nh nh n o nh o s n - home - macmillan group...jewett, j. c.; bertozzi, c. r. chem. soc .rev.2010,...

42
Click Reactions For Post-Translational Protein Modification Steven Bloom Group Meeting 12/2/2015 N H O O N H O O H N N H O OH N H O S N H O NH N H O N H

Upload: others

Post on 07-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Click Reactions For Post-Translational Protein Modification

    Steven BloomGroup Meeting

    12/2/2015

    NH

    O

    O

    NH

    O

    OHN

    NH

    O

    OH

    NH

    O

    S

    NH

    O

    NHNH

    O

    NH

  • Baathula, K.; Xu, Y.; Quian, X. Nature Protocols 2011, 6, 1990-1997.!http://papoian.chem.umd.edu!

    ! Reactions to an organic chemist

    Click Reactions For Post-Translational Protein Modification

    total control of reaction parameters

    vs

    environment controlled

  • Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Agnew Chem. Int. Ed. 2001, 2004-2021!Jewett, J. C.; Bertozzi, C. R. Chem. Soc . Rev. 2010, 39, 1272-1279.!

    ! Definition: "Click" Chemistry

    Coined by K. Barry Sharpless in 1998

    - Reactions that generate substances rapidly and reliably by joining small molecules together

    Click Reactions For Post-Translational Protein Modification

    - simple (minimal components)- readily available reagents- use benign solvents (H2O)- simple product isolation(non-chromatographic methods)- irreversible

    N

    NNN3Protein

    Cargo Protein Cargo

    fast

  • Jewett, J. C.; Bertozzi, C. R. Chem. Soc . Rev. 2010, 39, 1272-1279.!

    ! Two Approaches: Protein Engineering or Direct Functionalization

    Click Reactions For Post-Translational Protein Modification

    N3

    H

    O

    FFF

    F

    engineered direct

    RO

    NH2

    COOCH3

    PPh2 R S PPh2

    O

    NN N

    N

    Functionalized Protein Conjugates

    and many more...

    Limited Toolbox

    Reactions for selective residue manipulation

    R NHNH2

    O

  • ! Why Do We Want Bioorthoganol Reactions?

    Click Reactions For Post-Translational Protein Modification

    Mechanistic Biology Pharmaceuticals

    Biomaterials

  • Click Reactions For Post-Translational Protein Modification

    H2N COOH

    H

    H2N COOH

    CH3

    H2N COOHH2N COOH H2N COOH H2N COOHH2N COOH

    Glycine Alanine Valine Leucine Isoleucine Methionine Tryptophan

    H2N COOH COOH

    Phenylalanine Proline

    H3C CH3 H3CCH3

    CH3

    CH3 SCH3

    NH

    NH

    H2N COOH

    OH

    Serine Threonine Cysteine Tyrosine Asparagine GlutamineH2N COOH

    CH3HO

    H2N COOH

    SH

    H2N COOH

    OH

    H2N COOH

    NH2

    O

    H2N COOH

    NH2O

    Non-polar

    Polar

  • Click Reactions For Post-Translational Protein Modification

    H2N COOH H2N COOH H2N COOHH2N COOH H2N COOH

    Aspartic acid Glutamic acid Lysine Arginine Histidine

    O

    O

    O ONH3

    NH

    NH2H2N

    Acidic Basic

    HNNH

  • ! Which residues do we target for Click and How?

    Click Reactions For Post-Translational Protein Modification

    SH

    Cysteine

    NH3

    Lysine

    OH

    Tyrosine

    - uncommon residue- nucleophilic- good ligand for metals

    - most abundant residue- strong nucleophile (as free amine)-vast literature for reactions of amines

    - activated for EAS reactions

    COOH

    Aspartic or Glutamic acid Histidine Tryptophan

    - prevalenceof coupling reactions in biology

    - good ligand for metals- prone to acylation

    - electrophilic addition to C3

    NHNNH

  • ! Which residues do we target for Click and How?

    Click Reactions For Post-Translational Protein Modification

    SH

    Cysteine

    NH3

    Lysine

    OH

    Tyrosine

    - uncommon residue- nucleophilic- good ligand for metals

    - most abundant residue- strong nucleophile (as free amine)-vast literature for reactions of amines

    - activated for EAS reactions

    COOH

    Aspartic or Glutamic acid Histidine Tryptophan

    - prevalenceof coupling reactions in biology

    - good ligand for metals- prone to acylation

    - electrophilic addition to C3

    NHNNH

  • Hackeng, T. M.; Griffin, J. H.; Dawson, P. E. P.N.A.S. 1999, 96, 10068-10073.!Malins, L. R.; Payne, R. J. Curr. Opin. Chem. Biol. 2014, 22, 70-78.!

    ! Cysteine- Native Chemical Ligation

    Click Reactions For Post-Translational Protein Modification

    peptide 1

    O

    SR + peptide 2

    OH2N

    HS

    thioesterificationpeptide 1

    O

    S

    H2NO

    peptide 2

    S-N acyl shift

    peptide 1

    O

    NH

    SH

    O

    peptide 2

    C-terminus N-terminus

  • Sletten, E. M.; Bertozzi, C. R. Agnew. Chem. Int. Ed. Engl. 2009, 48, 6974-6998. and references therein!

    ! Classical Methods for Cysteine Modification

    Click Reactions For Post-Translational Protein Modification

    Cys modification

    RS

    S

    Reagent Product

    SS

    OI

    NH

    SO

    NH

    N

    O

    OS

    N

    O

    O

    SH S

  • Hoyle, C. E.; Bowman, C. N. Agnew Chem. Int. Ed. 2010, 49, 1540-1573. and references therein!Tyson, E. L.; Ament, M. S. Yoon, T. P. J. Org. Chem. 2013, 78, 2046-2050.!

    ! Cysteine: Thiol-ene

    Click Reactions For Post-Translational Protein Modification

    initiatorR1 SH R1 S

    R2

    R1 SR2

    R1 SH

    R1 S

    R1 SR2

    H

    common initiatorsthoether

    AIBNR3Sn-Hdirect UV irradiation

    Yoon et al. 2013

    Ph SH-e-

    Eox = 0.45 VPh SH

    pKa =2.4

    -H+Ph S

    photocatalyst

  • Tyson, E. L.; Ament, M. S. Yoon, T. P. J. Org. Chem. 2013, 78, 2046-2050.!

    ! Cysteine: Thiol-ene

    Click reactions for Post-translational Protein Modification

    Yoon et al. 2013

    Ph SH-e-

    Eox = 0.45 VPh SH

    pKa =2.4

    -H+Ph S

    Ph SH PhRu(bpz)3(PF6)2 (0.25 mol %)

    Blue LEDs, MeCN, 2h4:1

    Ph SPh

    H 98%

    Ru(bpz)3(PF6)2

    RuII

    N

    N

    N

    N

    N

    N

    N

    N

    NN

    NN

    E1/2II*/I = + 1.35 V

  • Tyson, E. L.; Ament, M. S. Yoon, T. P. J. Org. Chem. 2013, 78, 2046-2050.!

    ! Cysteine:Thiol-ene

    Click Reactions For Post-Translational Protein Modification

    Yoon et al. 2013

    SH PhRu(bpz)3(PF6)2 (0.25 mol %)

    Blue LEDs, MeCN, 2h4:1

    RS

    Ph

    H 98%R

    SH

    98% (2h)MeO

    OSH

    96% (1.5h)

    SH

    98% (1h)

    SH

    Me

    Me SHMe

    98% (8h) 86% (20h)

    MeO

    O

    NHBocSH

    97% (1.5h)

    Thiol Scope

  • Tyson, E. L.; Ament, M. S. Yoon, T. P. J. Org. Chem. 2013, 78, 2046-2050.!

    ! Cysteine: Thiol-ene

    Click Reactions For Post-Translational Protein Modification

    Yoon et al. 2013

    SH RRu(bpz)3(PF6)2 (0.25 mol %)

    Blue LEDs, MeCN, 2h4:1

    SR

    H 98%

    n-Hex

    99% (1h) 98% (1h) 98% (6h)

    86% (2h) 88% (3h) 80% (3h)

    Alkene Scope

    Ph Ph

    82% (2h)

    AcO

    HO BocHN Cl

    93% (26h)

    PhCO2Et

  • Tyson, E. L.; Ament, M. S. Yoon, T. P. J. Org. Chem. 2013, 78, 2046-2050.!

    ! Cysteine: Thiol-ene

    Click Reactions For Post-Translational Protein Modification

    Yoon et al. 2013

    SH RRu(bpz)3(PF6)2 (0.25 mol %)

    Blue LEDs, MeCN, 2h4:1

    SR

    H 98%

    Proposed Mechanism

    Ph Ph

    h! 450 nm

    [Ru]II [Ru]I

    O2O2

    [Ru]II*RSH

    RSH

    -H+

    RS

    R'

    RSR'

    RSHRSH

    R'

  • Tyson, E. L.; Niemeyer, Z. L.; Yoon, T. P. J. Org. Chem. 2014, 79, 1427-1436.!Tyson, E. L.; Ament, M. S. Yoon, T. P. J. Org. Chem. 2013, 78, 2046-2050.!

    ! Cysteine: Thiol-ene Bio-orthogonal variation

    Click Reactions For Post-Translational Protein Modification

    Yoon et al. 2013

    PhRu(bpz)3(PF6)2 (0.25 mol %)Blue LEDs, MeCN [0.2M], 2h

    4:1

    SPh

    H 97% (1.5h)

    -

    MeO

    ONHBoc

    SHNHBoc

    O

    MeO

    - amino acid is limiting- work in dilute, aquesous media- exhibit high rate of reactivity

    Bio-orthogonal variation

    Yoon et al. 2014

    Ru(bpz)3(PF6)2 (0.25 mol %)Blue LEDs, MeCN [0.1M], 0.5h

    1:2.5

    SH

    99% (0.5h)

    MeO

    ONHBoc

    SHNHBoc

    O

    MeO

    NH2

    H3C

    RR

    (0.5 equiv)

  • .!Tyson, E. L.; Ament, M. S. Yoon, T. P. J. Org. Chem. 2013, 78, 2046-2050.!

    ! Cysteine: Thiol-ene Bio-orthogonal variation

    Click Reactions For Post-Translational Protein Modification

    Yoon et al. 2014

    Ru(bpz)3(PF6)2 (0.25 mol %)Blue LEDs, H2O [0.1M], 0.5h

    HOOC

    NH2

    NH2

    H3C

    (0.5 equiv)

    O

    HN

    O

    NH

    SH

    COOH HOOC

    NH2

    O

    HN

    O

    NH

    S

    COOH

    R

    RH

    N3

    60%

    OO

    OO

    OH

    75%

    O OAcAcO

    OAc

    AcO

    71%

    HN NH

    O

    S

    HH

    O

    O

    77%

    HO

    OHN

    O

    O

    SMe 76%

    HO

    OHN

    O

    O

    HO 92%

    exclusively

  • !Tyson, E. L.; Ament, M. S. Yoon, T. P. J. Org. Chem. 2013, 78, 2046-2050.!

    ! Cysteine: Thiol-ene Bio-orthogonal variation

    Click Reactions For Post-Translational Protein Modification

    Yoon et al. 2014

    Ru(bpz)3(PF6)2 (0.25 mol %)Blue LEDs, H2O [0.1M], 0.5h

    HOOC

    NH2

    NH2

    H3C

    (0.5 equiv)

    O

    HN

    O

    NH

    SH

    COOH HOOC

    NH2

    O

    HN

    O

    NH

    S

    COOH

    R

    RH

    h! 450 nm

    [Ru]II [Ru]I

    O2O2

    [Ru]II*RSH

    RS

    R'

    RSR'

    RSHRSH

    R'

    ArNH2

    ArNH3

    ArNH4

    Proposed MechanismEox = 0.72V

    Eox = 0.5V

  • Kung. K. K.; Ko, H. M. Cui, J. F.; Chong, H. C.; Leung, Y.C.; Wong, M. K. Chem. Commun. 2014, 50, 11899-11902.!Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L. Buchwald, S. L. Nature 2015, 526, 687-691.!

    ! Cysteine: Metal-mediated Cross Coupling

    Click Reactions For Post-Translational Protein Modification

    NH

    O

    HN

    SH

    N NAu

    N

    R

    MeO2S SO2Me

    H2O

    Wong et al. 2014

    NAu

    N

    R

    ONH

    PCy2PriO

    OiPrPd Ar

    OHTf

    MeCN:H2O, 5:95pH 7.5, 5 min Buchwald et. al 2015

    NPd

    ONH

    Cy2P

    OiPr

    OiPr

    NH

    O

    HN

    S

    R

    N

    NH

    O

    HN

    SAr

    S

    NH2

    H

    O

    HO

    M = Fe, Cu, Mo, Pd, Pt....etc S

    NH

    H

    O

    HOM

    Ar

    S

    S

  • Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L. Buchwald, S. L. Nature 2015, 526, 687-691.!

    ! Cysteine: Metal-mediated Cross Coupling

    Click Reactions For Post-Translational Protein Modification

    PCy2PriO

    OiPrPd Ar

    OTf

    C(O)NH2NH2

    HS0.1 M Tris, pH 7.5

    CH3CN:H2O, 5:95, [10 µ!]

    C(O)NH2NH2

    SAr

    ArPd cat. O-allylation of tyrosine (Francis et. al 2005)

    electrophilicity of metal center tuneschemoselectivity

    PdLn4

    OEt2N

    O

    N

    N

    Fluorescent tags Bioconjugation handles

    O O

    quantitative

    CHOTMS

    Drug MoleculesMeN

    O

    N

    N

    NH

    F

    MeOVandetanib

    NH2-RSNFYLGCAGLAHDKAT-C(O)NH2

  • Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B. L. Buchwald, S. L. Nature 2015, 526, 687-691.!

    ! Cysteine: Metal-mediated Cross Coupling

    Click Reactions For Post-Translational Protein Modification

    PCy2PriO

    OiPrPd Ar

    OHTf

    20 mM Tris, 150 mM NaCl

    CH3CN:H2O, 5:95, 30 minpH 7.5

    antibody mimic

    0.5 mM Tris

    CH3CN:H2O, 1:1, 10 minpH 7.5

    Peptide stapling

    20 mM Tris, 150 mM NaCl

    CH3CN:H2O, 5:95, 30 minpH 7.5

    Trastuzumab

    Pd cat. with vandetanib

    Trastuzumab-vandetanib conjugate

    SDrug

    DAR = 4.4

    SH SAr

    PCy2PriO

    OiPrPd ArCl

    NH2-I-K-F-T-E-C-G-L-L-C-Y-Q-K-R-C(O)NH2

    SH SH

    NH2-I-K-F-T-E-C-G-L-L-C-Y-Q-K-R-C(O)NH2

    S SPhPh

    O

    SH

  • ! Which residues do we target for Click and How?

    Click Reactions For Post-Translational Protein Modification

    SH

    Cysteine

    NH3

    Lysine

    OH

    Tyrosine

    - uncommon residue- nucleophilic- good ligand for metals

    - most abundant residue- strong nucleophile (as free amine)-vast literature for reactions of amines

    - activated for EAS reactions

    COOH

    Aspartic or Glutamic acid Histidine Tryptophan

    - prevalenceof coupling reactions in biology

    - good ligand for metals- prone to acylation

    - electrophilic addition to C3

    NHNNH

  • Jewett, J. C.; Bertozzi, C. R. Chem. Soc . Rev. 2010, 39, 1272-1279.!

    ! Classical Lysine Modification

    Click Reactions For Post-Translational Protein Modification

    NH

    O

    HN

    NH2

    N

    O

    O

    O

    O

    physiological conditions NH

    O

    HN

    HN O

    Me

    NH

    O

    OHMeO

    O

    CH3O

    MeNMe

    Cl

    MeO O

    O

    N MeO

    Me

    O

    S N

    O

    O

    O

    HN

    DAR = 3.5

    Kadcyla

  • Jewett, J. C.; Bertozzi, C. R. Chem. Soc . Rev. 2010, 39, 1272-1279.!

    ! Classical Lysine Modification

    Click Reactions For Post-Translational Protein Modification

    NH

    O

    HN

    NH2

    S

    physiological conditions NH

    O

    HN

    HN

    Cl

    O OS

    O O

    NH

    O

    HN

    NH2

    N

    physiological conditions NH

    O

    HN

    HN

    CO

    O

    NH

  • McFarland, J. M.; Francis, M. B. J. Am. Chem. Soc. 2005, 127, 13490-13491.!

    ! Lysine Modification by Transfer Hydrogenation

    Click Reactions For Post-Translational Protein Modification

    NH

    O

    HN

    NH2

    NH

    O

    HN

    HNN

    N

    IrH2O

    SO42-

    K2HPO4 buffer, pH 7.4

    CHOPh

    Ph

    COOHNH2

    NH2-MYKFARLAND-CO2H

    NH2

    N

    N

    IrH2O

    SO42-

    (20 µM)

    HCO2Na (25 mM)K2HPO4 buffer (50 mM)

    pH 7.4 [10 µM]

    cat.

    HCO2Na

    COOHNH

    NH2-MYKFARLAND-CO2H

    NH

    CHOPh

    Ph

    (37%)

    Alk

    (100 equiv)

  • McFarland, J. M.; Francis, M. B. J. Am. Chem. Soc. 2005, 127, 13490-13491.!

    ! Lysine Modification by Transfer Hydrogenation

    Click Reactions For Post-Translational Protein Modification

    NH

    O

    HN

    NH2

    NH

    O

    HN

    HNN

    N

    IrH2O

    SO42-

    K2HPO4 buffer, pH 7.4 (50 mM)

    CHOPh

    Ph

    (20 µM)

    HCO2Na (25 mM)

    Cytochrome c !-Chymotrypsinogen A(19 Lys) (14 Lys)

    Myoglobin(19 Lys)

    Ribonuclease(10 Lys)

    + 1 Lys 19% + 2 Lys 27%+ 3 Lys 22%+ 4 Lys 12%

    18h

    + 1 Lys 47% + 2 Lys 27%+ 3 Lys 02%+ 4 Lys 00%

    + 1 Lys 15% + 2 Lys 00%+ 3 Lys 00%+ 4 Lys 00%

    + 1 Lys 41% + 2 Lys 00%+ 3 Lys 00%+ 4 Lys 00%

  • McFarland, J. M.; Francis, M. B. J. Am. Chem. Soc. 2005, 127, 13490-13491.!

    ! Lysine Modification by Transfer Hydrogenation

    Click Reactions For Post-Translational Protein Modification

    NH

    O

    HN

    NH2

    NH

    O

    HN

    HNN

    N

    IrH2O

    SO42-

    K2HPO4 buffer, pH 7.4 (50 mM)

    CHOPh

    Ph

    (20 µM)

    HCO2Na (25 mM)

    18h

    Proposed Mechanism

    N

    N

    IrH2O

    SO42-N

    N

    IrH

    SO42-

    HCO2-CO2

    RN Ph

    RHN Ph

    H

  • ! Which residues do we target for Click and How?

    Click Reactions For Post-Translational Protein Modification

    SH

    Cysteine

    NH3

    Lysine

    OH

    Tyrosine

    - uncommon residue- nucleophilic- good ligand for metals

    - most abundant residue- strong nucleophile (as free amine)-vast literature for reactions of amines

    - activated for EAS reactions

    COOH

    Aspartic or Glutamic acid Histidine Tryptophan

    - prevalenceof coupling reactions in biology

    - good ligand for metals- prone to acylation

    - electrophilic addition to C3

    NHNNH

  • Jewett, J. C.; Bertozzi, C. R. Chem. Soc . Rev. 2010, 39, 1272-1279.!

    ! Tyrosine Classical Modification

    Click Reactions For Post-Translational Protein Modification

    NH

    O

    HN

    NH

    O

    HN

    OH OH

    aqueous buffer, rt

    N2

    R NN

    R

    bright organge

    one of the earliest reported Modifications-1905

  • Jewett, J. C.; Bertozzi, C. R. Chem. Soc . Rev. 2010, 39, 1272-1279.!

    ! Tyrosine Classical Modification

    Click Reactions For Post-Translational Protein Modification

    NH

    O

    HN

    NH

    O

    HN

    OH OH

    Oxidative coupling

    NH

    O

    HN

    NH

    O

    HN

    OH OH

    Mannich reactionRCHO,PhNH2

    OH

    NH

    O

    HN

    NH

    O

    HN

    OH OR

    PdLn

    HN

    R

    R

    Ni(OAc)2

    OH

    allyl-Pd reagents

  • Ban, H.; Gavrilyuk, J.; Barbas, C. F. III. J. Am. Chem. Soc. 2010, 132, 1523-1525.!

    ! Tyrosine Modification by Aqueous-ene reaction

    Click Reactions For Post-Translational Protein Modification

    NH

    Me

    O

    HN

    Me NH

    Me

    O

    HN

    Me

    OH OHNN

    N

    O

    O N

    NHN

    O

    O

    Ph

    MeCN/H2O (1:1), 5 min

    Competition experiments

    65%quantitative with 3.3 equiv PTAD

    sodium phosphate buffer, pH 7

    (1.1 equiv)

    exclusive Tyrosine Modification39%

    NH2

    HO

    HS

    OH

    NH

    NH2

    NHN

    COOH NH2

    HO

    HS

    OH

    NH

    NH2

    NHN

    COOH

    N

    NNHO

    OPh

  • Ban, H.; Gavrilyuk, J.; Barbas, C. F. III. J. Am. Chem. Soc. 2010, 132, 1523-1525.!

    ! Tyrosine Modification by Aqueous-ene reaction

    Click Reactions For Post-Translational Protein Modification

    NH

    Me

    O

    HN

    Me NH

    Me

    O

    HN

    Me

    OH OHNN

    N

    O

    O N

    NHN

    O

    O

    Ph

    MeCN/H2O (1:1), 5 min

    65%quantitative with 3.3 equiv PTAD

    sodium phosphate buffer, pH 7

    (1.1 equiv)

    NH

    Me

    O

    HN

    Me

    OHN

    NHN

    O

    O

    Ph

    pH 2-12 for 24h120oC for 1h

    NH

    Me

    O

    HN

    Me

    OHN

    NHN

    O

    O

    Ph

    new C-N bond stable to pH and temperature condtions(89 % recovered)

  • Ban, H.; Gavrilyuk, J.; Barbas, C. F. III. J. Am. Chem. Soc. 2010, 132, 1523-1525.!

    ! Tyrosine Modification by Aqueous-ene reaction

    Click Reactions For Post-Translational Protein Modification

    NH

    O

    HN

    NH

    O

    HN

    OH OHNN

    N

    O

    O N

    NHN

    O

    O

    Ph

    DMF/H2O (5:95), [30 µM]sodium phosphate buffer, pH 7.4

    (3.3 equiv)

    O

    Rhodamine

    O

    Rhodamine

    Chymotrypsinogen A Myoglobin Bovine Serum Albumin(81%) (8 %) (96 %)(3 Tyr) (2 Tyr) (21 Tyr)

  • ! Which residues do we target for Click and How?

    Click Reactions For Post-Translational Protein Modification

    SH

    Cysteine

    NH3

    Lysine

    OH

    Tyrosine

    - uncommon residue- nucleophilic- good ligand for metals

    - most abundant residue- strong nucleophile (as free amine)-vast literature for reactions of amines

    - activated for EAS reactions

    COOH

    Aspartic or Glutamic acid Histidine Tryptophan

    - prevalenceof coupling reactions in biology

    - good ligand for metals- prone to acylation

    - electrophilic addition to C3

    NHNNH

  • Antos, J. M.; Francis, M. B. J. Am. Chem. Soc. 2004, 126, 10256-10257.!

    ! Tryptophan Modification

    Click Reactions For Post-Translational Protein Modification

    HN HN

    N2

    PhO

    OOMe

    3

    0.5 mM Rh2(OAc)475 mM HONH2 HCl

    ethylene glycol/ H2O (20:80)17h, 10µM

    (4 equiv)RO2C

    Ph

    N

    CO2R

    Ph

    (1.4:1)51%

    H3C H3C

    Possible Reaction pathways

    HN

    CH3

    N-H insertioncyclopropaneintermediate N

    CH3

    RO2C

    Ph

    CH3

    HN

    RO2C

    Ph

    H3C

  • Antos, J. M.; Francis, M. B. J. Am. Chem. Soc. 2004, 126, 10256-10257.!

    ! Tryptophan Modification

    Click Reactions For Post-Translational Protein Modification

    N2

    PhO

    OOMe

    3

    Rh2(OAc)4 (1.0 equiv)75 mM HONH2 HCl

    ethylene glycol/ H2O (20:80)7h, pH 3.5

    (100 equiv)

    Myoglobin (100 µM)

    Tryptophan Modification products

    N2

    PhO

    OOMe

    3

    Rh2(OAc)4 (1.0 equiv)75 mM HONH2 HCl

    ethylene glycol/ H2O (20:80)7h, pH 1.5

    (100 equiv)

    subtilisin Carlsberg (100 µM)

    Tryptophan Modification product

    (one Trp residue)

    (2 Trp)

  • Antos, J. M.; McFarland, J. M.; Lavarone, A. T.; Francis, M. B. J. Am. Chem. Soc. 2009, 131, 6301-6308.!

    ! Tryptophan Modification

    Click Reactions For Post-Translational Protein Modification

    N2

    PhO

    OOMe

    3

    100 µM Rh2(OAc)475 mM tBuNHOH

    ethylene glycol/ H2O (20:80)7h, pH 6-7

    (100 equiv)

    Melittin (100 µM)

    Tryptophan Modification products

    tBuNHOH promotes carbenoid formation at higher pH 3-9

    Rh

    O

    O

    RhO

    OO

    O

    OO O

    ONH

    HN

    H

    O-boundFavored

    Rh

    O

    O

    RhO

    OO

    O

    OO N

    NOH

    OH

    N-boundDisfavored

    pH 6

    (1 Trp)

  • Jewett, J. C.; Bertozzi, C. R. Chem. Soc . Rev. 2010, 39, 1272-1279.!

    ! Modification of other Residues

    Click Reactions For Post-Translational Protein Modification

    NH

    O

    HN

    NH

    O

    HN

    HN

    NH

    NH2

    H

    O

    NO2

    O

    H

    pH 12-140-5oC, 15 min

    HN

    N

    N

    NO2

    Arg sidechain

    NH

    O

    HN

    NH

    O

    HN

    O

    O

    O

    pH 4.0

    His sidechain

    NNH N

    N

    EtMeMe

    O

  • Jewett, J. C.; Bertozzi, C. R. Chem. Soc . Rev. 2010, 39, 1272-1279.!

    ! Modification of other Residues

    Click Reactions For Post-Translational Protein Modification

    NH

    O

    HN

    NH

    O

    HN

    0-5oC, 5 min

    Glu sidechain

    R NH2 R N C N R

    COOHHNO

    R

  • ! Concluding Remarks

    Click Reactions For Post-Translational Protein Modification

    - Direct site-selective modification of proteins has evolved over the last 20 years

    - Direct modification can be a powerful tool with widespread pharmaceutical and industrial applications

    - Research to expand the number of available reactions and surface reidues which can be modified is needed

  • ! Questions

    Click Reactions For Post-Translational Protein Modification

    HN

    NH2

    SH

    HO

    O

    OH

    OH