neural networks eric postma ikat universiteit maastricht

91
Neural networks Neural networks Eric Postma Eric Postma IKAT IKAT Universiteit Maastricht Universiteit Maastricht

Upload: clayton-oakman

Post on 31-Mar-2015

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Neural networks Eric Postma IKAT Universiteit Maastricht

Neural networksNeural networks

Eric PostmaEric Postma

IKATIKAT

Universiteit MaastrichtUniversiteit Maastricht

Page 2: Neural networks Eric Postma IKAT Universiteit Maastricht

OverviewOverview

Introduction: The biology of neural networks• the biological computer

• brain-inspired models

• basic notions

Interactive neural-network demonstrations• Perceptron

• Multilayer perceptron

• Kohonen’s self-organising feature map

• Examples of applications

Page 3: Neural networks Eric Postma IKAT Universiteit Maastricht

A typical AI agentA typical AI agent

Page 4: Neural networks Eric Postma IKAT Universiteit Maastricht

Two types of learningTwo types of learning

• Supervised learningSupervised learning– curve fitting, surface fitting, ...curve fitting, surface fitting, ...

• Unsupervised learningUnsupervised learning– clustering, visualisation...clustering, visualisation...

Page 5: Neural networks Eric Postma IKAT Universiteit Maastricht

An input-output functionAn input-output function

Page 6: Neural networks Eric Postma IKAT Universiteit Maastricht

Fitting a surface to four pointsFitting a surface to four points

Page 7: Neural networks Eric Postma IKAT Universiteit Maastricht

(Artificial) neural networks(Artificial) neural networks

The digital computer The digital computer versusversus

the neural computerthe neural computer

Page 8: Neural networks Eric Postma IKAT Universiteit Maastricht

The Von Neumann architectureThe Von Neumann architecture

Page 9: Neural networks Eric Postma IKAT Universiteit Maastricht

The biological architectureThe biological architecture

Page 10: Neural networks Eric Postma IKAT Universiteit Maastricht

Digital versus biological computersDigital versus biological computers

5 distinguishing properties5 distinguishing properties• speedspeed• robustness robustness • flexibilityflexibility• adaptivityadaptivity• context-sensitivitycontext-sensitivity

Page 11: Neural networks Eric Postma IKAT Universiteit Maastricht

Speed: Speed: The “hundred time steps” argumentThe “hundred time steps” argument

The critical resource that is most obvious is The critical resource that is most obvious is time. Neurons whose basic computational time. Neurons whose basic computational speed is a few milliseconds must be made to speed is a few milliseconds must be made to account for complex behaviors which are account for complex behaviors which are carried out in a few hudred milliseconds carried out in a few hudred milliseconds (Posner, 1978). This means that (Posner, 1978). This means that entire complex entire complex behaviors are carried out in less than a hundred behaviors are carried out in less than a hundred time steps.time steps.

Feldman and Ballard (1982)Feldman and Ballard (1982)

Page 12: Neural networks Eric Postma IKAT Universiteit Maastricht

Graceful DegradationGraceful Degradation

damage

performance

Page 13: Neural networks Eric Postma IKAT Universiteit Maastricht

Flexibility: the Flexibility: the NeckerNecker cube cube

Page 14: Neural networks Eric Postma IKAT Universiteit Maastricht

vision = constraint satisfactionvision = constraint satisfaction

Page 15: Neural networks Eric Postma IKAT Universiteit Maastricht

AdaptivitiyAdaptivitiy

processing implies learningprocessing implies learning

in biological computers in biological computers

versus versus

processing does not imply learningprocessing does not imply learning

in digital computersin digital computers

Page 16: Neural networks Eric Postma IKAT Universiteit Maastricht

Context-sensitivity: patternsContext-sensitivity: patterns

emergent propertiesemergent properties

Page 17: Neural networks Eric Postma IKAT Universiteit Maastricht

Robustness and context-sensitivityRobustness and context-sensitivitycoping with noisecoping with noise

Page 18: Neural networks Eric Postma IKAT Universiteit Maastricht

The neural computerThe neural computer

• Is it possible to develop a model after the Is it possible to develop a model after the natural example?natural example?

• Brain-inspired models:Brain-inspired models:– models based on a restricted set of structural en models based on a restricted set of structural en

functional properties of the (human) brainfunctional properties of the (human) brain

Page 19: Neural networks Eric Postma IKAT Universiteit Maastricht

The Neural Computer (structure)The Neural Computer (structure)

Page 20: Neural networks Eric Postma IKAT Universiteit Maastricht

Neurons, Neurons, the building blocks of the brainthe building blocks of the brain

Page 21: Neural networks Eric Postma IKAT Universiteit Maastricht

Neural activityNeural activity

in

out

Page 22: Neural networks Eric Postma IKAT Universiteit Maastricht

Synapses,Synapses,the basis of learning and memory the basis of learning and memory

Page 23: Neural networks Eric Postma IKAT Universiteit Maastricht

Learning:Learning: Hebb Hebb’s rule’s ruleneuron 1 synapse neuron 2

Page 24: Neural networks Eric Postma IKAT Universiteit Maastricht

ConnectivityConnectivityAn example:An example:The visual system is a The visual system is a feedforward hierarchy of feedforward hierarchy of neural modules neural modules

Every module is (to a Every module is (to a certain extent) certain extent) responsible for a certain responsible for a certain functionfunction

Page 25: Neural networks Eric Postma IKAT Universiteit Maastricht

(Artificial) (Artificial) Neural NetworksNeural Networks

• NeuronsNeurons– activityactivity– nonlinear input-output functionnonlinear input-output function

• Connections Connections – weightweight

• LearningLearning– supervisedsupervised– unsupervisedunsupervised

Page 26: Neural networks Eric Postma IKAT Universiteit Maastricht

Artificial NeuronsArtificial Neurons

• input (vectors)input (vectors)• summation (excitation)summation (excitation)• output (activation)output (activation)

a = f(e)e

i1

i2

i3

Page 27: Neural networks Eric Postma IKAT Universiteit Maastricht

Input-output functionInput-output function

• nonlinear function:nonlinear function:

e

f(e)

f(x) = 1 + e -x/a

1

a 0

a

Page 28: Neural networks Eric Postma IKAT Universiteit Maastricht

Artificial Connections Artificial Connections (Synapses)(Synapses)

• wwABAB

– The weight of the connection from neuron The weight of the connection from neuron AA to to neuron neuron BB

A BwAB

Page 29: Neural networks Eric Postma IKAT Universiteit Maastricht

The PerceptronThe Perceptron

Page 30: Neural networks Eric Postma IKAT Universiteit Maastricht

Learning in the PerceptronLearning in the Perceptron• Delta learning ruleDelta learning rule

– the difference between the desired output the difference between the desired output ttand the actual output and the actual output oo, , given input given input xx

• Global error E Global error E – is a function of the differences between the is a function of the differences between the

desired and actual outputsdesired and actual outputs

Page 31: Neural networks Eric Postma IKAT Universiteit Maastricht

Gradient DescentGradient Descent

Page 32: Neural networks Eric Postma IKAT Universiteit Maastricht

Linear decision boundariesLinear decision boundaries

Page 33: Neural networks Eric Postma IKAT Universiteit Maastricht

The history of the PerceptronThe history of the Perceptron

• Rosenblatt (1959)Rosenblatt (1959)

• Minsky & Papert (1961)Minsky & Papert (1961)

• Rumelhart & McClelland (1986)Rumelhart & McClelland (1986)

Page 34: Neural networks Eric Postma IKAT Universiteit Maastricht

The multilayer perceptronThe multilayer perceptron

input hidden output

Page 35: Neural networks Eric Postma IKAT Universiteit Maastricht

Training the MLPTraining the MLP

• supervised learningsupervised learning– each training pattern: input + desired output each training pattern: input + desired output – in each in each epochepoch: present all patterns : present all patterns – at each presentation: adapt weightsat each presentation: adapt weights– after many epochs convergence to a local minimumafter many epochs convergence to a local minimum

Page 36: Neural networks Eric Postma IKAT Universiteit Maastricht

phoneme recognition with a MLPphoneme recognition with a MLP

input: frequencies

Output:pronunciation

Page 37: Neural networks Eric Postma IKAT Universiteit Maastricht

Non-linear decision boundariesNon-linear decision boundaries

Page 38: Neural networks Eric Postma IKAT Universiteit Maastricht

Compression with an MLPCompression with an MLPthe the autoencoderautoencoder

Page 39: Neural networks Eric Postma IKAT Universiteit Maastricht

hidden representationhidden representation

Page 40: Neural networks Eric Postma IKAT Universiteit Maastricht

Learning in the MLPLearning in the MLP

Page 41: Neural networks Eric Postma IKAT Universiteit Maastricht

Preventing OverfittingPreventing Overfitting

GENERALISATION GENERALISATION = performance on test set= performance on test set

• Early stoppingEarly stopping• Training, Test, and Validation setTraining, Test, and Validation set• kk-fold cross validation-fold cross validation

– leaving-one-out procedureleaving-one-out procedure

Page 42: Neural networks Eric Postma IKAT Universiteit Maastricht

Image Recognition with the MLPImage Recognition with the MLP

Page 44: Neural networks Eric Postma IKAT Universiteit Maastricht

Hidden RepresentationsHidden Representations

Page 45: Neural networks Eric Postma IKAT Universiteit Maastricht

Other ApplicationsOther Applications

• PracticalPractical– OCROCR– financial time seriesfinancial time series– fraud detectionfraud detection– process controlprocess control– marketingmarketing– speech recognitionspeech recognition

• TheoreticalTheoretical– cognitive modelingcognitive modeling– biological modelingbiological modeling

Page 46: Neural networks Eric Postma IKAT Universiteit Maastricht

Some mathematics…Some mathematics…

Page 47: Neural networks Eric Postma IKAT Universiteit Maastricht

PerceptronPerceptron

Page 48: Neural networks Eric Postma IKAT Universiteit Maastricht

Derivation of the delta learning ruleDerivation of the delta learning rule

Target output

Actual output

h = i

Page 50: Neural networks Eric Postma IKAT Universiteit Maastricht

Sigmoid functionSigmoid function

• May also be theMay also be the tanhtanh functionfunction – (<-1,+1> (<-1,+1> instead of instead of <0,1>)<0,1>)

• DerivativeDerivative f’(x) = f(x) [1 – f(x)] f’(x) = f(x) [1 – f(x)]

Page 51: Neural networks Eric Postma IKAT Universiteit Maastricht

Derivation generalized delta ruleDerivation generalized delta rule

Page 52: Neural networks Eric Postma IKAT Universiteit Maastricht

Error funError functionction (LMS) (LMS)

Page 53: Neural networks Eric Postma IKAT Universiteit Maastricht

AdaptationAdaptation hidden-output hidden-output weightsweights

Page 54: Neural networks Eric Postma IKAT Universiteit Maastricht

AAdaptationdaptation input-hidden input-hidden weightsweights

Page 55: Neural networks Eric Postma IKAT Universiteit Maastricht

Forward Forward andand Backward Propagation Backward Propagation

Page 56: Neural networks Eric Postma IKAT Universiteit Maastricht

Decision boundaries of PerceptronsDecision boundaries of Perceptrons

Straight lines (surfaces), linear separable

Page 57: Neural networks Eric Postma IKAT Universiteit Maastricht

Decision boundaries of MLPsDecision boundaries of MLPs

Convex areas (open or closed)

Page 58: Neural networks Eric Postma IKAT Universiteit Maastricht

Decision boundaries of MLPs Decision boundaries of MLPs

Combinations of convex areas

Page 59: Neural networks Eric Postma IKAT Universiteit Maastricht

Learning and representing Learning and representing similaritysimilarity

Page 60: Neural networks Eric Postma IKAT Universiteit Maastricht

Alternative conception of neuronsAlternative conception of neurons

• Neurons do not take the weighted sum of their Neurons do not take the weighted sum of their inputs (as in the perceptron), but measure the inputs (as in the perceptron), but measure the similarity of the weight vector to the input similarity of the weight vector to the input vectorvector

• The activation of the neuron is a measure of The activation of the neuron is a measure of similarity. The more similar the weight is to the similarity. The more similar the weight is to the input, the higher the activationinput, the higher the activation

• Neurons represent “prototypes”Neurons represent “prototypes”

Page 61: Neural networks Eric Postma IKAT Universiteit Maastricht

Course CodingCourse Coding

Page 62: Neural networks Eric Postma IKAT Universiteit Maastricht

22nd ordernd order isomor isomorphismphism

Page 63: Neural networks Eric Postma IKAT Universiteit Maastricht

Prototypes forPrototypes for preprocessing preprocessing

Page 64: Neural networks Eric Postma IKAT Universiteit Maastricht

Kohonen’s SOFMKohonen’s SOFM(Self Organizing Feature Map)(Self Organizing Feature Map)

• Unsupervised learningUnsupervised learning• Competitive learningCompetitive learning

output

input (n-dimensional)

winner

Page 65: Neural networks Eric Postma IKAT Universiteit Maastricht

Competitive learningCompetitive learning

• Determine the winner (the neuron of which Determine the winner (the neuron of which the weight vector has the smallest distance the weight vector has the smallest distance to the input vector)to the input vector)

• Move the weight vector Move the weight vector ww of the winning of the winning neuron towards the input neuron towards the input ii

Before learning

i

w

After learning

i w

Page 66: Neural networks Eric Postma IKAT Universiteit Maastricht

Kohonen’s ideaKohonen’s idea

• Impose a topological order onto the Impose a topological order onto the competitive neurons (e.g., rectangular map)competitive neurons (e.g., rectangular map)

• Let neighbours of the winner share the Let neighbours of the winner share the “prize” (The “postcode lottery” principle.)“prize” (The “postcode lottery” principle.)

• After learning, neurons with similar weights After learning, neurons with similar weights tend to cluster on the maptend to cluster on the map

Page 67: Neural networks Eric Postma IKAT Universiteit Maastricht

Topological orderTopological order

neighbourhoodsneighbourhoods• SquareSquare

– winner (red)winner (red)– Nearest neighboursNearest neighbours

• HexagonalHexagonal– Winner (red)Winner (red)– Nearest neighboursNearest neighbours

Page 68: Neural networks Eric Postma IKAT Universiteit Maastricht

A simple exampleA simple example

• A topological map of 2 x 3 neurons A topological map of 2 x 3 neurons and two inputsand two inputs

2D input

input

weights

visualisation

Page 69: Neural networks Eric Postma IKAT Universiteit Maastricht

Weights before trainingWeights before training

Page 70: Neural networks Eric Postma IKAT Universiteit Maastricht

Input patterns Input patterns (note the 2D distribution)(note the 2D distribution)

Page 71: Neural networks Eric Postma IKAT Universiteit Maastricht

Weights after trainingWeights after training

Page 72: Neural networks Eric Postma IKAT Universiteit Maastricht

Another exampleAnother example

• Input: uniformly randomly distributed pointsInput: uniformly randomly distributed points

• Output: Map of 20Output: Map of 2022 neurons neurons

• TrainingTraining– Starting with a large learning rate and Starting with a large learning rate and

neighbourhood size, both are gradually decreased neighbourhood size, both are gradually decreased to facilitate convergenceto facilitate convergence

Page 73: Neural networks Eric Postma IKAT Universiteit Maastricht
Page 74: Neural networks Eric Postma IKAT Universiteit Maastricht

Dimension reductionDimension reduction

Page 75: Neural networks Eric Postma IKAT Universiteit Maastricht

Adaptive resolutionAdaptive resolution

Page 76: Neural networks Eric Postma IKAT Universiteit Maastricht

Application of SOFMApplication of SOFM

Examples (input) SOFM after training (output)

Page 77: Neural networks Eric Postma IKAT Universiteit Maastricht

Visual features (biologically plausible)Visual features (biologically plausible)

Page 78: Neural networks Eric Postma IKAT Universiteit Maastricht

• Principal Components Analysis (PCA)Principal Components Analysis (PCA)

pca1pca2

pca1

pca2

Projections of data

Relation with statistical methods 1Relation with statistical methods 1

Page 79: Neural networks Eric Postma IKAT Universiteit Maastricht

Relation with statistical methods 2Relation with statistical methods 2• Multi-Dimensional Scaling (MDS)Multi-Dimensional Scaling (MDS)• Sammon MappingSammon Mapping

Distances in high-dimensional space

Page 80: Neural networks Eric Postma IKAT Universiteit Maastricht

Image MiningImage Miningthe right featurethe right feature

Page 81: Neural networks Eric Postma IKAT Universiteit Maastricht

Fractal dimension in artFractal dimension in art

Jackson Pollock (Jack the Dripper)

Page 82: Neural networks Eric Postma IKAT Universiteit Maastricht

Taylor, Micolich, and Jonas (1999). Fractal Analysis of Pollock’s drip Taylor, Micolich, and Jonas (1999). Fractal Analysis of Pollock’s drip paintings. paintings. NatureNature, 399, 422. (3 june)., 399, 422. (3 june).

Creation date

Fra

cta

l d

imen

sio

n

} Range for natural images

Page 83: Neural networks Eric Postma IKAT Universiteit Maastricht

Our Van Gogh researchOur Van Gogh research

Two paintersTwo painters

• Vincent Van GoghVincent Van Gogh paints Van Gogh paints Van Gogh

• Claude-Emile SchuffeneckerClaude-Emile Schuffenecker paints Van Gogh paints Van Gogh

Page 84: Neural networks Eric Postma IKAT Universiteit Maastricht

SunflowersSunflowers• Is it made byIs it made by

– Van Gogh?Van Gogh?

– Schuffenecker?Schuffenecker?

Page 85: Neural networks Eric Postma IKAT Universiteit Maastricht

ApproachApproach

• Select appropriate features (skipped here, but Select appropriate features (skipped here, but very important!)very important!)

• Apply neural networksApply neural networks

Page 86: Neural networks Eric Postma IKAT Universiteit Maastricht

van Goghvan Gogh Schuffenecker Schuffenecker

Page 87: Neural networks Eric Postma IKAT Universiteit Maastricht

Training DataTraining Data

Van Gogh (5000 textures)Van Gogh (5000 textures) SchuffeneckerSchuffenecker (5000 textures)(5000 textures)

Page 88: Neural networks Eric Postma IKAT Universiteit Maastricht

ResultsResults

• Generalisation performanceGeneralisation performance

• 96% correct classification on untrained data96% correct classification on untrained data

Page 89: Neural networks Eric Postma IKAT Universiteit Maastricht

Resultats, cont.Resultats, cont.

• Trained art-expert Trained art-expert network applied to network applied to Yasuda sunflowersYasuda sunflowers

• 89% of the textures is 89% of the textures is geclassificeerd as a geclassificeerd as a genuine Van Goghgenuine Van Gogh

Page 90: Neural networks Eric Postma IKAT Universiteit Maastricht

A major caveat…A major caveat…

• Not only the painters are Not only the painters are different…different…

• ……but also the materialbut also the material

and maybe many other things…and maybe many other things…