new operations on fuzzy neutrosophic soft matrices

16
New Operations On Fuzzy Neutrosophic Soft Matrices Abstract: In this paper we define some new operations on fuzzy neutrosophic soft matrices and their properties which are more functional to make theoretical studies. We finally construct a decision making method which can be applied to the problems that contain uncertainties. Keywords: Soft sets, Fuzzy Neutrosophic soft set and Fuzzy Neutrosophic soft matrices. I.R.Sumathi Department of Mathematics, Nirmala College for Women, Coimbatore, Tamilnadu, India. I.Arockiarani Department of Mathematics, Nirmala College for Women, Coimbatore, Tamilnadu, India. ISSN 2319-9725

Upload: angela-hoca

Post on 22-Jul-2016

225 views

Category:

Documents


5 download

DESCRIPTION

In this work, we rst de ne a relation on neutrosophic soft sets which allows to compose two neutrosophic soft sets. It is devised to derive useful information through the composition of two neutrosophic soft sets. Then, we examine symmetric, transitive and re exive neutrosophic soft relations and many related concepts such as equivalent neutrosophic soft set relation, partition of neutrosophic soft sets, equivalence classes, quotient neutrosophic soft sets, neutrosophic soft composition are given and their propo- sitions are discussed. Finally a decision making method on neutrosophic soft sets is presented.

TRANSCRIPT

Page 1: New Operations On Fuzzy Neutrosophic Soft Matrices

New Operations On Fuzzy Neutrosophic Soft

Matrices

Abstract: In this paper we define some new operations on fuzzy neutrosophic soft matrices and their

properties which are more functional to make theoretical studies. We finally construct a decision

making method which can be applied to the problems that contain uncertainties.

Keywords: Soft sets, Fuzzy Neutrosophic soft set and Fuzzy Neutrosophic soft matrices.

I.R.Sumathi

Department of Mathematics, Nirmala College for Women,

Coimbatore, Tamilnadu, India.

I.Arockiarani

Department of Mathematics, Nirmala College for Women,

Coimbatore, Tamilnadu, India.

ISSN 2319-9725

Page 2: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 110

1. Introduction:

In 1999, [9] Molodtsov initiated the novel concept of soft set theory which is a completely

new approach for modeling vagueness and uncertainty. In [4] Maji et al. initiated the concept

of fuzzy soft sets with some properties regarding fuzzy soft union , intersection, complement

of fuzzy soft set. Moreover in [5],[6] Maji et al extended soft sets to intuitionistic fuzzy soft

sets and Neutrosophic soft sets and the concept of Neutrosophic set was initiated by

Smarandache [11] which is a generalization of fuzzy logic and several related systems.

Neutrosophic sets and logic are the foundations for many theories which are more general

than their classical counterparts in fuzzy, intuitionistic fuzzy and interval valued frameworks.

One of the important theory of mathematics which has a vast application in science and

engineering is the theory of matrices. In [12] Yong et al. initiated a matrix representation of

fuzzy soft set and applied it in decision making problems. In [8] Manoj Bora et al introduced

the intuitionistic fuzzy soft matrices and applied in the application of medical diagnosis. In

this paper we have introduced some new operations on fuzzy neutrosophic soft matrices and

some related properties have been established.

2. Preliminaries:

Definition 2.1: [9]

Suppose U is an universal set and E is a set of parameters, Let P(U) denote the power set of

U. A pair (F, E) is called a soft set over U where F is a mapping given by F: EP(U).

Clearly, a soft set is a mapping from parameters to P(U) and it is not a set, but a

parameterized family of subsets of the universe.

Definition 2.2:[1]

A Fuzzy Neutrosophic set A on the universe of discourse X is defined as

A= 𝑥,𝑇𝐴 𝑥 , 𝐼𝐴 𝑥 ,𝐹𝐴 𝑥 , 𝑥 ∈ 𝑋 where 𝑇, 𝐼,𝐹:𝑋 → [0, 1] and 3)()()(0 xFxIxT AAA

Page 3: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 111

Definition 2.3:[1]

Let U be the initial universe set and E be a set of parameters. Consider a non-empty set A, A

E. Let P (U) denote the set of all fuzzy neutrosophic sets of U. The collection (F, A) is

termed to be the fuzzy neutrosophic soft set over U, where F is a mapping given by

F: A P(U).

Definition 2.4:[2]

Let U = { c1, c2, ………… cm} be the universal set and E be the set of parameters given by E

= {e1, e2, ……. en}. Let A E. A pair (F, A) be a Fuzzy Neutrosophic soft set over U. Then

the subset of U x E is defined by RA = { (u, e) ; eA, u fA(e)} which is called a relation

form of (fA ,E). The membership function , indeterminacy membership function and non –

membership function are written by ]1,0[: EUT

AR , ]1,0[: EUI

AR and

]1,0[: EUFAR

where ]1,0[),( euT

AR ,

]1,0[),( euIAR

and ]1,0[),( euF

AR are the

membership value, indeterminacy value and non membership value respectively of u U for

each eE.

If [(Tij , Iij , Fij)] = (Tij(ui , ej) , Iij(ui , ej) , Fij(ui , ej)) we can define a matrix

mnF

mnI

mnT

mF

mI

mT

mF

mI

mT

nF

nI

nTFITFIT

nF

nI

nTFITFIT

mxnijFijIijT

,,..............,,,,

..................................................................

,,................,,,,

,,................,,,,

,,

222111

222222222212121

111121212111111

which is called an m x n Fuzzy Neutrosophic Soft Matrix of the FNSS (fA , E) over U.

Definition 2.5:[2]

Let U = { c1, c2, ………… cm} be the universal set and E be the set of parameters given by E

= {e1, e2, ……. en}. Let A E. A pair (F, A) be a fuzzy neutrosophic soft set. Then fuzzy

neutrosophic soft set (F, A) in a matrix form as Am x n = [aij]m x n or A = [aij] , i=1,2,….m, j =

1,2, ….. n where

Page 4: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 112

A

jeif

Aj

eifi

cj

Fi

cj

Ii

cj

T

ija)1,0,0(

)(),(,)(

,

where )(

icjT

represent the membership of )(

ic

, )(

icjI

represent the indeterminacy of

)(i

c and

)(i

cj

F represent the non-membership of

)(i

c in the fuzzy neutrosophic set

)(j

eF.

Note: Fuzzy Neutrosophic soft matrix is denoted by FNSM

3. Fuzzy Neutrosophic Soft Matrices:

Definition 3.1:

Let A

ij

A

ij

A

ij FITA~~~

,,~

, B

ij

B

ij

B

ij FITB~~~

,,~

FNSMm x n . Then

a) A~

is Fuzzy neutrosophic soft sub matrix of B~

denoted by A~B

~ if

A

ijT~

B

ijT~

, A

ijI~

B

ijI~

and A

ijF~

B

ijF~

, i and j.

b) A~

is Fuzzy neutrosophic soft super matrix of B~

denoted by A~B

~ if

A

ijT~

B

ijT~

, A

ijI~

B

ijI~

and A

ijF~

B

ijF~

, i and j.

c) A~

and B~

are said to be Fuzzy neutrosophic soft equal matrices denoted by A~

= B~

if

A

ijT~

= B

ijT~

, A

ijI~

=B

ijI~

and A

ijF~

= B

ijF~

, i and j.

Definition 3.2:

If A~

= [aij] FNSMm x n , where [aij] =

)(),(,)(i

cj

Fi

cj

Ii

cj

T then

CA~

is called fuzzy

neutrosophic soft complement matrix if CA

~ = [bij]m x n where

Page 5: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 113

)(),(1,)(][i

cj

Ti

cj

Ii

cj

Fij

b

Definition 3.3:

Let A

ij

A

ij

A

ij FITA~~~

,,~

FNSMm x n . Then A~

is called

d) a A

ijT~

-universal FNSM denoted by UT= [1,0,0] if A

ijT~

= 1 , A

ijI~

= 0 and A

ijF~

= 0, i and j.

e) a A

ijI~

-universal FNSM denoted by UI = [0,1,0] if A

ijT~

= 0 , A

ijI~

= 1 and A

ijF~

= 0, i and j.

f) a A

ijF~

-universal FNSM denoted by UF= [0,0,1] if A

ijT~

= 0 , A

ijI~

= 0 and A

ijF~

= 1, i and j.

Definition 3.4:

Let A

ij

A

ij

A

ij FITA~~~

,,~

, B

ij

B

ij

B

ij FITB~~~

,,~

FNSMm x n. Then FSNM C

ij

C

ij

C

ij FITC~~~

,,~

is

called

a) Union of A~

and B~

denoted by A~

B~

if C

ijT~

= max (A

ijT~

, B

ijT~

) , C

ijI~

= max (A

ijI~

, B

ijI~

)

and C

ijF~

= min (A

ijF~

, B

ijF~

) i and j.

b) Intersection of A~

and B~

denoted by A~

B~

if C

ijT~

= min (A

ijT~

, B

ijT~

) ,

C

ijI~

= min (A

ijI~

, B

ijI~

) and C

ijF~

= max (A

ijF~

, B

ijF~

) i and j.

Definition 3.5:

Let A

ij

A

ij

A

ij FITA~~~

,,~

, B

ij

B

ij

B

ij FITB~~~

,,~

FNSMm x n. Then FSNM C

ij

C

ij

C

ij FITC~~~

,,~

is

called

a) The “*” (product) operation of A~

and B~

denoted by C~

= A~

* B~

if C

ijT~

= A

ijT~

. B

ijT~

,

C

ijI~

= A

ijI~

. B

ijI~

and C

ijF~

= A

ijF~

+ B

ijF~

– A

ijF~

. B

ijF~

i and j.

Page 6: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 114

b) The “~

” (probabilistic sum) operation of A~

and B~

denoted by C~

= A~

~

B~

if

C

ijT~

= A

ijT~

+ B

ijT~

– A

ijT~

. B

ijT~

, C

ijI~

= A

ijI~

+ B

ijI~

–A

ijI~

. B

ijI~

and C

ijF~

= A

ijF~

. B

ijF~

i and j.

c) The “@” (Arithmetic mean) operation of A~

and B~

denoted by C~

= A~

@ B~

if

2

~~

~B

ij

A

ijC

ij

TTT

, 2

~~

~B

ij

A

ijC

ij

III

and 2

~~

~B

ij

A

ijC

ij

FFF

i and j.

d) The “@W

” (weighted Arithmetic mean) operation of A~

and B~

denoted by

C~

= A~

@W

B~

if 21

~

2

~

1~

ww

TwTwT

B

ij

A

ijC

ij

, 21

~

2

~

1~

ww

IwIwI

B

ij

A

ijC

ij

and

21

~

2

~

1~

ww

FwFwF

B

ij

A

ijC

ij

i and j.

e) The “$” (Geometric mean) operation of A~

and B~

denoted by C~

= A~

$ B~

if

B

ij

A

ij

C

ij TTT~~~

,

B

ij

A

ij

C

ij III~~~

and

B

ij

A

ij

C

ij FFF~~~

i and j.

f) The “$W

” (Weighted geometric mean) operation of A~

and B~

denoted by C~

= A~

$W

B~

if

2121

1

~~~ wwwB

ij

wA

ij

C

ij TTT

,

2121

1

~~~ wwwB

ij

wA

ij

C

ij III

and

2121

1

~~~ wwwB

ij

wA

ij

C

ij FFF

i and j.

g) The “&” (Harmonic mean) operation of A~

and B~

denoted by C~

= A~

& B~

if

B

ij

A

ij

B

ij

A

ijC

ijTT

TTT ~~

~~

~

2

,B

ij

A

ij

B

ij

A

ijC

ijII

III ~~

~~

~

2

and B

ij

A

ij

B

ij

A

ijC

ijFF

FFF ~~

~~

~

2

i and j.

h) The “&W

” (Weighted Harmonic mean) operation of A~

and B~

denoted by C~

= A~

&W

B~

Page 7: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 115

if B

ij

A

ij

C

ij

T

w

T

w

wwT

~2

~1

21~

,B

ij

A

ij

C

ij

I

w

I

w

wwI

~2

~1

21~

and B

ij

A

ij

C

ij

F

w

F

w

wwF

~2

~1

21~

i and j.

Proposition 3.6:

Let A

ij

A

ij

A

ij FITA~~~

,,~

, B

ij

B

ij

B

ij FITB~~~

,,~

FNSMm x n , then

(i) ( A~

B~

) ~

( A~

B~

) = A~

~

B~

(ii) ( A~

B~

) * ( A~

B~

) = A~

* B~

(iii) ( A~

B~

) @ ( A~

B~

) = A~

@ B~

(iv) ( A~

B~

) $ ( A~

B~

) = A~

$ B~

(v) ( A~

B~

) & ( A~

B~

) = A~

& B~

(vi) ( A~~ B

~) @ ( A

~ * B

~) = A

~ @ B

~

Proof:

(i) ( A~

B~

) ~

( A~

B~

) = [min {A

ijT~

, B

ijT~

} , min {A

ijI~

, B

ijI~

}, max {A

ijF~

, B

ijF~

}]~

[max {A

ijT~

, B

ijT~

} , max {A

ijI~

, B

ijI~

}, min {A

ijF~

, B

ijF~

}]

= {[min {A

ijT~

, B

ijT~

}+ max {A

ijT~

, B

ijT~

}– min {A

ijT~

, B

ijT~

}. max {A

ijT~

, B

ijT~

}] ,

[min {A

ijI~

, B

ijI~

} + max {A

ijI~

, B

ijI~

}– min {A

ijI~

, B

ijI~

} . max {A

ijI~

, B

ijI~

}],

[max {A

ijF~

, B

ijF~

}. min {A

ijF~

, B

ijF~

}]}

= {(A

ijT~

+ B

ijT~

– A

ijT~

. B

ijT~

,A

ijI~

+ B

ijI~

–A

ijI~

. B

ijI~

A

ijF~

. B

ijF~

)} [since min (a,b) + max(a,b) = a+ b

& min(a,b) . max(a,b) = a.b]

= A~

~

B~

Page 8: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 116

Similarly we can prove the other results.

Example 3.7:

Let A

ij

A

ij

A

ij FITA~~~

,,~

, B

ij

B

ij

B

ij FITB~~~

,,~

FNSMm x n where

22)2.0,4.0,7.0()3.0,7.0,5.0(

)5.0,6.0,4.0()2.0,4.0,3.0(~

x

A

and 22)4.0,5.0,3.0()2.0,6.0,7.0(

)2.0,5.0,6.0()3.0,5.0,4.0(~

x

B

22)4.0,4.0,3.0()3.0,6.0,5.0(

)5.0,5.0,4.0()3.0,4.0,3.0(~~

x

BA

and 22)2.0,5.0,7.0()2.0,7.0,7.0(

)2.0,6.0,6.0()2.0,5.0,4.0(~~

x

BA

22

)08.0,7.0,79.0()06.0,88.0,85.0(

)1.0,8.0,76.0()06.0,7.0,58.0(~~~~~

x

BABA

= A~

~

B~

Definition 3.8:

Let A

ij

A

ij

A

ij FITA~~~

,,~

FNSMm x n

a) The necessity operation of A~

denoted by A~

and is defined as

A

ij

A

ij

A

ij TITA~~~

1,,~

i and j.

b) The possibility operation of A~

denoted by A~

and is defined as

A

ij

A

ij

A

ij FITA~~~

,1,~

i and j.

a) The falsity operation of A~

denoted by A~

and is defined as

A

ij

A

ij

A

ij FIFA~~~

,,1~

i and j.

Proposition 3.9:

Let A

ij

A

ij

A

ij FITA~~~

,,~

FNSMm x n , then

(i) [(CA

~)]

C = A

~

Page 9: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 117

(ii) [(CA

~)]

C = A

~

(iii) [(CA

~)]

C = A

~

(iv) A~

= A~

(v) A~

= A~

(vi) A~

= A~

(vii) A~

= A~

(viii) A~

= A~

(ix) A~

= A~

(x) A~

= A~

Proof:

(i) [(CA

~)]

C =[

A

ij

A

ij

A

ij TIF~~~

,1, ]

C =

CA

ij

A

ij

A

ij FIF~~~

1,1, = A

ij

A

ij

A

ij FIF~~~

,,1 = A

~

Similarly we can prove the other results.

Example 3.10:

Let A

ij

A

ij

A

ij FITA~~~

,,~

FNSMm x n where

22)2.0,9.0,7.0()3.0,3.0,5.0(

)5.0,7.0,4.0()2.0,4.0,3.0(~

x

A

then 22)7.0,1.0,2.0()5.0,7.0,3.0(

)4.0,3.0,5.0()3.0,6.0,2.0(~

x

CA

22)8.0,1.0,2.0()7.0,7.0,3.0(

)5.0,3.0,5.0()8.0,6.0,2.0(~

x

CA

[ 22)2.0,9.0,8.0()3.0,3.0,7.0(

)5.0,7.0,5.0()2.0,4.0,8.0(]]

~[

x

CCA

= A~

.

Page 10: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 118

Proposition 3.11:

Let A

ij

A

ij

A

ij FITA~~~

,,~

, B

ij

B

ij

B

ij FITB~~~

,,~

FNSMm x n , then

(i) [ A~

B~

] = A~ B

~

(ii) [ A~

B~

] = A~ B

~

(iii) [[CA

~~

CB~

]]C = A

~ * B

~

(iv) [[CA

~*

CB~

]]C = A

~ ~

B~

(v) [ [CA

~~

CB~

]]C

= ( A~

* B~

)

(vi) [ [CA

~*

CB~

]]C

= ( A~

~

B~

)

(vii) [ [CA

~~

CB~

]]C = A

~ * B

~

(viii) [ [CA

~*

CB~

]]C = A

~ ~

B~

(ix) [ A~

@ B~

] = A~

@ B~

(x) [ A~

@ B~

] = A~

@ B~

(xi) [ A~

@ B~

] = A~

@ B~

Proof:

(i) [ A~

B~

] = [ min {A

ijT~

, B

ijT~

} , min {A

ijI~

, B

ijI~

}, max {A

ijF~

, B

ijF~

}]

=[ min {A

ijT~

, B

ijT~

} , min {A

ijI~

, B

ijI~

}, 1 – min {A

ijT~

, B

ijT~

}] ---------(1)

A

ij

A

ij

A

ij TITA~~~

1,,~

,

B

ij

B

ij

B

ij TITB~~~

1,,~

A~ B

~ = [min {

A

ijT~

, B

ijT~

} , min {A

ijI~

, B

ijI~

}, max {1–A

ijT~

, 1–B

ijT~

}]

=[ min {A

ijT~

, B

ijT~

} , min {A

ijI~

, B

ijI~

}, 1 – min {A

ijT~

, B

ijT~

}] ----------(2)

Page 11: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 119

From (1) & (2) we have [ A~

B~

] = A~ B

~. Similarly we can prove the other results.

Definition 3.12:

Let A

ij

A

ij

A

ij FITA~~~

,,~

, B

ij

B

ij

B

ij FITB~~~

,,~

FNSMm x n . Then the operation „‟(Implication)

denoted by A~ B

~ is defined as

A~ B

~ = [(max (

A

ijF~

, B

ijT~

) , max(A

ijI~

1,

B

ijI~

), min (A

ijT~

, B

ijF~

)].

Proposition 3.13:

Let A

ij

A

ij

A

ij FITA~~~

,,~

, B

ij

B

ij

B

ij FITB~~~

,,~

, C

ij

C

ij

C

ij FITC~~~

,,~

FNSMm x n. Then

(i) [ A~

B~

] C~

= [ A~C

~] [ B

~C

~]

(ii) A~

CA~

=CA

~

(iii) [ A~

B~

] C~

[ A~C

~] [ B

~C

~]

(iv) [ A~ B

~] C

~ [ A

~C

~] [ B

~C

~]

(v) [ A~~ B

~] C

~ [ A

~C

~]~

[ B~C

~]

(vi) [ A~

* B~

] C~

[ A~C

~] * [ B

~C

~]

(vii) A~ [ B

~~ C

~] [ A

~ B

~]~

[ A~C

~]

(viii) A~ [ B

~* C

~] [ A

~ B

~]* [ A

~C

~]

Proof:

[ A~

B~

] = [min {A

ijT~

, B

ijT~

} , min {A

ijI~

, B

ijI~

}, max {A

ijF~

, B

ijF~

}]

[ A~

B~

] C~

= [max((max (A

ijF~

, B

ijF~

)),C

ijT~

) , max((A

ijI~

min(1,

B

ijI~

)),C

ijI~

),

min((min (A

ijT~

, B

ijT~

))C

ijF~

)]. -------(1)

Page 12: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 120

A~C

~ = [(max (

A

ijF~

, C

ijT~

) , max(A

ijI~

1,

C

ijI~

), min (A

ijT~

, C

ijF~

)].

B~C

~ = [(max (

B

ijF~

,C

ijT~

) , max(B

ijI~

1,

C

ijI~

), min (B

ijT~

,C

ijF~

)].

[ A~C

~] [ B

~C

~] = [max{(max (

A

ijF~

, C

ijT~

),(max (B

ijF~

,C

ijT~

)},

max { max(A

ijI~

1,

C

ijI~

), max(B

ijI~

1,

C

ijI~

)},

min {min (A

ijT~

, C

ijF~

), min (B

ijT~

,C

ijF~

)}]

= [max((max (A

ijF~

, B

ijF~

)),C

ijT~

) , max((A

ijI~

min(1,

B

ijI~

)),C

ijI~

),

min((min (A

ijT~

, B

ijT~

))C

ijF~

)]. -------(2)

From (1) & (2) [ A~

B~

] C~

= [ A~C

~] [ B

~C

~]

Similarly we can prove the other results.

Example 3.14:

Let A

ij

A

ij

A

ij FITA~~~

,,~

, B

ij

B

ij

B

ij FITB~~~

,,~

, C

ij

C

ij

C

ij FITC~~~

,,~

FNSMm x n where

22)2.0,4.0,7.0()3.0,7.0,5.0(

)5.0,6.0,4.0()2.0,4.0,3.0(~

x

A

, 22)4.0,5.0,3.0()2.0,6.0,7.0(

)2.0,5.0,6.0()3.0,5.0,4.0(~

x

B

and

22)4.0,4.0,5.0()3.0,7.0,6.0(

)6.0,5.0,4.0()6.0,4.0,3.0(~

x

C

[ A~~ B

~] C

~ = 22

)4.0,4.0,5.0()3.0,7.0,6.0(

)6.0,5.0,4.0()58.0,4.0,3.0(

x

……………. (1)

[ A~C

~]~

[ B~C

~] 22

)12.0,8.0,75.0()09.0,91.0,84.0(

)24.0,75.0,7.0()12.0,8.0,51.0(

x

….………… (2)

Page 13: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 121

From (1) and (2) [ A~~ B

~] C

~ [ A

~C

~]~

[ B~C

~]

4. Application Of Weighted Arithmetic Mean (W

AMA~

) Of Fuzzy Neutrosophic Soft

Matrix In Decision Making:

In this section we define arithmetic mean( AMA~

) and weighted arithmetic mean(W

AMA~

) of

fuzzy neutrosophic soft matrix.

Definition 4.1:

Let A

ij

A

ij

A

ij FITA~~~

,,~

FNSMm x n , then the weighted arithmetic mean of fuzzy

neutrosophic soft matrix A~

denoted by W

AMA~

is defined as,

n

j

j

n

j

A

ijj

n

j

j

n

j

A

ijj

n

j

j

n

j

A

ijj

W

w

Fw

w

Iw

w

Tw

AAM

1

1

~

1

1

~

1

1

~

,,~

and wj for j = 1, 2, …n.

Definition 4.2:

Let A

ij

A

ij

A

ij FITA~~~

,,~

FNSMm x n , then the arithmetic mean of fuzzy neutrosophic soft

matrix A~

denoted by AMA~

is defined as ,

n

F

n

I

n

T

A

n

j

A

ij

n

j

A

ij

n

j

A

ij

AM

1

~

1

~

1

~

,,~

when weights are

equal.

Definition 4.3:

The score value of Si for uiU is defined as iiii FITS ..

Algorithm:

1. Construct an FNSS (F,A) over U

2. Construct the Fuzzy Neutrosophic soft matrix of (F,A)

3. Compute arithmetic mean AMA~

and weighted arithmetic mean W

AMA~

Page 14: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 122

4. Compute the score value of Si for AMA~

andW

AMA~

5. Find Sj = max(Si), then we conclude that ui is suitable.

Example:

Suppose there are five suppliers U={u1, u2, u3, u4, u5} whose core competencies are evaluated

by means of parameters E = A = {e1, e2, e3} where e1 = level of technology innovation, e2 =

the ability of the management and e3 = level of service. Suppose a manufacturing company

which wants to select the best supplier according to the core competencies. A fuzzy

neutrosophic soft set is given by

(F,A) =

{{F(e1) = {(u1,0.5,0.6,0.4), (u2,0.9,0.4,0.1), (u3,0.6,0.4,0.2), (u4,0.6,0.4,0.2), (u5,0.4,0.5,0.3)}

{F(e2) = {(u1,0.6,0.7,0.2), (u2,0.5,0.7,0.1), (u3,0.5,0.4,0.4), (u4,0.8,0.6,0.2), (u5,0.6,0.4,0.2)}

{F(e3) = {(u1,0.5,0.6,0.2), (u2,0.4,0.8,0.3), (u3,0.7,0.6,0.2), (u4,0.6,0.4,0.4), (u5,0.5,0.5,0.1)}}

The matrix representation for the above is given as

)1.0,5.0,5.0()2.0,4.0,6.0()3.0,5.0,4.0(

)4.0,4.0,6.0()2.0,6.0,8.0()2.0,4.0,6.0(

)2.0,6.0,7.0()4.0,4.0,5.0()2.0,4.0,6.0(

)3.0,8.0,4.0()1.0,7.0,5.0()1.0,4.0,9.0(

)2.0,6.0,5.0()2.0,7.0,6.0()4.0,6.0,5.0(

~A

)2.0,4667.0,5.0(

)2667.0,4667.0,6667.0(

)2667.0,4667.0,6.0(

)1667.0,6333.0,6.0(

)2667.0,6333.0,5333.0(

~AMA

If we prefer to give weights 0.8, 0.1 and 0.1 on the parameters e1, e2 and e3 respectively then

the weighted arithmetic mean is given by

Page 15: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 123

27.0,49.0,43.0(

)22.0,42.0,62.0(

)22.0,42.0,6.0(

)12.0,47.0,81.0(

)36.0,61.0,51.0(

~W

AMA

The score of

4067.0

4755.0

4944.0

3664.0

~

0.5422

AMA

and the score of

2977.0

5276.0

5076.0

2904.0

~0.7536

W

AMA

.

Form the above results , it is clear that if we give equal preference for the parameters , we

have u4 is the best alternative and when we give more preference on level of technology

innovation, then we have same u2 is the best alternative.

5. Conclusion:

Soft set theory is a general method for solving problems of uncertainty. In this paper, we

define Fuzzy Neutrosophic soft matrices and their operations which are more functional to

improve several new results. Finally we have given one application for decision making

based on arithmetic mean.

Page 16: New Operations On Fuzzy Neutrosophic Soft Matrices

December, 2014 www.ijirs.com Vol3 Issue 12

International Journal of Innovative Research and Studies Page 124

References:

1. I.Arockiarani,I.R.Sumathi & J.Martina Jency “Fuzzy Neutrosophic soft topological

spaces”IJMA – 4 (10) 2013., 225-238.

2. I.Arockiarani and I.R.Sumathi, A fuzzy neutrosophic soft Matrix approach in

decision making, JGRMA, Vol 2, No.2, 14-23, Feb 2014.

3. Chetia.B,Das.P.K, “Some results of intuitionistic fuzzy soft matrix theory”Advances

in applied science research 3(1) : 412 – 423 (2012).

4. Maji.P.K, Biswas.R and Roy.A.R , “Fuzzy soft set” The journal of fuzzy

mathematics, Vol 9(3), pp – 589 - 602 (2001).

5. Maji.P.K, Biswas.R and Roy.A.R , “Intuitionistic fuzzy soft sets” Journal of fuzzy

mathematics, 12, pp - 669 – 683 (2004).

6. Pabitra Kumar Maji , Neutrosophic soft set , Annals of Fuzzy Mathematics and

Informatics,Volume 5, No.1, pp.157-168 (2013).

7. Manash Jyoti Borah, Tridiv Jyotic Neog, Dusmenta Kumar Sut , “Fuzzy soft matrix

theory and its decision making” IJMER Vol.2.,pp – 121 – 127 (2012).

8. Manoj Bora, Banashree Bora, Tridiv Jyotic Neog, Dusmenta Kumar Sut,

“Intuitionistic fuzzy soft matrix theory and its application in medical diagnosis”,

Annals of Fuzzy Mathematics and Informatics,Volume x, No.x, pp.1 - xx (2013).

9. Molodtsov D., “Soft set theory first results” , Computer and mathematics with

applications, 37 ,pp- 19 – 31(1999).

10. F.Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference

On Neutrosophy, Neutrosophic Logic, Set, Probability and Statistics University of

New Mexico, Gallup, NM 87301, USA (2002).

11. F.Smarandache, Neutrosophic set, a generialization of the intuituionistics fuzzy sets,

Inter.J.Pure Appl.Math.24 287 – 297. (2005).

12. Yong Yang and Chenli Ji., “Fuzzy soft matrices and their application” part I, LNAI

7002; pp:618 – 627(2011).