigure 7: Staggered time grid of EFIT

pressure p is introduced

T(R, t) = −p(R, t) I

with the unit dyadic I = δijeiej; δij is the Kronecker symbol being equal to 1 for i = j andequal 0 for i 6= j.

Furthermore, Hooke’s law (2) reduces to a scalar formulation according to

(Hooke’s law) stress = stiffness × deformation ⇒ −p(R, t) =1

κ(R)S(R, t)

with the compressibility κ and the scalar deformation S.Generally, AFIT is derived by applying FIT to the governing equations of acoustic waves

in integral form [Marklein & Fellinger, 1990; Marklein, 1992a, 1998].The governing equations of linear acoustic waves for nondissipative materials are Newton’s

equation of motion and the scalar deformation rate equation

∫∫∫

V

ρa0(R)∂

∂tv(R, t)dV = −©

∫∫

S

n p(R, t)dS +

∫∫∫

V

f(R, t)dV

∫∫∫

V

κ(R)∂

∂tp(R, t)dV = −©

∫∫

S

n · v(R, t)dS −∫∫∫

S

h(R, t)dV

with the mass density at rest ρa0 and the given or impressed scalar source of deformation rateh.

Figure 8 illustrates the AFIT grids M , G, G, and the allocation of the discrete acousticfield components assigned to the node n, allowing a consistent implementation of the continuityconditions, which are for a source–free interface between two acoustic media, medium 1 andmedium 2, for R ∈ interface and ∀ t,

n ·[v(2)(R, t) − v(1)(R, t)

]= 0

p(2)(R, t) − p(1)(R, t) = 0

with n being the interface normal pointing into medium 2. v(i) and p(i) are the field contribu-tions at the endface on side of medium i with i = 1, 2.

9

Page 10: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° °° °°° °° ° °° ° °° ° ° °° ° °°°°°°°°°°°°°°°°°°°°°°°°

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° °°°° °° °°° °° ° °° ° °° ° ° °° ° °

± ²

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °°°°°°°°°°°°°°°°°°°°°°°° °°°°°°°°°°°°°°°°°°°°°°°± ²°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °° °° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °°°°°°°°°°°°°°°°°°°°°°°° °°°°°°°°°°°°°°°°°°°°°°°± ²

³´ µ¶· ¸)¹ º» ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼¼ ¼ ¼¼ ¼ ¼ ¼¼ ¼ ¼¼ ¼ ¼ ¼¼ ¼ ¼ ¼¼½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½½½½½½½½½½½½½½½½½½½½½½½½ ½½½½½½½½½½½½½½½½½½½½½½½¾ ¹ º»¿

¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½ ½ ½½½½ ½½ ½½ ½½ ½½ ½ ½½ ½ ½½ ½ ½ ½ ½ ¾ ¹ º»À

¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½½ ½½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½¾ ¹ º»Á´ µÂÄà Á ¶

´ µÂÅà ¿ ¶

´ µÂÄà À ¶

Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

Ç Ç

ÇÇ

ÇÇ

ÇÇ

ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ Æ Æ Æ Æ ÆÆ Æ ÆÆÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆÆ ÆÆ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ Æ Æ Æ ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ ÆÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ Æ Æ Æ Æ ÆÆ Æ ÆÆÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ Æ ÆÆÆ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ Æ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ ÆÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ ÆÆ Æ Æ Æ Æ ÆÆ Æ ÆÆÆ

Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

Æ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ Æ ÆÆ ÆÆ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

ÈÊÉQË ÌÍ>ÎÏ Ï)ÐÑ ¹ º»Ò"Ó&ÔQÕ ÎÈÊÉQË Ì ÐÖÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

×ÙØ Ô ÎÉQË ØÏÍ>ÎÏ ÏÚ ¹ º»Ò"Ó&ÔQÕ Î×ÙØ Ô ÎÉQË ØÏÈÊÉQË Ì ÃØÛ7ÌÈÊÉQË ÌÍ>ÎÏ Ï Ñ ¹ º»Ò"Ó&ÔQÕ ÎÈÊÉQË ÌÖ

ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ ÆÆ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

ÈÊÏ ÒÜ ØÏÈÊÉQË ÌÝ Ò Ì7Î µÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ ÆÆ ÆÆÆ ÆÆ ÆÆ Æ ÆÆ Æ ÆÆ Æ Æ Æ Æ ÆÆ Æ Æ

Ç Ç

ÇÇ

ÇÇ

ÇÇ

° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °° ° ° ° ° ° ° °° ° ° ° ° ° ° °° ° ° ° ° ° ° °° ° ° ° ° ° ° °° ° ° ° ° ° ° °° ° ° ° ° ° ° °° ° ° ° ° ° ° °° ° ° ° ° ° ° °° ° ° ° ° ° ° °° ° ° ° ° ° ° °° ° ° ° ° ° ° °° ° ° ° ° ° ° °° ° ° ° ° ° ° °°

Figure 8: Allocation of the discrete acoustic field

components assigned to the global grid node n

Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ ÞÞ ÞÞ Þ ÞÞ Þ Þ ÞÞ Þ Þ ÞÞ Þ Þ ÞÞ Þßáà â ã Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ ÞÞ ÞÞ Þ Þ ÞÞ Þ Þ ÞÞ Þ Þ ÞÞ Þ ÞÞ Þ

ßáà äã

å à æ)ãçèéééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééé é é é é é é é é é é é é é éé é é é éé é éé é é é é é é é é é é é é é é é é é é é é é é

ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê êê ê êê ê ê êê ê ê êê ê ê êê ê êêÞ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ Þ ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞë à ìãíî à ìãïð

ñ ñ

ññ

ññ

ññ

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó óóó óó óó óó óó ó óó ó ó ó óó óóóóóóóóóóóóóóóóóóóóóóóó

óóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó óóó óóó óó óó óó óó ó óó ó ó ó óó ó

ô\õ

óóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó óó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó óóóóóóóóóóóóóóóóóóóóóóóó óóóóóóóóóóóóóóóóóóóóóóóôõóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó óóó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó óó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó

ó ó ó ó ó ó ó ó ó ó ó ó ó ó óóóóóóóóóóóóóóóóóóóóóóóó óóóóóóóóóóóóóóóóóóóóóóóôõñ ñ

ññ

ññ

ññ

ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê êêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêê

êêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêê

ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê êê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê

ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê êê ê ê ê ê ê ê ê êêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêê

ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê êê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê

ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê êê ê ê ê ê ê ê ê êêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêê

ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òò ò ò ò ò ò òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò

ñ ñ

ññ

ññ

ññ

Figure 9: Acoustic case (AFIT): elementary inte-

gration cell of the v1 component

Replacing medium 1 by vacuum and suppressing the index 2 the (homogeneous) boundaryconditions are for R ∈ interface and ∀ t

n · v(R, t) = 0 motion–free boundary condition

or

p(R, t) = 0 pressure–free boundary condition

with n being the surface normal pointing into the medium.For instance, the first Newton grid equation for the v1 component is (see Fig. 9)

e1 ·

[∫∫∫

V

ρa0(R)∂

∂tv(R, t)dV = −©

∫∫

S

n p(R, t)dS +

∫∫∫

V

f(R, t)dV

]

⇓ρ

(m)a0 v

(m)1 (t)(∆x)3 = −

[p(r)(t) − p(l)(t)

](∆x)2 + f

(m)1 (t)(∆x)3 .

The further application of FIT yields the discrete Acoustic Grid Equations (AGE) of AFIT,Newton’s grid equation of motion, and the scalar grid equation of pressure rate in the form

v(z− 1

2) = −[ρa0]

−1[R]−1[grad]p(z− 1

2) + [ρa0]

−1f(z− 1

2)

p(z) = −[κ]−1[div][R]−1v(z) − [κ]−1h(z)

with the algebraic field vectors f, h, v, p, the material matrices [ρa0], [κ], the matrices

containing the line elements [R], [R], and the topological operators [grad], [div] containingonly the values −1, 0, and 1.

Then, the time integration scheme (see Fig. 10)

v(z) = v(z−1) + ∆tv(z− 1

2)

p(z+ 1

2) = p(z− 1

2) + ∆tp(z)

10

Page 11: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö öö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö öööööööööööööööööööööööö ööööööööööööööööööööööö÷$øùú÷û û û ûööööööööööööööööööööööööööööööööööööööööööööööööööö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö

ööööööööööööööööööööööööööööööööööööööööööööööööööü ööööööööööööööööööööööööööööööööööööööööööööööööööööööööööööööööööööööööö ö öööö öö öö öö öö ö öö ö öö ö ö ö ö

ööööööööööööööööööööööööööööööööööööööööööööööööööö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö öööööööööööööööööööööööööööööööööööööööööööööööööööü öööööööööööööööööööööööööööööööö

öööööööööööööööööööööö ööö öö öö ö öö öö ö ö öö ö ö öööööööööööööööööööööööö

ý"þ4ÿ ýþ>ÿ ý"þ4ÿ ý4ÿ ý4ÿ ý4ÿ

Figure 10: Staggered time grid of AFIT

completes the AFIT algorithm.The EFIT– and AFIT–codes are explicit time domain algorithms of leapfrog–type and of

2nd order in space and time. Consistency has been proven for both codes [Marklein, 1998].

Stability for a regular grid (M , G, G) is given by the multidimensional Courant–Friedrichs–Levy(CFL) condition in n–dimensions

∆t ≤ ∆tmax =1√n

∆x

cmax

with the spatial dimension n and the maximal energy velocity cmax. If consistency of the gridequations has been proven and the stability condition is satisfied, then convergence is ensuredby the Lax equivalence theorem [Richtmyer & Morton, 1990].

To model an ideal scatterer or an infinite modeling domain several boundary conditionshave been implemented (see Table 1).

Boundary condition EFIT AFITStress–free •Pressure–free •Motion–free • •Open • •Plane wave • •

Table 1: Implemented boundary

condition in EFIT and AFIT

In the following, some EFIT and AFITmodeling examples are presented [see alsoFellinger & Langenberg, 1990; Langenberg etal., 1990, 1993, 1994, 1995, 1996, 1997a,1997b; Fellinger 1991a; Fellinger & Marklein,1991b; Marklein, 1991a, 1992a; Marklein& Fellinger, 1991b; Marklein et al., 1992b,1994a, 1994b, 1995a, 1995b, 1996a, 1996b,1996c, 1996d, 1997a, 1997c; Hofmann, 1994;

Walte et al., 1993, 1996, 1997; Klaholz et al., 1995; Fellinger et al., 1995; Rudolph et al., 1995;Schmitz et al., 1995; Bergmann, 1996; Kostka et al., 1997; Hannemann et al., 1998; Marklein,1998].

11

Page 12: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

3 Numerical Results obtained with EFIT and AFIT

3.1 Analytical and Numerical Validation of EFIT

Once a numerical method is applied to compute a physical solution the results, and there-with the numerical code, have to be validated either against analytical solutions or numericalreferences.

For a first analytical and numerical validation of the 2–D EFIT–code a strip–like pistontransducer radiating into a 2–D homogeneous nondissipative isotropic half–space has beenchosen (see Fig. 11). Figure 12 shows the comparison of the time history of the horizontal

........................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............

.............

.............

.............

.............

.............

.............

.........................................................................................................................................................................................................................................................

...

...

...

...

.

...

...

...

...

.

...

...

...

...

.

...

...

...

...

.

...

...

...

...

.

...

...

...

...

.

...

...

...

...

.

...

...

...

...

.............................................................................................................................................................................................................................................................................................................................

.................................................................................. .................................................................................. .................................................................................. .................................................................................. ..................................................................................

..............................P1 ..............................P2

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

....

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

......

..

....

........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ .......

n · T = T33(t)e3

n · T = 0 n · T = 0

Figure 11: Strip–like piston transducer with

uniform normal stress load on a homogeneous

isotropic stress–free elastic half–space: 2–D EFIT

grid with two selected observation points: P1 =

(0, 12) mm and P2 = (12, 12) mm. For the

EFIT modeling a stress–free boundary condition

has been applied on all four boundaries, for the

EFEM modeling a stress–free boundary condition

has been applied on the top, left, and right side,

and a displacement–free boundary condition has

been chosen on the bottom side.

Figure 12: EFIT (—), EFEM (- - -), and SZEW (– – –) comparison for a strip–like piston transducer:

time history of the particle displacement components u1(t) and u3(t) at P1 (left) and P2 (right)

12

Page 13: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

and vertical particle displacement with the spectral decomposition method (SZEW: SpektraleZerlegung nach ebenen Wellen) [Fellinger & Langenberg, 1990; Fellinger, 1991a] and an elasto-dynamic FEM–code (EFEM) developed by Ludwig [1986, 1988, 1989] [Marklein, 1991; Fellinger& Marklein, 1991b]. Both results are documenting a very good agreement between all threemethods.

3.2 Experimental Validation of EFIT

The first experimental validation of EFIT has been performed for the insonification of a backwallbreaking crack by a 45 shear wave probe (see Fig. 13). The numerical results obtained withthe 2–D EFIT–code are compared to those of an accompanying experiment. This problem alsohas been modeled with 2–D AFIT in order point out explicitly the difference between acousticand elastodynamic waves. The time history of the displacement as well as the amplitude ofthe normal traction load within the finite transducer aperture was carefully measured with anelectrodynamic probe. The elastic material steel is characterized by the velocities cP = 5.9mm/µs and cS = 3.2 mm/µs. In order to compare the acoustic and elastodynamic case forthe shear wave an acoustic material with cP = 3.2 mm/µs has been chosen. The backwallbreaking crack is modeled as an ideal crack with plane surface and stress–free/pressure–freeboundary condition. The crack is illuminated with a 45 shear wave angle probe within aprescribed synthetic aperture. Within the transducer aperture — the black bar in Fig. 13

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

MWB45–2 (45 SV–Wave Transducer)Synthetic Aperture

............

............

............

............

............

............

............

............

............

............

......

............

............

............

............

............

............

............

............

............

............

..............................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

................................................................. Stress–free Boundary Condition for 2–D EFIT andPressure–free Boundary Condition for 2–D AFIT Modeling

..................................... Open Boundary Condition for 2–D EFIT and 2–D AFIT Modeling

..................

..................

..................

..................

..................

..................

............

Backwall BreakingCrack

........................................................

........................................................105

...................................52.5

...................................

...................................

27

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............................................................................................................................................................................................................................................................................................................................................................................................................................................. ................................................................................................................................................................................................................................................ .................................................................................................................................................................................................. .......................

...............

...............

...............

...............

...............

......................................

.......................

........................................................................................................................................

......................................................................................

...............

...............

.....

x0=13.74

...................................................................................................................... ........................................................................................................................................................... .......................

..................................................................................

...............

...............

...............

.........................

.......................

.............................................................................................

14

Figure 13: Steel

block with a

backwall breaking

crack

— the elastic/acoustic surface is excited by a normal traction distribution weighted by themeasured sole function. The time history of the normal traction is prescribed as a 4 cycleraised cosine pulse with a center frequency of 2 MHz (see Fig. 14).

Time domain snapshots of EFIT and AFIT are given in Figure 14, which are showingexplicitly the difference between the elastodynamic case and the scalar approximation.

Figure 15 compares experimental and simulation results for a single A–scan, where receptionhas been modeled via averaging over the transducer aperture with the same amplitude weightingas applied for transmission. The coincidence is nearly complete, except for the late pulses beingassociated with Rayleigh waves traveling down and up along the crack faces and being convertedinto shear waves. The somewhat different amplitudes and the nonresolved time separation ofthe latter in the experiment may be due to the fact that the realization of the crack was a fatiguecrack with a surface roughness, whereas the model crack was perfectly plane and stress–free.Nevertheless, the modeling result obtained with EFIT complies very well with the experiment,giving us some confidence for further applications of this code.

13

Page 14: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

2–D EFITSnapshot

2–D AFITSnapshot

2–D EFITSnapshot

2–D AFITSnapshot

Figure 14: Time domain snapshots of 2–D EFIT and 2–D AFIT

Another way to compare the modeling results with the experiment is to use the output rf–data field as a testbed for an imaging algorithm like the Fourier–Transform Synthetic ApertureFocusing Technique (FT–SAFT) [Mayer et al., 1990], which is the Fourier–Transform–Versionof SAFT [Schmitz et al., 1995]. The rf–data fields are produced in a pulse–echo experimentwith the proper amplitude tapering of the transducer in the transmitting as well as in thereceiving mode. Since FT–SAFT “knows” nothing about mode conversion and resonances,each time of flight curve is attributed to a distinct defect, resulting in the image of Fig. 16: thecorner between the crack and the backwall is properly imaged from the most pronounced timeof flight curve, a weaker image of the crack tip is obtained, and the resonances are focused to aghost defect. Figure 16 not only presents simulations, but also experimental results, and, as weanticipated, our model is well reproduced. When investigated within the framework of inversescattering, the derivation of SAFT exhibits that a linearization is involved and, therefore, inthe present version SAFT is not bound to handle resonances and mode conversions properly;neither is it designed for inhomogeneous anisotropic materials. A theory of inverse scatteringis available which identifies these drawbacks quantitatively [Langenberg, 1987; Langenberg, etal., 1993, 1997a].

14

Page 15: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

Experiment

2–D EFITModeling

Figure 15: Experimental and 2–D EFIT modeled A–scan for a selected transducer position, where

the crack tip echo is more prominent than the corner reflection. The single pulses can be inter-

preted as follows: SS: Shear–Shear–Reflection (crack tip echo); SPS: Shear–Pressure–Shear–Mode–

Conversion; SSS: Shear-Shear–Shear–Reflection (corner reflection); SRS: Shear–Rayleigh–Shear–

Mode–Conversion; SRRS: Shear–Rayleigh–Rayleigh–Shear–Mode–Conversion

15

Page 16: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

a)

b) x1 in mm ⇒

x3

in mm⇓

Figure 16: FT–SAFT image obtained from the simulated rf–data (a) and SAFT image from the

measured experimental rf–data (b)

16

Page 17: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

3.3 AFIT and EFIT Modeling of Ultrasonic Pipeline Inspection

The principle geometry for another example of 2–D EFIT modeling is given in Figure 17. Here,an interface crack at x = 40 mm is considered. Figure 18 shows two 2–D EFIT |v|–

0 67x1 in mm ⇒0

10

33.5

⇑x3in

mm

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

...........

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

...........Open

BoundaryOpen

Boundary

np = 0

n · T = 0

........................................

.............................

..........................

...

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................•

A=22

D=15

W=10

E

Transducer

.........x=40

......................................................................................................................................................................................................................................................................................................................................................................................

.......................

19.5..............................................................................................................................................................................................................................................................................................

......................

......

......

........................

.......................

...................

.................

......

.................

........................................................................................................

....................................................................................................................

........................................................ ...

...................................

...................................

...........α = 18Water

Steel

Figure 17: Ultra-

sonic pipeline in-

spection: geome-

try for 2–D EFIT

modeling

Pressure Wave Pressure Wave

ShearWave

Figure 18: 2–D EFIT |v|–snapshots of the ultrasonic wavefield

24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

t in µs ⇒

-60

-50

-40

-30

-20

-10

0

⇑AindB

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

......

......

.....

......

......

......

......

......

......

......

......

......

......

....

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

......

......

......

......

......

......

......

......

......

......

......

......

......

...

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

......

......

......

......

......

......

.....

......

......

......

......

......

......

.

......

......

......

......

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

......

......

......

......

.........................

.......................

1.................................................

.......................

2.................................................

.......................

3.................................................

.......................

4

Figure 19: Top: EFIT modeled A–scan; bottom: comparison between modeled (solid line) and exper-

imental ALOK-scan (dashed line). 1: P–P; 2: P–4S–2S–P; 3: P–4S–4S–P; 4: P–4S–6S–P

snapshots for an insonification angle of α=18. The modeled A–scan is displayed at the topof Fig. 19, below, a comparison between the modeled and experimental ALOK–scan is given.Convincing coincidence has been found. The four strongest echo signals can be interpreted viasnapshots analysis.

17

Page 18: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

3.4 EFIT Modeling of Ultrasonic NDT of Concrete

Figure 20 shows three typical concrete samples with different parameters. Due to the additivesand air inclusions which may occur concrete is a statistically heterogeneous material. Usuallyconcrete consists of cement and several additives like basalt, plaster, and biatitgranite. Differentsituations can be modeled: concrete without and with air inclusions. Figure 21 displays one ofthe concrete models under concern. The base material is cement and the additives are basalt,plaster, and biatitgranite with a max. aggregate size of 8 mm: a grading curve B8 is used.The additives are modeled by approximately 60,000 ellipses which are varying statistically insize, orientation, and additives (see Fig. 21). Details can be found in Marklein [1998]; firstapplications of the EFIT–code and the application of an inverse scattering algorithm to theEFIT–data can be found in Marklein et al. [1996b, 1996c]. Each material cell of the EFITgrid can be filled with different material parameters. From a numerical point of view the totalnumber of the ellipses is only limited by the number of material cells. In this example the cellsize is ∆x = 250 µm and the resulting mesh size is 2,000 × 2,000 with 4 × 106 material cells. Thedetail drawings at the right side of Figure 21 clearly indicate the statistical distribution of theellipses. A normal pressure probe is applied in the pulse–echo mode on the top surface which hasa diameter of D = 5 cm and a center frequency of fc = 80 kHz. The time history of the probe ismodeled by a raised cosine with two cycles. For EFIT modeling a stress–free boundary conditionis applied on the top and bottom surface and an open boundary condition [Higdon, 1991, 1992]at the left and right boundary in order to model an infinite concrete structure. Snapshots of theultrasonic wavefield are shown in Figure 22. With increasing time, the wavefield becomes totallydistorted because of multiple reflections and mode conversion effects at the air inclusions. Dueto the open boundary condition reflections and mode conversions are suppressed at the verticalboundaries. The backwall echo of the pressure wave shows up in Figure 23 at the point t = 240µs. The traveling time of the backwall echo can then be further analyzed, e. g., for thicknessdetermination.

Similar results can be found in Schubert & Kohler [1997] and Burr et al. [1997].

Figure 20: Three typical concrete samples with different grain size, grading curve, and water/air

concentration

18

Page 19: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Detail...........................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 250 500x in mm ⇒

500

250

0

zin

mm⇓

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................

.............

.....................................

0 37.5 75x in mm ⇒

75

37.5

0

zin

mm⇓

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Figure 21: Concrete model for 2–D EFIT modeling with 6% air concentration; 3% in the grain class

1 and grain class 2

a) t = t1 = 35.65 µs b) t = t2 = 95.08 µs c) t = t3 = 154.50 µs d) t = t4 = 213.93 µs

.........................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.........................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.........................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

.........................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

Figure 22: 2–D EFIT |v|–snapshots of the ultrasonic wave propagation, diffraction, and scattering:

a) bis d) with 6% air; 3% each in the grain class 1 and 2

EP

BE

0 30 60 90 120 150 180 210 240 270 300 3300 356,55

t in µs ⇒

-1.5

-0.75

0

0.75

1.5

⇑v3

Figure 23: 2–D EFIT modeled A–scan: EP = excitation pulse and BE = backwall echo

19

Page 20: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

3.5 Transducer Radiation Modeling with EFIT

This example illustrates what happens if a 45 shear wave transducer from the shelf, designedfor conventional applications in isotropic materials like ferritic steel, is applied to the surfaceof a transversely isotropic material like austenitic steel characterized by a grain orientation a.

a)

b)

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................................

...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.

...................................................

Figure 24: Superimposed 2–D EFIT |Sel|–snapshots of a 2 MHz 45 shear wave transducer identify

the geometric ultrasonic (GU) beam, according to the geometric optical (GO) beam in electromagnet-

ics: a) isotropic ferritic steel; b) transversely isotropic austenitic steel with a = cos 60e1 + sin 60e3

20

Page 21: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

Figure 24 shows EFIT snapshots of the elastic Poynting vector displaying the rather dra-matic effect in the anisotropic case, where the main beam is skewed with regard to the originallyintended energy direction. A weld in austenitic steel might not even be

”hit“ by the ultrasound.

The explanation of Figure 24 is given in Figure 27 using the characteristic slowness and groupvelocity diagrams (see Fig. 25 and 26).

A geometric construction of the above skewing effects can be obtained via Huygens’ princi-ple (envelope construction) applied to group velocity diagrams; this is done in Fig. 27 for theconsidered 2–D case. Figure 27a shows the properly adjusted linear time delay resulting in the

! "$#&% ')(*(

! "($(#&%

+-, % . "/ "0 % % 1"2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333333333333333333333333 333333333333333333333334 5 673 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333333333333333333333333 333333333333333333333334 5 689 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333333333333333333333333 33333333333333333333333;:< 5 6= > ? 89

! "$#&% ')(*(

! "($(#&%

@ +-, % . "/ "0 % % 1"2

3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 33 3 3 3 3 33 3 3 3 3 33 3 3 3 3 333333333333333333333333 33333333333333333333333:A

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333333333333333 3333333333333334 B C 89 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3333333333333333 333333333333333 :< B= > ? C 89

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333333333333333333333333 333333333333333333333334 B C 73 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333333333333333333333333 333333333333333333333334 B C 89

333333 3333333 3333333 333333 3333333 333333 3333333 3333333 333333 3333333 3333333 333333 3333333333333333333333333 333333 333 333 33 33 3 33 3 33 3 :< B= > ? C 89DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDD DDD DDDDDD DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD DDDDD DD DD DD DD DD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DD D D DD D D DD D DD D DD DD DD D D DD DD DD DD DD DD DD DD DD D DD DD D DDD DD D D DDD DD DDD DDD DDD DDDDDDDD D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD DDDDDD DDDDD DDDD DD D DD DD DD DD DD D DDD D D DD D D D DD D D D DD D D D DD D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D DD D D D D D D D D D D D D D DD D D D D D D D D D D D D DD D D D D D D D D D D D DD D D D D D D D D D D DD D D D D D D D D D DD D D D D D D D D DD D D D D D D D D DDD D DD D D DD DD DD DD DD DD DDD DDD DD DDD DDDD DDD DDD DDD DDDDD DDD DDDD DDDDD DDDD DDDD DDDDD DDD DDDD DDD DDDDD DDDD DDD DDDD DDD DDDDD DDD DD DDD DDD DDD DDDD DD DD DD DDD DD DD DDD DD DD DD DD DD DD DD DD D DDD D DD D DD D DD D DD D DD D DDD D D D D DD D D D D D DD D D D DD D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D DD D D D D D D DD D D D D D D D D DD D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D DD D D D D D D D D D D D DD DD D D D D D D D D D D D D DD D D D D D

D D D D D D DD D D D D D D D D D D DD D D D D D D D D D DD D D D D D D D D DD D D D D D D D D DD D D D D D D D D D DD D D D D D D D D D D D DD D D D D D D D D D D D D DD D D D D D D D D D D D D D DD D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D DDD D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D DD D DD D D DD D DD D D DD D DDDD DDDD DDD DDDD DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDD DDD DDD DDDD DDDDD DDDDDD DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD DDDDD DDDDD DDDD DD D DD DD DD DD DD DD DD D DD D DD D D D D D DD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D

DD D D D D D DD D D D D DD D D DD D DD D D DD D D D DD DD DD DD DD DDD DD DD DDD DDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD DD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D

D D D D D D D D D D D D D DD D D D D D DD DD

D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 5 67D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 5 689D D D D D D D D D D D $5 6E F G89

D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D B C 7D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D B C 89D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D B 8 HD D D D D D D D D D D $5 6E F G89

Figure 25: Slowness diagrams: a): isotropic fer-

ritic case, b): anisotropic austenitic case

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

JLK M N O N M KLJJKMNONMKJ

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II III II II I II I I I IPQ

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIPR

S T U V W XSY Z$[[*\^]_

S T U V W XSY Z[$[]&_

`a

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbc d eU V W fg b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbhi d efgjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jjjj jjj jjjj jj jj jjj j jj jjj j jjj jj j jj jj jj j jj jj j jj jj j j jj jj j j j jj j jj j jj j j j jj j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j

j j j j j j jj jj j j jj j j jj j j j j jj j j j jj jj j j jj jj j j jj jj j j jj jjj jjj jjj j jjjj j j jjjj j jjjj jj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jjjjjj jjjj jjj jjjj jjj jj jjj jj jj jj jj jj jj jj j jj jj j jj j jj j jj j j jj j j jj j j j j jj j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j

jj j j j j j j j jj j j j j jj j j jj j j jj j jj j jj j jj j jj jj jj jj jj jj jj jj jjj jj jjj jjj jjjj jjjj jjjjjj jjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j jj j j jj

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

JLK M N O N M KLJJKMNONMKJ

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II III II II I II I I I IP Q

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIPR

S T U V W X SY Z$[[*\^]_

S T U V W XSY Z[$[]&_

k a

b b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb b b b b bb bbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbb hl

b bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbb bbbb bbb bb bb bb b bb b bb bc mU V W n fg b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbb hi m n fg

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bbbbbbbbbbbbbbb bbbbbbbbbbbbbbb c mU V W n fgb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bbbbbbbbbbbbbbb bbbbbbbbbbbbbbb hi m n fg

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jjj jjjj j jjj jj j jjj jj jj jj jj jjj jj j j jj jj j jj jj jj j j jj jj j j jj jj jj j jj j j j jj j j j jj j j j j j j jj j jj j j jj j j jj j j j j jj j j j j j jj j j j j j jj jj j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j

j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j jj j j j jj j j j jj jj j jjj jj j jjjjj jjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j jjj jj jj j jjj jj j jj j jj jj jj jj j j jj j jj j jj j j jj jj jj j j j jj j j jj j j j jj j j jj jj j j j jj j j j j jj j j j j j jj j j j j jj jj j j j j j j j j j jj j j j j j j j j jj j j j jj j j j j j j j j j j j j j jj j j j j j j j j j j j j j jj j j j j j j j jj j j j jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj j j jj j j j j j j j j j j jj j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j

j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j jj j j j j jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjj jjjjjjjj jjjjj jjjjj jjjj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjj jj j jj j j j j j jj j j j j j j j j j j jj j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j jj j j j j j j j j j jj j j j j j jj j jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jj j j j j jj j j j j j j j j jj j j j j j j j j j j j jj j j j j j j j j j j j j j j j jjj j j j j j j j j j j jj j j j j j jj j jj j j j jj j j j jjj j j j jj j j j jjj j j jj j j jj j j jj j j jj j j j jj j j jjj j jj j jj j jj j jj j jj j jj j jj j jj j jj j jjj j jjjj j jj jj j jj jj j jj jj j jj jj j jj jjj jj j jj jj jj jj jj jj jj jj jj j jj jj jj jj jjj jj jjj jjjj jj jjj jj jj jj jj jjj jj jj jj jjjj jjj jj jjj jjj jj jjj jjj jj jjj jjj jjjj jjj jjjjjjj jjjj jjj jjjj jjj jjjjj jjjjj jjjjj jjjj jjjjj jjjjjjjj jjjjjjjjjjj jjjjjjjjjjj jjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jjjjjjjj jjj j jjj jjjj jj j j jj jj jjj jj j j jj j jj jj j jj jj j j jj j j jj j j j j jj j j j j j j j j j j j j jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j jj

j j jj j jj j jj j jj jj jjj jj jj jjj jjj jjjj j jjjjj jjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj jj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jj j j j j j j j j j j j j jj j j jj

j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j T d eU V W oj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j T d eU V W fgj j j j j j j j j j j T d ep q rU V W fg

j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j T mU V W n oj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j T mU V W n fgj j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j T mU V W f sj j j j j j j j j j j T d ep q rU V W fg

Figure 26: Group velocity diagrams: a):

isotropic ferritic case, b): anisotropic austenitic

case

tilted beam as desired in the isotropic case. Figure 27b displays the isotropic case and Figure27c the anisotropic case, where two time frames of the wavefronts, accounting for a broadbandsignal, emanating from the left and right corner of the aperture are superimposed. The geomet-ric ultrasonic (GU) beam, according to the geometric optical (GO) beam in electromagnetics, isthe tangent of the left and right wavefront representing all radiating line sources —

”wavelets“

— inside the finite transducer aperture (indicated as a black bar). Tracing the amplitude alonga wavefront an EFIT snapshot can also be utilized to calculate an appropriate radiation pattern

21

Page 22: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

(see Fig. 28).

t;u

v u

w*u

xzy^ | xzy~| y^ |

y~|& x ux

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

Figure 27: Huygens construction of transducer soundfields: a) linear time retardation as a function

of the local transducer aperture coordinate; b) Huygens construction for isotropic ferritic steel; c)

Huygens construction for transversely isotropic austenitic steel

22

Page 23: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

a) b)

Excitation Pulse

t ⇒

⇑A

0 30 60

x in mm ⇒

0

30

60

⇑zin

mm

u

..............................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................

......................................................................

.......................................

........................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

...............

.......

...............

...............

...............

.......

RadiationPattern ...........................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..............................

.............................

t ⇒

⇑v1

t ⇒

⇑v3

Excitation Pulse

t ⇒

⇑A

0 30 60

x in mm ⇒

0

30

60

⇑zin

mm

u

..............................................

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

...............

...............

...............

................

...............

...............

...............

...............

...............

......RadiationPattern

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................

t ⇒

⇑v1

t ⇒

⇑v3

Figure 28: 2–D

EFIT modeling of

transducer radia-

tion: a) isotropic

aluminum and

b) transversely

isotropic austen-

ite with a hor-

izontal grain

orientation

(a = ex)

3.6 EFIT Modeling of the Ultrasonic NDT of Fiber–Reinforced Double T–Stringer

In the construction of aircraft wings fiber–reinforced graphite epoxy material is a new–fangledmaterial. It has a transverse isotropy characterized by the fiber direction a.

For instance, the interior of an aircraft wing consists of multiple double T–stringers which aremade of fiber–reinforced composites and which form a honeycomb structure. At the I–sectioninterface the double T–stringer has a very complicated variation of the fiber direction, but inthe EFIT model an orthogonal fiber direction at this intersection is presumed. Therefore, in theupper and lower part we have a horizontal and in the I–section a vertical fiber direction. SelectedEFIT–|v|–snapshots of the elastic wavefield of a 5 MHz normal pressure probe are given inFigure 29b. At the sole of the transmitter and receiver we applied an absorbing boundarycondition (ABC) [Higdon, 1991, 1992] in order to take into account the energy absorption ofthe mounted probe. The transmitter signal is shown in Figure 29a.

The time history of the probe is modeled by an RC2 pulse. The receiver signal is displayedin Figure 29d. This signal represents an echo sequence which is due to the wave guide behaviorof the I–section. In a second EFIT modeling we half surrounded the I–section with water inorder to model a half filled tank. Figure 29c shows the according 2–D EFIT |v|–snapshots.

Obviously, when the Lamb wave arrives at the water/I-section interface leaky waves appear.Further, when the Lamb wave hits the lower corners of the I–section, Scholte waves are generatedwhich are traveling up along the water/I-section interface. The received signal is given in Figure29e. Because of the leakage effect the amplitude of the received echo decreases and the waveguiding effect appears weaker. Due to this fact only one single transmitted echo, not a wholeecho sequence as shown in Figure 29d, is received.

23

Page 24: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

a) Transmitter A–scan

-4000

0

4000

0.00 2.10 4.20 6.30 8.40 10.50 12.60 14.70 16.80 18.90 21.00

⇑A

t in µs ⇒b) 2–D EFIT |v|–snapshots (without water) c) 2–D EFIT |v|–snapshots (with water)

d) Receiver A–scan (without water)

-1.5

0

1.5

0.00 2.73 5.46 8.19 10.92 13.65 16.38 19.11 21.84 24.57 27.30

⇑A

t in µs ⇒

e) Receiver A–scan (half surrounded with water)

-0.4

0

0.4

0.00 2.73 5.46 8.19 10.92 13.65 16.38 19.11 21.84 24.57 27.30

⇑A

t in µs ⇒Figure 29: 2–D EFIT modeling of a fiber–reinforced double T–stringer of transversely isotropic

graphite epoxy

24

Page 25: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

3.7 EFIT Modeling of Ultrasonic Wave Propagation in an Austenitic V–Butt

Weld and Notch Scattering

Figure 30 shows another example geometry of an inhomogeneous anisotropic NDT situation:an austenitic V–butt weld with a backwall breaking notch modeled with stress–free boundarycondition. A sketch of the two grain orientations under concern is given in Figure 31.

Simulated A–scans and 2–D EFIT v–snapshots obtained in pulse–echo mode are given forboth grain orientations in Figure 32 and Figure 33, respectively. The time domain snapshots aredisplaying the excitation and propagation of the ultrasonic wavefield inside the weld comprisingthe notch scattering, and the reception of the characteristic echo signals. It has to be pointedout, that in the case of perpendicular grain structure, no notch tip echo is received (see Fig. 32,left). For an interpretation of the obtained results using slowness and group velocity diagramsthe reader is refered to Hannemann et al. [1998].

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................

............................................................................................................................................................................................................................

..................

..................

..................

..................

..................

....................................................................................................................................

..................

..................

..................

....................

.......................................................................................................................................................................................................................................................................

...........................................................................................................................

................

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.....................

................

...................................................................................................................................................................................................................................... ................ ......................................................................................................................................................................................................................................................

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.....................

................

...........................................................................................................................

................

........................................................................................ ................ ........................................................................................................

...................................... ................ ......................................................

.........................................................................................................

................

.........................

.........................

......

......

...

....

......

......

...

....

......

......

...

....

......

......

...

....

......

......

...

....

......

......

...

....

......

......

...

....

......

......

...

....

......

......

...

....

......

......

...

....

......

......

...

....

......

.....

.............................................................................................................................................................

MWB45–2

Steel Steel

∆x

10

1

Austenitic

V–Butt Weld

30

15

......

......

......

......

......

......

......

......

......

......

......

......

........................................................................

..........α

Figure 30: Austenitic V–butt weld with backwall breaking notch embedded in isotropic ferritic steel;

α is the inclination angle of the interface between the V–butt weld and the isotropic ferritic steel

a) b)

a_

a_a_

Figure 31: Considered grain orientation characterized by a: a) perpendicular grain orientation and b)

herringbone grain orientation

0 46.2

0.3

-0.3Corner Reflection of Notch

0 46.2

Corner Reflection of Notch

0.07

-0.07 Notch Tip

Figure 32: Austenitic V–butt weld with backwall breaking notch and an inclination of the interface

of α = 15: 2–D EFIT modeled A–scans of the perpendicular grain orientation (left) and herringbone

grain orientation (right)

25

Page 26: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

"Gap"

"Gap"

Figure 33: Austenitic V–butt weld with backwall breaking notch and an inclination of the interface

of α = 15: 2–D EFIT v–snapshots of the perpendicular grain orientation (left) and herringbone

grain orientation (right)

26

Page 27: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

3.8 ULIAS — EFIT Modeling Module

Within a joint European research project involving several industrial partners an ultrasonicmodeling and imaging tool acronymed Ultrasonic Inspection Applying Simulation (ULIAS) hasbeen developed [Langenberg et al., 1996; Marklein et al., 1997a].

¡ ¡¢£¤ ¤¥¦§ ¨ ¨© ª« ¬­ ® ®® ®¯ ¯¯ ¯°±²³´´µµ¶· ¸¹ º»

¼½¾¿À ÀÁ ÁÂÃ

ÄÅ ÆÇ ÈÉ ÊË ÌÍÎ ÎÏ ÏÐ ÐÑ ÑÒ ÒÓ ÓÔÕ Ö× Ø ØÙ Ù ÚÛ Ü ÜÝ ÝÞßà àá

â âã ã äå æ æç è èé ê êëìíîïðñò òó ó ô ôõ ö÷øù

Emitter

ú ú ú ú ú ú ú ú ú úú ú ú ú ú ú ú ú ú úú ú ú ú ú ú ú ú ú úú ú ú ú ú ú ú ú ú úú ú ú ú ú ú ú ú ú úú ú ú ú ú ú ú ú ú úú ú ú ú ú ú ú ú ú úû û û û û û û û û ûû û û û û û û û û ûû û û û û û û û û ûû û û û û û û û û ûû û û û û û û û û ûû û û û û û û û û ûû û û û û û û û û û

ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü

ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ýý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ýý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ýý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ýý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ýý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ýý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ýý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ýý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ýý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ýý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý

þ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þþ þ þ þ þ þ þ

ÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿÿ ÿ ÿ ÿ ÿ ÿ ÿ

Block

Flaw

Channel 2

Emitter/Receiver

Channel 1

Frame 15

Frame 1

Receiver

Figure 34: A typical

NDT situation: block

with backwall breaking

flaw and a scan path with

two channels, a multi-

static channel (Channel 1)

and a monostatic channel

(Channel 2)

ULIAS is a module based modeling, imaging, and visualization system, which also comprisesa selection of data processing modules. The data exchange between different modules relies ona unified ultrasonic data file in Ultrasonic Data Exchange Format (UDEF). This paper focuseson the EFIT modeling module, the UDEF File, the UDEF Editor, the FT–SAFT imagingmodule, and 1–D/2–D/3–D visualization capabilities (VISLIB). The 3–D graphic features arebased on the graphic libraries PEX, GL, or OpenGL. For instance, the VISLIB allows the 3–Dvisualization of defect images within the 3–D test piece geometry as provided by a CAD filein IGES format. ULIAS has been originally designed to run on UNIX based computers and issupported for the following computer platforms: IBM RISC System/6000, HP, SUN, and SGI.The user interface is based on X-Windows and OSF/Motif. The general programming languageis ANSI C. All ULIAS modules have read/write access to a selected UDEF File using the so–called I/O functions of the Low Level Library (LLL). The UDEF File is the

”center“ of the

ULIAS, it contains all parameters needed to build a realistic computer model of the underlyingNDT situation. It is a binary file containing several NDT related structures, e. g., Block,Flaw(s), Channel(s), Frame(s), Material(s), Transducer(s) (see Fig. 34). The structures Blockand Flaw have a reference to a CAD file in IGES format containing the 2–D/3–D geometry ofthe test specimen and the flaw. The EFIT Modeling Module requires a voxel grid representationof the simulation domain with material information. In order to generate such a voxel grid fora general geometry from a CAD file in IGES format, a Voxel Grid Generator (VGG) has beendeveloped, which is written in C++. Presently, we are working on a LINUX version of ULIAS.

Fig. 35 illustrates a basic configuration of the ULIAS package, which comprises the followingparts:

• the UDEF File containing NDT related structures, e. g., Block, Flaw(s), Channel(s),Frame(s), Material(s), Transducer(s);

• the EFIT Modeling Module simulating the given NDT situation exactly, i. e., arbitraryNDT situations and flaw geometries including mode conversion effects and surface wavephenomena [Marklein, 1998]. Primary results are snapshots of the ultrasonic wavefield for

27

Page 28: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

selected time frames and recorded A–scans, which are written to a selected UDEF File.EFIT generates also 2–D/3–D ultrasonic rf–datafields, which can be used as a testbed forthe ULIAS Imaging Modules;

• the FT-SAFT (Fourier Transform-SAFT) Imaging Module, which is a scalar algorithmicversion of Synthetic Aperture Focusing Technique (SAFT) using only Fourier transforms[Mayer et al., 1990]. This results in a fast reconstruction scheme especially in 3–D. A2–D/3–D algorithm is implemented, which supports a linear/plane measurement surface.Furthermore, signal analysis and signal processing techniques like filtering, correlation,convolution, and deconvolution are implemented;

• the UDEF Editor which is a special editor for UDEF Files.

VISLIBVisualization

Library

FT-SAFTFourier Transform

SAFT

Low Level Library

LLL

VISLIBVisualization

Library

Low Level Library

LLL

EFIT Code VGG

GeneratorVoxel Grid

VISLIB

LibraryVisualization Elastodynamic Finite

Integration Technique

EFIT Modeling Module

FT-SAFT Imaging Module UDEF Editor

in IGES Format CAD Files UDEF File

Low Level Library

LLL

UDEF Editor

Figure 35: A basic configuration of ULIAS com-

prising the EFIT Modeling Module, the FT–SAFT

Imaging Module, a UDEF File, and the UDEF Edi-

tor

Preexisting Voxel Grid

.vgg.out

.vgg.err

.vgg.cfg

ANSI C igesc2l.lut

*.vox

Loop-Up TableColor/Layer

CAD SystemCAD System

IGES ConverterIGES Converter

Layer Material Coding Color Material CodingCADGeneral

System

VGG Configuration File

VGG Stdout File

VGG Stderr File

VGG Voxel Grid

EFIT Module

Voxel Grid GenerationIGES File Handling, and

CAD System,

Color to Layer

IGESC2L

Converter

VISLIB

ANSI C

LibraryVisualization

VGG

GNU C++

GeneratorVoxel Grid

ANSI C

EFIT Code

Integration TechniqueElastodynamic Finite

CADI-DEAS

System

*.igs

IGES File

*.vox

Figure 36: ULIAS: EFIT Modeling Module,

CAD file in IGES format, and the Voxel Grid

Generator (VGG)

All ULIAS modules use the 1–D/2–D/3–D capabilities of the Visualization Library (VISLIB)to display 1–D Plots, 2–D Raster Images, or to display the ultrasonic data within the 3–Dgeometry given by the CAD file in IGES format. The 3–D window allows for example lighttransformation, object transformation, volume and surface rendering, and voxel grid slicing.Fig. 36 summarizes the implemented CAD file handling and material coding strategies withthe EFIT Modeling Module. The Voxel Grid Generator (VGG) requires a layer (IGES: level)based material coding philosophy. If the used CAD system does not support layers, like theCAD system I-DEAS, the material coding can alternatively be based on colors. Then the

28

Page 29: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

supplied Color–to–Layer Converter must be applied in order to generate a CAD file with layerbased material coding. The VGG is controled by a configuration file and is called via a UNIXsystem call. Fig. 37 shows the main window of the EFIT Modeling Module displaying the testspecimen (Block), the transducer (wedge probe), and the linear scanning path (black line) insolid mode. The specimen consists of two parts, which are screwed together. A 2–D xz–planecentered in y–direction has been selected for a 2–D EFIT modeling session in the backgroundmode. Fig. 38 displays a selected snapshot of the ultrasonic wavefield within the 3–D geometry.

Figure 37: EFIT Modeling Module: Main window with CAD file in IGES format

Here, a cross-section plane has been moved through the 3–D geometry in order to visualize theinterior of the block, the ultrasonic wavefield. The recorded A–scan is displayed in the 1–DA–Scan Window. The 3–D Main Window and 1–D A–Scan Window are synchronized in twoways: (1) the displayed A–scan is synchronized with the given receiver position, and (2) thetime point of the displayed snapshot is marked by a cross in the 1–D A–Scan Window. Thisexample gives you a first idea of the potential of ULIAS.

29

Page 30: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

Figure 38: EFIT modeling module: Main window with CAD file in IGES format and superimposed

wavefront snapshot with the synchronized A–scan. The time point of the displayed snapshot is marked

in the A–scan by a cross, which moves if the time point of the displayed snapshot is changing

30

Page 31: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

4 Numerical Modeling of Coupled Piezoelectric and Ultrasonic Wave

Phenomena with the Piezoelectric Finite Integration Technique

— PFIT

In order to model coupled piezoelectric and ultrasonic phenomena, like the excitation andreception of an ultrasonic wavefield by a piezoelectric transducer, which converts an electricalsignal to an ultrasonic signal and vice–versa, the piezoelectric effect has to be taken into account.For linear inhomogeneous nondissipative piezoelectric materials the constitutive equations are[Nelson, 1979; Auld, 1990]

D(E,S) = εS · E + e : S

S(T,E) = sE : T + d231 · E

with the electric flux density vector D, the electric field strength vector E, the permittivitytensor of second rank εS measured at S = const., the piezoelectric coupling tensor of third

rank e, the compliance tensor of forth rank sE measured at E = const., and the piezoelectric

coupling tensor of third rank d. The upper indicial notation 231 indicates transposition of the

tensor elements: d231 = (dijkeiejek)231 = dijkejekei.

In general, the typical dimension of the piezoelectric element is small compared to the wave-length of the electromagnetic wave inside the piezoelectric element. Therefore it is convenientto introduce the electroquasistatic (EQS) approximation in Maxwell’s equations

E(R, t) = −∇Φ(R, t)

with the electroquasistatic scalar potential Φ(R, t) [e. g., Nelson, 1979; Haus & Melcher, 1989;Auld, 1990]. For instance, this holds for a frequency f < 1 GHz for a typical dimension ofXmax = 1 cm. Within the EQS approximation all magnetic effects are neglected.

Then, the governing equations of piezoelectric waves are Newton–Cauchy’s equation ofmotion, Poisson’s equation, and the equation of deformation rate, which read in integral formfor a volume V with the closed surface S = ∂V

∫∫∫

V

ρp0(R)v(R, t)dV = ©

∫∫

S

n · T(R, t)dS +

∫∫∫

V

f(R, t)dV

©

∫∫

S

n · εS(R) · ∇Φ(R, t)dS = ©

∫∫

S

n · e(R) ·· sym ∇u(R, t)

−∫∫∫

V

%(R, t)dV −∫∫

S

η(R, t)dS

∫∫∫

V

sE(R) : T(R, t)dV = ©

∫∫

S

sym nv(R, t)dS +

∫∫∫

V

d231(R) · ∇Φ(R, t)dV

+

∫∫∫

V

h(R, t)dV

with the mass density at rest ρp0, the electrical charge density %, and the electrical surfacecharge density η, which is in general unequal to zero at a perfectly conducting boundary.

Introducing the staggered grid system (G, G) as shown in Figure 39 with the grid spacing∆x and applying FIT to the governing equation yields a set of consistent matrix equationsof an explicit elliptic–hyperbolic time domain algorithm called PFIT [Marklein et al. 1997b;Marklein, 1998]. Two versions of the PFIT–code have been developed, a voltage or charge

31

Page 32: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

" "

""

""

""

!! ! !! ! !! !! ! !! ! !! ! !! ! !! !! ! !! ! !!! !! !! ! !! ! !! ! !! !!! !! ! !! ! !! ! !! ! !! !! ! !! ! !! ! !! !! !!! ! !! ! !! ! !! !! ! !! ! !! ! !! ! !! !! ! !!! !! ! !! ! !! !! ! !! !!! ! !! ! !! !! ! !! ! !! ! !! ! !! !! ! !! ! !!! !! ! !! !! ! !! ! !! !!! ! !! !! ! !! ! !! ! !! !! ! !! ! !! ! !! ! !!!! ! !! ! !! ! !! ! !! !! ! !! ! !! ! !! ! !! !!! !! ! !! ! !! !! ! !! !!! ! !! ! !! !! ! !! ! !! ! !! ! !! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! !! !! !! !! !! !! !! !! !! !! !! !! !! !!! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

#$&% '(*),+ +.-/ 02143&5 )#$&% ' -6!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

798 3 ),$&% 8+(*),+ +: 02143&5 )798 3 ),$&% 8+#$&% ' 8;<'#$&% '(*),+ + / 02143&5 )#$&% '96

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

#+ 0= 8+#$&% '?> 0 '<) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!! !! !! ! !! ! !! ! !! ! !! ! !

" "

""

""

""

Figure 39: PFIT material grid

M , grid G, and dual grid G

and the allocation of the dis-

crete piezoelectric field com-

ponents

driven and a current algorithm (U–PFIT and I–PFIT).For instance, the current driven version of the PFIT–code has in the nondissipative case to

following form

v(z− 1

2) = [ρp0]

−1[DIV][RTv ]−1[AT

v ]T(z− 1

2) + [ρp0]

−1f(z− 1

2)

v(z) = v(z−1) + ∆tv(z− 1

2)

[div][S][εS][R]−1[grad]Φ(z) = [div][S][e][RvΦ]−1[GRad][Av

Φ]v(z)

−[V%

Φ]%(z) − [Sη

Φ]η(z)

T(z) = [cE][RvT]−1[GRAD][Av

T]v(z)

+[eT][RΦT]−1[AΦ

T][grad]Φ(z) + g(z)

T(z+ 1

2) = T(z− 1

2) + ∆tT(z) .

In order to take into account an external electrical load the PFIT algorithm, the I–PFITalgorithm has been combined with a 1–D network algorithm.

Iterative algorithms like the symmetric successive overrelaxation (SSOR) method and theconjugate gradient (CG) method are implemented in the PFIT–code to solve Poisson’s gridequation. In the following examples a CG algorithm with diagonal scaling (DCG) is used.

PFIT allows the modeling of a piezoelectric transducer as a transformer of electrical quanti-ties, for example voltage and current, into elastodynamic quantities, for instance displacementand stress.

Details can be found in Marklein [1998].

32

Page 33: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

5 Experimental Validation and Numerical Results of PFIT

5.1 Piezoelectric Pz27 Disk Transducer on a Brass Cylinder

Figure 40 shows a photograph of the sample and the 2–D geometry for the 2–D PFIT modeling.The sample consists of a disk of piezoelectric ceramics (Pz27) which is adhesively bonded ona brass cylinder. All materials are considered nondissipative in this example. A comparisonbetween results of a 1–D lattice model [Hayward & Jackson, 1986], the 1–D PFIT modeling,and the 2–D PFIT modeling against measurement is given in Figure 41.

Only the 2–D PFIT modeling result gives a comparable amplitude of the backwall echos(BEn) and the secondary echos [Krautkamer & Krautkamer, 1983; Langenberg et al., 1994], likethe first secondary echo (SE1) in Figure 41c.

2–D PFIT snapshots are shown in Figure 42 especially demonstrating the generation of thefirst and second backwall echo and the first secondary echo.

5.2 Piezoelectric Pz27 Disk Transducer on a Brass Cylinder with Backwall Break-

ing Notch

Another example, which is of considerable interest in ultrasonic NDT, is given in Figure 43.The sample has a backwall breaking notch. This problem can not be treated with a 1–D modellike the 1–D lattice model by Hayward & Jackson [1986]. A comparison between the modeledand experimental voltage observed at the Pz27 disk is given in Fig. 44, which validates thenumerical results. The dominant signals are the excitation pulse (EP), the notch echo (NE),and the 1st backwall echo (BE1). Because of the 2–D modeling the experimental backwallecho has a smaller amplitude. A sequence of 2–D PFIT v–snapshots is displayed in Fig. 45showing the excited ultrasonic waves and the generation of the notch echo (NE) and backwallecho (BE1).

Further analytical and experimental validations and examples of the PFIT–code can befound in Marklein et al. [1997b] and Marklein [1998].

33

Page 34: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

a) b)

........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................................................................................................................................................... ....................... ................................................................................................................................................................................................................................

XBr1 = 25

.........................

.........................

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

....................................

.......................

................................................................................................................................................................................................................................XBr

3 = 25

..................................................

..................................................

..................................................

Adhesive Bond(Araldite)

BrassCylinder

..........................................................

...............

................

.........................

.......................

...............................................................................

XPz273 = d = 1

............................................. ....................... x1

....................................................................x3

Pz27 Disk

Figure 40: Pz27 disk on a brass cylinder: a) photograph and b) 2–D geometry for the 2–D PFIT

modeling

.0 10.0 20.0 30.0 40.0 50.0-3.0-1.5

.0

1.5

3.04.5

.0 10.0 20.0 30.0 40.0 50.0-3.0-1.5

.0

1.5

3.04.5

.0 10.0 20.0 30.0 40.0 50.0-3.0-1.5

.0

1.5

3.04.5

.0 10.0 20.0 30.0 40.0 50.0-3.0-1.5

.0

1.5

3.04.5

a) 1–D Model [Hayward & Jackson, 1986]

t in µs ⇒

upi(t)

inV

b) 1–D PFIT Modeling

t in µs ⇒

upi(t)

inV

c) 2–D PFIT Modeling

t in µs ⇒

upi(t)

inV

⇒ SE1.....................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

d) Measurement

t in µs ⇒

upi(t)

inV

⇒ EP BE1 BE2 BE3 BE4SE1.....................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 41: Pz27 disk on a brass cylinder: comparison between modeled and experimental voltage at

the Pz27 disk (A–scan) for Rg = 50 Ω and a sine pulse excitation with u0 = 10 V, n = 2 cycles, and

fc = 2 MHz. EP: excitation pulse; BEn: n–th backwall echo; SEn: n–th secondary echo

34

Page 35: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@@ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @ @ @ @B@ @ @ @ @ @ @ @ @ @ @ @ @A@ @ @ @ @ @ @ @ @ @

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @ @ @ @C@ @ @ @ @ @ @ @ @ @ @ @ @<@ @ @ @ @ @ @ @ @ @

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

D D D D D D D D D D D D DAD D D D D D D D D D D D D<D D D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBD D D D D D D D D D D D DAD D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

D D D D D D D D D D D D DAD D D D D D D D D D D D D<D D D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBD D D D D D D D D D D D DAD D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

D D D D D D D D D D D D DAD D D D D D D D D D D D D<D D D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBD D D D D D D D D D D D DAD D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

D D D D D D D D D D D D DAD D D D D D D D D D D D D<D D D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBD D D D D D D D D D D D DAD D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

D D D D D D D D D D D D DAD D D D D D D D D D D D D<D D D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBDD D D D D D D D D D D DAD D D D D D D D D D D D DBD D D D D D D D D D D D DAD D D D D D D D D D

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

D D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

D D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

D D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

D D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

D D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D D D DCD D D D D D D D D D D D D<D D D D D D D D D D

BE1.....................................................................................................................

.......................

SE1..............................................................................................................

.....................

.......................

..........................................................................................................................................................

BE2..................................................................................................................................................

.

.

.

.

.

.

.................

t = 100∆t = 555.55 ns

t = 300∆t = 1.66 µs

t = 500∆t = 2.77 µs

t = 700∆t = 3.88 µs

t = 900∆t = 4.99 µs

t = 1100∆t = 6.11 µs

t = 1300∆t = 7.22 µs

t = 1500∆t = 8.33 µs

t = 1700∆t = 9.44 µs

t = 1900∆t = 10.55 µs

t = 2100∆t = 11.66 µs

t = 2300∆t = 12.77 µs

t = 2500∆t = 13.88 µs

t = 2700∆t = 14.99 µs

t = 2900∆t = 16.11 µs

t = 3100∆t = 17.22 µs

t = 3300∆t = 18.33 µs

t = 3500∆t = 19.44 µs

t = 3700∆t = 20.55 µs

t = 3900∆t = 21.66 µs

Logarithmic Scaling:.......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-51.2 dB -25.6 dB 0 dB

Figure 42: Pz27 disk on a brass cylinder: 2–D PFIT |v|–snapshots. BEn: n–th backwall echo; SEn:

n–th secondary echo

35

Page 36: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

a) b)

.....................................................................................................................................................................................................................................................................................................................................

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

......................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................................................................................................................................................... ....................... ................................................................................................................................................................................................................................

XBr1 = 25

.........................

.........................

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

....................................

.......................

................................................................................................................................................................................................................................XBr

3 = 25

..................................................

..................................................

..................................................

Adhesive Bond(Araldite) .................................................... ....................... ...........................................................................

XNotch1 = 2...........................................................................................................

.........................

............................................................................................................................................................................................................................................XNotch

3 = 10

BrassCylinder

..........................................................

................

...............

.........................

.......................

...............................................................................

XPz273 = d = 1

............................................. ....................... x1

....................................................................x3

Pz27 Disk

Figure 43: Pz27 disk on a brass cylinder with a backwall breaking notch: a) photograph and b) 2–D

geometry for the 2–D PFIT modeling

.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0-1.5-1.3-1.1

-.9-.7-.5-.3-.1.1.3.5.7.9

1.11.31.5

.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0-1.5-1.3-1.1

-.9-.7-.5-.3-.1.1.3.5.7.9

1.11.31.5

...........................................................................................................................

.......................

Excitation Pulse (EP)Notch Echo (NE)................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Backwall Echo (BE1)

a) 2–D PFIT Modeling

t in µs ⇒

upi(t)

inV

...........................................................................................................................

.......................

Excitation Pulse (EP)Notch Echo (NE)................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Backwall Echo (BE1)

b) Measurement

t in µs ⇒

upi(t)

inV

Figure 44: Pz27 disk on a brass cylinder with a backwall breaking notch: comparison between the

modeled (a) and experimental (b) voltage at the Pz27 disk (A–scan) for Rg = 50 Ω and a sine pulse

excitation with u0 = 10 V, n = 2 cycles, and fc = 2 MHz

36

Page 37: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

E E E E E E E E E E E E EAE E E E E E E E E E E E E<E E E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBE E E E E E E E E E E E EAE E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

E E E E E E E E E E E E EAE E E E E E E E E E E E E<E E E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBE E E E E E E E E E E E EAE E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

E E E E E E E E E E E E EAE E E E E E E E E E E E E<E E E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBE E E E E E E E E E E E EAE E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

E E E E E E E E E E E E EAE E E E E E E E E E E E E<E E E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBE E E E E E E E E E E E EAE E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

E E E E E E E E E E E E EAE E E E E E E E E E E E E<E E E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBEE E E E E E E E E E E EAE E E E E E E E E E E E EBE E E E E E E E E E E E EAE E E E E E E E E E

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

E E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

E E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

E E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

E E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

E E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E E E ECE E E E E E E E E E E E E<E E E E E E E E E E

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

F F F F F F F F F F F F FAF F F F F F F F F F F F F<F F F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBF F F F F F F F F F F F FAF F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

F F F F F F F F F F F F FAF F F F F F F F F F F F F<F F F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBF F F F F F F F F F F F FAF F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

F F F F F F F F F F F F FAF F F F F F F F F F F F F<F F F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBF F F F F F F F F F F F FAF F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

F F F F F F F F F F F F FAF F F F F F F F F F F F F<F F F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBF F F F F F F F F F F F FAF F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

F F F F F F F F F F F F FAF F F F F F F F F F F F F<F F F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBFF F F F F F F F F F F FAF F F F F F F F F F F F FBF F F F F F F F F F F F FAF F F F F F F F F F

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

F F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

F F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

F F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

F F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

F F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F F F F FCF F F F F F F F F F F F F<F F F F F F F F F Ft = 100∆t = 555.55 ns

t = 300∆t = 1.66 µs

t = 500∆t = 2.77 µs

t = 700∆t = 3.88 µs

t = 900∆t = 4.99 µs

t = 1100∆t = 6.11 µs

t = 1300∆t = 7.22 µs

t = 1500∆t = 8.33 µs

t = 1700∆t = 9.44 µs

t = 1900∆t = 10.55 µs

t = 2100∆t = 11.66 µs

t = 2300∆t = 12.77 µs

t = 2500∆t = 13.88 µs

t = 2700∆t = 14.99 µs

t = 2900∆t = 16.11 µs

t = 3100∆t = 17.22 µs

t = 3300∆t = 18.33 µs

t = 3500∆t = 19.44 µs

t = 3700∆t = 20.55 µs

t = 3900∆t = 21.66 µs

Logarithmic Scaling:.......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-51.2 dB -25.6 dB 0 dB

Figure 45: Pz27 disk on a brass cylinder with a backwall breaking notch: 2-D PFIT |v|–snapshots

37

Page 38: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

Concluding Remarks

In this paper an overview on the numerical modeling tools PFIT, EFIT, and AFIT has beengiven starting from the application of the Finite Integration Technique (FIT) to the governingequations of elastodynamics and acoustics, the derivation of the algorithms EFIT and AFIT,the validation of the codes with analytical and numerical references, and the application toultrasonic NDT real life situations. In the last section the recently developed PFIT algorithmhas been presented, which allows the computer simulation of a typical ultrasonic NDT problemincluding the piezoelectric element and an external electrical load. As an example, the validationof the PFIT–code with experimental data has been given. All presented results are documentingthe power of the established numerical tools and give trust for further industrial applications:

• to help to understand ultrasonic wave propagation in complex materials and complexgeometries,

• to optimize well–accepted NDT techniques, or

• to develop new and more efficient NDT techniques.

From a numerical point of view, some of the open problems, which are presently subject of thecontinuing work, are for example

• 3–D modeling of real life ultrasonic NDT situations,

• CAD/IGES interface for inhomogeneous anisotropic materials (e. g., austenitic V–buttweld)

• irregular and triangular (Voronoi grid, Delaunay tessellation), and

• angled piezoelectric excitation.

Acknowledgements

It is an honor for the author to dedicate this overview on AFIT, EFIT, and PFIT to ProfessorDr. H. Wustenberg on the occasion of his 60th birthday.

The author would like to express his gratitude to Professor Dr. K. J. Langenberg, whohas not only stimulated the development of EFIT, but his continuous interest was extremelymotivating to make the codes AFIT, EFIT, and PFIT what they are today: powerful modelingtools in quantitative ultrasonic NDT. Numerous former and present scientists of ProfessorLangenberg’s group at the University of Kassel have contributed to the evaluation of AFIT,EFIT, and PFIT as well as their application to ultrasonic imaging: Dr. P. Fellinger, S. Klaholz,Ch. Hofmann, T. Kaczorowski, Dr. K. Mayer, R. Barmann, J. Kostka, R. Hannemann, andP. Zanger. Their help in preparing the material for various examples is gratefully acknowledged.Mrs. R. Brylla has carefully read the paper.

Finally, the author would like to appreciate the support and the trustful collaborationwith the following scientists: O. Glitza, Measurement Techniques, University of Kassel, Kassel;Dr. V. Schmitz, F. Walte, W. Muller, and Dr. M. Spies, S. Schuhmacher, Fraunhofer–Institutfur zerstorungsfreie Prufverfahren (IzfP), Saarbrucken; Dr. C. Schurig and Dr. B. Kohler,Fraunhofer–Einrichtung fur Akustische Diagnostik und Qualitatssicherung (EADQ) Dresden;Dr. M. Krause and Dr. H. Wiggenhauser, Bundesanstalt fur Materialforschung und -prufung(BAM), Berlin; Professor Dr. R. Ludwig, Worcester Polytechnic Institute, Worcester, USA;

38

Page 39: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

Professor Dr. T. Weiland, H. Wolter, and M. Bihn, Theorie elektromagnetischer Felder, Darm-stadt University of Technology, Darmstadt; Dr. A. Hecht, BASF, Ludwigshafen; H. Willems,Pipetronix, Stutensee; W. Biesle and W.–B. Klemmt, Daimler–Benz Aerospace Airbus, Bre-men; Dr. T. Schmeidl, Siemens–KWU, Erlangen.

References

Achenbach, J. D.: Wave Propagation in Elastic Solids. North–Holland, Amsterdam, NL, 1973.Aki, K., P. G. Richards: Quantitative Seismology, Theory and Methods. Vol. I & II, W. H. Free-

mann and Company, San Francisco, USA, 1980.Alterman, Z. S.: Finite difference solutions to geophysical problems. Journal of Physics of the

Earth, Vol. 16, pp. 113–128, 1968.Auld, B. A.: Acoustic Fields and Waves in Solids. Vol. I & II, 2nd ed., R. E. Krieger Publishing

Company, Malabar, Florida, USA, 1990.Bamberger, A., G. Chavent, P. Lailly: Etude de schemas numeriques pour les equations de

l’elastodynamique lineaire. Rapport de l’institut nationale de recherche en informatique,No. 41, Oct., Le Chesnay, F, 1980. (in French)

Bartsch, M., M. Dehler, M. Dohlus, F. Ebeling, P. Hahne, R. Klatt, F. Krawczyk, M. Marx, Z.Min, T. Propper, D. Schmitt, P. Schutt, B. Steffen, B. Wagner, T. Weiland, S. Wipf,H. Wolter: Solution of Maxwell’s Equations. Computer Physics Commun., Vol. 72,pp. 22–39, 1992.

Ben–Menahem, A., S. J. Singh: Seismic Waves and Sources. Springer–Verlag, New York, USA,1981.

Bergmann, U.: Mathematisch–numerische Modellierung der Ultraschallstreuung an oberfla-chenverbundenen Rissen mit dem EFIT–Code. Nova Acta Leopoldina Supplementum,Nr. 14, S. 361–376, 1996.

Bihn, M., T. Weiland: Time Domain Elastic Field Computation Using the Finite IntegrationTechnique. Proc. 7th Int. IGTE Symp. on Numerical Field Computation, Graz, pp. 43–48, 1996.

Bihn, M., T. Weiland: A Stable Discretization Scheme for the Simulation of Elastic Waves. 15thIMACS World Congress on Scientific Computation, Modelling and Applied Mathematics,Vol. 2: Numerical Mathematics, Berlin, pp. 75–80, 1997.

Bihn, M.: Zur numerischen Berechnung elastischer Wellen im Zeitbereich. Dissertation, Tech-nische Hochschule Darmstadt, Darmstadt, 1998.

Bond, L. J., M. Punjani, N. Saffari: Ultrasonic Wave Propagation and Scattering Using ExplicitFinite Difference Methods. In: Mathematical Modeling in Non–Destructive Testing ,pp. 81–124. Eds.: M. Blakemore, G. A. Georgiou, Clarendon Press, Oxford, UK, 1988.

Burr, E., N. GoldN., C. U. Grosse, H.–W. Reinhardt: Simulation of ultrasonic flaw–detectionin concrete with varying percentage of air inclusions. Otto–Graf–Journal, Forschungs-und Materialprufanstalt Baden–Wurtenberg FMPA, Stuttgart, Vol. 8, pp. 19—29, 1997.

Chin, R. C., G. Hedstrom, L. Thigpen: Numerical Methods in Seismology. Journal of Compu-tational Physics, Vol. 54, pp. 18–56, 1984.

CST, GmbH: MAFIA Manual, Release 4.0. Gesellschaft fur Computer–Simulationstechnikm. b. H. (CST), Darmstadt, 1997. (http://www.cst.de)

Deutsch, V., M. Platte, M. Vogt: Ultraschallprufung. Grundlagen und industrielle Anwendun-gen. Springer–Verlag, Berlin, 1997.

Fellinger, P., K. J. Langenberg: Numerical Techniques for Elastic Wave Propagation and Scat-tering. In: Elastic Waves and Ultrasonic Nondestructive Evaluation, pp. 81–86. Eds.:

39

Page 40: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

S. K. Datta, J. D. Achenbach, Y. S. Rajapakse, North–Holland, NL, 1990.Fellinger, P.: Ein Verfahren zur numerischen Losung elastischer Wellenausbreitungsprobleme

im Zeitbereich durch direkte Diskretisierung der elastodynamischen Grundgleichungen.Ph. D. Thesis, University of Kassel, Kassel 1991a.

Fellinger, P., R. Marklein: EFIT — Elastodynamische Finite Integrationstechnik zur Model-lierung der Abstrahlung, Ausbreitung und Beugung elastischer Wellen. In: Vortrage desSeminars: Modelle und Theorien fur die US–Prufung , Berichtsband 23, S. 48–58. Hrsg.:Deutsche Gesellschaft fur Zerstorungsfreie Prufung, Berlin, 1991b.

Fellinger, P., R. Marklein, K. J. Langenberg, S. Klaholz: Numerical modeling of elastic wavepropagation and scattering with EFIT — elastodynamic finite integration technique.Wave Motion, Vol. 21, pp. 47–66, 1995.

Hannemann, R., R. Marklein, K. J. Langenberg: Numerical Modeling of Elastic Wave Prop-agation in Inhomogeneous Anisotropic Media. In: Proceedings of the 7th EuropeanConference on Non–Destructive Testing. Eds.: B. Larsen, Copenhagen 26–29 May,1998.

Harker, A. H.: Elastic Waves in Solids. British Gas/Adam Hilger, Bristol, UK, 1988.Harker, A. H., J. A. Ogilvy, J. A. G. Temple: Modeling Ultrasonic Inspection of Austenitic

Welds. J. of Nondestructive Eval., Vol. 9, No. 213, pp. 155–165, 1990.Harker, T., J. A. Ogilvy, A. Temple: Numerical Models of Elastic Wave Propagation Through

Inhomogeneous Anisotropic Materials in Two and Three Spatial Dimensions. In: Math-ematical and Numerical Aspects of Wave Propagation Phenomena, pp. 165–173. SIAM,1991.

Haus, H. A., J. R. Melcher: Electromagnetic Fields and Energy. Prentice Hall, EnglewoodCliffs, New Jersey, USA, 1989.

Higdon, R. L.: Absorbing boundary conditions for elastic waves. Geophysics, Vol. 56, No. 2,pp. 231–241, 1991.

Higdon, R. L.: Absorbing boundary conditions for acoustic and elastic waves in stratified media.Journal of Computational Physics, Vol. 101, pp. 386–418, 1992.

Hijden, J. H. M. T. van der: Propagation of Transient Elastic Waves in Stratified AnisotropicMedia. North–Holland, New York, USA, 1987.

Hofmann, Ch., P. Fellinger, K. J. Langenberg, M. Rudolph: Dreidimensionale Ultraschallmod-ellierung mit dem EFIT–Code. In: Vortrage und Plakatberichte; DGZfP–Jahrestagung1994; Zerstorungsfreie Materialprufung, Berichtsband 43, S. 423–434. Hrsg.: DeutscheGesellschaft fur Zerstorungsfreie Prufung, Berlin, 1994.

Hoop, A. T. de: Handbook of Radiation and Scattering of Waves. Academic Press, London,UK, 1995.

Hayward, G., M. N. Jackson: A Lattice Model of Thickness–Mode Piezoelectric Transducer.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. UFFC–33, No. 1, pp. 41–50, January 1986.

Klaholz, S., K. J. Langenberg, P. Baum, F. Walte: Elastic Wave Propagation and Scatteringin Austenitic Steel. In: Review of Progress in Quantitative Nondestructive Evaluation,Vol. 14, pp. 219–226. Eds.: D. O. Thompson, D. E. Chimenti, Plenum Press, New York,USA, 1995.

Kostka, J., R. Hannemann, R. Marklein, K. J. Langenberg: Ultraschallmodellierung mit EFIT:T–Stringer, Beton, ruckwandverbundene Risse unterschiedlicher Orientierung. In: Vor-trage und Plakatberichte; DGZfP–Jahrestagung 1997, Dresden; Zerstorungsfreie Material-prufung, Berichtsband 59.2, S. 649–958. Hrsg.: Deutsche Gesellschaft fur Zerstorungs-freie Prufung, Berlin, 1997.

40

Page 41: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

Krautkamer, J., H. Krautkamer: Ultrasonic Testing of Materials. 3rd ed., Springer–Verlag,Berlin, Heidelberg, New York, 1983.

Langenberg, K. J.: Applied Inverse Problems for Acoustic, Electromagnetic and Elastic WaveScattering. In: Tomography and Inverse Problems, pp. 126–467. Ed.: P. C. Sabatier,Adam Hilger, Bristol, UK, Philadelphia, USA, 1987.

Langenberg, K. J., P. Fellinger, R. Marklein: On the Nature of the so–called Subsurface Longitu-dinal Wave and/or the Subsurface Longitudinal

”Creeping“ Wave. Res. Nondestr. Eval.,

Vol. 2, pp. 59–81, 1990.Langenberg, K. J., P. Fellinger, R. Marklein, P. Zanger, K. Mayer, T. Kreutter: Inverse Methods

and Imaging. In: Evaluation of Materials and Structures by Quantitative Ultrasonics,pp. 317–398. Ed.: J. D. Achenbach, Springer–Verlag, New York, Vienna, 1993.

Langenberg, K. J., P. Fellinger, Ch. Hofmann: Ultraschall–Nebenechos mathematisch–numer-isch modelliert. Materialprufung, Vol. 36, No. 1–2, S. 26–31, 1994.

Langenberg, K. J., R. Barmann, R. Marklein, S. Irmer, H. Muller, M. Brandfaß, B. Potzkai:Electromagnetic and elastic wave scattering and inverse scattering applied to concrete.In: Proceedings of the International Symposium: Non–Destructive Testing in Civil En-gineering (NDT–CE), Berichtsband 48, S. 77–84. Hrsg.: Deutsche Gesellschaft furZerstorungsfreie Prufung, Berlin, 1995.

Langenberg, K. J., R. Marklein, K. Mayer, In: Vortrage und Plakatberichte; DGZfP–Jahresta-gung 1996; Zerstorungsfreie Materialprufung, Berichtsband 52.1, S. 207–215. Hrsg.:Deutsche Gesellschaft fur Zerstorungsfreie Prufung, Berlin, 1996.

Langenberg, K. J., M. Brandfaß, S. Klaholz, R. Marklein, K. Mayer, A. Pitsch, R. Schneider:Applied Inversion in Nondestructive Testing. In: Inverse Problems in Medical Imagingand Nondestructive Testing, pp. 93–119. Eds.: A. K. Louis, H. W. Engl, W. Rundell,Springer–Verlag, Wien, New York, 1997a.

Langenberg, K. J., R. Barmann, R. Marklein, S. Irmer, H. Muller, M. Brandfaß, B. Potzkai:Electromagnetic and elastic wave scattering and inverse scattering applied to concrete.NDT & E International, Vol. 30, No. 4, pp. 205–210, 1997b.

Lerch, R.: Simulation of Piezoelectric Devices by Two– and Three–Dimensional Finite Ele-ments. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 37,No. 2, pp. 233–247, 1990.

Lerch, R.: Finite–Element–Modellierung in der Ultraschalltechnik. In: Vortrage des Seminars:Modelle und Theorien fur die US–Prufung , Berichtsband 23, S. 43–47. Hrsg.: DeutscheGesellschaft fur Zerstorungsfreie Prufung, Berlin, 1991.

Lord, W., R. Ludwig, Z. You: Developments in Ultrasonic Modeling with Finite ElementAnalysis. J. of Nondestructive Eval., Vol. 9, No. 213, pp. 129–143, 1990.

Ludwig, R.: The Finite Element Modeling of Ultrasonic NDT Phenomena. Ph. D. Thesis,Colorado State University, USA, 1986.

Ludwig, R., W. Lord: The finite element formulation for the study of ultrasonic NDT systems.IEEE Trans. Ultrasonics, Ferroelectrics, Frequency Control, Vol. 35, No. 6, pp. 809–820,1988.

Ludwig, R., D. Moore, W. Lord: A Comparative Study of Analytical and Numerical Tran-sient Force Excitations on an Elastic Half–Space. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control, Vol. 36, No. 3, pp. 342–350, May 1989.

Madariaga, R.: Dynamic of an Expanding Circular Fault. Bull. Seis. Soc. of Am., Vol. 66,No. 3, pp. 639–666, June 1976.

Marklein, R.: Ein Vergleich zwischen der Methode der Finiten Elemente (EFEM) und der Tech-nik der Finiten Integration (EFIT) zur numerischen Modellierung von Problemen der

41

Page 42: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

elastischen Wellenausbreitung im Zeitbereich. Projektarbeit III, Fachgebiet TheoretischeElektrotechnik, Universitat Gesamthochschule Kassel, Kassel, 1991a.

Marklein, R., P. Fellinger: Mathematisch–numerische Modellierung der Ausbreitung und Beu-gung akustischer Wellen. In: Vortrage des Seminars Modelle und Theorien fur die Ultra-schallprufung, Berichtsband 23, S. 59–68. Hrsg.: Deutsche Gesellschaft fur Zerstorungs-freie Prufung, Berlin, 1991b.

Marklein, R.: Die Akustische Finite Integrationstechnik (AFIT) — Ein numerisches Verfahrenzur Losung von Problemen der Abstrahlung, Ausbreitung und Streuung von akustischenWellen im Zeitbereich. Diplomarbeit (Diplom II), Fachgebiet Theoretische Elektrotech-nik, Universitat Gesamthochschule Kassel, Kassel, 1992a.

Marklein, R., P. Fellinger, K. J. Langenberg: Die US–Modellierungcodes AFIT und EFITals Werkzeuge zur quantitativen Fehlerbewertung. In: Vortrage und Plakatberichte;DGZfP–Jahrestagung 1992; Zerstorungsfreie Materialprufung, Berichtsband 33, S. 823–833. Hrsg.: Deutsche Gesellschaft fur Zerstorungsfreie Prufung, Berlin, 1992b.

Marklein, R., S. Klaholz, P. Fellinger, K. J. Langenberg: Der US–Modellierungscode EFIT furanisotrope Materialien. In: Vortrage und Plakatberichte; DGZfP–Jahrestagung 1994;Zerstorungsfreie Materialprufung, Berichtsband 43, S. 395–407. Hrsg.: Deutsche Gesell-schaft fur Zerstorungsfreie Prufung, Berlin, 1994a.

Marklein, R., R. Barmann, K. J. Langenberg: Die AFIT– und EFIT–Codes zur Modellierungvon Ultraschallwellen in dissipativen oder dampfenden Materialien. In: Vortrage undPlakatberichte; DGZfP–Jahrestagung 1994; Zerstorungsfreie Materialprufung, Berichts-band 43, S. 409–421. Hrsg.: Deutsche Gesellschaft fur Zerstorungsfreie Prufung, Berlin,1994b.

Marklein, R., K. J. Langenberg, R. Barmann, S. Klaholz, Ch. Hofmann: Elastische Wellenin der zerstorungsfreien Materialprufung. In: Fortschritte der Akustik — DAGA 1995,S. 121–140. Hrsg.: W. Arnold, S. Hirsekorn, Deutsche Gesellschaft fur Akustik (DAGA),Oldenburg, 1995a.

Marklein, R., R. Barmann, K. J. Langenberg: The Ultrasonic Modeling Code EFIT as Appliedto Inhomogeneous Dissipative Isotropic and Anisotropic Media. In: Review of Progressin Quantitative Nondestructive Evaluation, Vol. 14, pp. 251–258. Eds.: D. O. Thompson,D. E. Chimenti, Plenum Press, New York, USA, 1995b.

Marklein, R., K. J. Langenberg, T. Kaczorowski: Electromagnetic and Elastodynamic PointSource Excitation of Unbounded Homogeneous Anisotropic Media. In: Proceedings ofthe 15th Triennial International Symposium on Electromagnetic Theory, St. Petersburg,Russia, May 23–26, pp. 227–229. Eds.: Commission B

”Fields and Waves“ of the Inter-

national Union of Radio Science (URSI), 1995c.Marklein, R., K. J. Langenberg, S. Klaholz, J. Kostka: Ultrasonic modeling of real–life NDT

situations: applications and further developments. In: Review of Progress in Quanti-tative Nondestructive Evaluation, Vol. 15, pp. 57–64. Eds.: D. O. Thompson, D. E.Chimenti, Plenum Press, New York, USA, 1996a.

Marklein, R., K. J. Langenberg, R. Barmann, M. Brandfaß: Ultrasonic and ElectromagneticWave Propagation and Inverse Scattering Applied to Concrete. In: Review of Progress inQuantitative Nondestructive Evaluation, Vol. 15, pp. 1839–1848. Eds.: D. O. Thompson,D. E. Chimenti, Plenum Press, New York, USA, 1996b.

Marklein, R., K. J. Langenberg, R. Barmann, K. Mayer, S. Klaholz: Nondestructive Testingwith Ultrasound: Numerical Modeling and Imaging. In: Acoustical Imaging, Vol. 22,pp. 757–764. Eds.: P. Tortoli, L. Masotti, Plenum Press, New York, USA, 1996c.

Marklein, R., K. J. Langenberg, T. Kaczorowski: Electromagnetic and Elastodynamic Point

42

Page 43: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

Sources in Unbounded Homogeneous Anisotropic Media. Radio Science, Vol. 31, No. 6,pp. 1919–1930, November–December 1996d.

Marklein, R., K. Mayer, K. J. Langenberg: Numerical Modeling and Imaging with ULIAS:Ultrasonic Inspection Applying Simulation. In: Review of Progress in Quantitative Non-destructive Evaluation, Vol. 16, pp. 1869–1876. Eds.: D. O. Thompson, D. E. Chimenti,Plenum Press, New York, USA, 1997a.

Marklein, R., O. Glitza, K. J. Langenberg: Die Piezoelektrische Finite Integrationstechnik(PFIT) zur numerischen Modellierung von piezoelektrischen Sensoren im Zeitbereich.In: Vortrage und Plakatberichte; DGZfP–Jahrestagung 1997, Dresden; Zerstorungs-freie Materialprufung, Berichtsband 59.2, S. 617–630. Hrsg.: Deutsche Gesellschaft furZerstorungsfreie Prufung, Berlin, 1997b.

Marklein, R., K. J. Langenberg, K. Mayer, S. Klaholz, J. Kostka: Computation and Visualiza-tion of Acoustic and Elastic Waves in Nondestructive Testing (NDT). In: Proceedingsof the 15th IMACS World Congress on Scientific Computation, Modeling and AppliedMathematics, Berlin, August 24–29, 1997 , Vol. 5, pp. 507–512. Ed.: A. Sydow, Wis-senschaft und Technik Verlag, Berlin, 1997c.

Marklein, R.: Numerical Methods for the Modeling of Acoustic, Electromagnetic, Elastic, andPiezoelectric Wave Propagation Problems in the Time Domain Based on the Finite In-tegration Technique. Shaker Verlag, Aachen, Germany, 1998. (in German)

Mayer, K., R. Marklein, K. J. Langenberg, T. Kreutter: Three–dimensional Imaging Sys-tem based on Fourier Transform Synthetic Aperture Focusing Technique. Ultrasonics,Vol. 28, pp. 241–255, July 1990.

Nelson, D. F.: Electric, Optic, and Acoustic Interactions in Dielectrics. John Wiley & Sons,New York, USA, 1979.

Peiffer, A., B. Kohler, S. Petzold: The acoustic finite integration technique for waves of cylin-drical symmetry (CAFIT). J. Acoust. Soc. Am., Vol. 102 (2), Pt. 1, August, pp. 697–706,1997.

Richtmyer, R. D., K. W. Morton: Difference Methods for Initial Value Problems . Reprint of2nd ed. 1967, R. E. Krieger Publishing Company, Malabar, Florida, USA, 1994.

Roberts, M. J.: Numerical Modeling of Piezoelectric Transducer Arrays for Medical ImagingSystems. Ph. D. Thesis, Worcester Polytechnic Institute (WPI), Worcester, Mass., USA,1991.

Rudolph, M., P. Fellinger, K. J. Langenberg, D. E. Chimenti: Numerical Modeling of Air–Coupled Ultrasound with EFIT. In: Review of Progress in Quantitative NondestructiveEvaluation, Vol. 14, pp. 1053–1060. Eds.: D. O. Thompson, D. E. Chimenti, PlenumPress, New York, USA, 1995.

Schmitz, V., K. J. Langenberg, W. Kappes, M. Kroning: Inspection procedure assessmentusing modeling capabilities. Nuclear Engineering and Design, Vol. 157, pp. 245–255,1995.

Schubert, F., B. Kohler: Untersuchungen zum Einfluß der Hohlraumporositat auf die Ul-traschallprufung von Beton. In: Vortrage und Plakatberichte; DGZfP–Jahrestagung1997, Dresden; Zerstorungsfreie Materialprufung, Berichtsband 59.2, S. 443–451. Hrsg.:Deutsche Gesellschaft fur Zerstorungsfreie Prufung, Berlin, 1997.

Stam, H. J.: A Time–Domain Finite–Element Method for the Computation of Three–Dimen-sional Acoustic Wave Fields in Inhomogeneous Fluids and Solids. Ph. D. Thesis, Uni-versity of Delft, Delft, NL, 1990.

Stam, H. J., A. T. de Hoop: Theoretical Considerations on a Finite–Element Method for theComputation of Three–Dimensional Space–Time Elastodynamic Wave Fields. Wave

43

Page 44: NDT Related Quantitative Modeling of Coupled Piezoelectric and Ultrasonic Wave Phenomena · 2003-02-26 · implemented, and to solve arbitrary initial{boundary{value problems several

Motion, Vol. 12, pp. 67–80, 1990.Stanke, F. E., H.–W. Chang: Hybrid Model for Inspection of Complex Structures. IEEE

Proc. Ultrasonic Symposium, pp. 1129–1133, 1989.Taflove, A.: Computational Electrodynamics: The Finite–Difference Time–Domain Method.

Artech House, Norwood, Mass., USA, 1995.Temple, J. A. G.: Modeling the propagation and scattering of elastic waves in inhomogeneous

anisotropic media. J. Phys. D: Appl. Phys., Vol. 21, pp. 859–874, 1988.Versteeg, H. K., W. Malalaskera: An introduction to computational fluid dynamics. The finite

volume method. Longman Scientific & Technical, Essex, UK, 1995.Virieux, J.: SH–wave propagation in heterogeneous media: Velocity–stress finite–difference

method. Geophysics, Vol. 49, pp. 1933–1957, 1984.Virieux, J.: P–SV wave propagation in heterogeneous media: Velocity–stress finite–difference

method. Geophysics, Vol. 51, No. 4, pp. 889–901, April 1986.Walte, F., K. J. Langenberg, P. Fellinger, R. Marklein: Die Reflexion von Ultraschallwellen an

Rißspitzen — Vergleich von Simulationen und Experimenten. In: Vortrage und Plakat-berichte DGZfP–Jubilaumstagung 1993 Zerstorungsfreie Materialprufung, Berichtsband37.2, S. 685–691. Hrsg.: Deutsche Gesellschaft fur Zerstorungsfreie Prufung, Berlin,1993.

Walte, F., M. Spies, C. Schurig, K. J. Langenberg, S. Klaholz: Simulation der Impulse-choprufung fur austenitische Schweißnahte mit dem EFIT– und GPSS–Code und Ver-ifizierung durch Experimente. In: Vortrage und Plakatberichte; DGZfP–Jahrestagung1996; Zerstorungsfreie Materialprufung, Berichtsband 52.1, S. 217–226. Hrsg.: DeutscheGesellschaft fur Zerstorungsfreie Prufung, Berlin, 1996.

Walte, F., C. Schurig, M. Spies, K. J. Langenberg, S. Klaholz: Experimental Evaluation ofUltrasonic Simulation Techniques in Anisotropic Material. In: Review of Progress inQuantitative Nondestructive Evaluation, Vol. 16, pp. 1899–1906. Eds.: D. O. Thompson,D. E. Chimenti, Plenum Press, New York, USA, 1997.

Weiland, T.: Eine Methode zur Losung der Maxwellschen Gleichungen fur sechskomponentigeFelder auf diskreter Basis. AEU, Bd. 31, Heft 3, S. 116–120, 1977.see also http://www.tu-darmstadt.de/fb/et/temf/Publikationen/publikationen.html)

Weiland, T.: Mathematisch–numerische Modellierung elektromagnetischer Systeme. In: Vor-trage des Seminars: Modelle und Theorien fur die US–Prufung , Berichtsband 23, S. 32–42. Hrsg.: Deutsche Gesellschaft fur Zerstorungsfreie Prufung, Berlin, 1990.

Wolter, H., T. Weiland: Dreidimensionale Simulation akustischer Resonatoren und der Aus-breitung von Schallwellen. In: Fortschritte der Akustik — DAGA 1995, S. 1151–1154.Hrsg.: W. Arnold, S. Hirsekorn, Deutsche Gesellschaft fur Akustik, Oldenburg, 1995a.

Wolter, H.: Berechnung akustischer Wellen und Resonatoren mit der FIT–Methode. Disserta-tion, Technische Hochschule Darmstadt, Darmstadt, 1995b.

Yee, K. S.: Numerical solution of initial boundary value problems involving Maxwell’s equationsin isotropic media. IEEE Trans. Antennas Propagat., Vol. AP–14, pp. 302–307, 1966.

You, Z., M. Lusk, R. Ludwig, W. Lord: Numerical Simulation of Ultrasonic Wave Propagationin Anisotropic and Attenuative Solid Materials. IEEE Trans. Ultrasonics, Ferroelectrics,Frequency Control, Vol. 38, No. 5, pp. 436–445, September 1991.

44