newton’s law of motion

36
Newton’s Law of Motion 1

Upload: qiana

Post on 23-Feb-2016

37 views

Category:

Documents


0 download

DESCRIPTION

Newton’s Law of Motion. Terms and Definition. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Newton’s Law of Motion

1

Newton’s Law of Motion

Page 2: Newton’s Law of Motion

2

Terms and DefinitionMass of an object is a measure of the inertia of the object. Inertia is the tendency of a body at rest to remain atrest, and a body in motion to continue moving with unchanged velocity. Mass is as a representation of the amount of or quantity-of-matter

Massa adalah suatu ukuran inersia dari sebuah obyek. Inersia adalah kecenderungan suatu benda untuk tetap diam bila dalam keadaan diam dan atau untuk tetap bergerak dengan memiliki kecepatan konstan. Massa adalah ukuran dari jumlah keseluruhan suatu dari suatu zat

Page 3: Newton’s Law of Motion

3

Terms and Definition

Force, in mechanics, is that which changes the velocity of an object. It is a vector quantity, having magnitude and direction

Gaya, dalam pengertian mekanik, adalah besaran vektor yang mengubah kecepatan dari suatu benda yang bergerak

Page 4: Newton’s Law of Motion

4

From the figure:Mass is contained in each body of the person on roller coaster, the roller coaster itself, the rail structures.

Dari gambar di samping:Massa terdapat dalam setiap individu yang menaiki roller coaster, termasuk roller coaster dan juga struktur rel untuk roller coaster

Page 5: Newton’s Law of Motion

5

From the figure:Force is a vector that causes the roller coaster moving in changed velocity

Dari gambar di samping:Gaya adalah besaran vektor yang menyebabkan roller coaster bergerak dengan kecepatan berubah-ubah

Page 6: Newton’s Law of Motion

6

Newton’s First Law – Law of Inertia“ An object at rest will remain at rest: an object in motion will in motion with a constant velocity, except insofar as it is acted upon by an external force”

Hukum Newton Pertama – Hukum Inersia

“ Sebuah benda akan tetap diam dan akan tetap bergerak beraturan jika gaya total yang bekerja pada sistem adalah nol”

Page 7: Newton’s Law of Motion

7

ΣF = 0, F1 + F2 = 0, at rest

Page 8: Newton’s Law of Motion

8

When the system is at constant velocity and net force is null, the system remains at constant velocity

Page 9: Newton’s Law of Motion

9

Forces acted on a point as follows:F1 = 29i + 37j – 77kF2 = 53i -100j -5kF3 = -82i + 63j + 82k

Fnet = F1 + F2 + F3 = 0

Example:

F1

F2

F3

ß

x

y

z

Page 10: Newton’s Law of Motion

10

Newton’s Second Law“ A particle acted upon by an unbalanced force F experiences an acceleration a that has the same direction as the force and a magnitude that is directly proportional to the force ”

Hukum Newton Kedua“ Sebuah benda yang dibebani gaya total sebesar F akan mengalami percepatan sebesar a yang memiliki arah yang sama dengan gaya total dan besarnya berbanding lurus terhadap gaya total tersebut”

Page 11: Newton’s Law of Motion

11

From the figure:Three members are pushing the bobsled resulting it to accelerate on the direction the same with the force exerted on it

Dari gambar di samping:Percepatan dialami pada mobil luncur dengan arah yang sama dengan gaya total

Page 12: Newton’s Law of Motion

12

Gaya gesek

Gaya normal

Gaya pegas

Gaya tarik

Gaya dorong roket, mobil, pesawatGaya berat

Page 13: Newton’s Law of Motion

13

Fnet = m a

Formula used in Newton’s second law

Fnet = m

dvdt

For component vector v = vx + vy + vz

Fx, net = mdvxdt

Fy, net = m

dvydt

Fz, net = m

dvzdt

Page 14: Newton’s Law of Motion

14

Example 1:Given: an object with a mass of 5.0 kg, to accelerate at 0.3 m/s2

Required: tension of the rope

Solution: ΣFy = m ayΣFy = FT - FWSolve for FT

Page 15: Newton’s Law of Motion

15

Problem 1:The only force acting on a 5.0 kg object has components Fx = 20 N and Fy = 30 N. Find the acceleration of the object (magnitude and direction)

Page 16: Newton’s Law of Motion

16

Problem 2:

Jika Fg = 27 N, berapakah besarnya Fg’ untuk setimbang dan untuk memiliki percepatan 0.5 m/dt2 (massa pulley dan tali diabaikan)

Page 17: Newton’s Law of Motion

17

Newton’s Third Law“ The mutual forces of action and reaction between two particles are equal, opposite, and collinear”

Hukum Newton Ketiga“ Gaya aksi dan reaksi memiliki besaran yang sama dengan arah yang berlawanan dan segaris”

Page 18: Newton’s Law of Motion

18

Page 19: Newton’s Law of Motion

19

1. Friction Force – Gaya gesek

2. Normal Force – Gaya normal

Application

Page 20: Newton’s Law of Motion

20

3. Spring Force – Gaya pegas

Application

Page 21: Newton’s Law of Motion

21

4. Tension Force – Gaya Tarik

5. Weight/Gravitational Force – Gaya berat

Application

Page 22: Newton’s Law of Motion

22

6. Thrust Force – Gaya dorong roket

Application

Page 23: Newton’s Law of Motion

23

The normal force is the contact force that is always perpendicular to the surface or plane on which an object lies

Normal Force

Page 24: Newton’s Law of Motion

24

FN = mg cosθNormal force is always perpendicular to the plane on which

the object lies

Page 25: Newton’s Law of Motion

25

When an object slides along a rough surface, the force of kinetic friction acts opposite to the direction of the velocity of the object. The amount of friction force depends on the normal force of the object and its coefficient of friction

Static Friction (fs) is a friction force that happens on an object between interval of at rest until about to move

Kinetic Friction (fk) is a friction force which occurs during the movement of an object

Friction Force

Page 26: Newton’s Law of Motion

26

Example of coefficient of friction value

μs > μk

μs is coefficient of static frictionμk is coefficient of kinetic friction

Page 27: Newton’s Law of Motion

27

fs = μs FN Static friction force

fk = μk FN Kinetic friction force

Page 28: Newton’s Law of Motion

28

Example:Given: μs = 0.4 (wood on wood)

μk = 0.2 (wood on wood)

m = 3.5 kg

Required: static friction force and kinetic friction force

Solution: W = m.g = (3.5) (9.81)

= 34.34 N FN = W = 34.34 N

fs = μs FN = (0.4) (34.34) = 13.74 Nfk = μk FN = (0.2) (34.34) = 6.87 N

Page 29: Newton’s Law of Motion

29

Tension force is the force that is acted on a massless and unstretchable cord when it is used to pull an object. It is so called tension force because in the system the cord is in the state of tension

Tension Force

Page 30: Newton’s Law of Motion

30

1. From the figure, find the acceleration of the box

Problems:

μk= 0.5

Page 31: Newton’s Law of Motion

31

2. Dari gambar di bawah, berapakah koefisien gesek kinetik antara kotak dengan bidang?

a= 0.5 m/dt2

Page 32: Newton’s Law of Motion

32

3. Dari gambar di bawah, masing-masing massa blok adalah 5 kg dengan koefisien gesek kinetik antara blok dengan bidang adalah μk = 0.1. Hitung percepatan masing-masing blok?

Page 33: Newton’s Law of Motion

33

4. Dari gambar di bawah, blok A memiliki massa 5 kg bergerak dengan kecepatan 0.5 m/dt pada saat gambar diambil. Jika koefisien gesek kinetik antara blok dengan bidang adalah μk = 0.2. Tentukan kecepatan blok A setelah bergerak sejauh 1.2 m. Massa blok B adalah 10 kg.

Page 34: Newton’s Law of Motion

34

5. Dari gambar di bawah, kotak brankas memiliki massa 100 kg. Di ujung tali, seorang pemuda dengan massa 45 kg memegang untuk menahan. Karena dalam keadaan panik dan tidak mau melepaskan tali, berapakah percepatan yang akan dia alami? Massa tali dan pulley diabaikan

Page 35: Newton’s Law of Motion

35

6. Dari gambar di bawah, massa A = 25 kg, massa B = 15 kg. Koefisien gesek antara blok dengan meja adalah 0.20. seberapa jauhkah blok B akan turun setelah 3 detik sesudah blok B dilepas?

μk= 0.2

Page 36: Newton’s Law of Motion

36

6. Dari sistem di bawah, tentukan percepatan dari sistem tersebut dan gaya tarik yang dialami oleh masing-masing tali.