negative-parity levels in even nickel isotopes

3
LETTERV. AL ~UOVO CI~V.NTO VOL. 23, N. 4 23 Settombre 1978 Negative-Parity Levels in Even Nickel Isotopes. RAM RAJ, B. B. ROY, O. P. RUSTGI and M. L. RUSTGI Physics Department, State University o] New York - Bu]]alo, 2r Y. 14260 (ricevuto il 17 Luglio 1978) In recent years several groups of experimentalists have studied the higher excited states in even nickel isotopes. For example, BRUG~, C~AVM~AUX, D~ VRIES, and Men- RIseN (1) have studied levels in 5SNi up to 10 MeV excitation energy through the (a, cr reaction. Their results are found to be in surprisingly good agreement with those obtained from a-transfer reactions such as 54Fe(~e0, ~2C)SSNi and 5*Fe(TLi, t)SSNi. Previously elastic and inelastic scattering of alpha-particles and protons by ~SNi and ~~ had been reported by INcur. (2) and J~mvIs et al. (a). It is found that in both 5SNi and ~~ most of the states below 5 MeV have positive parity whereas most of the states above 5 Meu have negative parity. There is some disagreement on the 5.582 MeV level in 5SNi, which BRVGE et al. (~) find to be a 2+ state while JARVIS et al. (2) and I~ou~ (3) have indicated it to be a 4 + state or 4 + § 5- states, respectively. The 4.47 MeV 3- level (a) in 5SNi decays essentially by E1 transition to the 2 + state. On the contrary (5), both the 3- states at 4.05 and 3.74 MeV in ~~ and 6~Ni, respectively, decay to both the 2+ and 2+ levels of these nuclei. The transition to the second 2+ levels in e4Ni again has not been observed. The varying modes of decay of the 3- level in Ni isotopes show the existence of differences in their structure and will reveal 1imitation of any model A number of calculations (e-~3) on Ni isotopes employing schematic forces or reaction matrix elements have been reported in literature. In this letter the results of calcula- tions on the negative-parity states for the even Ni isotopes carried out within the flame- (1) G. BRUGE, A. CHAE~IEAUX, R. DEVRIES and G. C. MORRIS0N: Phys. Rev. Lett., 29, 295 (1972). (a) ]VI. INOUE: Nucl. Phys., llgA, 449 (1968). (a) O. •. JARVIS, B. G. HARVEY, D. L. HENDRIE, and J. ]WAHONEY: Nucl. Phys., 102 A, 625 (1967). (4) P. BEUZIT, J. DELAUNAY and J. P. FOUAN: Nucl. Phys., 128 A, 594 (1969). (a) P. F. HINRICHSEN, G. T. WOOD and S. M. SCHAFROTH: Nucl. Phys., 81, 449 (1966L (6) S. COHEN, R. D. LAWSON, M. H. MACFARLANE, S. P. PANDYA and M. SOGA: Phys. Rev., 160, 903 (1967). (7) N. AUERBACtt: Nucl. Phys., 76, 321 (1966). (8) L* S. HSU: Nucl. Phys., 96 A, 652 (1967). (9) ]3. ]3. RoY, R. RAJ and M. L. RUSTGI: Phys. Rev. C, 1, 207, 1138 (1970). (10) R. P. SINEH, R. RAJ, M. L. I~USTGX and It. W. KUNG: Phys. Rev. C, 2, 1715 (1970). (11) M. L. RUSTGI, ~[. W. KUNG, R. RAJ, R. 2k. I~IISLEY and M. H. HULL jr.: Phys. tCev. C, 4, 854 (1971). (lz) p. W. M. GLAUDEMANS, IVL J. A. DE VOIGT and E. F. M. STEFFENS: N~C7. Phys., 198 A, 609 (1972). (la) j. E. KeePs and P. W. M. GLAUDEMANS: Zeits. Phys., 280A, 181 (1977). 126

Upload: ram-raj

Post on 21-Aug-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Negative-parity levels in even nickel isotopes

LETTERV. AL ~UOVO CI~V.NTO VOL. 23, N. 4 23 Se t tombre 1978

Negative-Parity Levels in Even Nickel Isotopes.

RAM RAJ, B. B. ROY, O. P. RUSTGI and M. L. RUSTGI

Physics Department, State University o] New York - Bu]]alo, 2r Y. 14260

(r icevuto il 17 Lugl io 1978)

I n recent years several groups of exper imenta l i s t s h a v e s tudied the h igher exci ted s ta tes in even nickel isotopes. F o r example , BRUG~, C~AVM~AUX, D~ VRIES, and Men- RIseN (1) have s tudied levels in 5SNi up to 10 MeV exc i ta t ion energy th rough the (a, cr reac t ion . Their results are found to be in surprisingly good agreement wi th those obta ined f rom a-transfer react ions such as 54Fe(~e0, ~2C)SSNi and 5*Fe(TLi, t)SSNi. P rev ious ly elast ic and inelast ic scat ter ing of alpha-part icles and pro tons by ~SNi and ~~ had been r epor t ed by INcur. (2) and J~mvIs et al. (a). I t is found t h a t in bo th 5SNi and ~~ most of t he s ta tes below 5 MeV h a v e posi t ive pa r i ty whereas most of the states above 5 M e u h a v e nega t ive par i ty . There is some disagreement on the 5.582 MeV level in 5SNi, which BRVGE et al. (~) find to be a 2+ s ta te while JARVIS et al. (2) and I ~ o u ~ (3) have ind ica ted i t to be a 4 + s ta te or 4 + § 5- states, respect ive ly . The 4.47 MeV 3- level (a) in 5SNi decays essential ly by E1 t ransi t ion to the 2 + s tate . On the con t ra ry (5), bo th t he 3- s ta tes at 4.05 and 3.74 MeV in ~~ and 6~Ni, respect ively , decay to bo th the 2 + and 2+ levels of these nuclei . The t ransi t ion to the second 2+ levels in e4Ni again has no t been observed. The v a r y i n g modes of decay of the 3- level in Ni isotopes show the exis tence of differences in the i r s t ruc ture and will r evea l 1imitat ion of any m o d e l

A n u m b e r of calculat ions (e-~3) on Ni isotopes employ ing schemat ic forces or reac t ion m a t r i x e lements have been r epor t ed in l i terature . I n th is le t te r t he results of calcula- t ions on the nega t ive-par i ty s ta tes for the even Ni isotopes carried out wi thin t he f l ame-

(1) G. BRUGE, A. CHAE~IEAUX, R. DEVRIES a n d G. C. MORRIS0N: Phys . Rev. Lett., 29, 295 (1972). (a) ]VI. INOUE: Nuc l . Phys . , l l g A , 449 (1968). (a) O. •. JARVIS, B. G. HARVEY, D. L. HENDRIE, and J . ]WAHONEY: Nucl . Phys . , 102 A, 625 (1967). (4) P . BEUZIT, J . DELAUNAY a n d J . P. FOUAN: Nucl . Phys . , 128 A, 594 (1969). (a) P. F. HINRICHSEN, G. T. WOOD a n d S. M. SCHAFROTH: Nuc l . Phys . , 81, 449 (1966L (6) S. COHEN, R. D. LAWSON, M. H . MACFARLANE, S. P. PANDYA a n d M. SOGA: Phys . Rev. , 160, 903 (1967). (7) N. AUERBACtt: Nucl . Phys . , 76, 321 (1966). (8) L* S. HSU: Nucl . Phys . , 96 A, 652 (1967). (9) ]3. ]3. RoY, R. RAJ a n d M. L. RUSTGI: Phys . Rev. C, 1, 207, 1138 (1970). (10) R. P. SINEH, R. RAJ, M. L. I~USTGX a n d I t . W. KUNG: Phys . Rev. C, 2, 1715 (1970). (11) M. L. RUSTGI, ~[. W. KUNG, R. RAJ, R . 2k. I~IISLEY a n d M. H . HULL j r . : Phys . tCev. C, 4, 854 (1971). (lz) p . W. M. GLAUDEMANS, IVL J. A. DE VOIGT a n d E. F. M. STEFFENS: N~C7. Phys . , 198 A, 609 (1972). (la) j . E . K e e P s a n d P. W. M. GLAUDEMANS: Zeits. Phys . , 2 8 0 A , 181 (1977).

126

Page 2: Negative-parity levels in even nickel isotopes

NEG A TI V E- PA RI TY LEVELS IN EVEN NICKEL ISOTOPES 127

work of the modified Tam-Dancoff approximation (MTDA) method are reported assuming a 5eNi core. The extra-core neutrons are considered to occupy the lp~, 0]i, lP�89 and 0g~, single-particle orbitals, and the unperturbed single-particle energies for these orbitals are taken to be 0.0, 0.78, 1.08 and 5 MeV, respectively. The two-body renormalized matr ix elements of the Hamada-Johnston (H J) and Tabakin potentials are used. The gap and the number equations are solved to obtain the single quasi-particle eneigies and the occupation and unoecupation probabilities in the various single-particle levels. These quantities are needed for the setting up of the energy matrix. The effect of the spurious 0 + two-quasi-particle states from the basis wave functions is eliminated using the procedure employed earlier (9-~) before the diagonalization of the energy matrix.

The results of the calculation for the first few negative-parity states are listed in tables I and II. The results for 58Ni are reported in the Tamm-Dancoff approximation

TABLE I. - Energies (in MeV) o] the negative-parity states o] SSNi in the Tamm-Danco]] approximatien for the Tabakin (Tab.) and Hamada-Johnston (H J) reaction matrix elements.

J:~ Tab. t t J Experimental

3- 4.35 4.75 4.47

3- 5.96 6.24 6.02

4- 4.85 5.67

5- 4.57 5.40

6- 5.00 5.85

TABLE II . - .Energies (in MeV) o] the negative-parity states o/ece~ Ni isotopes in the MTDA approximation for the Tabakin (Tab.) and Hamada-Joh~stou (H J) potential reaction matrix elements.

j~ 60Ni e~Ni edNi ~6Ni

Tab. H J Tab. I~J Tab. HJ Tab. HJ

17 4.82 7.05 4.66 7.07 4.75 7.25 5.06 7.63

17 5.24 7.65 4.96 7.57 5.04 7.59 5.47 8.45

2i- 3.91 5.78 3.81 5.69 3.95 5.64 4.16 5.61

2~" 4.96 7.20 4.72 6.97 4.61 6.89 4.77 7.13

3i- 3.73 4.76 3.38 4.59 3.12 4.46 3.07 4.38

3~ 3.97 5.63 3.56 5.27 3.52 5.01 3.50 4.83

4~- 3.81 5.08 3.31 4.77 3.12 4.51 2.96 4.14

4~ 4.16 5.70 3.76 5.20 3.53 4.70 3.24 4.50

57 3.79 4.90 3.35 4.64 3.17 4.44 2.98 4.02

5~- 3.98 5.38 3.60 4.93 3.38 4.49 3.15 4.41

6~- 3.87 5.35 3.22 4.99 2.93 4.67 2.82 4.43

6~- 4.30 5.71 4.05 5.40 3.89 5.24 3.85 5.16

7~- 3.63 5.30 3.37 5.08 3.29 4.88 3.28 4.70

7~- 4.81 7.14 4.45 6.97 4.43 6.94 4.64 7.19

Page 3: Negative-parity levels in even nickel isotopes

~ 2 ~ RAM RAJ', B. B. :ROY, O. 1 ). :RUSTGI a n d ~ , L. R U S T G I

TABLn I I I . - Reduced transition rates i~ the MTDA .method ]or even Ni isotopes. The B(M1) values are ia un i t s of ~.~ and the B(E3) va lues arc in uni ts of e2/a ~, whe re r = Mw/h and ]ho = 41A-} MeV.

Trans i t i on ~~ 62Ni

Tab . H J Tab. I I J

B(E3 2+--~ 35) 1.12.10 -3 9.50.10 -3 1.36.10 -~ 4 .17.10 -4

B(E3 2+-+ 3~) 7.62.10 -5 1.92.10 -2 9.28.10 -3 1.90.10 -2

B(E3 2+--~ 35) 1.72.10 -3 5.30.10 -~ 7.89- 10 -3 1.13- 10 -2

B(E3 2+-~ 3~) 6.93- 10 -5 4.14.10 -a 3.86.1O -a 1.28.10 -3

B(M1 35-~ 25) 6.13- 10 -a 8.27.10 -3 4.18- 10 -1 5.04- 10 -~

B(MI 3~-+ 25) 9.29- 10 -a 6.30- 10 -1 1.23.10 -3 6.19.10 -1

B(M1 35--~ 2~) 5 .11.10 -a 3.76.10 -a 9.11- 10 -a 3.73.10 -a

B(M1 3~-+ 2~) 2.79- 10 -a 1.25-10 -a 2.97-10 -3 1.30.10 -~

Trans i t ion edNi 6eNi

Tab. H J Tab. H J

B(E3 2+-~ 35) 1.30.10 -3 3.32.10 .4 4.58- 10 -3 1.08. tO -3

B(E3 2~-~ 3~-) 1.68.10 .3 1.40.10 -3 1.81- 10 -5 1.08- 10 -2

B(E3 2+-~ 3~) 3 .32.10 -a 8.46.10 -3 7.60- 10 -3 3.95.10 -3

B(E3 2+-+ 3~) 1.73.10 -4 3.42. l0 -a 1.56.10 -3 1.28.10 -4

B(M1 35-~- 25) 3.73- 10 -1 2.52.10 -3 4.18.10 -1 8.52.10 -3

B(M1 3~-~ 2~') 1.01- 10 -1 6.16.10 -1 1.71- 10 -1 6.12- 10 -1

B(M1 35-~ 2~) 5.49- 10 -a 9.97.10 -~ 4.69- 10 -3 3.11.10 -3

B(M1 3~--~ 2~) 2 .23.10 -3 1.29-10 -2 1.38- 10 -~ 4 .55.10 -3

while t h e mix ing of two and four quas i .par t ic le subspaees is inc luded for t h e o the r i sotopes .

F o r 5sNi the calculat ions w i t h t h e H a m a d a - J o h n s t o n and Tabak in in te rac t ions p red ic t t h e 3- level at 4.75 and 6.24 a n d 4.35 and 5.96 lV[oV, respec t ive ly , in r easonab ly good a g r e e m e n t w i t h t he measu red va lues of 4.47 and 6.02 ~r In general t he p red ic t ions of t h e two sets of ma t r i x e l emen t s are no t in accord w i t h one another .

In e~ again, the ca lcula ted energies of t he first two 3- s ta tes are in good ag reemen t w i t h t h e observed values of 4.04 and 5.60 ~ e V for t h e H a m a d a - J o h n s t o n po ten t i a l .

I t is no t ed by B~UZIT et al. (4) t h a t t h e energy of t h e first 3- s ta te decreases f rom 4.04 MeV in 60Ni to 3.56 MeV in 64Ni. Such a decrease is seen theore t ica l ly also.

In view of th is agreement , i t will be desirable to m a k e measu remen t s on the t rans i - t ion r a t e s to compare w i t h t h e resul ts p resen ted in t ab le I I I .

The au thors are gra tefu l to Prof . G. BR~I~ for his in te res t in th is work .