neutron stars. gradual compression of a stellar iron core trans. [g cm -3 ] compositiondegen....

17
Neutron Stars

Upload: karson-huckstep

Post on 15-Dec-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

Neutron Stars

Page 2: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

Gradual compression of a stellar iron coretrans.

[g cm-3]

Composition Degen. pressure

Remarks

Iron nuclei; nonrel. free e- nonrel. e-

~ 106 Electrons become relativ. pFe ~ mec

Iron nuclei; relativ. free e- relativ. e-

~ 109 neutronization Fe ~ (mn – mp - me) c2

p + e- → n + e

Neutron-rich nuclei (6228Ni, 64

28Ni, 6628Ni); rel.

free e-relativ. e-

~ 4x1011 neutron drip n become degen. and stable outside of nuclei

Neutron-rich nuclei; free n; free rel. e- relativ. e-

~4x1012 Neutron degen. pressure dominates

Neutron-rich nuclei; superfluid free n;

rel. free e-

neutron n form bosonic pairs → superfluidity

2x1014 Nuclei dissolve

~ at. nucl. Superfluid free n; superconducting free p; rel. free e-

neutron p form bosonic pairs → superfl. & supercond.

4x1014 pion production

free n, p, e, other elem. particles (, …) neutron

Page 3: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

Radial Structure of a Neutron Star- Heavy Nuclei (56Fe)

- Heavy Nuclei (118Kr); free neutrons; relativistic, degenerate e-

- Superfluid neutrons

Page 4: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

Properties of Neutron Stars

Typical size: R ~ 10 km

Mass: M ~ 1.4 – 3 Msun

Density: ~ 4x1014 g/cm3

→ 1 teaspoon full of NS matter has a mass of ~ 2 billion tons!!!

Rotation periods: ~ a few ms – a few s

Magnetic fields: B ~ 108 – 1015 G

(Atoll sources; ms pulsars)

(magnetars)

Page 5: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

Neutron Star Cooling

Tc ~ 1011 K

Tc ~ 109 K

~ 1 d URCA process:

n → p + e- + e

p + e- → n + e

(non-degenerate n, p)

Tc ~ 108 K

~ 1,000 yr neutrino cooling

Tc ~ 108 K; Teff ~ 106 K

for ~ 10,000 yr

Lph ~ 7x1032 erg/s

max ~ 30 Å (soft X-rays)

Page 6: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

The Lighthouse Model of Pulsars

A Pulsar’s magnetic field has a dipole structure, just like Earth.

Radiation is emitted mostly along the magnetic poles.

Rapid rotation along axis not aligned with magnetic field axis

→ Light house model of pulsars

Pulses are not perfectly regular

→ gradual build-up of average pulse profiles

Page 7: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

Pulsar Emission Models:Polar Cap model

Particle acceleration along magnetic field lines

Synchrotron emission

Curvature radiation

Pair production

Electromagnetic cascades

Page 8: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

Light Cylinder

Pulsar Emission Models:Outer Gap model

Electrons are bound to magnetic fields co-rotating with the pulsar

At a radial distance r = c/co-rotation at the speed of light

→ “light cylinder”

→ Particles ripped off magnetic fields

Synchrotron emission

Curvature radiation

Page 9: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

Pulsar periods and derivatives

Associated with supernova remnants

Mostly in binary systems

Page 10: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

Pulsar periods

Over time, pulsars lose energy and

angular momentum

=> Pulsar rotation is gradually

slowing down.

dP/dt ~ 10-15

Pulsar Glitches:

P/P ~ 10-7 – 10-8

Page 11: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

Energy Loss of Pulsars

From the gradual spin-down of pulsars:

dE/dt = (½ I 2) = I = - (1/6) ┴2 4 r4 c-3 d

dt

┴ ~ B0 r sin

One can estimate the magnetic field of a pulsar as

B0 ≈ 3 x 1019 √PP G

Page 12: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel
Page 13: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel
Page 14: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

Images of Pulsars and other Neutron Stars

The vela Pulsar moving through interstellar space

The Crab nebula and

pulsar

Page 15: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

The Crab Pulsar

Remnant of a supernova observed in A.D. 1054

Pulsar wind + jets

Page 16: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

The Crab Pulsar

Visual image X-ray image

Page 17: Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel

Dispersion of Pulsar Signals

t = (4e2/mec13) DM

DM = ∫ ne(s) ds0

d

DM = Dispersion Measure