new generation aircraft flexible pavement design challenges

130
NEW GENERATION AIRCRAFT FLEXIBLE PAVEMENT DESIGN CHALLENGES M. Thompson U of IL @ Urbana-Champaign

Upload: others

Post on 09-Feb-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: new generation aircraft flexible pavement design challenges

NEW GENERATION AIRCRAFT

FLEXIBLE PAVEMENT DESIGN CHALLENGES

M. ThompsonU of IL @ Urbana-Champaign

Page 2: new generation aircraft flexible pavement design challenges

A380A380--800 (2006)800 (2006)--Gross Load 1.23 million lbsGross Load 1.23 million lbs

BOEINGBOEING--777 (1995)777 (1995)--Gross Load 632,000 lbsGross Load 632,000 lbs

NEW GENERATION AIRCRAFTNEW GENERATION AIRCRAFT

Page 3: new generation aircraft flexible pavement design challenges

20051.1B-747-400

21857.9B-777-300ER*

21555.8B-767-400

22553.4B-747-400ER

19762A-380*

22865.3A-340

PRESSURE(psi)

WHEEL LOAD(KIPS)

AIRCRAFT

* DUAL-TRIDEM

Page 4: new generation aircraft flexible pavement design challenges
Page 5: new generation aircraft flexible pavement design challenges
Page 6: new generation aircraft flexible pavement design challenges
Page 7: new generation aircraft flexible pavement design challenges
Page 8: new generation aircraft flexible pavement design challenges
Page 9: new generation aircraft flexible pavement design challenges
Page 10: new generation aircraft flexible pavement design challenges
Page 11: new generation aircraft flexible pavement design challenges

787-8 Landing Gear Footprint

Preliminary Data

32 FT 2 IN(9.8 m) TYP

38 FT 1 IN (11.6 M)

74 FT 9 IN (22.8 M)

57.5 IN (1.5 M)

51 IN (1.3 M)

16KG/CM2TIRE PRESSURE221PSIMAIN GEAR

50X20.0R22/34PRINMAIN GEAR TIRE SIZE

KG/CM2TIRE PRESSUREPSINOSE GEAR

40x16.0R16/26PRINNOSE GEAR TIRE SIZE

216,817KILOGRAMSTAXI WEIGHT478,000POUNDSMAX DESIGN787-8UNITSCHARACTERISTI

CS

Preliminary Data

32 FT 2 IN(9.8 m) TYP

38 FT 1 IN (11.6 M)

74 FT 9 IN (22.8 M)

57.5 IN (1.5 M)

51 IN (1.3 M)

MTOW: 482 kips

MAIN GEAR TIRE LOAD: 55.5 kips

MAIN GEAR TIRES: 221 psi

Page 12: new generation aircraft flexible pavement design challenges

CBR-BASED DESIGN(COE / FAA AC No. 150/5320-6D)

BASED ON ESWL

Is ESWL Adequate for

Dual Tandem & Dual-Tridem ???

Page 13: new generation aircraft flexible pavement design challenges

Mechanistic-Based Pavement Design Concepts

for NEW GENEREATION AIRCRAFT

Page 14: new generation aircraft flexible pavement design challenges

Mechanistic-EmpiricalApproach

• Combines the practicality of empirical methods with the technical soundness of mechanistic solutions.

• Uses mechanistic analysis, to determine the pavement response to imposed loads…then applies “empirical” formulations (i.e. “transfer functions”) to determine the development of distress due to the load-induced pavement response.

Page 15: new generation aircraft flexible pavement design challenges

DESIRABLE M-E DESIGN FEATURES

“Technically Sound”“Technically Sound”“Understandable”“Understandable”“Minimum Inputs”“Minimum Inputs”

“User Friendly”“User Friendly”

M-E IMPLEMENTATION CONCERNS

Airport Agency ResourcesAirport Agency ResourcesInput Data Input Data

Transfer FunctionsTransfer FunctionsCalibration DataCalibration Data

Page 16: new generation aircraft flexible pavement design challenges

INPUTS• Materials Characterization

– Pavement Materials– Subgrade Soils

• Geometric Layout– Layer thicknesses

• Traffic– Load Levels– Loading Configurations– Number of repetitions

• Environmental– Temperature fluctuations

(daily, monthly)– Moisture conditions

STRUCTURAL MODEL• Linear or Non-linear Multilayered

Elastic models.

TRANSFER FUNCTIONS (FT)

FTCritical

Response

Pavement Distress

(i.e. Damage)

TRANSFER FUNCTIONS (FT)

FTCritical

Response

Pavement Distress

(i.e. Damage)

FINALDESIGN

DESIGNRELIABILITY

OBTAIN CRITICAL RESPONSES• Subgrade Deviator Stress (σD).• Top Subgrade Vertical Strain (εS).• Horizontal Strain (εAC) at the bottom of the

AC layer.

DESIGN ITERATIONS

And/Or

PAVEMENT PERFORMANCE• Cumulative development of distress

STA

RT

Mechanistic-Empirical Approach

Page 17: new generation aircraft flexible pavement design challenges

Mechanistic-Empirical Approach

AC Layer

Granular BaseLayer

Subgrade

εAC

SSR = σd / quεv

Determine theCritical Responses

εAC : AC FatigueSSR: Subgrade εp

εv : Pavement εp

Page 18: new generation aircraft flexible pavement design challenges

STRUCTURAL RESPONSES* STRESSES

* STRAINS

* DEFLECTIONS

Page 19: new generation aircraft flexible pavement design challenges

STRUCTURAL MODEL

Page 20: new generation aircraft flexible pavement design challenges

STRUCTURAL MODELSTRUCTURAL MODEL

SHOULD ACCOMMODATESHOULD ACCOMMODATE

“MATERIAL PROPERTIES”“MATERIAL PROPERTIES”

Page 21: new generation aircraft flexible pavement design challenges

Material Characterization

• Resilient Modulus• Pavement Materials:

+ Asphalt Concrete: Temperature, frequency.

+ Unbound Granular: “Stress hardening”.

• Subgrade Soils:+ Fine-grained soils: “Stress softening”

+ Granular: “Stress hardening”.

Page 22: new generation aircraft flexible pavement design challenges

Material CharacterizationAsphalt Concrete Modulus

* Temperature Dependent*Frequency Dependent

* Must consider in M-E Design!!!

Page 23: new generation aircraft flexible pavement design challenges
Page 24: new generation aircraft flexible pavement design challenges

21/*17DEC

32/*27NOV

49/1,62042OCT

59/1,00051SEPT

69/61560AUG

72/53062JULY

66/71057JUNE

58/1,04550MAY

46/1,87039APRIL

33/*28MARCH

25/*21FEB

18/*15JAN

MMPT(F)/E (ksi)

MMAT(F)MONTH

CALGARYTemperature Data

MMPT @ 3–inch depth

For: f=10Hz* > 3,000 ksi

Page 25: new generation aircraft flexible pavement design challenges

“ICM”“ICM”

NCHRP 1NCHRP 1--37A37AENHANCED INTEGRATED ENHANCED INTEGRATED

CLIMATIC MODELCLIMATIC MODEL(Dempsey & Larson)(Dempsey & Larson)

Page 26: new generation aircraft flexible pavement design challenges

HIRSCH MODEL

“Hirsch Model for Estimating the Modulus of In-Place Asphalt Mixtures”

Christensen - Pellinen - BonaquistAAPT Journal - 2003

INPUTS VMA - VFA - Asphalt “Modulus”

Page 27: new generation aircraft flexible pavement design challenges

PREDICTIVE EQUATIONS: Modified Hirsch Model

1

*3000,200,4100

1)1(

000,10*3

1001000,200,4*

⎥⎥⎥⎥

⎢⎢⎢⎢

⋅+

−−+⎥

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ ⋅+⎟

⎞⎜⎝

⎛ −=binder

binder GVFAVMA

VMA

PcVMAVFAGVMAPcE

58.0

58.0

*3650

*320

⎟⎟

⎜⎜

⎛ ⋅+

⎟⎟

⎜⎜

⎛ ⋅+

=

VMA

GVFA

VMA

GVFA

Pcbinder

binder

IG*Ibinder

VMA

VFAvol. properties

dynamic modulus

Page 28: new generation aircraft flexible pavement design challenges

HIRSCH MODEL

+ G* INPUT (TEMP / FREQ) (ASPHALT MASTER CURVE)

+ G* COMPATIBLE WITH PG GRADE

+ VFA & VMA FROM MIX DESIGN

Page 29: new generation aircraft flexible pavement design challenges

G* master curve

1

10

100

1000

10000

100000

1000000

10000000

100000000

1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04

Frequency (Hz)

G* (

Pa)

master curve4.4°C21.1°C37.8°C54.5°C

PG 58-28

Page 30: new generation aircraft flexible pavement design challenges

GRANULAR MATERIALS

Page 31: new generation aircraft flexible pavement design challenges

FROM RADA & WITCZAK

Page 32: new generation aircraft flexible pavement design challenges

From Rada & Witczak

Page 33: new generation aircraft flexible pavement design challenges

UZAN MODEL (1985)UZAN MODEL (1985)

MMR = K1 ΘK2 (σd) K3

Θ =BULK STRESSΘ = σ1 + σ2 + σ3

Page 34: new generation aircraft flexible pavement design challenges

MMR = K1 ΘK2 (σd) K3

K1 & K2 MOST IMPORTANT !!K1 & K2 MOST IMPORTANT !!

Page 35: new generation aircraft flexible pavement design challenges

ERi (ksi) = 0.307 QU (psi) + 0.9

Page 36: new generation aircraft flexible pavement design challenges

MODULUS CLASSESFINE-GRAINED SOILS

SOIL ERi (ksi) Qu (psi) CBR

STIFF 12.3 33 8MEDIUM 7.7 23 5SOFT 3.0 13 2VERY SOFT 1.0 6 1

ERi (ksi) = 0.42 Qu (psi) - 2

Page 37: new generation aircraft flexible pavement design challenges

ESTIMATING ESTIMATING EERiRi

EERi Ri (OMC) = 4.46 + 0.098 (%C) + 0.119 (PI)(OMC) = 4.46 + 0.098 (%C) + 0.119 (PI)

EERiRi ((ksiksi) @ 95% T) @ 95% T--9999C C -- %Clay%Clay

Page 38: new generation aircraft flexible pavement design challenges
Page 39: new generation aircraft flexible pavement design challenges

E – CBR RELATIONS

COE/FAA: E (psi) = 1,500 CBR

TRL/UK : E (psi) = 2,555 CBR0.64

(CBR: 2 -12)(TRL Report # 1132)

Deviator Stress = ????

Page 40: new generation aircraft flexible pavement design challenges

STRUCTURAL MODELS

• ELASTIC LAYER PROGRAMS

• FINITE ELEMENT PROGRAMS (2-D / 3-D)

Page 41: new generation aircraft flexible pavement design challenges

ELASTIC LAYER PROGRAMS

+ LINEAR ELASTIC MATERIALS

+ MODULUS CONSTANT WITHIN THE LAYER

+ NO FAILURE CRITERION

Page 42: new generation aircraft flexible pavement design challenges

Structural Models• Elastic Layered Programs (ELP)

– All materials linear elastic, homogenous, isotropic (newer versions are improved).

• 2D “Axi-symmetric” Non-linear Finite Element:– Can incorporate a wide range of material models,

more specifically “Stress dependent” models.– Results for Single Wheel Loads (in theory)

• 3D Non-Linear Finite Element:– Same as 2D but can apply Multiple Wheel Loads.

Page 43: new generation aircraft flexible pavement design challenges

Structural Models: ILLIPAVE

• Analysis for Single Wheel Load (SWL)…Uses superposition to extend results to MWL.

• “Stress dependent” material models for Coarse and Fine Grained soils.

• Mohr-Coulomb Failure criteria.• 32-bit application, run-time ~5-30 sec for

typical pavement geometry.• Up to 7000 elements can be used.• User-friendly GUI input software for Windows.

Page 44: new generation aircraft flexible pavement design challenges

ILLI-PAVE: 2D FEM

Surface

Base

Subgrade

Subbase

AxisOf

Revolution

Surface

Base

Subgrade

Subbase

AxisOf

RevolutionSurface

Base

Subbase

Subgrade

Results for Single Wheel LoadsResults for Single Wheel Loads

Page 45: new generation aircraft flexible pavement design challenges

Structural Models: 2D FE• 3D Non-linear FEMs are very inefficient even

with computing power today…

• Consider the possibility of using 2D Non-linear FEMs with superposition to extend the single wheel results to multiple wheel.

• Must validate the Principle of Superposition for“Engineering” purposes.

Page 46: new generation aircraft flexible pavement design challenges

ILLIPAVE MODEL

* “Stress dependent” material models for Granular Materials and Fine Grained soils.

*Mohr-Coulomb Failure Criteria.* Analysis for Single Wheel Load (SWL)* SUPERPOSITION to extend results to

MWL.

Page 47: new generation aircraft flexible pavement design challenges

MULTIPLE WHEEL SOLUTION

Chou & Ledbetter (1973)MWHGL TESTS @ WES

SUPERPOSITION WORKS for

FLEXIBLE PAVEMENTS !!

Page 48: new generation aircraft flexible pavement design challenges

SUPERPOSITION Studies USCOE Study 1973 (Examples…)

Section #1 Section #2

-0.05

0

0.05

0.10

0.15

0.20

0.25

0.30 4 6 1080 2

-0.02

0.02

0.04

0.06

0.08

0

4 6 1080 2Ver

tical

def

lect

ion,

10-3

inch

es

Offset, FT

Page 49: new generation aircraft flexible pavement design challenges

SUPERPOSITION Studies USCOE Study 1973 (Examples…)

Section #1 Section #2

-404 6 1080

-20

0

20

40

60

80

2-20

0

20

40

60

80

Ver

tical

Stre

ss, l

b/in

2

Offset, FT4 6 1080 2

Page 50: new generation aircraft flexible pavement design challenges

Horizontal Stress(Radial or Tangential)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Superposed Response, psi

Act

ual R

espo

nse,

psi

Rebound Response

Vertical Stress

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0Superposed Response, psi

Actu

al R

espo

nse,

psi Rebound Response

Vertical Stress

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0Superposed Response, psi

Actu

al R

espo

nse,

psi Rebound Response

Vertical Stress

0.0

10.0

20.0

30.0

40.0

50.0

0.0 10.0 20.0 30.0 40.0 50.0Superposed Response, psi

Actu

al R

espo

nse,

psi Rebound Response

Horizontal Stress(Radial or Tangential)

0.0

5.0

10.0

15.0

20.0

0.0 5.0 10.0 15.0 20.0

Superposed Response, psi

Act

ual R

espo

nse,

psi

Rebound Response

Horizontal Stress(Radial or Tangential)

0.0

5.0

10.0

15.0

20.0

0.0 5.0 10.0 15.0 20.0

Superposed Response, psiA

ctua

l Res

pons

e, p

si

Rebound Response

MFC Section HFS Section HFC Section

Equality Line

Upper/Lower Bounds(2-psi or 10%)

FAA NAPTF Study FAA NAPTF Study 2001 2001 –– UofUof ILILFAA Airport Technology Transfer Conference FAA Airport Technology Transfer Conference -- 20022002

Page 51: new generation aircraft flexible pavement design challenges

SOLUTION FOR MULTIPLE WHEELSILLI-PAVE + Superposition

ILLIILLI--PAVEPAVE++

SuperpositionSuperposition

( ) ( )( ) ( )

( )

αττ

αττ

αασστ

σσ

ασασσ

ασασσ

cos

sin

cossin

cossin

sincos

22

22

⋅=

⋅=

⋅⋅−=

=

⋅+⋅=

⋅+⋅=

rzxz

rzyz

ttrrxy

zzzz

ttrryy

ttrrxx

α

r σrr, σtt, σzz, τrz

X

Y

Page 52: new generation aircraft flexible pavement design challenges

Mechanistic-Empirical Approach

AC Layer

Granular BaseLayer

Subgrade

εAC

SSR = σd / quεv

Determine theCritical Responses

εAC : AC FatigueSSR: Subgrade εp

εv : Pavement εp

Page 53: new generation aircraft flexible pavement design challenges

CONCEPTS FOR DEVELOPING A M-E BASED ACN PROCEDURE

FOR NEW GENERATION AIRCRAFT2006 ISAP

Quebec City, Canada

Thompson & Gomez-Ramirez (U of IL)

Gervais & Roginski(Boeing)

Page 54: new generation aircraft flexible pavement design challenges

20051.1B-747-400(REF)

21857.9B-777-300ER*

21555.8B-767-400

22553.4B-747-400ER

19762A-380*

22865.3A-340

PRESSURE(psi)

WHEEL LOAD(KIPS)

AIRCRAFT

* DUAL-TRIDEM

Page 55: new generation aircraft flexible pavement design challenges

ICAO Subgrade

" Representative" CBR QU (psi) ERi (ksi)

A 15 68 21

B 10 45 15

C 6 27 9

D 3 14 5

ICAO SUBGRADESC = QU/2 PHI = 0°

Page 56: new generation aircraft flexible pavement design challenges

GRANULAR LAYERS

TGRAN = BASE + SUBBASE

MR (psi) = 5,000 (THETA)0.5

C = 0 PHI = 45°

Page 57: new generation aircraft flexible pavement design challenges

10 -507.5 - 10A (CBR-15)15-505A (CBR-15)15-607.5 -10B (CBR-1020-605B (CBR-10)20-705C (CBR-6)30-705C (CBR-6)

40-1007.5 & 10D (CBR-3)50-1005D (CBR-3)

GRANULAR(INCHES)

AC(INCHES)

ICAOSUBGRADE

PAVEMENT PARAMETERS

Page 58: new generation aircraft flexible pavement design challenges

SINGLE WHEEL RESPONSES* Surface Def. (0-72 ins)

* AC Surface Strain* AC Base Strain

* GB Dev. Stress (top/middle)* Subgrade Dev. Stress

(Top / 1&2 Radii)* Subgrade Vertical Strain

(Top / 1&2 Radii)

Page 59: new generation aircraft flexible pavement design challenges

MULTIPLE WHEEL RESPONSES(GRID: 1/4 Dual & 1/4 Axle)

* Max. Surface Def. * Max. AC Surface Strain

* Max. AC Base Strain* Max. GB Dev. Stress (top/middle)

* Max. Subgrade Dev. Stress(Top / 1&2 Radii)

* Max. Subgrade Vertical Strain(Top / 1&2 Radii)

Page 60: new generation aircraft flexible pavement design challenges

ILLIPAVE Analysis Results-1

26 -132 -1

52

-124

-126 -133

-161

-121

-180-160-140-120-100-80-60-40-20

0A340M A340B A380M A380W B747-

400ERB767-400 B777-300 B747-400

Aircraft Type

Def

lect

ion,

mils

MLG--Surface DMax

AC Surface Thickness: 10-in -- Modulus: 500-ksiGB Thickness: 40-in -- SG Eri: 5-ksi

Page 61: new generation aircraft flexible pavement design challenges

ILLIPAVE Analysis Results-1

26 -132 -1

52

-124

-126 -133

-161

-121

-180-160-140-120-100-80-60-40-20

0A340M A340B A380M A380W B747-

400ERB767-400 B777-300 B747-400

Aircraft Type

Def

lect

ion,

mils

MLG--Surface DMax

AC Surface Thickness: 10-in -- Modulus: 500-ksiGB Thickness: 40-in -- SG Eri: 5-ksi

Page 62: new generation aircraft flexible pavement design challenges

ILLIPAVE Analysis Results47

4

470

443

442

433

435

423

406

360

380

400

420

440

460

480

A340M A340B A380M A380W B747-400ER

B767-400 B777-300 B747-400

Aircraft Type

Mic

rost

rain

MLG--Max AC Surface Strain

AC Surface Thickness: 10-in -- Modulus: 500-ksiGB Thickness: 40-in -- SG Eri: 5-ksi

Page 63: new generation aircraft flexible pavement design challenges

ILLIPAVE Analysis Results7.

6

8.2

8.0

7.8

8.5

8.9 9.

0

8.2

6.5

7

7.5

8

8.5

9

9.5

A340M A340B A380M A380W B747-400ER

B767-400 B777-300 B747-400

Aircraft Type

Stre

ss, p

si

MLG--Deviator Stress @ Top of Subgrade Layer

AC Surface Thickness: 10-in -- Modulus: 500-ksiGB Thickness: 40-in -- SG Eri: 5-ksi

Page 64: new generation aircraft flexible pavement design challenges

ILLIPAVE Analysis Results0.

54

0.59

0.57

0.56

0.61

0.63 0.

64

0.59

0.480.500.520.540.560.580.600.620.640.66

A340M A340B A380M A380W B747-400ER

B767-400 B777-300 B747-400

Aircraft Type

SSR

MLG--Subgrade Stress Ratio (SSR)

AC Surface Thickness: 10-in -- Modulus: 500-ksiGB Thickness: 40-in -- SG Eri: 5-ksi

Page 65: new generation aircraft flexible pavement design challenges

ILLIPAVE Analysis Results-9

74

-111

4

-105

7

-973

-104

9 -111

5

-112

8

-998

-1150

-1100

-1050

-1000

-950

-900

-850A340M A340B A380M A380W B747-

400ERB767-400 B777-300 B747-400

Aircraft Type

Mic

rost

rain

MLG--Vertical Strain @ Top of Subgrade Layer

AC Surface Thickness: 10-in -- Modulus: 500-ksiGB Thickness: 40-in -- SG Eri: 5-ksi

Page 66: new generation aircraft flexible pavement design challenges

ILLIPAVE Analysis Results1.

03 1.09

1.25

1.02 1.04 1.

10

1.32

1.00

1.17

1.16

1.09

1.09

1.07

1.07

1.04

1.00

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A340M A340B A380M A380W B747-400ER B767-400ER B777-300ER B747-400Aircraft Type

Rat

io W

RT

B74

7-40

0

MLG--Surface DMax MLG--Max AC Surface Strain

AC Surface Thickness: 10-in -- Modulus: 500-ksiGB Thickness: 40-in -- SG Eri: 5-ksi

Page 67: new generation aircraft flexible pavement design challenges

ILLIPAVE Analysis Results0.

93 1.00

0.98

0.95 1.

03 1.08 1.10

1.00

0.98

1.12

1.06

0.98 1.

05 1.12

1.13

1.00

0

0.2

0.4

0.6

0.8

1

1.2

A340M A340B A380M A380W B747-400ER B767-400ER B777-300ER B747-400Aircraft Type

Rat

io W

RT

B74

7-40

0

MLG--Deviator Stress @ Top of Subgrade LayerMLG--Vertical Strain @ Top of Subgrade Layer

AC Surface Thickness: 10-in -- Modulus: 500-ksiGB Thickness: 40-in -- SG Eri: 5-ksi

Page 68: new generation aircraft flexible pavement design challenges

TRANSFER FUNCTIONS(RESPONSES – DISTRESS)

CRITICAL FACTORS!!!

Page 69: new generation aircraft flexible pavement design challenges

FLEXIBLE PAVEMENT DISTRESSES

• HMA FATIGUE

• RUTTING:

+ HMA (MATL. SELECTION / MIX DESIGN)

+ GRANULAR BASE/SUBBASE

+ SUBGRADE

Page 70: new generation aircraft flexible pavement design challenges

SUBGRADE TRANSFER FUNCTIONS

•SUBGRADE VERTICAL STRAIN

•SUBGRADE STRESS RATIO (SSR)(SSR= DEV STRESS / QU)

Page 71: new generation aircraft flexible pavement design challenges

VERTICAL STRAIN CRITERIA εε= L (1/N)m

0.40.2531.5*10-2TRL/1132 (85%)

0.251.8*10-295%0.252.1*10-285%0.252.8*10-250%

SHELL0.50.2231.05*10-2AIRD (INS)mLAGENCY

Page 72: new generation aircraft flexible pavement design challenges

WES / TOWNSEND & CHISOLM / 1976

Vicksburg ”BUCKSHOT CLAY”

(CH)

Page 73: new generation aircraft flexible pavement design challenges

Transfer Functions:Subgrade Rutting-

Vertical Strain Design Criteria1.5

1.0

0.90.8

0.7

0.61,000 2,000 5,000 10,000 20,000VE

RTI

CA

L C

OM

PRES

SIVE

ST

RA

IN A

T TO

PO

F SU

BG

RA

DE,

εv

10-3

ANNUAL STRAIN REPETITIONS

(20 YEAR LIFE)

EESS = 30,000 PSI= 30,000 PSI

15,00015,000

9,0009,000

3,0003,000

COE / FAA LEDFAA

Page 74: new generation aircraft flexible pavement design challenges

FAAFAA SUBGRADE STRAIN CRITERIA

(Revised)

C = (0.004 / εv )8.1 Coverages < 12,100

C = (0.002428 / εv )14.21 Coverages > 12,100

C - Coverages

εv - Subgrade Vertical Compressive Strain

Page 75: new generation aircraft flexible pavement design challenges

Transfer Functions:Subgrade Rutting-SSR

Influence of SSR on Permanent Deformation

0.00

0.02

0.04

0.06

0.08

1 201 401 601 801 1001

Load Applications

Perm

anen

t Str

ain

1.00 SSR

0.75

0.50

0.25

qu = 28 psiγd = 98 pcfw = 26 %

UNSTABLE!!!UNSTABLE!!!

STABLE BehaviorSTABLE Behavior

BejaranoBejarano & Thompson (2001)& Thompson (2001)DuPontDuPont ClayClay

Page 76: new generation aircraft flexible pavement design challenges

Transfer Functions:Subgrade Rutting-SSR

Permanent Deformation vs. SSR

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00 0.25 0.50 0.75 1.00Subgrade Stress Ratio

p afte

r N=1

000

20.0% CSSC23.0%24.5%23.0% DPC26.0%28.5%30.5%

BejaranoBejarano & Thompson (2001)& Thompson (2001)

Page 77: new generation aircraft flexible pavement design challenges

SUBGRADE RUTTING ALGORITHM

LOG εP = A + b (LOG N)

εP = ANb

Page 78: new generation aircraft flexible pavement design challenges

“Development of a Simplified M-E Design Procedure for Low-Volume Flexible Roads”

Zhao & DennisUniversity of ArkansasTRR # 1989 – Vol. 1

Page 79: new generation aircraft flexible pavement design challenges

Subgrade Stress Ratio (SSR) / A

Page 80: new generation aircraft flexible pavement design challenges

Subgrade Stress Ratio (SSR) / b

Page 81: new generation aircraft flexible pavement design challenges

Transfer Functions:Subgrade Rutting-SSR

Damage Potential… Low/Acceptable Limited High SSR… 0.5 / 0.6 0.6 to 0.75 > 0.75

SSR General GuidelinesSSR General Guidelines

Page 82: new generation aircraft flexible pavement design challenges

GRANULAR LAYER RUTTING

* COE – NOT A CRITERION* FAA / LEDFAA - NOT A CRITERION

INDIRECT ACCOMODATION: MINIMUM HMA SURFACE THICKNESS

STABILIZED BASE - > 100 KIPS

Page 83: new generation aircraft flexible pavement design challenges

GRANULAR BASE

• Minimum HMA Surface ThicknessFAA

4-5 ins. / Critical3-4 ins. / Noncritical

(Base CBR - 80)

• S. African “F”

Page 84: new generation aircraft flexible pavement design challenges

South African Mechanistic Approach

Stress Based Safety Factor FMaterial Shear Strength / Shear Stress

F = [σ3 ∗ φterm + cterm] / [σ1 - σ3]where:

φterm = [tan2(45 + φ/2) - 1]cterm = 2 * C * tan(45 + φ/2)φ - friction angle, degreesC - cohesion, psi

Page 85: new generation aircraft flexible pavement design challenges

GRANULAR BASE RATIO

FOR PHI = 45° & C = 0

F = DEV. STRESS / 4.8 * SIG 3

DECREASED “F”: MORE RUTTING

Page 86: new generation aircraft flexible pavement design challenges

HMA FATIGUE(TRADITIONAL)

Page 87: new generation aircraft flexible pavement design challenges

HMA FATIGUE CRACKING

Page 88: new generation aircraft flexible pavement design challenges

LEDFAA – HMA FATIGUE

LOG C = 2.68 – (5*LOG ε) - (2.665*LOG EHMA)

C – COVERAGES TO FAILURE

ε - HMA STRAIN @ BOTTOM OF P401 HMA SURFACE

EHMA – HMA MODULUS (200 ksi)

Heukelom & Klomp – AAPT (1964)

Page 89: new generation aircraft flexible pavement design challenges

AASHTO TP 8-94

Standard Test Method for Determination of

the Fatigue Life of Compacted HMA

Subjected to Repeated Flexural Bending

Page 90: new generation aircraft flexible pavement design challenges

FATIGUE DESIGN• Tensile Strain at Bottom of Asphalt• Tensile Strain in Flexural Beam Test

Other Configurations

Page 91: new generation aircraft flexible pavement design challenges
Page 92: new generation aircraft flexible pavement design challenges

FATIGUE TESTING

• Tensile Strain in Flexural Beam Test– Other Configurations

– 10 Hz Haversine Load, 20o C, Controlled Strain

Page 93: new generation aircraft flexible pavement design challenges

STIFFNESS CURVE

2000

3000

4000

5000

6000

7000

8000

0.0E+00 5.0E+06 1.0E+07 1.5E+07 2.0E+07 2.5E+07 3.0E+07 3.5E+07 4.0E+07

Number of Load Cycles

Stiff

ness

, mPa

Failure

FAILURE: 50% Reduction

Page 94: new generation aircraft flexible pavement design challenges

LABORATORY ALGORITHM

0.00001

0.0001

0.001

0.01

1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10

Load Repetitions

Tens

ile S

trai

n

K1 = InterceptK2 = Slope

Page 95: new generation aircraft flexible pavement design challenges

FATIGUE ALGORITHMS

Nf = K1(1/ε)K2

Nf = K1 (1/ε)K2 (1/E*)K3

Page 96: new generation aircraft flexible pavement design challenges

AC FATIGUE

LOG N

LOG

εA

CN = K1(1/εAC)K2

K2’>K2

K2’

K2K2

K1

Page 97: new generation aircraft flexible pavement design challenges

HMA FATIGUE @ UIUCCarpenter - Ghuzlan - Shen

Page 98: new generation aircraft flexible pavement design challenges

IDOT HMA FATIGUE DATA SUMMARY

84 MIXES

N = K1 (1/ ε)K2

Minimum K2: 3.5

90% K2: 4.0

Average K2: 4.5

Page 99: new generation aircraft flexible pavement design challenges

OTHER STUDIES

0

1

2

3

4

5

6

7

-16 -14 -12 -10 -8 -6 -4 -2 0

Lo g (K1)

K2

U of IllinoisMaupin Resu ltsMyr eF HWAF innLinear (U of Illinois)Linear (Maupin Resu lts)Linear (Myr e)Linear (F H WA)

Page 100: new generation aircraft flexible pavement design challenges

K – n RELATIONS

Myre / Norway NTH (1992)LOG K1 = (1.332 – K2) / 0.306

U of IL / IDOT HMAsCarpenter – et al

LOG K1 = (1.178 – K2) / 0.329

Page 101: new generation aircraft flexible pavement design challenges

0.710.490.330.23250

7.13.82.01.1150

160.660.022.48.4**

75

K24.5

k24.0

K23.5

K23.0

HMA STRAIN

*

N = K1(1/HMA STRAIN)K2

* Micro-strain **Mreps

Page 102: new generation aircraft flexible pavement design challenges

NO “UNIQUE”

THERE IS

HMA FATIGUE ALGORITHM !!!!

Page 103: new generation aircraft flexible pavement design challenges

HMA ENDURANCE LIMIT

Page 104: new generation aircraft flexible pavement design challenges

Monismith & McLean

“Technology of Thick Lift Construction: Structural Design Considerations”

1972 AAPT Proceedings

70 Micro-Strain Endurance Limit!!

Page 105: new generation aircraft flexible pavement design challenges

Michael Nunn“Long-Life Flexible Pavements”

8th ISAP ConferenceSeattle, WA - 1997

Page 106: new generation aircraft flexible pavement design challenges

M32

M32CORE

TRL

Page 107: new generation aircraft flexible pavement design challenges

Longitudinal

crack in

M1

TRL

Page 108: new generation aircraft flexible pavement design challenges

LOW STRAIN TESTING

10

100

1000

10000

1.E+00 1.E+05 1.E+10 1.E+15 1.E+20 1.E+25 1.E+30 1.E+35 1.E+40

Load Repetitions, E50

Flex

ural

Stra

in, m

icro

stra

in

70 Micro Strain Limit

21 Mixes Tested for Endurance Limit

Page 109: new generation aircraft flexible pavement design challenges

HMA FATIGUE

N (LOG)

ε AC

(LO

G)

N = K1 (1 / εAC)K2

70 µε

ENDURANCE LIMIT

PERPETUAL PAVEMENT

Page 110: new generation aircraft flexible pavement design challenges

FATIGUE ENDURANCE LIMIT

0.00001

0.0001

0.001

0.01

1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10

Load Repetitions

Tens

ile S

train

K1 = InterceptK2 = Slope

Page 111: new generation aircraft flexible pavement design challenges

FATIGUE ENDURANCE LIMIT

• Damage and Healing Concepts and Test Data Support a Strain Limit Below Which Fatigue Damage Does Not Accumulate

• Strain Limit Is Not The Same for All HMAs.

Page 112: new generation aircraft flexible pavement design challenges

FATIGUE ENDURANCE LIMITIDOT DATA

NEVER < 70 micro-strain!!!

GENERALLY: 70 –100 micro-strain

MAY BE > 100 micro-strain

Page 113: new generation aircraft flexible pavement design challenges

EFFECT OF REST PERIODS

SMALL REST PERIODS BETWEEN STRAIN REPETITIONS SIGNIFICANTLY

INCREASES HMA FATIGUE LIFE

IDOT HMA5 SECONDS: 10 X

Page 114: new generation aircraft flexible pavement design challenges

OVERLOADING

• HMA CAN SUSTAIN “SPORADIC OVERLOADS” AND RETURN TO “ENDURANCE LIMIT” PERFORMANCE

• SUBSEQUENT HMA STRAIN REPETITIONS < ENDURANCE LIMIT:

“DO NOT COUNT”

Page 115: new generation aircraft flexible pavement design challenges

NAPTF – PAVEMENT RUTTING

NAPTF TEST SECTIONS

75 FEET LONG60 FEET WIDE

Page 116: new generation aircraft flexible pavement design challenges

“As-Built” NAPTF Test Sections

AC Surface (P-401)

Granular Base(P-209)

LOW StrengthSubgrade

Granular Subbase(P-154)

5 in.

7.75 in.

36.4 in.

LFCLFC

Subgrade=94.7 in.

AC Surface (P-401)

Granular Base(P-209)

LOW StrengthSubgrade

Granular Subbase(P-154)

5 in.

7.75 in.

36.4 in.

LFCLFC

Subgrade=94.7 in.

AC Surface (P-401)

Granular Base(P-209)

MEDIUM StrengthSubgrade

Granular Subbase(P-154)

5.1 in.

7.9 in.

12.1 in.

MFCMFC

Subgrade=94.8 in.

AC Surface (P-401)

Granular Base(P-209)

MEDIUM StrengthSubgrade

Granular Subbase(P-154)

5.1 in.

7.9 in.

12.1 in.

MFCMFC

Subgrade=94.8 in.

AC Surface (P-401)

Asphalt Stab. Base(P-401)

LOW StrengthSubgrade

Granular Subbase(P-209)

5 in.

4.9 in.

29.6 in.

LFSLFS

Subgrade=104.5 in.

AC Surface (P-401)

Asphalt Stab. Base(P-401)

LOW StrengthSubgrade

Granular Subbase(P-209)

5 in.

4.9 in.

29.6 in.

LFSLFS

Subgrade=104.5 in.

AC Surface (P-401)

MEDIUM StrengthSubgrade

Granular Subbase(P-209)

5 in.

4.9 in.

8.5 in.

Asphalt Stab. Base(P-401)

Subgrade=101.6 in.

MFSMFS

AC Surface (P-401)

MEDIUM StrengthSubgrade

Granular Subbase(P-209)

5 in.

4.9 in.

8.5 in.

Asphalt Stab. Base(P-401)

Subgrade=101.6 in.

MFSMFS

Page 117: new generation aircraft flexible pavement design challenges

NAPTF Traffic Test ProgramN

30 ft.

12.8 ft.

0 ft.

-12.8 ft.

-30 ft.

B747

C/L

Wheel Load: 45,000 lbs

Tire Pressure: 188 psi

Traffic Speed: 5 mph

B777

Page 118: new generation aircraft flexible pavement design challenges

NAPTF Traffic Wander

0

-7 ft.-12.8 ft.-19 ft. 7 ft. 12.8 ft. 19 ft.

Trac

k #-

1

Trac

k #1

Trac

k #2

Trac

k #3

Trac

k #4

Trac

k #

-2

Trac

k #

-3

Trac

k #

-4

Trac

k #-

1

Trac

k #0

Trac

k #1

Trac

k #2

Trac

k #3

Trac

k #4

Trac

k #

-2

Trac

k #

-3

Trac

k #

-4

9.8 in.

B777 WANDER AREA B747 WANDER AREA

B77

7Tr

ack

#0

B74

7

66 Passes(33 East, 33 West)

σ = 30.5 in.

C/L

N

Page 119: new generation aircraft flexible pavement design challenges

NAPTF “Failure” Criteria

• “At least 1 inch surface upheaval adjacent to the traffic lane” (USCOE MWHGL tests)

• This is considered to reflect structural or shearing failure in the subgrade

• 1 inch surface upheaval may be accompanied by a 0.5-inch rut depth or rut depths in excess of 3 inches

Page 120: new generation aircraft flexible pavement design challenges
Page 121: new generation aircraft flexible pavement design challenges

High Severity Rutting

Page 122: new generation aircraft flexible pavement design challenges

Number of Passes to “Failure”

MFC 12,952* - 12,952

MFS 19,869* - 19,869

LFC 19,950 24,145 44,095*

LFS 19,939 24,749 44,688*

NAPTF Test

Section

* - "Failure" achieved

45,000-lb Wheel Load

65,000-lb Wheel Load Total

Page 123: new generation aircraft flexible pavement design challenges

Max Rut Depths at “Failure”

B777 B747 B777 B747 B777 B747

MFC 3.4 3.1 - - 3.4 3.1

MFS 3.5 1.0 - - 3.5 1.0

LFC 0.7 0.9 2.5 2.2 3.2 3.1

LFS 0.5 0.4 1.6 1.7 2.1 2.1

Total RD (in.)NAPTF Test

Section

RD under 45,000-lb Wheel Load (in.)

RD Under 65,000-lb Wheel Load (in.)

Page 124: new generation aircraft flexible pavement design challenges

0

1,000

2,000

3,000

4,000

5,000

0 2000 4000 6000 8000 10000 12000 14000Number of Load Repetitions (N)

Rut

Dep

th (m

ils)

B777-SEB747-SEB777-TSPB747-TSP

RD Vs N – MFC1

Page 125: new generation aircraft flexible pavement design challenges

0

1,000

2,000

3,000

4,000

5,000

0 10,000 20,000 30,000 40,000 50,000 60,000Number of Load Repetitions (N)

Rut

Dep

th (m

ils)

B777-SEB747-SEB777-TSPB747-TSP

RD Vs N – LFC1

Page 126: new generation aircraft flexible pavement design challenges

RD Vs N – LFS1

0

1,000

2,000

3,000

4,000

5,000

0 10,000 20,000 30,000 40,000 50,000 60,000Number of Load Repetitions (N)

Rut

Dep

th (m

ils)

B777-SEB747-SEB777-TSPB747-TSP

Page 127: new generation aircraft flexible pavement design challenges

N to Reach Specific RDLow Strength Sections

Medium Strength Sections

B777 B747 B777 B747 B777 B747 B777 B747

250 28 516 28 531 10,743 12,442 28 28

500 5,008 8,083 7,791 8,723 20,068 20,642 15,111 515

1000 21,612 21,414 21,084 22,759 22,888 26,153 21,488 21,488

LFS2Rut Depth (mils)

LFC1 LFC2 LFS1

B777 B747 B777 B747 B777 B747 B777 B747

250 28 28 28 28 - 28 28 5,295

500 299 133 133 133 - 10,529 5,373 7,513

1000 3,343 1,193 1,193 1,448 - 19,869 12,440 15,108

Rut Depth (mils)

MFC1 MFC2 MFS1 MFS2

Page 128: new generation aircraft flexible pavement design challenges

Conclusions

• Max RD at “failure” higher for conventional sections compared to stabilized sections

• More passes at higher wheel loads was required by L sections to reach “failure” compared to M sections

• N required by B777 and B747 gears to reach 1-inch RD were similar

• B777 RDs and B747 RDs do not differ significantly

Page 129: new generation aircraft flexible pavement design challenges

M-E DESIGN TOOLS ARE:

“AVAILABLE” AND

“TECHNOLOGICALLY ADEQUATE”

Page 130: new generation aircraft flexible pavement design challenges

IT IS TIME TO:

“MOVE ON”