new of continuous atmospheric o transects across the and...

36
© This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. New applications of continuous atmospheric O 2 measurements: meridional transects across the Atlantic Ocean, and improved quantification of fossil fuelderived CO 2 By PENELOPE PICKERS A thesis submitted to the School of Environmental Sciences of the University of East Anglia in partial fulfilment of the requirements for the degree of Doctor of Philosophy School of Environmental Sciences UNIVERSITY OF EAST ANGLIA 2016

Upload: others

Post on 02-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

  

©ThiscopyofthethesishasbeensuppliedonconditionthatanyonewhoconsultsitisunderstoodtorecognisethatitscopyrightrestswiththeauthorandthatuseofanyinformationderivedtherefrommustbeinaccordancewithcurrentUKCopyrightLaw.Inaddition,anyquotationorextractmustincludefullattribution.

NewapplicationsofcontinuousatmosphericO2measurements:

meridionaltransectsacrosstheAtlanticOcean,andimproved

quantificationoffossilfuel‐derivedCO2

 

By

PENELOPEPICKERS

Athesissubmittedtothe

SchoolofEnvironmentalSciencesofthe

UniversityofEastAngliainpartial

fulfilmentoftherequirementsforthe

degreeofDoctorofPhilosophy

SchoolofEnvironmentalSciences

UNIVERSITYOFEASTANGLIA

2016

 

 

 

Page 2: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

Chapter5

QuantifyingfossilfuelCO2usingAPO:anovelapproach

Page 3: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

1925.1Introduction

Anthropogenicgreenhousegasemissionsfromfossilfuelburningarethedominant

driverofcurrentclimatechange.Inordertomitigateadverseconsequencesofanthropogenic

climatechange,emissionsofanthropogenicCO2andnon‐CO2long‐livedgreenhousegases,

suchasmethane(CH4)andnitrousoxide(N2O),requiresignificantreduction,whichhasledto

widespreadnationalandinternationalregulationofsomeanthropogenicgreenhousegas

emissionsinrecentyears(WeissandPrinn,2011).Althoughonaglobalscale,annual

anthropogenicgreenhousegasemissionsarerelativelywellknown,thereissignificant

uncertaintyassociatedwithregionalandcountry‐scaleannualemissions,aswellastheintra‐

annualvariabilityofemissions(Peylinetal.,2011).

Thesourceofuncertaintyinanthropogenicgreenhousegasemissionslargelystems

fromtheso‐called‘bottom‐up’methodologiesemployed;typically,greenhousegasemissions

arecalculatedusingabook‐keepingorinventoryapproach,wherebyemissionfactorsare

appliedtoparticulareconomicactivities,whicharethenscaled‐uptoregionalandcountry‐

levelspatialscalesusingland‐useandeconomicdatabases,withuncertaintiesthatareoften

eitherstatedas‘unknown’orarequotedtounrealisticallyhighprecision(NisbetandWeiss,

2010;WeissandPrinn,2011).Suchbottom‐upmethodsarevulnerabletolargeuncertainties

andbiasesbecausetheyarebasedonemissionfactorsassociatedwiththerawmaterialsused

forvariouseconomicactivities,ratherthantheactualemissionsthataregeneratedbysuch

economicactivities,whichcanbeveryvariable,dependingontheefficiencyofindividual

processesandonthequalityofthefuel,forexample.Asstatedby(NisbetandWeiss,2010),

relyingonbottom‐upmethodologiesforquantifyingandsubsequentlymitigating

anthropogenicgreenhousegasemissionsisanalogousto“dietingwithoutweighingoneself”,or

inotherwords,relyingoncaloriecountingalone.

Accurateandprecisequantificationofanthropogenicgreenhousegasemissionsmay

benecessaryinordertofacilitatealegallybindinginternationalagreementonclimatechange,

withtrulyeffectiveemissionsreductions.Inaddition,well‐knownanthropogenicgreenhouse

gasemissionsarerequiredinordertoprovidestabilitytothecarbonemissionstrading

markets,whicharecurrentlyworthaboutUS$350billionperyearglobally(Kossoyetal.,

2015).Thereisalsoastrongneedfromthescientificcommunityforaccurateanthropogenic

greenhousegasquantification,owingtothefactthatmanygreenhousegases(suchasCO2and

CH4)haveanthropogenicandnaturalsources.Inversemodellingstudiesaimingtoquantify

naturalgreenhousegassourcesandsinksoftenassumethatanthropogenicgreenhousegas

emissionsareaccurateandprecise,whichcanleadtosignificantbiasesinnaturalgreenhouse

Page 4: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

193gasfluxes,particularlyasthespatialandtemporalresolutionofatmospherictransportmodels

increases(Gurneyetal.,2005;Peylinetal.,2011).

Usingatmosphericmeasurementsandinversemodellingtoverifyanthropogenic

greenhousegasemissions,knownasa‘top‐down’approach,canprovideanindependent

methodforverifyinganthropogenicgreenhousegasemissions.Recentimprovementsin

atmosphericgreenhousegasmeasurementtechnologies,theexpansionofmeasurement

networks,anddevelopmentsininversemodellingtechniquesnowenablecountry‐scaletop‐

downverificationofsomeanthropogenicgreenhousegasemissionsindevelopedregions,such

asNorthAmericaandEurope(e.g.Bergamaschietal.,2005;Levinetal.,2011),with

uncertaintiesthatareatleastcomparabletorealisticbottomupinventoryestimates(Nisbet

andWeiss,2010;WeissandPrinn,2011).

QuantifyingfossilfuelCO2emissionsusingatmosphericmeasurementsrequiresthe

separationofnatural(mainlybiospheric)andanthropogenic(mainlyfossilfuel)influenceson

atmosphericCO2molefractions,inordertoisolatethefossilfuelcomponentofatmospheric

CO2(ffCO2).InversemodellingcanthenbeperformedusingatmosphericffCO2data(inppm)to

verifyfossilfuelCO2emissions.Thistop‐downseparationofbiosphericandfossilfuelderived

CO2andsubsequentquantificationofffCO2isnottrivial.Thecurrentmethodologyfor

quantifyingffCO2fromatmosphericCO2measurementsistousediscretemeasurementsof

radiocarbon(14C)contentinCO2(14CO2):14Chasahalf‐lifeofabout5730years,andtherefore

fossilfuelderivedCO2containsno14C(Manningetal.,1990;Turnbulletal.,2009;Zondervan

andMeijer,1996).Measurementsof14CO2are,expensive,however,andcannotbemade

continuously;hence,most14CO2timeseriesconsistofasinglemeasurementapproximately

onceortwiceeverytwoweeks.ffCO2iscalculatedfrom14CO2measurementsasfollows(Levin

etal.,2003;Turnbulletal.,2009):

∆ ∆

∆ ∆ (Eq.5.1)

whereCO2obsdenotestheatmosphericCO2molefraction,andΔobs,ΔbgandΔffdenotethe14C

contentofCO2(inpermilunits)oftheobservations,well‐mixedatmosphericbackground,and

fossilfuels(‐1000‰,whichisthevalueforzero14Ccontent),respectively.Inadditiontothe

termsshowninEquation5.1,asmallcorrectionisalsoappliedtoffCO2whichaccountsfor

otherminorsourcesof14C,includingheterotrophicrespirationandnuclearindustrysources

(Turnbulletal.,2009).

Page 5: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

194 InordertoobtainhighertemporalresolutionffCO2quantification(i.e.dailyorhourly,

asopposedtoweeklyorfortnightly),continuousatmosphericmeasurementsofcarbon

monoxide(CO)canbeusedaccordingtoEquation5.2,becauseCOisco‐emittedwithCO2

whenfossilfuelsarecombusted(Gamnitzeretal.,2006;Turnbulletal.,2006;vanderLaanet

al.,2010).

:

(Eq.5.2)

whereCOobsandCObgaretheCOmolefractionsoftheobservationsandofthewell‐mixed

atmosphericbackgroundrespectively,andRCO:CO2istheCO:CO2combustionratioforfossilfuel

emissions,whichvariesbothtemporallyandspatiallyaccordingtochangesinfueltype.

AlthoughitisalotcheapertomakecontinuousCOmeasurementsthandiscrete14CO2

measurements,itisnotpossibletouseCOaloneasareliabletracerforffCO2,owingtothelarge

uncertaintyandspatialandtemporalvariabilityassociatedwithRCO:CO2(Gamnitzeretal.,2006;

Vogeletal.,2010).Inaddition,thereislargeuncertaintyassociatedwithnon‐fossilfuelrelated

COsources(e.g.biomassburning,soils,andatmosphericmethaneoxidation)andsinks(e.g.

fromhydroxylradicalreactions,anduptakebysoils)(Gamnitzeretal.,2006).ffCO2from

continuousCOmeasurementscan,however,becalibratedbyco‐located14CO2measurements,

whichcanbeusedtodetermineaccurateRCO:CO2values(Vogeletal.,2010).Therefore,

continuousCOmeasurementscombinedwithdiscrete14CO2measurementscanbeusedto

quantifyffCO2withhightemporalresolution,butthismethodstillassumesthatanynatural

influencesonCOarenegligible.

Thereareseveralkeylimitationstousing14CO2andCOmeasurementsinorderto

quantifyffCO2.Firstly,RCO:CO2ishighlyvariable,andisknowntovaryondiurnalandsub‐

diurnaltimescales.Thus,using14CO2tocalibrateffCO2fromCOmeasurementsonceperweek

oronceperfortnightwillonlyguaranteeaccurateffCO2atthetimeofthe14CO2measurements.

Secondly,itisnotpossibletodistinguishbetweenfossilfuelsourcesandbioenergysources

usingatmosphericCOdata;hence,calculatingffCO2usingCOmayresultinerroneously

allocatingbioenergy‐derivedCO2asffCO2.Althoughbioenergycurrentlyaccountsforasmall

proportionoftotalanthropogenicfuelsources(approximately10%ofglobalprimaryenergy

supply;IEA,2012b),itispredictedtobecomemuchmoreprevalentinthecomingdecades,

whichmayrenderCOmeasurementsredundantasamethodforquantifyingffCO2inthe

future.Thirdly,itisnotpossibletoaccuratelyquantifyffCO2from14CO2measurementsinsome

Page 6: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

195regions,owingtointerferencefromcertainnuclearpowerplant14Cemissions(Gravenand

Gruber,2011;Vogeletal.,2013).ThisisparticularlyaproblemintheUK,wheretheprevailing

south‐westerlywindsoftenpreventaccurateffCO2from14CO2quantification,owingtothe

abundanceofgas‐coolednuclearpowerplantsinsouthernEngland.Thus,intheUK,theonly

top‐downmethodforCO2emissionsverificationthatiscurrentlyavailableinvolves

performingatmosphericinversionsusingwinter‐timeonlytotalCO2atmospheric

measurements(AlistairManning,personalcommunication,2015),whichareverylikelytobe

significantlyinfluencedbywinter‐timebiosphericrespiration.ForParis,thecurrentapproach

istoquantifyffCO2fromdown‐windgradientsinCO2data,incombinationwithbiogenicCO2

fluxesfromlandsurfacemodels,althoughthismethodresultsinverydrasticdataflaggingand

posteriorfluxestimatesthatareheavilyreliantonthepriorinventoryestimates(Breonetal.,

2015;Stauferetal.,2016).

Inadditiontothenuclearpowerplantemissionsissue,(Graven,2015)suggeststhat

thesensitivityof14CO2tofossilfuelderivedCO2iscurrentlydecreasing,owingtotheglobal

increaseinanthropogenicCO2intheatmosphere,andthat14CO2measurementprecisionwill

needtoimprovebyafactorof2overthenextfewdecades,inordertomaintaintoday’s

detectioncapabilityof14CO2toffCO2.ThedevelopmentofanewtracertoquantifyffCO2,which

ismorepreciseandmoreaccuratethanCO,andwhichcanalsobeusedindependentlyfrom

14CO2measurements,wouldthereforebeahighlyvaluedtoolforatmosphericverificationof

fossilfuelCO2inventoryestimates;suchatoolwouldbeextremelyusefultoday,inregionsthat

areseverelyaffectedbygas‐coolednuclearpowerplant14Cinfluences,andalsointhecoming

decades,asthesensitivityof14CO2measurementstoffCO2declines.

5.1.1Outlineofthischapter

InSection5.2,IpresentatmosphericO2,CO2andAPOdatameasuredfromtheroofof

theEnvironmentalSciencesbuildingattheUniversityofEastAnglia(UEA),duringthesummer

of2014.Ithencomparetheshorttermvariabilityinthesedatatotwoothermeasurement

sitesinNorfolk,UK:theTacolnestontalltower(TAC)andWeybourneAtmospheric

Observatory(WAO).InSection5.3,IpresentanewmethodologyforcalculatingffCO2from

APOdata,andcomparetheresultstoffCO2calculatedusingCOand14CO2measurementsand

tomodelledffCO2usingbottomupinventorydata.Lastly,inSection5.4,Isummarisethe

resultsfromthischapter,andoutlineanewpotentialforurbanatmosphericO2andCO2

measurements.

Page 7: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

1965.2AtmosphericO2andCO2measuredfromtheEnvironmentalSciences

building,UniversityofEastAnglia

PriortofinaldeploymentonboardtheCapSanLorenzocontainership,the

atmosphericO2andCO2measurementsystemwastestedintheCRAMLaboratoryatUEA

(52.62°N,1.24°E;seeFigure5.1),andairwassampledfromtheroofoftheEnvironmental

Sciencesbuilding(~25mabovetheground)usingaspiratedairinlets,from09Jul‐03Sep2014.

Theaspiratedairinletsweremountedatthehighestpointoftheenvironmentalsciences

building,andthereforewerenotobstructedbyanyotherbuildings,andwerenotclosetoany

ofthebuildingvents.FortechnicaldetailsrelatingtotheatmosphericO2andCO2

measurementsystem,seeChapter2.

Figure5.1.MapshowingthelocationoftheUniversityofEastAnglia(UEA),andalsotheTacolnestontalltower(TAC)andWeybourneAtmosphericObservatory(WAO).

Figure5.2presentstheUEAatmosphericO2,CO2,andAPOdata,aswellasmodel‐

derivedmeteorologicaldata(atmospherictemperature,relativehumidity,atmospheric

pressure,winddirection,andwindspeed),whicharefromtheUSANationalOceanicand

Page 8: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

197AtmosphericAdministration(NOAA)GlobalDataAssimilationSystem(GDAS)database.APO

iscalculatedfromtheUEAatmosphericO2andCO2datausingEquation5.3:

.

. 350 (Eq.5.3)

whereO2andCO2aretheatmosphericO2andCO2measurementsinpermegandppmunits,

respectively,‐1.1istheO2:CO2ratioofglobalterrestrialbiosphere‐atmosphereexchange,

0.2095isthemolefractionofO2moleculesindryair,and350isanarbitraryreference.

MultiplyingCO2by‐1.1anddividingby0.2095convertstheCO2datafromppmtopermeg

units.

LargegapsintheatmosphericO2,CO2andAPOdataareduetoperiodsofexperimental

testingofthemeasurementsystem(forexample,whencheckingthemeasurementsystemfor

leaks),whichmeantthatitwasnotpossibletosampleoutsideair.Shortgaps(1‐3hours)are

mostlycausedbyWSS,ZT,andTTcalibrationroutinesbeingcarriedout(seeChapter2,

Section2.3fordetails).AsshowninFigure5.2,theCO2andO2dataarestronglyanti‐correlated,

owingtothedominanceofterrestrialprocessesonthedata.Strongdiurnalvariabilityis

apparentinbothspecies,withhigherCO2andlowerO2generallyoccurringatnight‐time.This

diurnalvariabilityislikelytobestronglyinfluencedbythediurnalrectifiereffect,whereby

atmosphericCO2andO2isdilutedduringtheday,owingtoawell‐mixedboundarylayer,and

relativelyhighboundarylayerheight,andbothspeciesareconcentratedatnight,whenthe

boundarylayerisstableandtheboundarylayerheightisrelativelylow.Inaddition,owingto

thetimeofyearandrelativelyrurallocation,photosynthesiswilllikelybedominatingthe

atmosphericCO2andO2signalsduringtheday,causingadrawdownofCO2andreleaseofO2,

whereasatnight,respirationwillbethedominantbiosphericprocess,resultingintherelease

ofCO2anduptakeofO2.

Thus,inthesummer,diurnalvariabilityinatmosphericCO2andO2iscausedbytwo

reinforcingeffects:diurnalvariabilityinatmosphericmixing,anddiurnalvariabilityin

biosphericO2andCO2fluxes.IncontrastwiththeatmosphericO2andCO2datafromUEA,the

APOdatashowverylittlevariability,andingeneral,donotexhibitastrongdiurnalpattern.

ThisisbecauseAPOisinvarianttolandbiosphericinfluences,andlargelyreflectsonlyfossil

fuelinfluencesonshort‐timescales,andoceaninfluencesonseasonalandlong‐termtime

scales.

Page 9: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

198

Figure5.2.Hourly‐averagedatmosphericCO2(toppanel),δ(O2/N2)(2ndpanel)andAPO(3rdpanel)measuredfromtheroofoftheEnvironmentalSciencesbuildingatUEA.Notethatthey‐axesforδ(O2/N2)andAPOhavebeenscaledtobevisuallycomparabletotheCO2y‐axisonamolepermolebasis,and‘bad’datacausedbytechnicalproblemshavebeenexcludedpriortoaveraging.Alsoshownare3‐hourlymodel‐derivedGDASmeteorologicaldata(NOAA):atmospherictemperature(4thpanel:darkredsolidline),relativehumidity(4thpanel:cyanshort‐dashedline),atmosphericpressure(4thpanel:pinkdottedline),winddirection(bottompanel:darknavylong‐dashedline),andwindspeed(bottompanel:greydashed/dottedline).

Page 10: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

199

Figure5.3.O2:CO2ratioofhourly‐averageddatameasuredatUEAduringthesummerof2014.δ(O2/N2)isgiveninppmequivalentunitstobecomparabletoCO2onamolepermolebasis.Thesolidredlineindicatesthemajoraxisregressionline,whichisweightedaccordingtothedifferenceinmeasurementprecision(andthereforeuncertainty)associatedwiththeδ(O2/N2)andCO2data,andhasaslopeof‐1.10.ThenegativevalueoftheO2:CO2ratioindicatesthatthetwospeciesareanti‐correlated.

Asmentionedabove,theUEACO2andO2variabilityshowninFig.5.2isdominatedby

terrestrialprocesses,ratherthanfossilfuelburning.ThisisalsodemonstratedinFigure5.3,

whichshowsthatthemeanO2:CO2molarratioforthedatasetis‐1.10;avaluethatisindicative

ofterrestrialbiosphereO2andCO2exchange(Severinghaus,1995).Thereisasmallamountof

scatteraroundthemajoraxisregressionlineshowninFig.5.3,whichsuggeststhatthereis

sometemporalvariabilityintheO2:CO2ratioduringthisperiod.

Page 11: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

200

Figure5.4.Hourly‐averagedCO2(toppanel)andδ(O2/N2)(bottompanel)withselecteddiurnaleventscolouredaccordingtotheO2:CO2ratio(seelegendinfigure).They‐axeshavebeenscaledsothattheδ(O2/N2)andCO2panelsarevisuallycomparableonamolepermolebasis.

InordertoinvestigatethisO2:CO2temporalvariability,IcalculatedtheO2:CO2ratiofor

someofthelargest(inmagnitude)individualdiurnalO2andCO2events,andthencategorised

theseeventsintothreegroups,accordingtotheO2:CO2ratiovalues.Figure5.4showsthat

thereisnocorrelationbetweenthemagnitudeandtheO2:CO2ratioofthediurnalevents,

whichindicatesthatthelargesteventsarenotcausedbyacommonsource,andsuggeststhat

atmospherictransporteffectsmayhaveasignificantimpactonthemagnitudeofthediurnal

variabilityatUEA.TherangeofO2:CO2ratiosforthediurnaleventsis‐1.03to‐1.14,which

suggeststhatmanyoftheeventswithmorenegativeO2:CO2ratiosarecausedbya

combinationofbiosphericandfossilfuelCO2.Sincetheterrestrialbiosphereisdominatingthe

O2andCO2variabilitysostrongly,itisdifficulttoidentifywhicheventsarelikelytobe

influencedbyfossilfuelprocesses,andwhicharenot.Thisdifficultyisinpartcausedby

uncertaintyintheO2:CO2ratioofthelocalterrestrialbiosphere.Althoughonaglobalscale,

terrestrialprocesseshaveanoxidativeratioofapproximately‐1.1,onalocalscale,thisvalue

canbeeitherlowerorhigher,dependingonthelocaltypesofvegetationandsoil.Thedata

showninFig.5.4seemtoindicatethatinNorfolk,theO2:CO2ratioofthelocalterrestrial

Page 12: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

201biospheremaybeslightlyhigher(lessnegative)than‐1.1,althoughanexactvaluecannotbe

determinedfromtheatmosphericO2andCO2dataalonewithoutalsohavingindependent

quantitativeknowledgeoftheimpactoffossilfuelcombustionontheatmosphericCO2data,or

conductinganelementalanalysisoftheO2:CO2ratioofvarioussoilsandvegetation

representativeoftheNorfolkregion.

Figure5.5.Apolarplotofthevariabilityin2‐minuteO2:CO2ratioswithwindspeed(ms‐1)andwinddirection.MeteorologicaldataarefromtheNOAAGDASproduct.ThepolarplotwascreatedinRusingthe‘polarPlot’functionfromthe‘Openair’package(CarslawandRopkins,2012).

Byusingthehigh‐resolution,2‐minuteO2andCO2datatocalculate2‐minuteO2:CO2

ratios,itispossibletocreateapolarplot,asshowninFigure5.5,toexaminetheoriginof

oxidativeratiosthatareindicativeoffossilfuelinfluences,andthosethatareindicativeof

biosphericinfluences.Thelowest(mostnegative)O2:CO2ratios(i.e.thosethatareindicativeof

fossilfuelcombustion)originatefromtheeast,whichindicatesthatthereisastrongfossilfuel

influencefromNorwich.Thereisalsoanoticeablefossilfueloxidativeratiosignalfromthe

south‐west,whichissuggestiveoffossilfuelinfluencesfromLondon,andpossiblyalsofrom

thenearbyA47andA11majorroadstothesouth‐west.TheUEAcampusisover1.2km2in

area,andischaracterisedbywoodland,marshland,andopengreenareas.Thecampusis

Page 13: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

202surroundedbyfieldsandfarmland,withafewsmallvillagestothenorth,southandwest,and

thesuburbsofNorwichcitytotheeast.TheabundanceofvegetationontheUEAcampusand

inthesurroundingarealikelyexplainswhytheO2:CO2ratiosareclosetotheexpectedvaluefor

terrestrialbiosphereprocesseswhenthewindspeedislow(<5ms‐1),withtheexceptionof

windsthatoriginatefromthenorth‐east,forwhichtheO2:CO2ratiosaremorenegative.There

isalsoasmallamountofdatathatdisplaysquitehigh(lessnegative)O2:CO2ratios,which

occurswhenthewindspeedishigh(>15ms‐1)andthewinddirectionisfromthenorth‐west.

Thisdatamayberepresentativeofoceanicinfluence,whichcancauseO2:CO2ratiostobeclose

toorlessnegativethan‐1.0,long‐rangetransportofairfromahigherlatitude,oran

undiagnosedtechnicalproblemwiththemeasurementsystem.

ItisusefultocomparetheatmosphericO2andCO2datafromUEAtoothernearby

atmosphericmeasurementsofeachspecies,inordertogaingreaterunderstandingofthe

spatialvariabilityofatmosphericO2andCO2.TheTacolnestontalltower(TAC)issituated

about12kmsouth‐westofUEA(seeFig.5.1),andisfundedbytheUKGovernment

DepartmentofEnergyandClimateChange(DECC)tomeasurearangeofatmosphericspecies,

includingCO2(fromthreeheights:54m,100m,and185m)andCO(fromasingleheight:100

m).WeybourneAtmosphericObservatory(WAO)issituatedabout35kmnorthofUEAonthe

northNorfolkcoast(seeFig.5.1).WAOismanagedbytheUniversityofEastAngliaandisalso

supportedbyNCAS(NationalCentreforAtmosphericScience),tomakemeasurementsof

atmosphericgreenhousegasesandrelatedspecies,includingatmosphericO2,CO2,andCO(all

from~15mheight).

Figure5.6comparesatmosphericCO2atUEAandTAC,andatmosphericCO2andO2at

UEAandWAO.Ingeneral,thethreemeasurementlocationsexhibitverysimilardiurnal

variabilityinCO2(andO2forUEAandWAO),withonlyafewrareexceptions,suchasthe

differencesinO2andCO2betweenWAOandUEAon26‐27August.Althoughthediurnal

patternintheatmosphericCO2andO2isverysimilarbetweenthemeasurementsites,the

magnitudeofthevariabilitydifferssignificantly.CO2measuredatUEAisalmostalwayshigher

atnight‐timethanCO2measuredatTACandWAO.Similarly,night‐timeO2atUEAisalmost

alwayslowerthanO2measuredatWAO.Themostlikelyreasonforthesedifferencesin

magnitudebetweenUEAandTACisthatthemeasurementheightatUEA(~25m)ismuch

lowerthanallthreeofthemeasurementheightsatTAC(lowestheightof54m).CO2

measurementsthataremadeclosertothegroundareusuallyhigherinCO2molefractionthan

thosethataremeasuredfurtherupintheatmosphere,partlybecauseCO2sourcesaremainly

atgroundlevel,andpartlybecausetheentrainmentof‘backgroundair’(lowerCO2mole

fractions)fromabovetheboundarylayerwillaffectCO2measurementsmadehigherupmore

Page 14: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

203thanthosemadeclosetotheground.Thus,CO2measurementsmadefrom~25mheightabove

thegroundwilllargelyreflectlocalinfluencesonCO2,whereasCO2measurementsmadeat

185mabovethegroundwillreflectCO2influencesfromanentireregion,coveringatleast

severalhundredsquarekilometres.

Figure5.6.ComparisonofatmosphericCO2atUEAandTAC(toppanel),andcomparisonofatmosphericCO2andδ(O2/N2)atUEAandWAO(middlepanelandbottompanel).Y‐axeshavebeenscaledsothattheδ(O2/N2)andCO2panelsarevisuallycomparableonamolepermolebasis.

Somewhatcontradictorytothisexplanation,isthefactthatUEAconsistentlyexhibits

higherCO2thanWAOatnight,whenthemeasurementsatWAOaremade~10mclosertothe

groundthanthoseatUEA.ThereasonwhyO2andCO2variabilityatWAOisattenuatedin

magnitudecomparedtoO2andCO2variabilityatUEA,isthatWAOissituatedonthecoast,and

soanyterrestrialsourcesorsinksofO2andCO2willbedilutedwithcoastalandopenoceanair,

whichwillusuallyexhibitO2andCO2molefractionsclosetothoseofwell‐mixed‘background

Page 15: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

204air’.Thisalsoexplainswhy,duringtheday‐time,atmosphericCO2molefractionsareoften

loweratUEAthanatWAO,andatmosphericO2molefractionsareoftenhigheratUEAthan

WAO(e.g.26July),whereastheatmosphericCO2molefractionatTACdoesnoteverdrop

significantlybelowtheatmosphericCO2molefractionatUEA.Duringthesummer,the

biosphericphotosynthesisduringthedaytimewilltakeupCO2andproduceO2;thisbiospheric

signalwillmanifestmuchmorestronglyatarural,in‐landmeasurementlocation,suchasUEA,

thanatacoastalmeasurementsite,suchasWAO.

Therearealsosomesignificantdifferencesintheanthropogenicsignalsinatmospheric

speciesbetweenTAC,UEAandWAO.Figure5.7comparesshort‐termvariabilityinAPOfrom

UEAandCOfromTAC(100mheight),aswellasAPOandCOfromWAO.Itisclearthatthereis

oftensignificantanti‐correlationintheAPOandCOshort‐termvariability,whichislikely

attributabletothefactthatbothspeciesarepredominantlyaffectedbyanthropogenicsources.

AlthoughtheUEAAPOandTACCOdataarenotco‐located,itisassumedthattheyaresituated

closeenoughthatthepatternsofvariabilityseenateachlocationwilllargelybesimilar.Hence,

periodswhentheAPOandCOdatadonotdisplayanti‐correlatedsignalsmaybeduetothefact

thatthemeasurementsarenotco‐locatedandaresampledfromdifferentheightsabovethe

ground,butalsomaybecausedbythesignificantnaturalsourcesandsinksthatexistforCO,

suchassoilsandtroposphericphotochemicalreactions(Bergamaschietal.,2000;Moxleyand

Cape,1997),whereasthemainnaturalinfluenceonAPOisfromtheoceans,whichisnot

expectedtohaveasignificanteffectonAPOonshorttimescales(seeChapter4,Section4.2for

details).

ThemiddlepanelofFig.5.7showsco‐locatedAPOandCOmeasuredatWAO,fromthe

samesamplingheight.AswiththeUEAandTACdata,thereissubstantialanti‐correlation

betweenthetwospecies,aswellassomeperiodswherethevariabilityisnotanti‐correlated.

BasedonvisuallyinspectionofFig.5.7alone,thereisasimilaramountofanti‐correlation

betweentheWAOCOandAPOdataasthereisbetweentheUEAAPOandTACCOdata,where

thetwospeciesarenotco‐located.Thisfindingsuggeststhatperiodsofdatathatdonotshow

anti‐correlationbetweenAPOandCOmaybedominatedbydifferencesintheCOandAPO

sourcesandsinks,andnotbywhetherthemeasurementsareco‐locatedornot.Thebottom

panelofFig.5.7,showingwinddirectionmeasuredatWAO,showsthattheperiodsof

strongestanti‐correlationbetweenWAOCOandAPOmostlycoincidewithsouth‐westerly

winddirections(i.e.fromtheland),andperiodsshowinglittleornoanti‐correlationbetween

COandAPOoftencoincidewithnortherlyandeasterlywinddirections(i.e.fromthesea),

althoughthelinkbetweenCOandAPOcorrelation/anti‐correlationandwinddirectionat

WAOdoesnotalwaysholdtrue.

Page 16: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

205

Figure5.7.Comparisonofhourly‐averagedTACCOandUEAAPOdata(toppanel)andhourly‐averagedWAOCOandAPOdata(middlepanel),illustratingthatalotoftheshort‐termvariabilityinCOandAPOisanti‐correlated.AlsoshowniswinddirectionmeasuredatWAO(bottompanel).TheCOmeasurementsatTACaresampledfromthe100mtowerinlet.ItshouldbenotedthattheTACCOdatashownabovearenotthefinalised,qualitycontrolleddata,duetoanon‐goingcalibrationissuethatisaffectingtheaccuracyofthehighCOvalues.

5.3FossilfuelCO2quantificationusingAPOfromsitesinNorfolk,UK

5.3.1.Using‘fixed’fossilfuelemissionratios

Inthissection,IpresentanewmethodologyforquantifyingffCO2usingAPOdatafrom

UEAandWAO.Asmentionedpreviously,thereareseverallimitationsassociatedwithusingCO

asatracerforquantifyingffCO2,includinglargeuncertaintyinthenaturalsourcesandsinks,

Page 17: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

206largeuncertaintyintheCO:CO2emissionratiosforfossilfuels,andtheCOtracermethodis

unabletodistinguishbetweenCO2producedbyrenewablebioenergysourcesandffCO2.In

contrast,theonlysignificantnaturalsource/sinkaffectingAPOistheocean,whichisnot

expectedtohaveanimpactonshorttimescales.Inaddition,anyshort‐termoceanicinfluences

onAPOshouldbeeasytoidentify,becauseoceanicairmassesarecharacterisedbyinvariant

CO2(owingtothelong‐equilibrationtimeofair‐seaCO2fluxescomparedtotherateof

atmosphericmixing).APOisalsoassociatedwithamuchsmallerrangeofpossibleO2:CO2

emissionratiosforfossilfuels(from~‐1.2to~‐1.95,buttypicallyintherangeof‐1.3to‐1.4)

comparedtoCO:CO2emissionratios(from<5to>100,buttypicallyintherangeof5to25),

whichtranslatesintoloweruncertaintyinthedenominatorofEquation5.4(seebelow)

comparedtothedenominatorofEq.5.2.

Finally,althoughAPOcannotdistinguishbetweenbiodieselandbiogasemissionsand

theirfossilfuelcounterparts,owingtothefactthattheoxidativeratiosforbiodieselandbiogas

areverysimilartothoseforliquidandgaseousfossilfuels,APOisabletodistinguishbetween

biomassburningemissions,whichhaveanoxidativeratioofapproximately‐1.1,andfossilfuel

emissions,whichhaveoxidativeratiosintherangeof~‐1.2to~‐1.95.Thispotentiallyenables

APOtobeusedasatracerofffCO2incitiesindevelopingcountries,suchasIndia,whichstill

heavilyrelyonbiomassburningasamajorsourceofenergyindomesticsettings,andalsoin

citiesindevelopedcountriesthatarefrequentlyaffectedbylocalforestfires,suchasinVictoria,

Australia,andCalifornia,USA.

ffCO2canbecalculatedfromAPOdatausingEquation5.4,whichisanalogous

toEq.5.2forcalculatingffCO2fromCO:

: (Eq.5.4)

whereAPOistheatmosphericvaluecalculatedfromhigh‐precisionatmosphericO2andCO2

data,APObgistheAPObackground,orbaselinevalue,whichisdeterminedusingastatistical

baselinefittingmethod,andRAPO:CO2istheAPO:CO2combustionratioforfossilfuelemissions.

IhaveusedEq.5.4tocalculateffCO2fromAPOdataatUEAandWAO,andhave

comparedtheresultstoffCO2fromCOdataatTACandWAO,calculatedusingEq.5.2(see

Figure5.8).NotethatasmallamountofAPOdatawasexcludedfromtheffCO2calculationasit

wasnotdeemedtoberelatedtofossilfuelvariability(owingtolittleornovariabilityinCO2),

andismostlikelycausedbytechnicalproblems.Therearetwoimportantunknown

Page 18: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

207parametersthatmustbedeterminedinEq.5.2and5.4:theCOandAPObaselines,andthe

CO:CO2andAPO:CO2emissionratios.Fornow,Ihaveusedtime‐invariantvaluesof5ppbppm‐

1fortheCO:CO2emissionratioatTACandWAO(atypicalvaluefortrafficemissions),and‐0.3

molmol‐1fortheAPO:CO2emissionratioatUEAandWAO(atypicalvalueforliquidfossilfuel

emissions,giventhatAPO:CO2ratio=O2:CO2ratio+1.1).Amoresophisticatedmethodfor

calculatingtime‐varyingCO:CO2andAPO:CO2emissionratioswillbediscussedandpresented

laterinthissection.ItshouldbenotedthattheequationforcalculatingAPOfromO2andCO2

measurementsthatIhaveusedthroughoutthisthesisisactuallyasimplificationofthefullAPO

equationgivenin(Stephensetal.,1998),whichalsotakesintoaccounttheeffectsofCH4and

COoxidationonO2,althoughtheseeffectsarenegligibleformostapplications.Ihavenotused

thefullAPOequationinthischapterbecauseCH4andCOemissionsinNorfolkarerelatively

low,andIcalculatedthattheywouldnotsignificantlyaffectAPO.ForurbanAPO

measurements,however,itmaybeadvisabletousethefullAPOequationthatisconservative

withrespecttoCH4andCOoxidationinadditiontoterrestrialbiosphereprocesses,because

CH4andCOfluxesaremuchlargerinurbanenvironments.

Fig.5.8showsffCO2calculatedusingCOand14CO2fromTACandAPOfromUEA(top

panel),aswellasffCO2calculatedusingCOandAPOfromWAO(bottompanel).Althoughthe

COandAPOdataatTACandUEAarenotco‐located,theffCO2calculatedusingthetwotracers

appearsverysimilar,withthemaindifferencespresentingasdifferencesinthemagnitudeof

theffCO2peaks(e.g.14‐15Aug),ratherthandifferencesinthepatternsofffCO2variability(e.g.

3Aug).TheffCO2from14CO2dataatTACwereprovidedbyAngelinaWenger,Universityof

Bristol.Approximately40%oftheffCO2from14CO2dataatTACcollectedfromJul‐Sep2014

weredeemedtobeunreliable,eitherowingtonegativeffCO2values,whicharecausedby

strongnuclearpowerplantemissionscancellingoutanyffCO2signalin14CO2,orbecause

NAMEmodelbacktrajectoriesindicatedtheairmassesarrivingatTAChadoriginatedfrom

thesouth‐west,andffCO2from14CO2wasthereforelikelytobebiasedbynuclearpowerplant

influences,eventhoughthevalueswerenotnegative.Ingeneral,theffCO2from14CO2agrees

wellwiththeffCO2calculatedfromtheCOandAPOdata,although,owingtodatagaps,there

areonlytwo14CO2datapointsthatcoincidewithperiodsofAPOdata.Allofthe14CO2data

pointsalsohappentocoincidewithperiodsofrelativelylowffCO2,becausethe14CO2flask

Page 19: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

Figure5.8.ffCO2fromCOatTACandAPOatUEA(toppanel)andffCO2fromCOandAPOatWAO(bottompanel).AlsoshownisffCO2from14CO2atTAC(toppanel,blackdots).

Page 20: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

209

samplesaredeliberatelycollectedduring‘cleanair’conditions,totryandavoidnuclearpower

plantinfluences.WhenadifferenceinffCO2betweenthe14CO2methodandtheothertwo

methodsdoesoccur,andtheffCO2from14CO2valueislowerthantheffCO2fromCOorAPO

(e.g.29Aug),itisdifficulttoascertainwhichffCO2valueiscorrect,becausenuclearpowerplant

influenceswillcausetheffCO2from14CO2tobebiasedlow,anditisthereforedifficulttohave

confidenceintheaccuracyofthe14CO2datainsuchinstances.

AtWAO,theffCO2agreementbetweentheAPOandCOtracersissimilartothatatUEA

andTAC,withperiodswhentheffCO2fromthetwotracersagreewell(e.g.7‐11Aug),andother

timeswhentheffCO2patternofvariabilityisverysimilar,butthemagnitudesoftheffCO2

signalsdiffer(e.g.31Jul‐2Aug).Overall,theffCO2observedatWAOislessthanthatobservedat

UEAandTAC,whichisexpected,giventhedilutionofterrestrialsignalsthatoccuratWAO,due

toitscoastallocation,aswellasthefactthatWAOislocatedfurtherfromthemainlocalffCO2

hotspots,suchasNorwich,andtheA11andA47mainroads.

TheCOandAPObaselineshavebeencalculatedusingthe‘rfbaseline’functionfromthe

‘IDPmisc’packageinR.‘rfbaseline’isastatisticalmethodforcalculatingabaselinefrom

atmosphericdatabasedonrobustlocalregression,andemploysasymmetricalweightingto

theresidualsofthefit,inordertopreventthebaselinefrombeingbiasedbyuni‐directional

pollutionevents,whichisacommoncharacteristicofmanyatmosphericspecies(Ruckstuhlet

al.,2012).ThisasymmetricalweightingisimportantinthebaselinefittingofbothAPOandCO,

becauseallofthefossilfuelrelatedvariabilityinAPOpresentsasnegativeexcursions(because

O2isconsumedduringfossilfuelcombustion),whilethefossilfuelrelatedvariabilityinCO

presentsaspositiveexcursions(becauseCOisproducedduringfossilfuelcombustion),as

illustratedinFig.5.7.

5.3.2.Baselineandmeasurementuncertaintyanalysis

InordertodeterminetheuncertaintyoftheffCO2calculatedusingAPOorCO,onemust

determinetheuncertaintyassociatedwiththethreecomponentsofEqs.5.2and5.4:theAPO

orCOmeasurementuncertainty,theuncertaintyassociatedwiththebaselinefitting,andthe

uncertaintyassociatedwiththefossilfuelemissionratios(RCO:CO2orRAPO:CO2).Thebaseline

uncertaintycanbequantifiedbyassessingthevariabilityintheffCO2whendifferentbaselines

areused.InFig.5.8,IusedAPOandCObaselinesofmoderateflexibilitytocalculateffCO2.In

Figure5.9,IpresentffCO2forbothAPOandCOatUEAandTACusingthebaselinesemployed

forFig.5.8,aswellasveryflexiblebaselines,wherealotmoreoftheshort‐termvariabilityin

Page 21: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

Figure5.9.ffCO2calculatedfromCoatTAC(toppanel)andAPOatUEA(bottompanel)usingthemoderatelyflexiblebaselinefitsusedinFig.5.8,aswellasinflexiblebaselinefits(dashedpinkandorangelines)andflexiblebaselinefits(dotted‐dasheddarkpurpleanddarkredlines).

Page 22: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

211

APOandCOisassignedas‘backgroundair’variability,andalsoveryinflexiblebaselines,which

hardlyvaryatall,thusalmostalloftheshort‐termvariabilityinAPOandCOisexcludedfrom

thebaseline.

Fig.5.9demonstratesthatattimes,thereissignificantuncertaintyassociatedwiththe

statisticalbaselinefittingprocedurefortheCOandAPOmethods,asthemagnitudeofffCO2is

oftendependentonthechoiceofbaselinefit.ItshouldbenotedthatthevariabilityinffCO2is

notdependentonthechoiceofbaselinefit.Figure5.10demonstratesthedifferencesinthe

baselinefitsusedtocalculatetheffCO2fromCOandAPOthatisshowninFig.5.9.Sincethe

numeratortermsinEqs.5.2and5.4aredeterminedfromthedifferencebetweenthe

measurementsandthebaselineforeachspecies,theflexiblebaselinefitstendtoproduce

smallerffCO2values,andtheinflexiblebaselinefitstendtoproducelargerffCO2values,with

themoderatelyflexiblebaselinefitsproducingintermediateffCO2values.

Figure5.10.Moderatelyflexible,inflexible,andflexiblebaselinefitstoCOfromTAC(toppanel)andAPOfromUEA(bottompanel).

ThemeanuncertaintyinffCO2associatedwiththechoiceofbaselinefitiscalculatedto

be±17.5%and±27.5%fortheCOdataandAPOdatarespectively(basedontheffCO2

differencesusingdifferentbaselineflexibilities),withnosignificantdifferencesinthebaseline

uncertaintiesateachmeasurementsite.Theseuncertaintyestimatesarebasedonthefactthat

theflexiblebaselinefitsareprobablynotfitforpurpose,giventhattheygenerallycauseffCO2

Page 23: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

212tobeunderestimated,andthatthemostappropriatebaselinefitliesbetweenthestandardfit

andtheinflexiblefit:thus,theflexiblebaselinefithasnotbeenaccountedforinthebaseline

uncertaintyestimates.Inreality,theinflexiblefitislikelytobethemostappropriatebaselinefit,

assumingthatffCO2‘events’maybepresentinatmospherictimeseriesdataforperiodsof

severaldaysuptoaboutaweek,ratherthanforperiodsofonlyseveralhoursuptoadayorso;

hence,theuncertaintyestimatesstatedaboveareconservative.

TheuncertaintyassociatedwiththeCOandAPOdataisquantifiedfromthe±1σ

standarddeviationofthehourly‐averagedatmosphericmeasurementsduringaperiodwhen

theatmosphericvariabilityineachspeciesislow,andthusincludesboththeuncertaintyofthe

measurementtechnique,andtheuncertaintyassociatedwithsomenaturalatmospheric

variability.ForCO,themeasurementuncertaintyis±5.54ppbatTACand±1.58ppbatWAO.

ThelargermeasurementuncertaintyatTACisprimarilyduetogreaterimprecisioninthe

measurementtechniqueemployedatTACcomparedtothatusedatWAO,butisalsopartly

duetotheslightlygreaterCOvariabilityobservedatTACcomparedtoWAO.

ForAPO,themeasurementuncertaintyisdeterminedfromthe±1σstandarddeviation

inboththehourlyCO2andO2measurements,sinceAPO=O2+(‐1.1×CO2),where‐1.1isthe

oxidativeratiooftheglobalterrestrialbiosphere.Sincetheoxidativeratiooftheterrestrial

biospherecanvaryregionally,anuncertaintyof±0.05isassigned,whichisthensummedin

quadraturewiththeuncertaintiesoftheO2andCO2measurementstoobtainanoverall

uncertaintyestimatefortheAPOdata,whichis±13.80permegatUEAand±12.35permegat

WAO.TheO2andCO2measurementuncertaintiesatUEAareactuallysmallerthanthoseat

WAO;however,theAPOuncertaintyatUEAislargerthanthatatWAOowingtothelargerAPO

variabilityobservedatUEAcomparedtoWAO.Aspercentages,themeasurement

uncertaintiesare±4.29%forCOatTACand±1.28%forCOatWAO,and±4.63%forAPOat

UEAand±4.14%forAPOatWAO;thus,allofthemeasurementuncertaintiesaresignificantly

smallerthantheuncertaintiesassociatedwiththechoiceofCOandAPObaselinefits.

5.3.3.Using‘time‐varying’fossilfuelemissionratios

InFig.5.8,IpresentedffCO2fromCOandAPOdatausingfixedvaluesforthefossilfuel

emissionratios.Inreality,thefossilfuelemissionratiosobservedatameasurementsitecan

varysignificantly,owingtochangesintheemissionratiosthemselvespriortotransportation

tothemeasurementsite,aswellaschangesintheatmosphericfootprintofthemeasurement

site.Hence,amuchmoreappropriatewaytocalculatedffCO2fromCOandAPOdataistouse

time‐varyingfossilfuelemissionratios,whichcanbedeterminedbycombiningfossilfuel

Page 24: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

213

emissionratiosfromgriddeddatabaseswithatmospherictransportmodelfootprints,as

showninEquation5.5:

∑ (Eq.5.5)

whereRtisthetime‐varyingfossilfuelemissionratioatthemeasurementsitefromtimest1to

tn,b1tobnrepresenttheindividualgridboxesoftheatmospherictransportmodelfootprint,E

isthefossilfuelemissionratioforeachgridboxoftheatmospherictransportmodel,Pisthe

numberofatmospherictransportmodelparticlesinthegridbox,andTPisthetotalnumberof

particlesinthewholeatmosphericfootprint.

InordertocalculateRtinEq.5.5,IusedtheUKMetOfficeNAME(Numerical

Atmospheric‐dispersionModellingEnvironment)model(Jonesetal.,2007)toproduce2‐day,

backwardsrunatmosphericfootprintsevery3hours,consistingof10,000inertparticles,that

weremonitoredfrom0‐200mabovetheground.TheNAMErunsweredrivenbytheMet

OfficeUnifiedModelmeteorology,whichhasaspatialresolutionof17kmby17km.ForE,the

fossilfuelemissionratios,IusedgriddedO2:CO2ratiosfromtheCOFFEE(CO2releaseand

OxygenuptakefromFossilFuelEmissionsEstimate)database(Steinbachetal.,2011)forthe

APOmethod,whichwereconvertedtoAPO:CO2ratiosbysubtractingtheO2:CO2ratioofglobal

terrestrialbiosphere‐atmosphereexchange(‐1.1)fromallthevalues,andgriddedCO:CO2

ratiosfromtheEDGAR(EmissionsDatabaseforGlobalAtmosphericResearch)databasefor

theCOmethod.

TheEDGARCO:CO2ratiosareonlyavailablewithannualtimeresolution(andarealso

onlyavailableupto2010,not2014),andthereforethetime‐varyingCO:CO2ratioscalculatedat

TACandWAOonlyincludevariabilityfromthechangingNAMEfootprints(i.e.spatial

variability).TheCOFFEE‐derivedAPO:CO2ratiosareavailableonhourlytimeresolution,and

wereconvertedinto3‐hourlyaveragesinordertomatchthetimeintervaloftheNAME

footprints.Originally,theCOFFEEdatabasewasonlyavailableupto2010,however,COFFEE

hasrecentlybeenupdatedto2014byChristophGerbig(MaxPlanckInstituteof

Biogeochemistry,Jena,Germany),andnowincludesanupdatedsetofO2:CO2ratiosfor

differentfueltypes(includingbetterdifferentiationoflightoilversusheavyoilratios,and

differentratiosfordifferenttypesofbioenergy),whichIcalculated.Boththetime‐varying

CO:CO2andAPO:CO2emissionratioswerecalculatedon3‐hourlytimeintervalstobe

compatiblewiththeNAMEfootprints,whichweretheninterpolatedtohourlytimeresolution

tobecompatiblewiththehourly‐averagedAPOandCOatmosphericdata.

Page 25: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

214 Theuncertaintyofthetime‐varyingemissionratiosisdifficulttocalculate,sinceneither

theEDGARorCOFFEEdatabasesassignuncertaintiestothefossilfuelemissionsestimates.

Therefore,aproxyfortheuncertaintyofthetime‐varyingemissionratioswasdeterminedby

dividingRtbythe±1σstandarddeviationofalloftheemissionratiosinthefootprint.Themean

uncertaintiesofthetime‐varyingCO:CO2emissionratiosatTACandWAOare±78.3%and

±72.9%,respectively,andthemeanuncertaintiesofthetime‐varyingAPO:CO2emissionratios

atUEAandWAOareboth±21.8%.ThelargedifferencebetweentheCOandAPOfossilfuel

emissionratiouncertaintiesreflectsthemuchlargerspatialvariabilityintheCO:CO2ratio

values(sincethereisnotemporalvariabilityavailableintheEDGARgriddeddatabases),

comparedtoboththespatialandtemporalvariabilityoftheAPO:CO2ratiovaluesfromthe

COFFEEdatabase.

5.3.4.ComparisonofCOandAPOfossilfuelquantificationmethods

ThetotalffCO2uncertaintyforboththeCOandAPOmethodscanbecalculatedby

summinginquadraturethemeasurement,baseline,andemissionratiouncertainties.This

producesmeantotalffCO2(CO)uncertaintiesof±87.5%atTACand±78.4%atWAO,andmean

ffCO2(APO)uncertaintiesof±35.8%atUEAand±35.6%atWAO.Atbothlocations,themean

ffCO2(CO)uncertaintyismuchlargerthanthemeanffCO2(APO)uncertainty(bymorethana

factorof2).ThisispredominantlyduetothemuchlargeruncertaintyintheCO:CO2emission

ratioscomparedtotheAPO:CO2emissionratios.TheffCO2uncertaintiesatWAOarelower

thanthoseatTACandUEAforboththeCOandAPOmethods,owingtothesmallerffCO2

signalsthatareobservedatWAOinbothspecies.Table5.1summarisesthedifferencesin

uncertaintybetweenffCO2(CO)andffCO2(APO)ateachmeasurementsite.

Table5.1.ComponentandtotaluncertaintiesfortheCOandAPOffCO2quantificationmethodsatTAC,WAOandUEA,givento2significantfiguresforeasiercomparison.

ffCO2(CO) ffCO2(APO)

TAC WAO UEA WAO

Baselineuncertainty ±18% ±18% ±28% ±28%

Measurementuncertainty ±4.3% ±1.3% ±4.6% ±4.1%

Emissionratiouncertainty ±78% ±73% ±22% ±22%

Totaluncertainty ±88% ±78% ±36% ±36%

Page 26: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

215

AsshowninTable5.1,fortheCOmethod,thetotalffCO2uncertaintyatbothlocations

isdominatedbytheCO:CO2emissionratiouncertainty,withtheCObaselineuncertainty

contributingfarless,andtheCOmeasurementuncertaintycontributingtheleast.Incontrast,

theAPOmethodtotalffCO2uncertaintyismoststronglyinfluencedbytheAPObaseline

uncertainty,closelyfollowedbytheAPO:CO2emissionratiouncertainty,withtheAPO

measurementuncertaintycontributingtheleast.ItisclearthattheCOmethodisfarless

precisethantheAPOmethod,owingtothelargeuncertaintyassociatedwiththeCO:CO2

emissionratios.ItshouldbenotedthatthetotalffCO2(CO)uncertaintiesdonotincludethe

uncertaintyassociatedwithpotentialnaturalCOsourcesandsinks,whichwouldbevery

difficulttoquantify.Additionally,neitherthetotalffCO2(CO)northetotalffCO2(APO)

uncertaintiesincludetheuncertaintyassociatedwithpotentialbioenergyinfluences,which

wouldalsobedifficulttoquantify,andwillhaveagreaterinfluenceontheCOmethodthanthe

APOmethod,becausetheAPOmethodisconservativewithrespecttosolidbioenergyand

biomassburning.

ffCO2(CO)fromTACandWAOandffCO2(APO)fromUEAandWAOcalculatedusing

time‐varyingfossilfuelemissionratios(usingEquation5.4)arepresentedinFigure5.11.In

contrasttoFig.5.8,theffCO2datainFig.5.11havebeencalculatedusinginflexiblebaselines,

ratherthanmoderatelyflexiblebaselines,asthelattercanleadtounderestimationoftheffCO2

variability,particularlyforffCO2eventslastingseveraldays,asshowninFig.5.10and

describedpreviously.TheffCO2uncertaintiesarerepresentedbytheshadedregions,andwere

calculatedbysummingthemeasurement,baselineandemissionratiouncertaintiesin

quadrature.AlsoshownistheffCO2calculatedfromdiscrete14CO2measurementsmadeat

TAC.Overall,theffCO2calculatedfromCOandAPOappeartoagreemorecloselyinFig.5.11

thanpreviously,inFig.5.8.Therearestillsomeperiodswherethetwocontinuousmethodsdo

notagreewithintheuncertaintiesofeachother,suchas31JulyatWAO,forexample.TheffCO2

from14CO2atTACisnormallyalsoinagreementwiththeffCO2fromCOandAPO,althoughas

before,theffCO2(14CO2)valuestendtobelowerthantheffCO2(APO)andffCO2(CO)values.Fig.

5.11illustratesthedifferenceinuncertaintybetweentheCOandAPOmethodsthatIhave

numericallypresentedinTable5.1,andshowsthattheAPOmethodissignificantlymore

precisethantheCOmethod.AnanalysisoftheairmasshistoryusingNAMEfootprintsreveals

thatmostoftheffCO2duringthesummer2014periodIhaveanalysedisfromthesouthofthe

UKandLondon,withsomefromthenorthoftheUK,andveryoccasionalffCO2fromFrance,

theNetherlandsandtheNorthSea(presumablyfromoilplatforms).Thereisnoapparent

connectionbetweentheagreementoftheCOandAPOffCO2quantificationmethodsandthe

Page 27: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

Figure5.11.ffCO2(CO)andffCO2(APO)atTACandUEA,respectively(toppanel),andffCO2(CO)andffCO2(APO)atWAO(bottompanel),calculatedusingtime‐varyingemissionratiosandinflexiblebaselines.ShadedareasdenotetherespectiveuncertaintiesofthecalculatedffCO2.ffCO2from14CO2measurementsatTACaredenotedbytheblackcircles,ofwhichthesizerepresentstheuncertaintyoftheffCO2(14CO2)values.

Page 28: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

217

originsoftheNAMEfootprints.Itisthereforelikelythatmostofthedisagreementbetweenthe

twomethodscanbeattributedtothefactthattheTACandUEAmeasurementsarenotco‐

located,aswellasundiagnosedtechnicalissuesanddifferencesinpotentialCOandAPO

influencesthatcannoteasilybequantified,suchasbiomassburning(forCO).

IncontrasttoFig.5.7,wheretheanti‐correlationinAPOandCOwassimilaratWAO

andatUEAandTAC,Fig.5.11indicatesthatffCO2agreementisactuallycloseratWAOthanat

UEAandTAC.Thisismostlikelyduetotheco‐locationoftheCOandAPOmeasurementsat

WAO,andaddsconfidencetobothffCO2quantificationmethods.Indeed,sinceffCO2hasbeen

calculatedusingtwoentirelyindependenttracers,periodsofstrongagreementinffCO2

betweenthetwomethodsareassociatedwithextremelyhighconfidenceintheffCO2accuracy

(e.g.21‐28Aug2014atWAO).

ItisalsoclearfromFig.5.11thattheCOmethodproducessignificantlyhigherffCO2

valuesthantheAPOmethod.ThisislargelyduetotheCO:CO2emissionratiosfromtheEDGAR

database,whicharelowerthanexpected,andcausethemagnitudeoftheffCO2fromCOtobe

high.Table5.2showstypicalffCO2valuesfromtheliterature,mostofwhichalsousetheCO

method,alongsidetheffCO2rangefromtheCOandAPOmethodsshownabove,and

demonstratesthattheffCO2fromCOatTACandWAOismuchhigherthanexpected,whenthe

valuesarecomparedtotypicalffCO2observedinurbanareas,suchasParis.Infact,itisnot

possibleforsomeofthelargestffCO2(CO)peaksatTACandWAOtobeaccurate,sincetheffCO2

valuesarelargerthantheCO2enhancementabovethebaseline,showninFig.5.6.This

suggeststhattheEDGARCOinventorydataareincorrect(toolow),sincetheCOFFEEAPO:CO2

ratiosarederivedfromEDGARCO2data(seeSteinbachetal.,2011fordetails),andthe

ffCO2(APO)valuesarewithintheexpectedrangeforarelativelyruralarea.Itshouldalsobe

notedthattheTACCOdataareknowntohaveanon‐goingcalibrationissuethatisaffectingthe

accuracyofthehighCOvalues.Itispossiblethatoncecorrected,thehighestffCO2(CO)valuesat

TACmayreducebyasmuchas30%(GrantForster,personalcommunication,2016),although

thiscorrectionwillnotaffectthepatternofvariability,northefactthattheCOmethodstill

produceshigherffCO2valuesoverallthantheAPOmethod,andunrealisticallyhighvaluesat

WAO,wheretheCOdatahavebeenqualitycontrolledandaredeemedaccurate.

Page 29: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

218

Table5.2.TypicalffCO2rangesfromtheliterature,shownalongsidetheffCO2rangesforTAC,UEAandWAOpresentedinthiswork,calculatedusingCO,APOand14CO2atmosphericdata.Publication Location Speciesused TypicalffCO2

range

ffCO2uncertainty

vanderLaan

etal.(2010)

Lutjewad,The

Netherlands

14CO2andCO 0–30ppm ±2.5ppm

Lopezetal.

(2013)

Paris,France 14CO2,CO,NOx

and13CO2

0–40ppm Notgivenformost

species.±1.0ppm

for14CO2

Gravenetal.

(2009)

California,U.S.A. 14CO2andCO 0–10ppm ±1.6–2.9ppm

Turnbullet

al.(2006)

NewEngland

andColorado,

U.S.A.

14CO2,COand

SF6

0–15ppm ±2–4ppm

Thiswork Norfolk,U.K. CO(TAC)

CO(WAO)

APO(UEA)

APO(WAO)

14CO2(TAC)

0–70ppm

0–40ppm

0–20ppm

0–15ppm

1.2–2.5ppm

±5.8ppm

±4.5ppm

±1.2ppm

±1.1ppm

±1.6ppm

Fig.5.11suggeststhatusinginventorydatacombinedwithanatmospherictransport

modeltoestimatetheemissionratiosmayleadtoinaccurateffCO2,mainlyduetoinaccuracies

withtheinventorydata,butalsoduetopotentialatmospherictransportmodelinaccuracies.

Therefore,itisimportanttoconsiderothermethodsofdeterminingthefossilfuelemission

ratiosfortheCOandAPOmethods.Figure5.12showsffCO2fromUEAandTACcalculated

usingthetime‐varyingemissionratios(asshownFig.5.11,withuncertaintiesomittedfor

visualclarity),aswellasffCO2usingthepreviousfixedemissionratiosof0.3molmol‐1for

APO:CO2and5ppbppm‐1forCO:CO2(verysimilartoffCO2showninFig.5.8,onlyusingan

inflexiblebaseline).AlsoshownisffCO2calculatedusingemissionratiosthathavebeen

‘calibrated’bytheTAC14CO2data,andfortheAPOmethodonly,ffCO2calculatedusingthe

meanAPO:CO2ratiooftheatmosphericmeasurementsatUEAduringthesummer2014

period.ffCO2(CO)wascalculatedusingthemeanCO:CO2ratiooftheatmospheric

measurementsaswell,butthevaluesproducedwereextremelyhigh(upto350ppm)andnot

realistic;hence,thesedataarenotshowninFig.5.12.Thereasonwhythemeanmeasured

CO:CO2ratioistoolow,causingffCO2tobebiasedtoohigh,isduetolargenon‐fossilfuelrelated

Page 30: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

219

CO2signalsfromtheterrestrialbiospherecoincidingwithfossilfuelrelatedCOsignals.In

contrast,themeanAPO:CO2ratioduringthisperiodisnotsoseverelyaffectedbytheactivityof

theterrestrialbiosphere.

Figure5.12.ffCO2fromAPOatUEA(toppanel)andCOatTAC(bottompanel)calculatedusingavarietyofemissionratios(seetextaboveandfigurelegends).TheffCO2fromtime‐varyingratiosisthesameastheffCO2showninFig.5.11(toppanel),onlywithouttheuncertaintyshading,toaidvisualcomparisonwiththeffCO2calculatedusingtheotheremissionratios.AlsoshownisffCO2fromTAC14CO2data(blacksymbols).

Fig.5.12demonstratesthattheffCO2(APO)values(toppanel)areallquitesimilarto

eachother,despiteusingdifferentfossilfuelemissionratiosources.Theonlyexceptionisthe

ffCO2(APO)calculatedfromtheemissionratiosthatwerecalibratedusingtheTAC14CO2data,

whichislowerthanthatcalculatedusingtheotherthreetypesofemissionratios.The14CO2

calibratedAPO:CO2emissionratiohadtobeadjustedtothehighestpossiblevalueforfossilfuel

emissions(0.9molmol‐1)inordertobeabletocalculateffCO2thatwaslowenoughtomatch

theffCO2fromthe14CO2data.Infact,insomecases,itwasnotpossibletomatchthe

ffCO2(14CO2)valuewithoutusinganAPO:CO2emissionratiothatishigherthanthemaximum

possiblefossilfuelemissionratiovalue,whichsuggeststhateventhoughtheffCO2(14CO2)was

correctedfornuclearinfluences,thevaluesarestillaffectedandarebiasedlow.Thisis

supportedbytheffCO2(CO)calculatedusingthe14CO2calibratedemissionratios,whereitwas

alsooftennecessarytouseextremelyhighemissionratios(upto100ppbppm‐1)inorderto

producealowenoughffCO2valuethatwouldmatchtheffCO2(14CO2)value.

Page 31: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

220

UnlikeAPO,theffCO2(CO)showninFig.5.12ishighlydependentupontheemission

ratiosused,withthetime‐varyingratios,fixedratios,14CO2calibratedratios,andmean

measuredratios(notshown)producingverydifferentffCO2values.Asmentionedbefore,the

meanmeasuredratiosandtime‐varyingratiosfromtheEDGARdatabaseproduceffCO2from

COthatistoohighforarelativelyrurallocationsuchasTACorWAO,andthe14CO2calibrated

ratiosproduceffCO2valuesthatarebiasedlowbynuclearpowerplantemissions,giventhat

sometimesveryhighCO:CO2emissionratiosarerequiredtoreproducetheffCO2(14CO2)values.

ThefixedemissionratiosproducetheffCO2valuesthatmostcloselymatchthosecalculated

usingtheAPOmethod(fromdifferenttypesofemissionratios)atUEA,andarealsointhe

expectedrange,consideringthelocationofTAC.Thus,Fig.5.12suggeststhataswellastheAPO

methodbeingmoreprecisethantheCOmethodforquantifyingffCO2,itisalsoverylikelythat

theAPOmethodisalsomoreaccuratethantheCOmethod,giventhatthemagnitudeofffCO2

calculatedfromCOissovariable,dependingonthechoiceofemissionratiosused.

5.4Summaryandfuturework

InthischapterIhavepresentedanewmethodforquantifyingffCO2usingAPOdata,

whichIhavecomparedtoffCO2calculatedfromCOand14CO2data.Overall,IfoundtheAPO

methodtobesignificantlymoreprecisethantheCOmethod,whichislargelyowingtothe

reduceduncertaintyintheAPO:CO2fossilfuelemissionratioscomparedtotheuncertaintyin

theCO:CO2fossilfuelemissionratios.ThelargestsourceofuncertaintyintheAPOmethodis

currentlythebaselinefittingprocedure.Futuretechnicalimprovementsinmakinghigh‐

precisionO2measurementswillhelptoreducetheAPObaselineuncertainty.Iwouldalso

expectthatshort‐termdeviationsfromtheAPObaselinewillbecomeeasiertodetermineina

moreurbansetting,wherethemagnitudeofthesignalsarelarger,andthatthiswillalsohelpto

Page 32: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

221

reducetherelativeuncertaintyintheAPObaseline.Incontrasttothetwocontinuousmethods,

Ifoundthatrelyingonthe14CO2dataaloneledtosignificantunderestimationofffCO2in

Norfolk,partlyduetonuclearpowerplantinfluencesthathavenotbeenadequatelycorrected

for,andalsopartlyduetocleanairsampling(AngelinaWenger,personalcommunication,

2016).

WhencomparingtheCOandAPOmethods,IfoundthattheAPOmethodwasvery

likelytobemoreaccuratethantheCOmethod.Thisconclusionislargelybasedonasensitivity

analysisoffourdifferentemissionratiosources.FortheAPOmethod,Ifoundthattherangein

ffCO2valuesassociatedwiththefouremissionratiosourceswasmuchsmallerthantheffCO2

rangefortheCOmethod.IwasalsoabletodeterminethatsomeofthelargestffCO2peaksfrom

theCOmethodcouldnotpossiblybereal,sincetheywerelargerthanthemeasuredCO2

enhancementabovethebackgroundCO2molefraction.Ideally,Iwouldhavedeterminedthe

accuracyoftheAPOandCOmethodsbycomparingtoffCO2from14CO2atalocationthatisnot

affectedbygas‐coolednuclearpowerplantinfluences,becauseffCO2from14CO2isgenerally

expectedtobethemostaccuratewayofdeterminingffCO2.AsfarasIamaware,however,

thereisnoexistingdatasetofconcurrent,high‐precisionAPO,COand14CO2dataatalocation

thatalsoexperiencespollutedair,andisnotaffectedbynuclearpowerplantinfluences.

Despitethislimitation,theresultsIhavepresentedhereindicatethatitisverylikelythatthe

APOmethodismoreaccuratethantheCOmethod.Mostencouragingly,Ihavefoundthatat

WAOinparticular(wherethemeasurementsareco‐located),theffCO2variabilitybetweenthe

twomethodsisoftenverysimilar,andperiodswheretheffCO2magnitudeisalsoinagreement

affordsmeextremelyhighconfidenceintheffCO2accuracy,giventhattheCOandAPO

methodsarereliantontwocompletelyindependenttracers.

TheUKgovernmentstatesthatUKannualfossilfuelCO2emissionsfor2013areknown

towithin±2%uncertainty,basedonbottom‐upinventorymethodsanda95%confidence

level.Whilethisuncertaintysoundsverysmall,itisapproximatelyequivalenttotheUKmean

annualCO2footprintsofover950,000people.Inaddition,theuncertaintiesassociatedwiththe

UKinventoryarenotquantifiedforhigherspatialresolutionthannational,orforhigher

temporalresolutionthanannual(StephenForden,DECC;personalcommunication,2016).

Severalstudieshaveshownthatemissionsuncertaintiesincreasewithincreasingspatialand

temporalresolution,andcanreach100%ormorefor1°latitude/longituderesolutions(also

fora95%confidencelevel)(Andresetal.,2012;Andresetal.,2016).Thus,evenifnational

scaleuncertaintiesinfossilfuelemissionsarerelativelysmallandareassumedtobewell‐

known,largedifferencescanbefoundatsmallerscales,asdemonstratedby(Ackermanand

Page 33: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

222

Sundquist,2008),whofounddifferencesofupto25%inindividualUSApowerplantCO2

emissionscompiledbydifferentgovernmentagencies.

InordertobeabletosuccessfullyreduceanthropogenicCO2emissions,weneedto

haveaccesstohighresolution(spatialandtemporal)informationthatenablesustodetermine

whichbehaviourscauseincreasesanddecreasesinanthropogenicCO2emissions.For

example,howdoUKfossilfuelCO2emissionschangeifthereisanunexpectedlycoldwinter,or

ifelectriccarsbecomedominantoverpetrolcars,orifhouse‐holdelectricityandgassmart

metersaremadecompulsoryinUKhouseholds?Inthischapter,IhavecomparedffCO2from

APOandCOmeasurementswithmodelledffCO2frominventoryestimates.Thecomparison

indicatesthatboththeCOFFEE(derivedfromEDGAR)andtheUKNAEIinventoriesmaybe

over‐estimatingCO2emissionsinNorfolk.InthecaseoftheUKNAEI,someofthisdisparity

maybeexplainedbythefactthatIhavecompared2014ffCO2fromtheatmosphericdatato

modelledffCO2basedon2013values,becausethe2014valuesarenotcurrentlyavailable;

however,thereductionintheNorfolkNAEICO2emissionsbetweensummer2013and

summer2014wouldneedtoberelativelylargeinordertobringtheinventoryffCO2estimates

in‐linewiththeffCO2fromtheatmosphericmeasurements.Itshouldalsobenotedthatthe

modelledffCO2fromtheinventoriesthatIhavepresentedinthischapterarecalculatedusinga

singleatmospherictransportmodel.FurthersensitivityanalysisonthemodelledffCO2

emissionsshouldbecarriedoutusingotheratmospherictransportmodels,suchasSTILT

(StochasticTime‐InvertedLagrangianTransportmodel)(Linetal.,2003)andTM3

(HeimannandKörner,2003),toensurethatthemodelledffCO2isnotbiasedbymychoiceof

atmospherictransportmodel.

Tomyknowledge,therearecurrentlynocontinuoushigh‐precisionatmosphericO2

measurementsmadeinurbansettingsforthepurposeofffCO2quantification,andyet~70%of

allanthropogenicCO2emissionsarefromcities(IEA,2012a).Ithereforeproposeanew

directionforhigh‐precisionO2measurements,byadvocatingthatatmosphericO2isacurrently

under‐exploitedtoolforffCO2quantificationinurbanenvironments,andhasthepotentialto

provideprecise,accurate,hightemporalandspatialresolutionffCO2quantification,whichcan

alsobeusedinregionsthatareseverelyaffectedbygas‐coolednuclearpowerplantemissions,

suchaswesternEurope,Japan,easternUSAandCanada.Itshouldbenotedthatinordertouse

atmosphericO2measurementstosuccessfullyquantifyffCO2,veryprecisemeasurementsare

required(ontheorderof~5permegover1‐2minutes)andahighlevelofdataqualitycontrol

isrequired.Nevertheless,asdemonstratedinthischapter,itiscurrentlypossibletoachieve

suchmeasurementprecisionanddataqualitycontrolrequirementsinordertosuccessfully

quantifyffCO2evenatruralandcoastallocations,whereffCO2emissionsarerelativelylow.I

Page 34: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

223

thereforeproposethatacombinationofatmosphericO2measurementsandinversemodelling

couldenablerobusttop‐downquantificationofCO2emissionsatbothnational,butalso

perhapsurbanscales,andatsub‐annualtemporalresolutions,dependingonthedensityofthe

atmosphericO2measurementnetwork,andlimitationsofatmospherictransportmodelsand

inversemodellingmethodologies.

References

Ackerman,K.V.andSundquist,E.T.:ComparisonoftwoUSpower‐plantcarbondioxideemissionsdatasets,EnvironmentalScience&Technology,42,5688‐5693,2008.

Andres,R.J.,Boden,T.A.,Breon,F.M.,Ciais,P.,Davis,S.,Erickson,D.,Gregg,J.S.,Jacobson,A.,Marland,G.,Miller,J.,Oda,T.,Olivier,J.G.J.,Raupach,M.R.,Rayner,P.,andTreanton,K.:Asynthesisofcarbondioxideemissionsfromfossil‐fuelcombustion,Biogeosciences,9,1845‐1871,2012.

Andres,R.J.,Boden,T.A.,andHigdon,D.M.:Griddeduncertaintyinfossilfuelcarbondioxideemissionmaps,aCDIACexampleAtmosphericChemistryandPhysicsDiscussions,2016.

Bergamaschi,P.,Hein,R.,Heimann,M.,andCrutzen,P.J.:InversemodelingoftheglobalCOcycle1.InversionofCOmixingratios,JournalofGeophysicalResearch‐Atmospheres,105,1909‐1927,2000.

Bergamaschi,P.,Krol,M.,Dentener,F.,Vermeulen,A.,Meinhardt,F.,Graul,R.,Ramonet,M.,Peters,W.,andDlugokencky,E.J.:InversemodellingofnationalandEuropeanCH4emissionsusingtheatmosphericzoommodelTM5,AtmosphericChemistryandPhysics,5,2431‐2460,2005.

Breon,F.M.,Broquet,G.,Puygrenier,V.,Chevallier,F.,Xueref‐Remy,I.,Ramonet,M.,Dieudonne,E.,Lopez,M.,Schmidt,M.,Perrussel,O.,andCiais,P.:AnattemptatestimatingParisareaCO2emissionsfromatmosphericconcentrationmeasurements,AtmosphericChemistryandPhysics,15,1707‐1724,2015.

Carslaw,D.C.andRopkins,K.:Openair—anRpackageforairqualitydataanalysis.,EnvironmentalModelling&Software,27‐28,52‐61,2012.

Gamnitzer,U.,Karstens,U.,Kromer,B.,Neubert,R.E.M.,Meijer,H.A.J.,Schroeder,H.,andLevin,I.:Carbonmonoxide:AquantitativetracerforfossilfuelCO2?,JournalofGeophysicalResearch‐Atmospheres,111,2006.

Graven,H.D.:Impactoffossilfuelemissionsonatmosphericradiocarbonandvariousapplicationsofradiocarbonoverthiscentury,ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,112,9542‐9545,2015.

Graven,H.D.andGruber,N.:Continental‐scaleenrichmentofatmospheric14CO2fromthenuclearpowerindustry:potentialimpactontheestimationoffossilfuel‐derivedCO2,AtmosphericChemistryandPhysics,11,12339‐12349,2011.

Gurney,K.R.,Chen,Y.H.,Maki,T.,Kawa,S.R.,Andrews,A.,andZhu,Z.X.:SensitivityofatmosphericCO2inversionstoseasonalandinterannualvariationsinfossilfuelemissions,JournalofGeophysicalResearch‐Atmospheres,110,2005.

Heimann,M.andKörner,S.:TheGlobalAtmosphericTracerModelTM3,Max‐Planck‐InstitutforBiogeochemistry,Jena,2003.

IEA:InternationalEnergyAgency:Worldenergyoutlook,2012a.IEA:TechnologyRoadmap:BioenergyforHeatandPower,InternationalEnergyAgency(IEA),

2012b.

Page 35: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

224

Jones,A.R.,Thomson,D.J.,Hort,M.,andDevenish,B.:TheU.K.MetOffice'snext‐generationatmosphericdispersionmodel,NAMEIIIIn:AirPollutionModelinganditsApplicationBorrego,C.andNorman,A.L.(Eds.),XVII(Proceedingsofthe27thNATO/CCMSInternationalTechnicalMeetingonAirPollutionModellinganditsApplication),Springer,2007.

Kossoy,A.,Peszko,G.,Oppermann,K.,Prytz,N.,Klein,N.,Blok,K.,Lam,L.,Wong,L.,andBorkent,B.:StateandTrendsofCarbonPricing2015(September),WorldBank,Washington,DC.,2015.

Levin,I.,Hammer,S.,Eichelmann,E.,andVogel,F.R.:Verificationofgreenhousegasemissionreductions:theprospectofatmosphericmonitoringinpollutedareas,PhilosophicalTransactionsoftheRoyalSocietya‐MathematicalPhysicalandEngineeringSciences,369,1906‐1924,2011.

Levin,I.,Kromer,B.,Schmidt,M.,andSartorius,H.:AnovelapproachforindependentbudgetingoffossilfuelCO2overEuropeby14CO2observations,GeophysicalResearchLetters,30,2003.

Lin,J.C.,Gerbig,C.,Wofsy,S.C.,Andrews,A.E.,Daube,B.C.,Davis,K.J.,andGrainger,C.A.:Anear‐fieldtoolforsimulatingtheupstreaminfluenceofatmosphericobservations:TheStochasticTime‐InvertedLagrangianTransport(STILT)model,JournalofGeophysicalResearch‐Atmospheres,108,2003.

Manning,M.R.,Lowe,D.C.,Melhuish,W.H.,Sparks,R.J.,Wallace,G.,Brenninkmeijer,C.A.M.,andMcGill,R.C.:Theuseofradiocarbonmeasurementsinatmosphericstudies,Radiocarbon,32,37‐58,1990.

Moxley,J.M.andCape,J.N.:Depletionofcarbonmonoxidefromthenocturnalboundarylayer,AtmosphericEnvironment,31,1147‐1155,1997.

Nisbet,E.andWeiss,R.:Top‐DownVersusBottom‐Up,Science,328,1241‐1243,2010.Peylin,P.,Houweling,S.,Krol,M.C.,Karstens,U.,Rodenbeck,C.,Geels,C.,Vermeulen,A.,

Badawy,B.,Aulagnier,C.,Pregger,T.,Delage,F.,Pieterse,G.,Ciais,P.,andHeimann,M.:ImportanceoffossilfuelemissionuncertaintiesoverEuropeforCO2modeling:modelintercomparison,AtmosphericChemistryandPhysics,11,6607‐6622,2011.

Ruckstuhl,A.F.,Henne,S.,Reimann,S.,Steinbacher,M.,Vollmer,M.K.,O'Doherty,S.,Buchmann,B.,andHueglin,C.:Robustextractionofbaselinesignalofatmospherictracespeciesusinglocalregression,AtmosphericMeasurementTechniques,5,2613‐2624,2012.

Severinghaus,J.P.:StudiesoftheterrestrialO2andcarboncyclesinsanddunesgasesandinBiosphere2,Ph.D.thesis,ColumbiaUniversity,1995.

Staufer,J.,Broquet,G.,Breon,F.M.,Puygrenier,V.,Chevallier,F.,Xueref‐Remy,I.,Dieudonne,E.,Lopez,M.,Schmidt,M.,Ramonet,M.,Perrussel,O.,Lac,C.,Wu,L.,andCiais,P.:Afirstyear‐longestimateoftheParisregionfossilfuelCO2emissionsbasedonatmosphericinversion,AtmosphericChemistryandPhysicsDiscussions,2016.

Steinbach,J.,Gerbig,C.,Rodenbeck,C.,Karstens,U.,Minejima,C.,andMukai,H.:TheCO2releaseandOxygenuptakefromFossilFuelEmissionEstimate(COFFEE)dataset:effectsfromvaryingoxidativeratios,AtmosphericChemistryandPhysics,11,6855‐6870,2011.

Stephens,B.B.,Keeling,R.F.,Heimann,M.,Six,K.D.,Murnane,R.,andCaldeira,K.:TestingglobaloceancarboncyclemodelsusingmeasurementsofatmosphericO2andCO2concentration,GlobalBiogeochemicalCycles,12,213‐230,1998.

Turnbull,J.,Rayner,P.,Miller,J.,Naegler,T.,Ciais,P.,andCozic,A.:Ontheuseof14CO2asatracerforfossilfuelCO2:Quantifyinguncertaintiesusinganatmospherictransportmodel,JournalofGeophysicalResearch‐Atmospheres,114,2009.

Turnbull,J.C.,Miller,J.B.,Lehman,S.J.,Tans,P.P.,Sparks,R.J.,andSouthon,J.:Comparisonof14CO2,CO,andSF6astracersforrecentlyaddedfossilfuelCO2intheatmosphereandimplicationsforbiologicalCO2exchange,GeophysicalResearchLetters,33,2006.

vanderLaan,S.,Karstens,U.,Neubert,R.E.M.,VanderLaan‐Luijkx,I.T.,andMeijer,H.A.J.:Observation‐basedestimatesoffossilfuel‐derivedCO2emissionsintheNetherlands

Page 36: New of continuous atmospheric O transects across the and …bcc.ncc-cma.net/upload/userfiles/lecture_2_pickers_penelope_phd_th… · Anthropogenic greenhouse gas emissions from fossil

225

using14C,COand222Radon,TellusSeriesB‐ChemicalandPhysicalMeteorology,62,389‐402,2010.

Vogel,F.R.,Hammer,S.,Steinhof,A.,Kromer,B.,andLevin,I.:Implicationofweeklyanddiurnal14CcalibrationonhourlyestimatesofCO‐basedfossilfuelCO2atamoderatelypollutedsiteinsouthwesternGermany,TellusB,512‐520,2010.

Vogel,F.R.,Levin,I.,andWorthy,D.E.J.:ImplicationsforderivingregionalfossilfuelCO2estimatesfromatmosphericobservationsinahotspotofnuclearpwerplant14CO2emissions,Radiocarbon,55,1556‐1572,2013.

Weiss,R.F.andPrinn,R.G.:Quantifyinggreenhouse‐gasemissionsfromatmosphericmeasurements:acriticalrealitycheckforclimatelegislation,PhilosophicalTransactionsoftheRoyalSocietya‐MathematicalPhysicalandEngineeringSciences,369,1925‐1942,2011.

Zondervan,A.andMeijer,H.A.J.:IsotopiccharacterisationofCO2sourcesduringregionalpollutioneventsusingisotopicandradiocarbonanalysis,TellusSeriesB‐ChemicalandPhysicalMeteorology,48,601‐612,1996.