new spin probes for biochemical applications elena bagryanskaya n. n.voroztsov novosibirsk institute...

40
New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography Center, SB RAS, Novosibirsk, Russia

Upload: dortha-johnston

Post on 31-Dec-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

New Spin Probes for Biochemical Applications

Elena Bagryanskaya

N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS

International Tomography Center, SB RAS, Novosibirsk, Russia

Page 2: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Outline

- application of nitroxides

- pH-sesitive high stable sterically substituted nitroxides

- new spirocyclohexane-substituted nitroxides for PELDOR measurements

- nitronyl nitroxides as a spin probes for NO

Page 3: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Spin probes - nitroxide and trityl radicals

• Structure and function of proteins using EPR and site-directed spin labeling

• pH-sensitive probes• spin probes for nitric oxide • oxymetry• redox probes• antioxidants, etc…

Page 4: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Trityl

• Sharp EPR Singlet

• Biostability: relatively stable – hours

• EPR resolution: high, LW < 100 mG

• Oxygen sensitivity: High

• Main uses for EPR, EPR oximetryand Overhauser-enhanced MRI.

Nitroxide

• Moderately broad EPR triplet;

• Biostability: easily reduced

• EPR resolution: relatively low

• Oxygen sensitivity: relatively low;

• Multiple use as redox status, pH and ROS probes as well as spin labeling agents and antioxidant, etc

Trityl radicals Versus Nitroxide radicals

S

S S

S

D3CD3C

CD3

CD3

OO

C3

O

OH

H

N

NO

ATI

H2NNH

NO

H2N+ H+

– H+

ATIH+

Page 5: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

What is the pH- sensitivity of nitroxides?

349 350 351 352 353Magnetic field/ mT

aN

NR

NRH+

pH 7.06

pH 4.21

pH 2.56

Observed HFI constants (aN) are pH- dependent

4 5 6 7 8 9 10

14.4

14.6

14.8

15.0

15.2

15.4

15.6

15.8

16.0

a N, G

pH

pKa

Ref.: V.Khramtsov, L. Weiner, I. Grigorjev, Volodarsky, Chem. Phys. Lett. 1982

N

N

O

N

NH

O

H++pKa

Page 6: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Main problem for in vivo application:

reduction of nitroxides to diamagnetic (EPR-silent) compounds

Spin probes

Synthesis of sterically substituted nitroxides with low reduction rate

Incapsulation of nitroxide radicals into nanocapsules and liposomes

6

The ways to overcome problem:

Page 7: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Incapsulation of spin probes in liposomes

N

N

N

O

SNH

NHO

HOOC

OH2N

COOH

NR2Gramicidin А

Woldman, Ya.Y.; Semenov, S.V., Bobko, A.A.; Kirilyuk I.A.; Polienko, J.F.; Voinov, M.A.; Bagryanskaya, E.G.; Khramtsov, V.V. The Analyst, 2009, 134, 904 – 910.

Reduction of nitroxide in rat homogenate of heart tissue with addition of 10 мМ succinate

NR2 in liposome

Free NR2

Page 8: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Reduction of nitroxide in the presence of cucurbit[7]urile

AMP=0.5mM; [Asc ] = 2.5 mМ,

I. Kirilyuk, D. Polovyanenko, S. Semenov, I. Grigor’ev, O. Gerasko, V. Fedin, E. Bagryanskaya, J. Phys. Chem. B 2010, 114, 1719–1728.

N N

O

N

N

O

N

NN N

N

O

N

O

N N

O

N

O

N

N

O

N

O

N N

N N

O

N

O

N

N

O

N

O

N N

N N

O

O

NN

N N

O

O

n=5-8,10

=N

N

NH2

O

N

O

NH2

N

O

OH

AMP ATIHMP

N

N

O

MTI

N

N

NH2

OH

N

OH

NH2

AMP-H ATI-H

N

O

N

TAMP

NR

+ CB 1:2

+ CB 1:4

AMP (kAMPH+= 0.320 ±0.020 M-1s-1;)AMP/CB7 = 1:1 (kobs= 0.097 ±0.008 M-1s-1)AMP/CB7 = 1:2 (kobs= 0.040 ±0.006 M-1s-1)AMP/CB7 = 1:10 (kobs= 0.020 ±0.004 M-1s-1)

Page 9: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Nitroxides radicals with high stability towards reduction

N

N

ON

N

O

0.027 s-1 0.0009 s-1

L. Marx, R. Chiarelli, T. Guiberteau and A. Rassat,

J. Chem. Soc. Perkin Trans. 1, 2000, 1181-1182.

The reduction rates

0 5 10 15 20 25 30

10

20

30

40

50

[R],

M

Time, min

Nitroxide reduction in rat’s blood

N

N

H2N

O

N

N

N

OEt

Et N

N

N

OEt

Et

Et

Et

N

N

OEt

Et

Et

EtN

N

O

I.A.Kirilyuk, A.A.Bobko, I.A.Grigor’ev, V.V. Khramtsov,

Org.Biomol.Chem., 2004, 2, 1025

Page 10: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

0,0

0,2

0,4

0,6

0,8

k,

M-1s-1

N

N

O

N

N

O

N

N

O

N

N

OEt

Et N

N

On-Bu

n-BuN

N

O

Et

Et

N

N

O

Et

Et

N

N

OEt

Et

Et

Et

Reduction rate constants imidazollidine nitroxides with acrobat

NR + Asc- → NR-H + Asc-•

KNR

Page 11: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

0,0

0,5

5,5

k, M

-1s-1

0.0050.02

0,0

0,5

5,5

k, M

-1s-1

NO

COOHNO

COOH

N

HO

ON

HO

O

N

N

O

N

N

O

N

N

O

Comparative reduction rate constants of imidazoline and imidazolidine nitroxides with acrobat

N

N

O

Page 12: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

NH

O

N

N

OHOH CO2H

N

N

O CO2Me

OC((CH2)2CO2H)2

CO2H CO2Me

NH4OAc

NaOH

2 3 4 5 6 7 8 9 10 11

14,0

14,5

15,0

15,5

a N, G

pH

pK = 6.1kred = 0.04

N

N

O CO2Na

CO2Na

N

N

O CO2Na

pK = 6.3kred = 0.85

3450 3460 3470 3480 3490 3500 3510

Field, G

Imidazolidine nitroxides

ATI

Page 13: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

N

N

O

N

N

O

N

N

O

N

N

O

N

N

CD2

CD2

D2C

D2C

O

N

N

O

EPR spectra of imidazolidine nitroxides

A A Bobko, I A Kirilyuk, N P Gritsan, D N Polovyanenko, I A Grigor’ev, V V Khramtsov, E G Bagryanskaya Applied Magnetic Resonance (2010) 39 (4), 437-451

Quantum chemical calculation Gaussian-983 B3LYP/6-31G

Page 14: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

High stable hydrophilic pH-sensitive spin probe with pK 6.3

3460 3470 3480 3490 3500 3510

Magnetic field, G

pH 6.4

N

N

OH CO2-

N

N

OH CO2-

HH+

N

NH3CD2C

H3CD2C CD2CH2CO2H

D3C

OD

CD3

NH

OH3CD2C

H3CD2COH

N

NH3CD2C

H3CD2C CD2CH2CO2HO

CD3

Page 15: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

15

PELDOR measurements

are possible only at T<77 K

τ τ

π/2 π

πT

νA

νB

V(τ)V(T)

τ1 τ1

τ τ

π/2 π

πT

V(τ)V(T) νA

νB

N

O

SS

O

O

N

O

SS

Protein

+ Protein-SH

Спиновая меткаMTS

Метка в боковой цепи

PELDOR measurements of distances in proteins

Page 16: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Okazaki, S.; Mannan, M. A.; Sawai, K.; Masumizu, T.; Miura, Y.; Takeshita, K. Free Rad. Res., 2007, 41(10), 1069-1077.Kinoshita, Yu.; Yamada, K.; Yamasaki, T.; Sadsue, H.; Sakai, K.; Utsumi, H. Free Rad. Res. 2009, 43(6), 565-571.

Piperidine nitroxides with spirocyclic moiety in α-carbons

N

O

hydroxy-DICPO

OH

HO OH

N

O

oxo-DICPO

O

HO OH

N

O

O

NH2

Carbamoyl-PROXYL

Reduction in liver homogenate of mice

Page 17: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Piperidine nitroxides with spirocyclic moiety as spin labels

N

O

SS

OO

MTSSL

Kathirvelu, V.; Smith, C.; Parks, C.; Mannan, M. A.; Miura, Y.; Takeshita, K.; Eaton S. S.; G. Eaton, R. Chem. Commun. 2009, 454–456.

40 80 120 160 200

5,6

5,8

6,0

6,2

6,4

6,6

oxo-DICPO

lg[1

/Tm(s

–1)]

T, K

MTS

N

O

O

HO OH

•Measurements of distances at nitrogen temperatures•Higher stability in reduction media

Page 18: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

NO

COOH

1NO

CONH2

2NO

CH2OH

3NO

CN

4NO

COOH

5

NO

CONH2

6NO

CN

7

NC

NO

COOH

8

HOOC

NO

CONH2

9

HOOC

NO

CONH2

10

NO

COOH

1tNO

CONH2

2tNO

CH2OH

3tNO

CN

4tNO

COOH

5t

NO

CONH2

6tNO

CN

7t

NC

NO

COOH

8t

HOOC

NO

CONH2

9t

HOOC

New 2,5-spirocyclohexane-substituted nitroxides

Page 19: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

3460 3470 3480 3490 3500

1,1 Гс

3,3 Гс

4,5 Гс

Гс

√g-фактор(±0.001%)

aN, Гс

(±0.3%)1 2,00581 15,962 2,00586 15,783 2,00584 16,055 2,00584 16,086 2,00586 15,987 2,00590 14,838 2,00581 15,989 2,00598 15,80

19

3490 3500 3510 3520 3530 3540Гс

NO

CONH2

6

NO

CONH2

10

NO

CONH2

6t

NO

COOH

1

EPR spectra of spirocyclohexane-substituted nitroxides

Page 20: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

50 100 150 2005,0

5,5

6,0

6,5

7,0

50 100 150 2002,0

2,5

3,0

3,5

4,0

4,5

0 2 4 6 8 10 12

Lo

g[1

/Tm(s

-1)]

T(K)

a) b)

Lo

g[1

/T1(s

-1)]

T(K)

9

Spi

n ec

ho in

tens

ity

time (s)

MTSSL

N

S

O

SO O

MTSSL

N

OH

O9

Comparison of electron spin relaxation times T1 (b) and Tm (a) of spirocyclohexane-substituted nitroxide and MTSSL

I. Kirilyuk, Y.F.Polienko, O.Krumkacheva, R.Strizhakov, Y. Gatilov, I. Grigorjev, E.Bagryanskaya, J.Org.Chem., 2012, doi org/10.1021/jo301235j.

T2 and T1 of new nitroxides allow measurements of distances in proteins at nitrogen temperatures using PELDOR

Page 21: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

342 343 344 345 346 347 348 1215 1216 1217 1218 1219 1220 1221

X-band

Magnetic field / mT

1213

Magnetic field / mT

Q-band13

12

N

O

SS

OO

12

N

S

O

S

HN

NH

COOH

O

O

COOHH2N13

EPR spectra of spirocyclohexane-substituted spin labels

Page 22: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

0,1 М carbonate buffer [NR] - 0,5–0,75 mM [AscH–] =100 mМ; [GSH]= 50 mМ

22

√N √Nt

1 7 1t 225 7,4 5t 9,78 7,7 8t 203 9 3t 259 13 9t 336 18 6t 302 22 2t 58

12510–2 M–1·s–1 0 1 2 3 4 5 6

0,01

0,1

мМ

Время, мин

pH 7.2

NO

COOH

1

NO

CONH2HOOC

9

NO

CONH2

10NO

DICPO

Time, min

Reduction of 2,5-spirocyclohexasubstituted nitroxides

Page 23: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

N

COOH

RR

RR

O

HOOC

N

COOH

RR

RR

O

H2NOC

N

COOH

RR

RR

O

N

CONH2

RR

RR

O

N

CONH2

RR

RR

O

N

COOH

RR

RR

O

N RR

RR

O

HO0

20

40

60

80

100

120k II

10–

2 M–

1 s–1

R+R=(CH2)

5

R=Me

N

OH

O

Reduction rate constant of nitroxides by ascorbic acid

The stability of 2,5-spirocyclohexane –substituted nitroxides is more that three times higher that their tetramethylated analogs and ~10–15 higher than 2,5-spirocyclohexane piperidine

I. Kirilyuk, Y.F.Polienko, O.Krumkacheva, R.Strizhakov, Y. Gatilov, I. Grigorjev, E.Bagryanskaya, J.Org.Chem., 2012, doi org/10.1021/jo301235j.

Page 24: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Role of nitric oxide (II).

Page 25: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Akaike T. et al.Biochemistry, 1993, 32,

827.

Nitric oxide detection using EPR of nitronyl nitroxide

N

N

O

O

N

N

OPTIO PTI

NO

–NO2

Problems: toxicity and fast reduction in vivo

Page 26: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Nitric oxide detection using NMR

N

N

O

O

N

N

O

F

F

F

F

N

N

O

OH

F

F

N

N

OH

F

F

[H][O] [H][O]

NN• IN•

NNH INH

NO

Bobko A.A., Bagryanskaya E.G. Reznikov V, Kolosova N. Khramtsov V.V. Free Rad. Biol. & Med., 2004, 36 (2), 248–258 , BBRC, 330 (2005) 367–370.

N

N

O

O

N

N

O

F

F

F

F

N

N

O

OH

F

FN

N

OH

F

F

[H][O] [H][O]

NN• IN•

NNH INH

NO

19F NMR

-109.6 -109.8 -111.0 -111.2 -111.4

Chemical shift / ррм

Page 27: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

NNIN

•Ration EPR signal intensities s of NN and IN should reflect nitric oxide concentration in vivo.

•EPR tomography could give informnation about NN and IN distribution

New low toxic hydrophilic nitronyl nitroxides

N

N

NH

NO

ON

N

NH

NO

ONN1 NN2

If it is possible to use NN1 and NN2 in vivo as nitric oxide spin probes using EPR tomography?

N

NO

ON

N

O

+ NO

– NO2NH

N

NH

N

Page 28: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

0 4 8 12 16 20 240

2

4

6

8

10 NN1 + AscH– (pH 7,1)

0,01 + 0,01 мM

M

Время, мин

0,01 + 0,002 мM

Stability of nitronyl nitroxides in model conditions

NN1 k = (1,2±0,1)·103 M–1·с–1

NN2 k = (1,4±0,1)·103 M–1·с–1

The reduction rate constants of NN1 and NN2 by ascorbic acid are high and are close to the same for

other NNR

N

N

NH

NO

ON

N

NH

NO

ONN1 NN2

Time, min

Page 29: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

0,0 0,4 0,8 1,2 1,6 2,0 2,4 2,8 3,20,01

0,1

1

NN2

мM

Время, мин

NN1–2 в цельной крови

NN1

29

NN1 kobs = (4±1)·103 M–1·s–1

NN2 kobs = (14,3±0,3)·103 M–1·s–1

The reduction rate constants of NN1 and NN2 in blood are high at low NNR concentration and are

close to the same for other NNR

N

N

NH

NO

ON

N

NH

NO

ONN1 NN2

Stability of nitronyl nitroxides in blood of rats

Time, min

Page 30: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

0 2 4 6 8 10 12 14 16 180,0

0,2

0,4

0,6

0,8

1,0 Plasma Eritrocites

(1:4 dilution) Blood

Time, min

P(NN1) = 0,85

30

NN1 reduction in blood and it’s component: plasma and

erytrocytes

kкр = 4·10–3 с–1

kэр = 1.1·10–3 с–1 ≈ 4kкр

NN1 penetrate into cells and are reduced in erythrocytes

Coefficient of distribution

octanol/waterwater

octanol

N

N

NH

NO

O

Penetration of NNR into cells

Page 31: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

0 15 30 45 60 75 90 1050,0

0,1

0,2

0,3mМ

Time, min

350 360 370 380 390

31

Fast accumulation of NN1 in mice bladder

Typical EPR spectrum detected during EPR

tomography measurements

Pharmacokinetics of NN1in vivo (mice)

EPR tomography of mouse

Page 32: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Nitric oxide expression in vivo decreases NNR concentration, which can be determined by reaction of NNR with NO as well as other physiological processes. INR was not detected, probably due to fast reduction.

0 15 30 45 60 75 90 1050,0

0,1

0,2

0,3

mM

Time, min

10 ГсOnly EPR spectra of NNR were detected, no contribution of INR

N

N

O

ON

N

O

+ NO

– NO2NH

N

NH

N

Comparison of pharmacokinetics of NN1 in control mice ( ) and with injection of nitroglycerole 0,83mg/kg

Nitric oxide detection using EPR tomography of mouse

NNRINR

Page 33: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

33

•Nitroxides are the unique and very promising organic compounds with high potential for biomedical applications in therapy and diagnostics

•Sterically substituted imidazoline and imidazolidine nitroxides combine high pH-sensitivity and high stability in reduction media

•The new spin labels and spin probes of 7-azadispiro[5.1.5.2]-pendecane and 7-azadispiro[5.1.5.2]pentadeca-14-ene series were synthesized and demonstrated clear advantages over tetramethylpyrroline nitroxides with respect to electron relaxation rates allowing PELROR distance measurements at liquid nitrogen temperature range and higher stability.

• The new low toxic hydrophylic nitronyl nitroxides were used as a spin probes for nitric oxide in vivo EPR tomography. Nitric oxide expression in vivo decreases NNR concentration, which can be determined by reaction of NNR with NO as well as other physiological processes.

Conclusions

Page 34: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Acknowledgement:N.N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RASIgor KirilyukIgor Grigor’evJulia PolienkoDenis KomarovInternational Tomography Center SB RASOlesya KrumkachevaSergey SemenovRodion StrishakovDmitrii PolovyanenkoVictor OvcharenkoElena FursovaInstitute of Cytology and Genetics, NovosibirskN. Kolosova

Ohio State University, Medical Center, USAV. Khramtsov, A. Bobko

Page 35: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Laboratory of Magnetic ResonanceInternational Tomography Center SB RAS, Novosibirsk, RussiaD. Polovyanenko S. SemenovO. Krumkacheva M. Fedin

Page 36: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Trityl

• Sharp EPR Singlet

• Biostability: relatively stable – hours

• EPR resolution: high, LW < 100 mG

• Oxygen sensitivity: High

• Main uses for EPR, EPR oximetryand Overhauser-enhanced MRI.

Nitroxide

• Moderately broad EPR triplet;

• Biostability: easily reduced

• EPR resolution: relatively low

• Oxygen sensitivity: relatively low;

• Multiple use as redox status, pH and ROS probes as well as spin labeling agents and antioxidant, etc

Trityl radicals Versus Nitroxide radicals

S

S S

S

D3CD3C

CD3

CD3

OO

C3

O

OH

H

N

NO

ATI

H2NNH

NO

H2N+ H+

– H+

ATIH+

Page 37: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

Oxidative properties of nitroxides

N

R

O

N

R

O

N

N

R

O

N

N

R

O

NO R

N

N

R

O

O

N

N

O

R

O

0.001 0.01 0.1 1 10K

1 mT

2

T

D

I

IK

N

15N

OH

O

N

O

N

15N

O

O

N

OH

KDikanov, S.A.; Grigor’ev, I.A.; Volodarsky, L.B.; Tsvetkov, Yu.D.;Russ. J. Phys. Chem. A, 1982

Page 38: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

0

1

2

3

4

26

27

K

N

N

O

N

N

O

N

N

O

N

N

O

N

N

O

N

N

O

N

N

O

N

N

O

N

HO

O

N

C

O

OOH

NR + CPH-15N NR-H + CP-15NK

1 : 1

1 mT

CP-15N

NR2

T

D

I

IK

15N

C

OH

OOH

CPH-15N

Nitroxide-hydroxylamine(15N) equilibrium

Page 39: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

NN1 k1 = (1.2±0.1)·103 M–

1·s–1

k–2 = (3.0±0.5)·103 M–

1·s–1

NN2 k1 = (1.4±0.1)·103 M–

1·s–1

k–2 = (3.5±0.5)·103 M–

1·s–1

N

N

R

O

O

+ Asc

NN

N

N

R

O

OH

Hydroxylamine

DHA = dehydroascorbate

DGA = diketogulonic acid

Asc·– = ascorbate radical

O

HO O

OHOH2CHOHC O

O O

OHOH2CHOHCO

O O

OHOH2CHOHC

HOOH

O

O

O

OH

OH

AscH– Asc – DGADHA 39

Page 40: New Spin Probes for Biochemical Applications Elena Bagryanskaya N. N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS International Tomography

0 200 400 600

60

80

100

EPR

sig

nal,

%

Time, s

500 mM Ascorbate 250 mM Ascorbate 125 mM Ascorbate

N

HO

O

BBO

A.A.Bobko, I.A.Kirilyuk, I.A.Grigor’ev, J.L.Zweier, V.V.Khramtsov. Free Radic. Biol. Med., 2007, V. 42, P. 404-412.

Обратимость восстановления НР аскорбатом

[BBO] 0.1 mM, pH 7.4

O O

OO

HO

HOO O

O-HO

HO

HO

O O

O-HO

HO

HOO O

O-O

HO

HOO O

OO

HO

HON

ON

O

N

OH

N

OH

HO

HO

OH

O

O

OH

O

H2O

N

O

Продуктыокисления

H+

-H+

GSH