network analysis (subject code: 06es34) -...

16
1 Network Analysis (Subject Code: 06ES34) Transient Behavior and Initial Conditions Introduction Initial Conditions in Networks V-I Relationship of Network Elements Initial Conditions in Network Elements Procedure for Evaluating Initial Conditions Solution of Initial Value Problems I. Initial Conditions in Networks: There are many reasons for studying initial (and final) conditions; (i) The most important reason is that initial conditions must be known to evaluate the arbitrary constants that appear in the general solution of the differential equations (ii)The initial conditions give knowledge of the behavior of the elements at the instant of switching At reference time t=0, the switch is closed (we assume that switch act in zero time). To differentiate between the time immediately before and immediately after the operation of a switch, we will use –ve and +ve signs. Thus conditions existing just before the switch is operated will be designated as i (0 - ), v (0 - ) etc. Conditions after as i (0 + ), v (0 + ) etc. Initial conditions in a network depend on the past history of the network prior to t =0 - and the network structure at t = 0 + , after switching. The evaluation of all voltages and currents and their derivatives at t = 0 + , constitutes the evaluation of initial conditions. Some times we use conditions at t = ; these are known as final conditions II. V-I Relationships of Network Elements: (i) Resistor: (ii) Inductor: t v(t)= L di(t)/dt and i(t) = v(t) dt 0 - t v(t)= L di(t)/dt and i(t) = (1/L) v(t) dt +i L (0 - ) 0 - v(t)=R.i(t) and i(t) = v(t)/R www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS www.bookspar.com | VTU NOTES | QUESTION PAPERS

Upload: buingoc

Post on 13-Jul-2018

247 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

1

Network Analysis (Subject Code: 06ES34)

Transient Behavior and Initial Conditions

• Introduction • Initial Conditions in Networks • V-I Relationship of Network Elements • Initial Conditions in Network Elements • Procedure for Evaluating Initial Conditions • Solution of Initial Value Problems

I. Initial Conditions in Networks: There are many reasons for studying initial (and final) conditions;

(i) The most important reason is that initial conditions must be known to evaluate the arbitrary constants that appear in the general solution of the differential equations

(ii)The initial conditions give knowledge of the behavior of the elements at the instant of switching

At reference time t=0, the switch is closed (we assume that switch act in zero time). To differentiate between the time immediately before and immediately after the operation of a switch, we will use –ve and +ve signs. Thus conditions existing just before the switch is operated will be designated as i (0-), v (0-) etc. Conditions after as i (0+), v (0+) etc. Initial conditions in a network depend on the past history of the network prior to t =0- and the network structure at t = 0+, after switching. The evaluation of all voltages and currents and their derivatives at t = 0+, constitutes the evaluation of initial conditions. Some times we use conditions at t = �; these are known as final conditions

II. V-I Relationships of Network Elements:

(i) Resistor:

(ii) Inductor:

t v(t)= L di(t)/dt and i(t) = � v(t) dt 0-

t v(t)= L di(t)/dt and i(t) = (1/L) � v(t) dt +iL (0-) 0-

v(t)=R.i(t) and i(t) = v(t)/R

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 2: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

2

(iii)Capacitor:

III. Initial Conditions in Network Elements: (i) Resistor: In resistor, current and voltage are related by ohm’s law v(t)=R.i(t).

From this relation, the current through a resistor will change instantaneously if the voltage changes instantaneously.

(ii) Inductor: When switch is closed at t = 0, the current through an inductor cannot change

instantaneously. As a result, closing of a switch to connect an inductor to a source of energy will not cause current to flow at that instant and inductor will act as an open circuit.

If a current of I0 amps flows in the inductor at the instant of switching takes place, that current will continue to flow & for the initial instant the (t=0+) inductor can be considered as a current source of I0 amps

t v(t) = (1/C) � i(t) dt +VC (0-) and i(t) = C dv(t)/dt 0-

t v(t) = (1/C) � i(t) dt and i(t) = C dv(t)/dt 0-

t 0- t i(t) = (1/L) � v(t) dt = (1/L) � v(t) dt + (1/L) � v(t)dt -� -� 0- t i(t) = i(0-) + (1/L) � v(t) dt putting t = 0+ on both sides 0-

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 3: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

3

Therefore i(0+) = i(0-) If i(0-)=0, then i(0+)=0 This means that inductor acts as a open circuit Element and Initial Condition Equivalent Circuit at t=0+

The final condition (steady state condition) equivalent circuit of an inductor is derived from the basic relationship v =L di/dt Under steady state condition di/dt=0 This means v =0 and hence L acts as a short circuit at t = � (final or steady state). The final condition equivalent circuits of an inductor is shown in figure

Element and Initial Condition Equivalent Circuit at t=�

(iii) Capacitor: At t=0, switch is closed

0+ i(0+) = i(0-) + (1/L) � v(t) dt 0-

We have, t v(t) = (1/C) � i(t) dt -�

0- t v(t) = (1/C) � i(t) dt +1/C �i(t)dt -� 0-

t v(t) = v(0-) +1/C �i(t)dt 0-

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 4: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

4

Evaluating the expression at t = 0+, we get Therefore v(0+) = v(0-) Thus the voltage across a capacitor cannot change instantaneously. If v(0-)= 0, then v(0+) = 0. This means that t = 0+, capacitor acts as a short circuit. If v(0-)= q0/C, then v(0+) = q0/C. This means that t = 0+, capacitor acts as a voltage source.

Element and Initial Condition Equivalent Circuit at t=0+

The final condition (steady state condition) equivalent circuit of an inductor is derived from the basic relationship i(t) =C dv(t)/dt Under steady state condition dv(t)/dt=0. i.e. at t = �, i(t)=0 this means that, t = �, (final or steady state) capacitor acts as an open circuit. The final condition equivalent circuits of a capacitor is shown in figure

Element and Initial Condition Equivalent Circuit at t=�

IV. Procedure for Evaluating Initial Conditions: There is no unique procedure that must be followed in solving for initial conditions. We usually to solve for initial values of currents and voltages, an equivalent network of the original network at t = 0+ is constructed according to the following rules; (i) Replace all inductors with open circuits or with current source having source

current equal to that flowing at time t=0+

(ii) Replace all capacitors with short circuits or with a voltage source of value v0=q0/c if an initial charge q0.

(iii) Resistors are left in the network without change.

0+ v(0+) = v(0-) +1/C �i(t)dt 0-

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 5: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

5

Step 1: Solve the initial values of variables namely currents, voltages and charge at t=0+

Step 2: Solve the initial derivatives of variables at t =0+

V. Problems: [1] In figure below, the switch ‘S’ is closed at t=0. Find the initial conditions i(0+)

and di(0+)/dt Solution: At t =0+, the equivalent circuit is Therefore i(0+)=0 Applying KVL to the given circuit, [2] In the network of figure below, If t=0, switch ‘k’ is closed. Find the values of

i, di/dt and d2i/dt2 at t =0+ for element values as follows; V= 100V, R= 1000� and L= 1H.

Solution: When t=0, switch ‘k’ is closed. Then, just after closing of switch, circuit

becomes Therefore i(0+)=0

V = L di(t)/dt +R i(t)

At t =0+,

L di(0+)/dt +R i (0+)=V since i (0+)=0

di(0+)/dt=V/L

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 6: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

6

Applying KVL to the given circuit, we have, [3] Consider the R-C circuit shown below, switch ‘S’ is closed at t=0 and assume

that there is no initial charge in the capacitor. Find the initial conditions i(0+) and di(0+)/dt

Solution: At t =0+, the equivalent circuit is When t =0+, capacitor acts as a short circuit. Therefore i(0+)= v(t)/R

100 = R i(t) + L di(t)/dt (1)

At t =0+

100 = R i(0+) + L di(0+)/dt (2)

Substituting the values of L, R, and i(0+), we get

100 = 1000 x 0 + 1x di(0+)/dt

Therefore di(0+)/dt =100 Amps/sec

Similarly, to find out second derivatives of the current, differentiate equation (2) with

respect to t.

0 = R di(0+)/dt + Ld2i(0+)/dt2

0 = 1000x100+1d2i(0+)/dt2

Therefore d2i(0+)/dt2 = -105 Amps/sec2

Applying KVL to the given circuit, we get v(t) = i(t)R+1/C �i(t)dt (1) Differentiating equation (1), with respect to t, we get 0 =R di(t)/dt + i(t)/C At t =0+, 0 =R di(0+)/dt + i(0+)/C Rdi(0+)/dt = - i(0+)/C di(0+)/dt = - i(0+)/RC di(0+)/dt = - v/R2C (since i=v/R)

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 7: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

7

[4] In the given circuit, switch ‘K’ at t=0 is closed with the capacitor uncharged.

Find the values of (i) di/dt and (ii)d2i/dt2 at t =0+

Solution: When t=0, the switch ‘K’ is closed. Then circuit becomes [5] For the given circuit, find i(0+), di(0+)/dt and d2i(0+)/dt2 when t=0 switch ‘K’

is closed. Initially, Inductor having zero current and capacitor having zero charge.

At t =0+, i(0+)= V/R=10/1000= 0.01 Amp.

Applying KVL to the given circuit, we get

V (t)= R i(t) +1/C �i(t)dt (1)

Differentiate equation (1) with respect to t, we get

0 = R di(t)/dt + i(t)/C

At t =0+, R di(0+)/dt = - i(0+)/C

di(0+)/dt = - i(0+)/RC=-0.01/1000x1x10-6 = -10 Amps/sec

Differentiate equation (1) twice with respect to t, we get

R d2i(0+)/dt2 + 1/C di(0+)/dt =0

At t =0+, d2i(0+)/dt2 = -(1/CR)di(0+)/dt =-(1/1000x1x10-6) x(-10)=10000 Amps/sec2

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 8: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

8

Solution: When t=0, switch ‘K’ is closed. Then circuit becomes Therefore i(0+)=0 [6] In the given circuit, switch ‘K’ is closed at t=0 with capacitor uncharged and

zero current in the inductor. Find di(t)/dt and d2i(t)/dt2 at t = 0+ Solution: At t=0, the switch ‘K’ is closed. Then circuit becomes Therefore i(0+)=0 At t=0+, the inductor will act as an open circuit and capacitor will act as an short circuit.

Applying KVL to the given circuit at time t=0+

V (t)= R i(t) + L di(t)/dt +1/C �i(t)dt (1)

Since Vc (0-)=0 Therefore 1/C �i(t)dt =0 (because q0=0)

At t =0+, equation (1) becomes

V (t)= 0 + L di(0+)/dt +0

Therefore di(0+)/dt=V(t)/L Amps/sec

Differentiate equation (1) with respect to t, we get

0 = Rdi(t)/dt + L d2i(t)/dt2 +i(t)/C (2)

At t =0+, equation (2) becomes

0 = RV(t)/L + L d2i(0+)/dt2 + 0

Therefore d2i(0+)/dt2 = -RV(t)/L2 Amps/sec2

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 9: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

9

[7] In the network shown below, the switch ‘K’ is opened at t=0 after the

network has attained a steady state with the switch closed. Find (a) the expression for the voltage across the switch at t =0+ (b) If the parameters are adjusted such that i(0+)=1 and di(t)/dt = -1, what is the value of the derivative of the voltage across the switch dVk(0+)/dt =?

Solution: (a) Before opening the switch ‘K’, circuit is Therefore i(0-)= V/R2

Applying KVL to the given circuit at time t=0+

V (t)= R i(t) + L di(t)/dt +1/C �i(t)dt (1)

At t =0+, equation (1) becomes

V (0+)= R i(0+) + L di(0+)/dt +1/C �i(0+)dt

100 = 100x0 +1x di(0+)/dt +(1/1x10-6) �0 dt

Therefore di(0+)/dt=100 Amps/sec

Differentiate equation (1) with respect to t, we get

0 = Rdi(t)/dt + L d2i(t)/dt2 +i(t)/C (2)

At t =0+, equation (2) becomes

0 = Rdi(t)/dt + L d2i(0+)/dt2 + 0

Therefore d2i(0+)/dt2 = - (R/L)di(t)/dt = (100/1)x100 =-10000Amps/sec2

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 10: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

10

After opening the switch k, circuit is

At t=0+ , i(0-)= i(0+)= V/R2

The voltage across the switch Vk= R1x i + (1/C)�idt (1)

At t=0+ , (1/C)�idt=0

Therefore Vk= R1x i(0+)= R1 xV/R2= Vx(R1/R2)

(b) Differentiate equation (1) w. r. t. t, we get

dVk/dt=R1di/dt +i/C

di(0+)/dt= -1; i(0+)=1 are given

At t=0+

dVk(0+)/dt=R1di(0+)/dt +i(0+)/C

= R1(-1) +1/C =(1/C)-R1

[8] The following figure with switch ‘k’ is closed, steady state has been reached. At t=0, the switch is open. Find Vk(0+) and d2Vk (0+)/dt2

Solution: Just before opening the switch (t<0) i.e. at t=0-, The circuit becomes

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 11: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

11

Therefore i(0-)= 2/1=2Amps = i(0+)

At t=0 switch ‘k’ is opened, the circuit becomes

Apply KVL to the circuit, we get

V= (1/C)�idt +Ldi/dt +Rxi (1)

At t=0+ ,

2 = 0 + 1 di(0+)/dt +1x i(0+)

di(0+)/dt=2- 1x i(0+)=2-(1x 2)= 0 Amps/sec

Differentiate equation (1) w. r. t. t, we get

0 = i/C + Ld2i/dt2+ R di/dt

At t=0+,

d2i(0+)/dt2=-(R/L) di(0+)/dt –i(0+)/LC

= 1/1 di(0+)/dt – i(0+)/[1x(1/2)]=

= 0 –2x 2= -4 Amps/sec2

Differentiate equation (1) twice w. r. t. t, we get

0= (1/C) di/dt + L d3i/dt3+ R d2i/dt2

At t=0+,

d3i(0+)/dt3=-2di(0+)/dt –d2i(0+)/dt2

= -2x0-(-4)= 4Amps/sec3

From (1) Vk+Ldi/dt +Rx i=2 (since (1/C) �idt= Vk

Differentiate above equation twice w. r. t. t, we get

d2 Vk /dt2 + Ld3i/dt3+Rd2i/dt2=0

At t=0+,

d2 Vk(0+)/dt2 = - Ld3i(0+)/dt3-Rd2i(0+)//dt2

= -1x 4-1x(-4) =0 Volts/sec2

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 12: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

12

[9] In the given circuit, switch ‘k’ is opened at t=0. Find the values of v, dv/dt,

d2v/dt2 at t = 0+. Solution: At t = 0-

At t = 0+,

Apply KCL to the given circuit at t = 0+, we get

v/R+(1/L)�vdt = 2 (1)

Differentiate equation (1) with respect to t, we get

(1/R)dv/dt +(1/L)v = 0 (2)

At t = 0+, equation (2) becomes

(1/R) dv(0+)/dt +(1/L)v(0+) = 0

dv(0+)/dt = - (R/L)v(0+)

= (-1000/1) x 2000=-2x106 volts/sec

Differentiate equation (2) with respect to t, we get

(1/R)d2v/dt2 +(1/L)dv/dt = 0 (3)

At t = 0+, equation (3) becomes

(1/R)d2v(0+)/dt2 +(1/L)dv(0+)/dt = 0

d2v(0+)/dt2 = -(R/L)dv(0+)/dt = - (1000/1)x(-2x106) = 2x109 volts/sec2

v(0-) = 0

iL(0-) = 0

iL(0+) = 0 since current through

the inductor cannot

change instantaneously

v(0+) = i x R =2x1000=2000V

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 13: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

13

[10] In the given circuit, switch ‘k’ is opened at t=0. Find the values of v, dv/dt,

d2v/dt2 at t = 0+. Solution: At t = 0-

At t = 0+,

Apply KCL to the given circuit at t = 0+, we get

V/R+ C dV/dt = 10 (1)

At t = 0+, equation (1) becomes

dV(0+)/dt = (10/C) – v(0+)/RC

= 10/(1x10-6) – 0 =107 Volts/sec

Differentiate equation (1) with respect to t, we get

(1/R) dV/dt + cd2v /dt2 = 0 (2)

At t = 0+, equation (2) becomes

cd2V (0+)/dt2 = - (1/R) dV(0+)/dt

d2V(0+)/dt2 = -(1/RC)dv(0+)/dt = - [1/(100x1x10-6)]x107) = -1011 volts/sec2

v(0-) = 0

v (0+) = 0 since voltage across

the capacitor cannot

change instantaneously

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 14: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

14

[11] In the given circuit, switch ‘k’ is opened at t=0. Find the values of v1, v2

dv1/dt and dv2/dt at t = 0+. Solution: At t = 0-

At t = 0+,

Apply KCL to the given circuit at t = 0+, we get

v1/R1+ (1/L)�( v1- v2)dt = 0 (1)

v2/R2 +(1/L)�( v2- v1)dt + c dv2/dt = 0 (2)

Differentiate equation (1) with respect to t, we get

(1/R1) dv1/dt +(1/L)(v1- v2) = 0

At t = 0+,

(1/R1) dv1(0+)/dt + (1/L)v1(0+) - (1/L )v2(0+) = 0

dv1(0+)/dt = -R1/L v1 (0+) +(R/L )v2(0+)

= -(10/1)x 100 + (10/1) x 0 = -1000 volts/sec.

From equation (2)

v2(0+)/R2 + iL(0+)+ cdv2(0+)/dt = 0

0 + 0 + cdv2(0+)/dt = 0

cdv2(0+)/dt = 0 volts/sec.

v1(0-) = 0

v2(0-) = 0

v1(0+) = ixR1 = 10x10=100V

v2(0+) = 0 and i2(0+) = 0

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 15: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

15

[12] In the given circuit shown in figure below, the steady state is reached with

switch ‘k’ is open. At t=0, switch ‘k’ is closed. For the element values given,

determine the value of Va(0-) and Va(0+).

Solution: At t=0,

Va(0-)=Vb(0-)=5 V

Vb(0-)=5V= Vb(0+) since voltage across the capacitor cannot change instantaneously

At t = 0+, Apply KCL to the given circuit, we get

(Va-5)/10 + (Va/10) + (Va -Vb)/20 = 0 (1)

(Vb-5)/10 + (Vb-Va)/20 + CdVb/dt = 0 (2)

From (1), At t = 0+,

[Va(0+) -5]/10 + [Va(0+)] /10 + [Va(0+) -Vb(0+)]/20 = 0

[Va(0+) -5]/10 + [Va(0+)] /10 + [Va(0+) -5]/20 = 0

[2Va(0+) -10 + 2Va(0+) + Va(0+) -5]/20 = 0

[5Va(0+) -15]/20 = 0

Va(0+) = 15/5=3V0lts

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS

Page 16: Network Analysis (Subject Code: 06ES34) - libvolume2.xyzlibvolume2.xyz/biomedical/btech/semester3/networkanalysis/... · Network Analysis (Subject Code: 06ES34) ... Resistors are

16

[13] In the given circuit, switch ‘k’ is closed at t=o. Prove at t = 0+,

di1/dt =(Vo/R)[ � cos�t- (sin�t/RC)] and di2/dt =Vosin�t /L

Solution: At t = 0+,

i1(0+) = Vosin�t /R and i2(0+) =0

Apply KVL to the given circuit at t = 0+, we get

Vosin�t = R i1+ (1/C) �i1 dt (1)

Vosin�t = R i2+ Ldi2/dt (2)

Differentiate equation (1) with respect to t, we get

� Vo cos�t = Rdi1/dt+ i1/C

At t = 0+,

� Vo cos�t (0+) = Rdi1(0+)/ dt+ i1(0+) /C

di1(0+)/ dt = [� Vo cos�t (0+)] / R - + i1(0+) /RC

di1(0+)/ dt = (Vo / R){[� cos�t (0+)] – (sin�t /RC)}

From equation (2)

Vosin�t /R = R i2 + L di2/dt

At t= 0+,

L di2(0+) /dt = Vosin�t(0+) - R i2(0+)

Therefore di2(0+) /dt = Vosin�t(0+) /L

www.bookspar.com | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS | FORUMS

www.bookspar.com | VTU NOTES | QUESTION PAPERS