new$perspectives$in$spintronic and$mesoscopic physics ...at issp university of tokyo 6/12/2015...

26
Coupled charge and magnetization in a Weyl semimetal New Perspectives in Spintronic and Mesoscopic Physics at ISSP University of Tokyo 6/12/2015 K. Nomura Institute for Materials Research, Tohoku University in collaborationwith Daichi Kurebayashi

Upload: others

Post on 04-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Coupled charge and magnetizationin a Weyl semimetal

New  Perspectives  in  Spintronic and  Mesoscopic Physicsat ISSP University of Tokyo 6/12/2015

K.  NomuraInstitute  for  Materials  Research,  Tohoku  University

in  collaboration  withDaichi Kurebayashi

Page 2: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Introduction: What is a Weyl semimetal1. Weyl semimetal in a magnetic Topological insulator2. Magnetization-dynamics-induced charge pumping3. Charge-induced spin torque

outline

Coupled charge and magnetizationin a Weyl semimetal

New  Perspectives  in  Spintronic and  Mesoscopic Physicsat ISSP University of Tokyo 6/12/2015

Page 3: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

What is a Weyl semimetal?

A  Weyl semimetal  is  three-­‐dimensional  analogue  of  graphene

H =vFm0 px − ipy

px + ipy −m0

"

#

$$

%

&

'' H =vF

pz px − ipypx + ipy −pz

"

#

$$

%

&

''

Dirac  cone  is  stable  in  3D

kykx

E

K

K’

K’

K’

K

K

2D 3D

m0=  0  (for  massless)

Page 4: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Spin-orbit coupling

Topological states of matters

Topologically nontrivial states

E

_

+ _

+

Dirac  semimetalNI TI

m0 (Band  gap)

•  Topological  insulators  (gapped)

Kane  &  Mele (2005)

•  Topological  semimetals  (gapless)

strong  SOCweak  SOC

Page 5: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Weyl semimetals

Dirac semimetals degenerate

non-­‐degenerate

2D    (graphene)  Wallace  (1947),  …

3D    (accidental)    Herring   (1937),  …

(symmetry  protected)Wang  et  al.,  Young  et  al.(2012),..

3D    (I-­‐symmetry  broken)  Murakami  (2007)Halasz&Balents (2012),   ..

3D    (T-­‐symmetry  broken)    Wan  et  al.  (2011)Burkov&Balents (2012),   ..

Dirac-Weyl semimetals

Page 6: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Weyl semimetals

Dirac semimetals

Dirac-Weyl semimetals

HDirac = kxα1+kyα2 +kzα3 +m0α4

m0=0 (massless)  ai:  4x4 Dirac  matrix

{αi ,α j} = 2δij

HWeyl = pxσ1 + pyσ 2 + pzσ 3

si:  2x2 Pauli  matrix

k = p+K0

degenerate

non-­‐degenerate

Page 7: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Dirac hamiltonian

Symmetry breaking

degenerate

b=0HDirac = kxα1+kyα2 +kzα3 +m0α4

Θ−1HDirac (k)Θ =HDirac (−k)Π−1HDirac (k)Π =HDirac (−k)

αi =0 σ i

σ i 0

!

"##

$

%&&, α4 =

I 00 −I

!

"#

$

%&

T-­‐symmetry

I  -­‐symmetry

Page 8: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Symmetry breaking

αi =0 σ i

σ i 0

!

"##

$

%&&, α4 =

I 00 −I

!

"#

$

%&

spin  of  electrons

Σi =σ i 00 σ i

"

#$$

%

&''

+ bSz

Dirac hamiltonian

HDirac = kxα1+kyα2 +kzα3 +m0α4

degenerate

b=0

Θ−1HDirac (k)Θ =HDirac (−k)Π−1HDirac (k)Π =HDirac (−k)

T-­‐symmetry

I  -­‐symmetry

Page 9: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Symmetry breaking

αi =0 σ i

σ i 0

!

"##

$

%&&, α4 =

I 00 −I

!

"#

$

%&

spin  of  electrons

Σi =σ i 00 σ i

"

#$$

%

&''

+ bSz

Dirac hamiltonian

HDirac = kxα1+kyα2 +kzα3 +m0α4

degenerate

b=0

non-­‐degenerate

2b

Θ−1HDirac (k)Θ =HDirac (−k)Π−1HDirac (k)Π =HDirac (−k)

T-­‐symmetry

I  -­‐symmetry

Page 10: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Symmetry breaking

αi =0 σ i

σ i 0

!

"##

$

%&&, α4 =

I 00 −I

!

"#

$

%&

spin  of  electrons

Σi =σ i 00 σ i

"

#$$

%

&''

+ bSz

Dirac hamiltonian

HDirac = kxα1+kyα2 +kzα3 +m0α4

degenerate

b=0

non-­‐degenerate

2b

Θ−1HDirac (k)Θ =HDirac (−k)Π−1HDirac (k)Π =HDirac (−k)

T-­‐symmetry

I  -­‐symmetry

Page 11: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Symmetry breaking

+ JMSz

local  spins

Dirac hamiltonian

HDirac = kxα1+kyα2 +kzα3 +m0α4

2JM

degenerate

M=0

non-­‐degenerate

Hsd = J S(Ri ) ⋅ Σi=1

Nimp∑

M =  -­‐ <S>

Page 12: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Symmetry breaking

local  spins

F = 12χs

M 2 +12χe

m2 − JMm

=12χs

1−J2χeχs( )M 2

+12χe

m− χeJM( )2

local spin electron spin

+ JMSz

Dirac hamiltonian

HDirac = kxα1+kyα2 +kzα3 +m0α4

2JM

degenerate

M=0

non-­‐degenerate

Hsd = J S(Ri ) ⋅ Σi=1

Nimp∑

M =  -­‐ <S>

Page 13: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Symmetry breaking

local  spins

F = 12χs

M 2 +12χe

m2 − JMm

=12χs

1−J2χeχs( )M 2

+12χe

m− χeJM( )2

local spin electron spin

2JM

degenerate

M=0

non-­‐degenerate1−J2χsχe < 0

1−J2χsχe > 0

“Van  Vleck ferromagnetism”  

M ≠  0

M =  0

Page 14: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Introduction: What is a Weyl semimetal1. Weyl semimetal in a magnetic TI2. Magnetization-dynamics-induced charge pumping3. Charge-induced spin torque

outline

Coupled charge and magnetizationin a Weyl semimetal

New  Perspectives  in  Spintronic and  Mesoscopic Physicsat ISSP University of Tokyo 6/12/2015

Page 15: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Self-consistent theory

HeMF =

k∑ ck

+ H0 (k )+ xJMΣz[ ]ck

H0 (k ) = Ri (k )αi +m0 (k )α4 +ε(k )Ii=1

3

HSMF = Jm

I=1

Nimp

∑ Sz (rI )

Kurebayashi, KN  JPSJ   83  (2014)  063709.

local  spins

_

+

Htotal = HeMF + Hs

MF – Nimp J Mm

Electrons local spins

Virtual  crystal  approximation

Page 16: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Self-consistent theory

HeMF =

k∑ ck

+ H0 (k )+ xJMΣz[ ]ck HSMF = Jm

I=1

Nimp

∑ Sz (rI )

Kurebayashi, KN  JPSJ   83  (2014)  063709.

m =1N

〈ci+Σzci 〉

i=1

N

∑ , M =1Ni

〈Sz (R!"I )〉

I=1

Nimp

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120 140

x=2%x=4%x=6%x=8%

x=10%

M

T  [K]

Htotal = HeMF + Hs

MF – Nimp J Mm

Electrons local spins

Virtual  crystal  approximation

Page 17: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Magnetic  transition

kzkzkz

M = 0 M ≠ 0

0

-1 -0.5 0 0.5 1

0

-1 -0.5 0 0.5 1

0

-1 -0.5 0 0.5 1

Self-consistent theory

HeMF =

k∑ ck

+ H0 (k )+ xJMΣz[ ]ck HSMF = Jm

I=1

Nimp

∑ Sz (rI )

Kurebayashi, KN  JPSJ   83  (2014)  063709.

Htotal = HeMF + Hs

MF – Nimp J Mm

Electrons local spins

Page 18: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

0

20

40

60

80

100

120

140

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Tem

pera

ture

[K]

Concentration [%]

Magnetic  transition

kzkzkz

M = 0 M ≠ 0

0

-1 -0.5 0 0.5 1

0

-1 -0.5 0 0.5 1

0

-1 -0.5 0 0.5 1

Kurebayashi,  KN  JPSJ  83  (2014)  063709.

Weyl semimetal in a magnetic TI

Page 19: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

0

10

20

30

40

50

60

70

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Tem

pera

rture

[K]

M0 [eV]

Phase diagram

strong  SOCweak  SOC

0

-1 -0.5 0 0.5 1

0

-1 -0.5 0 0.5 1

Weyl semimetals

Dirac semimetals

Kurebayashi,  KN  JPSJ  83  (2014)  063709.

Page 20: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Experiments of magnetic TIs

Science  339,  1582  (2013)

Bi2-­‐yCry(Sex Te1-­‐x)3

Page 21: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Anomalous Hall effect

ρxy= R0B + RsM

The  Hall  effect  in  materials  with-­‐ ferromagnetic  order-­‐ spin-­‐orbit  coupling

Bi2-­‐yCry(Sex Te1-­‐x)3

ρxy∝M (B→ 0)

J

VH

M

Ji=  sij Ej

Page 22: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Anomalous Hall effect

-0.5 0 0.5kz

E

3d  Weyl SM

Hweyl(kx,ky,kz)  =  kxs1  +  kys2  +  Dm(kz)s3

ky=0kx=0ky=0

Page 23: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Anomalous Hall effect

kx

ky

kz

Dm(kz)  <0

Dm(kz)  >0

Dm(kz)  >0

-0.5 0 0.5kz

E

Hweyl(kx,ky,kz)  =  kxs1  +  kys2  +  Dm(kz)s3

kx=0ky=0

Page 24: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Anomalous Hall effect

kx

ky

kz

Dm(kz)  <0

Dm(kz)  >0

Dm(kz)  >0

σ 2Dxy (kz ) =

e2

2h[1− sgn(Δm (kz ))]

sxy=e2/h

sxy=  0

sxy=  0

Hweyl(kx,ky,kz)  =  kxs1  +  kys2  +  Dm(kz)s3

σxy3D =

dkz

2π∫ σ 2Dxy(kz)

=e2

2πh2KWeyl

Page 25: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Anomalous Hall effect

σ 2Dxy (kz ) =

e2

2h[1− sgn(Δm (kz ))]

Kubo   formula  by  D.  Kurebayashi

Hweyl(kx,ky,kz)  =  kxs1  +  kys2  +  Dm(kz)s3

!2Dxy ðkzÞ ¼

e2

h!

X

n

Zd2k?ð2"Þ2

fð#nk?ðkzÞÞ"znk?

ðkzÞ; ð18Þ

"nk ¼ rk $ Ank; ð19ÞAnk ¼ ihnkjrkjnki; ð20Þ

where "nk is the Berry curvature, and Ank is the Berryconnection. The anomalous Hall conductivity is given byintegrating the two-dimensional Chern number over kz,

!xy ¼Z "=az

%"=az

dkz2"

!2Dxy ðkzÞ; ð21Þ

where az is a lattice constant. Figure 5 shows the numericallyobtained anomalous Hall conductivity !xy at T ¼ 0K as afunction of the concentration of doped magnetic impurities.We see that the anomalous Hall conductivity is proportionalto the concentration of magnetic impurities when theconcentration is small. This behavior is due to the fact thatthe two-dimensional Chern number is quantized in units ofe2=h between two Weyl points, and vanishes at othermomenta.6) Namely the anomalous Hall conductivity isproportional to the momentum of the Weyl point kD which iseasily evaluated kD as kD ¼ &JMzx=A2az. This analyticalresult also shows the anomalous Hall conductivity !xy ¼JMz

A2azx which is consistent with our numerical result. At the

concentration x ' 30%, anomalous Hall conductivity reachesquantized value !xy ¼ e2=ðhazÞ. In this region, a conductionband and a valence band are completely inverted by thestrong exchange interaction and no longer possess three-dimensional massless Weyl fermions. This phase is under-stood as the quantum anomalous Hall insulator phase.

In conclusion, we have estimated possible conditions forrealizing the Weyl semimetal phase by doping magneticimpurities in Bi2Se3 family within the mean-field theory.We found that ferromagnetic ordering in these materials isseen below Tc ¼ 40K with magnetic impurity concentrationx ¼ 5% and m0 ¼ 0 eV which corresponds to the Diracsemimetal in the undoped limit. This magnetic ordering isintroduced by the Van-Vleck paramagnetism, and thus thecritical temperature depends on the strength of the spin–orbitinteraction. We confirmed that the critical temperaturedecreases with weakening the strength of the spin–orbit

interaction. As the exchange field increases, the conductionband and the valence band invert. The Weyl semimetal phaseis realized as the gapless phase, as shown in Fig. 3.

Acknowledgment This work was supported by Grants-in-Aid for ScientificResearch (Nos. 24740211 and 25103703) from the Ministry of Education,Culture, Sports, Science and Technology, Japan (MEXT).

1) S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S.von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger,Science 294, 1488 (2001).

2) T. Jungwirth, J. Mašek, J. Kučera, and A. H. MacDonald, Rev. Mod.Phys. 78, 809 (2006).

3) X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev.B 83, 205101 (2011).

4) X. Wan, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. Lett. 108,146601 (2012).

5) G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107,186806 (2011).

6) A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).7) D. Bulmash, C. Liu, and X. Qi, Phys. Rev. B 89, 081106 (2014).8) H.-J. Kim, K.-S. Kim, J.-F. Wang, V. Kulbachinskii, K. Ogawa, M.

Sasaki, A. Ohnishi, M. Kitaura, Y.-Y. Wu, L. Li, I. Yamamoto, J.Azuma, M. Kamada, and V. Dobrosavljevi, Phys. Rev. Lett. 110,136601 (2013).

9) M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010); X.-L.Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

10) Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H.Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T.Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen,Science 329, 659 (2010).

11) J. Zhang, C.-Z. Chang, P. Tang, Z. Zhang, X. Feng, K. Li, L.-L. Wang,X. Chen, C. Liu, W. Duan, K. He, Q.-K. Xue, X. Ma, and Y. Wang,Science 339, 1582 (2013).

12) R. Yu, W. Zhang, H.-J. Zhang, S. Zhang, X. Dai, and Z. Fang, Science329, 61 (2010).

13) T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto, T.Minami, Y. Ando, and T. Takahashi, Nat. Phys. 7, 840 (2011).

14) H. Jin, J. Im, and A. J. Freeman, Phys. Rev. B 84, 134408 (2011).15) H.-J. Kim, K.-S. Kim, J.-F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M.

Kitaura, M. Yang, and L. Li, Phys. Rev. Lett. 111, 246603 (2013).16) H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, Nat. Phys. 5,

438 (2009).17) C.-X. Liu, X.-L. Qi, H. Zhang, X. Dai, Z. Fang, and S. C. Zhang, Phys.

Rev. B 82, 045122 (2010).18) G. Rosenberg and M. Franz, Phys. Rev. B 85, 195119 (2012).19) C. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou,

P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z.Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue,Science 340, 167 (2013).

20) S. Ryu and K. Nomura, Phys. Rev. B 85, 155138 (2012).

Fig. 5. (Color online) Anomalous Hall conductivity !xy as a function ofimpurity concentration with a parameter m0 ¼ 0 eVat T ¼ 0K. Red trianglesshow the simulation result and the black solid line is the analytical result,!xy ¼ 2JMzx=A2az.

Fig. 4. (Color online) (Upper figure) Chemical potential dependence ofCurie temperature with m0 ¼ 0 eVand x ¼ 5%, 10%. (Lower figure) Densityof states with m0 ¼ 0 eV and x ¼ 5%.

J. Phys. Soc. Jpn. 83, 063709 (2014) Letters D. Kurebayashi and K. Nomura

063709-4 ©2014 The Physical Society of Japan

σxy3D =

dkz

2π∫ σ 2Dxy(kz)

=e2

2πh2KWeyl

Lattice  model  

2JM

Page 26: New$Perspectives$in$Spintronic and$Mesoscopic Physics ...at ISSP University of Tokyo 6/12/2015 Self-consistent theory H e MF= k ∑c k +H [0 (k)+xJMΣ z]c k H 0 (k)=R i (k)α i +m

Remarks

0

10

20

30

40

50

60

70

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Tem

pera

rture

[K]

M0 [eV]

Magnetic  order  in  TI    as  “Van  Vleck ferromagnetism”.  

Weyl semimetal  can  be  realized  in  magnetic  TIs.  (Cr-­‐doped  Bi2(SexTe1-­‐x)3)

Anomalous  Hall  effect  is  a  signature  of  the  Weyl semimetal.

Kubo   formula  by  D.  Kurebayashi

!2Dxy ðkzÞ ¼

e2

h!

X

n

Zd2k?ð2"Þ2

fð#nk?ðkzÞÞ"znk?

ðkzÞ; ð18Þ

"nk ¼ rk $ Ank; ð19ÞAnk ¼ ihnkjrkjnki; ð20Þ

where "nk is the Berry curvature, and Ank is the Berryconnection. The anomalous Hall conductivity is given byintegrating the two-dimensional Chern number over kz,

!xy ¼Z "=az

%"=az

dkz2"

!2Dxy ðkzÞ; ð21Þ

where az is a lattice constant. Figure 5 shows the numericallyobtained anomalous Hall conductivity !xy at T ¼ 0K as afunction of the concentration of doped magnetic impurities.We see that the anomalous Hall conductivity is proportionalto the concentration of magnetic impurities when theconcentration is small. This behavior is due to the fact thatthe two-dimensional Chern number is quantized in units ofe2=h between two Weyl points, and vanishes at othermomenta.6) Namely the anomalous Hall conductivity isproportional to the momentum of the Weyl point kD which iseasily evaluated kD as kD ¼ &JMzx=A2az. This analyticalresult also shows the anomalous Hall conductivity !xy ¼JMz

A2azx which is consistent with our numerical result. At the

concentration x ' 30%, anomalous Hall conductivity reachesquantized value !xy ¼ e2=ðhazÞ. In this region, a conductionband and a valence band are completely inverted by thestrong exchange interaction and no longer possess three-dimensional massless Weyl fermions. This phase is under-stood as the quantum anomalous Hall insulator phase.

In conclusion, we have estimated possible conditions forrealizing the Weyl semimetal phase by doping magneticimpurities in Bi2Se3 family within the mean-field theory.We found that ferromagnetic ordering in these materials isseen below Tc ¼ 40K with magnetic impurity concentrationx ¼ 5% and m0 ¼ 0 eV which corresponds to the Diracsemimetal in the undoped limit. This magnetic ordering isintroduced by the Van-Vleck paramagnetism, and thus thecritical temperature depends on the strength of the spin–orbitinteraction. We confirmed that the critical temperaturedecreases with weakening the strength of the spin–orbit

interaction. As the exchange field increases, the conductionband and the valence band invert. The Weyl semimetal phaseis realized as the gapless phase, as shown in Fig. 3.

Acknowledgment This work was supported by Grants-in-Aid for ScientificResearch (Nos. 24740211 and 25103703) from the Ministry of Education,Culture, Sports, Science and Technology, Japan (MEXT).

1) S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S.von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger,Science 294, 1488 (2001).

2) T. Jungwirth, J. Mašek, J. Kučera, and A. H. MacDonald, Rev. Mod.Phys. 78, 809 (2006).

3) X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev.B 83, 205101 (2011).

4) X. Wan, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. Lett. 108,146601 (2012).

5) G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107,186806 (2011).

6) A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).7) D. Bulmash, C. Liu, and X. Qi, Phys. Rev. B 89, 081106 (2014).8) H.-J. Kim, K.-S. Kim, J.-F. Wang, V. Kulbachinskii, K. Ogawa, M.

Sasaki, A. Ohnishi, M. Kitaura, Y.-Y. Wu, L. Li, I. Yamamoto, J.Azuma, M. Kamada, and V. Dobrosavljevi, Phys. Rev. Lett. 110,136601 (2013).

9) M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010); X.-L.Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

10) Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H.Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T.Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen,Science 329, 659 (2010).

11) J. Zhang, C.-Z. Chang, P. Tang, Z. Zhang, X. Feng, K. Li, L.-L. Wang,X. Chen, C. Liu, W. Duan, K. He, Q.-K. Xue, X. Ma, and Y. Wang,Science 339, 1582 (2013).

12) R. Yu, W. Zhang, H.-J. Zhang, S. Zhang, X. Dai, and Z. Fang, Science329, 61 (2010).

13) T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto, T.Minami, Y. Ando, and T. Takahashi, Nat. Phys. 7, 840 (2011).

14) H. Jin, J. Im, and A. J. Freeman, Phys. Rev. B 84, 134408 (2011).15) H.-J. Kim, K.-S. Kim, J.-F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M.

Kitaura, M. Yang, and L. Li, Phys. Rev. Lett. 111, 246603 (2013).16) H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, Nat. Phys. 5,

438 (2009).17) C.-X. Liu, X.-L. Qi, H. Zhang, X. Dai, Z. Fang, and S. C. Zhang, Phys.

Rev. B 82, 045122 (2010).18) G. Rosenberg and M. Franz, Phys. Rev. B 85, 195119 (2012).19) C. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou,

P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z.Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue,Science 340, 167 (2013).

20) S. Ryu and K. Nomura, Phys. Rev. B 85, 155138 (2012).

Fig. 5. (Color online) Anomalous Hall conductivity !xy as a function ofimpurity concentration with a parameter m0 ¼ 0 eVat T ¼ 0K. Red trianglesshow the simulation result and the black solid line is the analytical result,!xy ¼ 2JMzx=A2az.

Fig. 4. (Color online) (Upper figure) Chemical potential dependence ofCurie temperature with m0 ¼ 0 eVand x ¼ 5%, 10%. (Lower figure) Densityof states with m0 ¼ 0 eV and x ¼ 5%.

J. Phys. Soc. Jpn. 83, 063709 (2014) Letters D. Kurebayashi and K. Nomura

063709-4 ©2014 The Physical Society of Japan

Lattice  model