nm-slides-b-and-w

Upload: ougueway

Post on 03-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 nm-slides-b-and-w

    1/228

    Numerical Methods

    Aaron NaimanJerusalem College of Technology

    [email protected]://jct.ac.il/naiman

    based on: Numerical Mathematics and Computing

    by Cheney & Kincaid, c1994Brooks/Cole Publishing Company

    ISBN 0-534-20112-1

    Copyright c2011 by A. E. Naiman

  • 7/28/2019 nm-slides-b-and-w

    2/228

    Taylor Series

    Definitions and Theorems

    Examples

    Proximity of x to c Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 1

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    3/228

    Motivation

    Sought: cos (0.1)

    Missing: calculator or lookup table Known: cos for another (nearby) value, i.e., at 0

    Also known: lots of (all) derivatives at 0

    Can we use them to approximate cos (0.1)?

    What will be the worst error of our approximation?

    These techniques are used by computers, calculators, tables.

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 2

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    4/228

    Taylor Series

    Series definition: If f(k)(c), k = 0, 1, 2, . . ., then:

    f(x)

    f(c) + f(c)(x

    c) +

    f(c)

    2!

    (x

    c)2 +

    =

    k=0

    f(k)(c)

    k!(x c)k

    c is a constant and much is known about it (f(k)(c)) x a variable near c, and f(x) is sought With c = 0 Maclaurin series

    What is the maximum error if we stop after n terms?

    Real life: crowd estimation: 100K 10K vs. 100K 1K

    Key NM questions: What is estimate? What is its max error?

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 3

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    5/228

    Taylor Series cos x

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    -4 -2 0 2 4

    fu

    nction

    value

    cos x

    1

    1 x2

    2

    1 x22 +x4

    4!

    1 x22 +x4

    4! x6

    6!

    !

    s

    z

    z

    Better and better approximation, near c, and away.

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 4

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    6/228

    Taylors Theorem

    Theorem: If f Cn+1[a, b] then

    f(x) =n

    k=0f(k)(c)

    k!(x c)k + f

    (n+1)((x))

    (n + 1)!(x c)n+1

    where

    x, c [a, b], (x) open interval between x and c

    Notes: f C(X) means f is continuous on X f Ck(X) means f, f, f, f(3), . . . , f (k) are continuous

    on X

    = (x), i.e., a point whose position is a function of x Error term is just like other terms, with k := n + 1-term is truncation error, due to series termination

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 5

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    7/228

    Taylor SeriesProcedure

    Writing it out, step-by-step: write formula for f(k)(x)

    choose c (if not already specified)

    write out summation and error term note: sometimes easier to write out a few terms

    Things to (possibly) prove by analyzing worst case

    letting n LHS remains f(x)

    summation becomes infinite Taylor series

    if error term

    0

    infinite Taylor series represents f(x) for given n, we can estimate max of error term

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 6

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    8/228

    Taylor Series

    Definitions and Theorems

    Examples

    Proximity of x to c Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 7

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    9/228

    Taylor Series: ex

    f(x) = ex, |x| < f(k)(x) = ex, k

    Choose c := 0

    We have

    ex =n

    k=0xk

    k!+

    e(x)

    (n + 1)!xn+1

    As n take worst case (just less than x)error term 0 (why?)

    ex = k=0

    xk

    k!= 1 + x + x

    2

    2!+ x

    3

    3!+

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 8

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    10/228

    Taylor Series: sin x

    f(x) = sin x, |x| < f(k)(x) = sin

    x + k2

    , k, c := 0

    We have

    sin x =n

    k=0

    sin

    k2

    k!

    xk +sin

    (x) +

    (n+1)2

    (n + 1)!

    xn+1

    Error term 0 as n Even k terms are zero = 0, 1, 2, . . ., and k 2 + 1

    sin x =

    =0

    sin(2+1)2 (2+1)! x2+1 =

    k=0

    (

    1)kx2k+1

    (2k+1)! = xx3

    3! +

    x5

    5!

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 9

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    11/228

    Taylor Series: cos x

    f(x) = cos x, |x| < f(k)(x) = cos

    x + k2

    , k, c := 0

    We have

    cos x =n

    k=0

    cos

    k2

    k!

    xk +cos

    (x) +

    (n+1)2

    (n + 1)!

    xn+1

    Error term 0 as n Odd k terms are zero = 0, 1, 2, . . ., and k 2

    cos x =

    =0

    cos (2)2 (2)! x2 =

    k=0

    (1)kx2k

    (2k)! = 1 x2

    2! +x4

    4!

    Copyright c2011 by A. E. NaimanNM Slides

    Taylor Series, p. 10

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    12/228

    Numerical Example: cos (0.1)

    We have 1)f(x) = cos x and 2)c = 0 obtain series: cos x = 1 x22! + x

    4

    4!

    Actual value: cos (0.1) = 0.99500416527803 . . .

    With 3)x = 0.1 and 4)specific ns from Taylor approximations:

    n approximation|error

    | 0, 1 1 0.01/2!2, 3 0.995 0.0001/4!4, 5 0.99500416 0.000001/6!6, 7 0.99500416527778 0.00000001/8!

    ..

    .

    ..

    .

    ..

    .includes odd k

    Obtain accurate approximation easily and quickly.

    Copyright c2011 by A. E. NaimanNM Slides

    Taylor Series, p. 11

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    13/228

    Taylor Series: (1

    x)1

    f(x) = 11x, |x| < 1 f(k)(x) = k!(1x)k+1, k, choose c := 0

    We have

    11 x =

    nk=0

    xk + (n + 1)!(1 (x))n+2 x

    n+1

    (n + 1)!

    =n

    k=0xk +

    x

    1

    (x)

    n+11

    1

    (x)

    Why bother, with LHS so simple? Ideas?

    Sufficient: x

    1

    (x)

    n+1 0 as n

    For what range of x is this satisfied?Need to determine radius of convergence.

    Copyrightc2011 by A. E. Naiman

    NM SlidesTaylor Series, p. 12

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    14/228

    (1

    x)1 Range of Convergence

    Sufficient:

    x1(x)

    < 1

    Approach: get variable x in middle of sufficiency inequality transform range of inequality to LHS and RHS of

    sufficiency inequality require restriction on x but check if already satisfied

    || < 1 1 > 0 sufficient: (1 ) < x < 1

    Copyrightc2011 by A. E. Naiman

    NM SlidesTaylor Series, p. 13

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    15/228

    (1

    x)1 Range of Convergence (cont.)

    case x < < 0: LHS: (1 x) < (1 ) < 1 require: 1 x RHS: 1 < 1 < 1 x require: x 1

    case 0 < < x: LHS: 1 < (1 ) < (1 x) require: (1 x) x,

    or: 1 < 0

    RHS: 1

    x < 1

    < 1

    require: x

    1

    x, or: x

    1

    2

    Therefore, for 1 < x 121

    1 x=

    k=0 xk = 1 + x + x2 + x3 +

    Zeno: x =1

    2

    , . . . Need more analysis for the whole range |x| < 1.

    Copyright c

    2011 by A. E. Naiman NM Slides Taylor Series, p. 14

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    16/228

    Taylor Series: ln x

    f(x) = ln x, 0 < x 2 f(k)(x) = (1)k1(k1)!xk , k 1

    Choose c := 1 We have

    lnx

    =n

    k=1 (

    1)

    k

    1(x

    1)k

    k+

    (1

    )

    n 1

    n + 1

    (x

    1)n+1

    n+1(x)

    Sufficient

    x1(x)

    n+1 0 as n

    Again, for what range of x is this satisfied?

    Copyright c

    2011 by A. E. Naiman NM Slides Taylor Series, p. 15

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    17/228

    ln x Range of Convergence

    Sufficient: x1(x) < 1 . . . 1 < x < 1 + case 1 < < x:

    LHS: 1 x < 1 < 0 require: 0 x

    RHS: 2 < 1 + < 1 + x require: x 2 case x < < 1:

    LHS: 0 < 1 < 1 x require: 1 x x, or: 12 x RHS: 1 + x < 1 + < 2 require: x 1 + x

    Therefore, for 12 x 2

    ln x =

    k=1

    (1)k

    1(x

    1)k

    k = (x 1) (x

    1)2

    2 +

    (x

    1)3

    3 Again, need more analysis for entire range of x.

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 16

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    18/228

    Ratio Test and ln x Revisited

    Theorem: an+1an (< 1) partial sums converge ln x: ratio of adjacent summand terms (not the error term)

    an+1an = (x 1) nn + 1 Obtain convergence of partial sums for 0 < x < 2

    Note: not looking at and the error term

    x = 2: 1 12 + 13 , which is convergent (why?)

    x = 0: same series, all same sign divergent harmonic series we have 0 < x 2

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 17

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    19/228

    (1 x)1 Revisited Letting x (1 x)

    ln (1 x) =

    x +x2

    2+

    x3

    3+

    , 1 x < 1

    ddx: lhs = 11x and rhs =

    1 + x + x2 + x3 +

    ! : no = for x = 1 as rhs oscillates (note: correct avgvalue)

    |x| < 1 we have (also with ratio test)1

    1 x = 1 + x + x2 + x3 +

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 18

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    20/228

    Taylor Series

    Definitions and Theorems

    Examples

    Proximity of x to c Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 19

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    21/228

    Proximity of x to c

    Problem: Approximate ln 2

    Solution 1: Taylor ln (1 + x) around 0 with x = 1

    ln 2 = 1 12

    +1

    3 1

    4+

    1

    5 1

    6+

    1

    7 1

    8+

    Solution 2: Taylor ln

    1+x1x

    around 0 with x = 13

    ln 2 = 231 +33

    3

    +35

    5

    +37

    7

    +

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 20

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    22/228

    Proximity of x to c (cont.)

    Approximated values, rounded:

    Solution 1, first 8 terms: 0.63452 Solution 2, first 4 terms: 0.69313

    Actual value, rounded: 0.69315

    importance of proximity of evaluation and expansion points

    This error is in addition to the truncation error.

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 21

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    23/228

    Taylor Series

    Definitions and Theorems

    Examples

    Proximity of x to c Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 22

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    24/228

    Polynomials and a Second Form

    Polynomials C(, ) have finite number of non-zero derivatives, Taylor series c . . . original polynomial, i.e., error = 0

    f(x) = 3x2

    1, . . . f (x) =

    2

    k=0

    f(k)(0)

    k!xk =

    1 + 0 + 3x2

    Taylor Theorem can be used for fewer terms e.g.: approximate a P17 near c by a P3

    Taylors Theorem, second form (x = constant expansion

    point, h = distance, x + h = variable evaluation point):If f Cn+1[a, b] then

    f(x + h) =

    n

    k=0

    f(k)(x)

    k! h

    k

    +

    f(n+1)((h))

    (n + 1)! h

    n+1

    x, x + h [a, b], (h) open interval between x and x + hCopyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 23

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    25/228

  • 7/28/2019 nm-slides-b-and-w

    26/228

    Second Form ln (e + h)

    Evaluation of interest: ln (e + h), for e < h e

    Define: f(z) ln (z)

    x = e is the constant expansion point

    ln z > 0

    Derivativesf(z) = ln z f(e) = 1

    f(z) = z1 f(e) = e1f(z) =

    z2 f(e) =

    e2

    f(z) = 2z3 f(e) = 2e3f(n)(z) = (1)n1(n 1)!zn f(n)(e) = (1)n1(n 1)! en

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 25

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    27/228

    ln (e + h) Expansion and Convergence

    Expansion (recall: x = e)

    ln (e + h) f(x + h) = 1 +n

    k=1(1)k1(k 1)!ekhk

    k!+

    (1)n n! (h)(n+1)hn+1(n + 1)!

    or

    ln (e + h) = 1 +n

    k=1

    (1)k1k

    he

    k+

    (1)nn + 1

    h(h)

    n+1

    Range of convergence, sufficient (for variable h):

    < h <

    case e + h < < e: . . . e2 h case e < < e + h: . . . h e

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 26

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    28/228

    O() Notation and MVT

    As

    h 0, we write the speed of

    f(h) 0

    f(h) = O

    hk

    |f(h)| C|h|k

    e.g., f(h): h, 11000h, h2; let h 110, 1100, 11000, . . .

    Taylor truncation error = Ohn+1; if for a given n the maxexists, then

    C := max(h) f(n+1)((h))/(n + 1)!

    Mean value theorem (Taylor, n = 0): If f C1[a, b] thenf(b) = f(a) + (b

    a)f(),

    (a, b)

    or:

    f() =f(b) f(a)

    b aCopyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 27

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    29/228

    Alternating Series Theorem

    Alternating series theorem: If ak > 0, ak ak+1, k 0, andak 0, then

    nk=0

    (1)k

    ak S and |S Sn| an+1

    Intuitively understood

    Note: direction of error is also know for specific n

    We had this with sin and cos

    Another useful method for max truncation error estimationMax truncation error estimation without -analysis

    Copyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 28

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    30/228

    ln (e + h) Max Trunc. Error Estimate

    What is the max error after

    n+ 1 terms?

    Max error estimate also depends on proximitysize of h from Taylor: obtain O

    hn+1

    |error| 1

    n + 1|h|n+1

    max1

    n+1

    from AST (check the conditions!): also obtainO

    hn+1

    , with different constant

    |error| 1n + 1

    hen+1

    E.g.: h = e2: ln 32e = 1 + 12 12 122 +13 123

    14 124 +

    Taylor max error (occurs as e+

    ):

    1

    n+1 1

    2n+1 AST max error: 1n+1 12n+1 note same max error estimate; but can be very differentCopyright c2011 by A. E. Naiman NM Slides Taylor Series, p. 29

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    31/228

    Base Representations

    Definitions

    Conversions

    Computer Representation Loss of Significant Digits

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 1

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    32/228

    Number Representation

    Simple representation in one base simple representation inanother base, e.g.

    (0.1)10 = (0.0 0011 0011 0011 . . .)2

    Base 10:

    37294 = 4 + 90 + 200 + 7000 + 30000

    = 4 100 + 9 101 + 2 102 + 7 103 + 3 104

    in general: an . . . a0 =n

    k=0ak10

    k

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 2

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    33/228

    Fractions and Irrationals

    Base 10 fraction:

    0.7217 = 7 101 + 2 102 + 1 103 + 7 104

    In general, for real numbers:an . . . a0.b1 . . . =

    nk=0

    ak10k +

    k=1

    bk10k

    Note: numbers, i.e., irrationals, such that an infinite numberof digits are required, in any rational base, e.g., e,,

    2

    Need infinite number of digits in a base

    irrational

    (0.333 . . .)10 but1

    3is not irrational

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 3

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    34/228

    Other Bases

    Base 8, 8 or 9, using octal digits(21467)8 = = (9015)10

    (0

    .36207

    )8= 8

    53 84 + =

    15495

    32768=

    (0

    .47286

    . . .)10

    Base 16: 0, 1, . . . , 9, A (10), B (11), C (12), D(13), E (14), F (15)

    Base

    (an . . . a0.b1 . . .) =n

    k=0

    akk +

    k=1

    bkk

    Base 2: just 0 and 1, or for computers: off and on,bit = binary digit

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 4

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    35/228

    Base Representations

    Definitions

    Conversions

    Computer Representation Loss of Significant Digits

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 5

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    36/228

    Conversion: Base 10 Base 2 Basic idea:

    3781 = 1 + 10

    (1010)2

    8

    (1000)2+10(7 + 1 0(3))

    =

    = (111 011 000 101)2

    Easy for computer, but by hand: (3781.372)10

    remainder2)3781 2)1890 1 = a0

    2)945 0 = a1

    ...

    0.372 2 b1 = 0 .744

    2

    b2= 1

    .488 (drop 1 )

    ... only useful for converting to lower base (one-digit /)

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 6

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    37/228

    Base 8 Shortcut

    Base 2

    base 8, trivial

    (551.624)8 = (101 101 001.110 010 100)2

    3 bits for every 1 octal digit

    One digit produced for every step in (hand) conversion

    base 10 base 8 base 2

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 7

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    38/228

    Base Representations

    Definitions

    Conversions

    Computer Representation Loss of Significant Digits

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 8

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    39/228

    Computer Representation

    Scientific notation:32.213 0.32213 102

    In generalx = 0.d1d2 . . . 10n, d1 = 0, or: x = r 10n,

    1

    10 r < 1

    we have sign, mantissa r and exponent n

    On the computer, base 2 is represented

    x = 0.b1b2 . . . 2n, b1 = 0, or: x = r 2n,1

    2 r < 1

    Finite number of mantissa digits, therefore roundoff ortruncation error

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 9

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    40/228

    Base Representations

    Definitions

    Conversions

    Computer Representation Loss of Significant Digits

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 10

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    41/228

    LSDAddition

    (a + b) + c = a + (b + c) on the computer?

    Six decimal digits for mantissa

    1, 000, 000. + 1. + + 1. million times

    = 1, 000, 000.

    because

    0.100000 107

    + 0.100000 101

    = 0.100000 107

    but

    1. + + 1. million times

    +1, 000, 000. = 2, 000, 000.

    Add numbers in size order.

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 11

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    42/228

    LSDSubtraction

    E.g.: x sin x for xs close to zero

    x =1

    15(radians)

    x = 0.66666 66667 101sin x = 0.66617 29492 101

    x sin x = 0.00049 37175 101= 0

    .49371 75000

    10

    4

    Note still have 1010 precision (because no more info), but

    can we rework calculation for 10

    13 precision?

    Avoid subtraction of close numbers.

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 12

    S S

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    43/228

    LSD Avoidance for Subtraction

    x sin x for x 0 use Taylor series no subtraction of close numbers e.g., 3 terms: 0.49371 74328 104

    actual: 0.49371 74327

    10

    4

    ex e2x for x 0 use Taylor series twice and addcommon powers

    x2 + 1 1 for x 0 x2x2+1+1

    cos2 x sin2 x for x 4 cos2x

    ln x 1 for x e ln xe

    Copyright c2011 by A. E. Naiman NM Slides Base Representations, p. 13

    N li E ti

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    44/228

    Nonlinear Equations

    Motivation Bisection Method Newtons Method Secant Method Summary

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 1

    M ti ti

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    45/228

    Motivation

    For a given function f(x), find its root(s), i.e.: find x (or r = root) such that f(x) = 0

    BVP: dipping of suspended power cable. What is ? cosh

    50

    10 = 0

    (Some) simple equations solve analytically6x2 7x + 2 = 0

    (3x 2)(2x 1) = 0x = 2

    3, 1

    2

    cos3x cos7x = 02sin5x sin2x = 0

    x = n5

    , n2

    , n ZZ

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 2

    M ti ti ( t )

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    46/228

    Motivation (cont.)

    In general, we cannot exploit the function, e.g.:

    2x2 10x + 1 = 0

    and

    cosh

    x2 + 1 ex

    + log |sin x| = 0

    Note: at times multiple roots e.g., previous parabola and cosine we want at least one we may only get one (for each search)

    Need a general, function-independent algorithm.

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 3

    Nonlinear Equations

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    47/228

    Nonlinear Equations

    Motivation Bisection Method Newtons Method Secant Method Summary

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 4

    Bisection Method Example

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    48/228

    Bisection MethodExample

    -5

    -4

    -3

    -2

    -1

    01

    2

    3

    4

    a bx

    0x

    1x

    2x

    3

    fu

    nction

    val

    ue

    Intuitive, like guessing a number [0, 100].

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 5

    Restrictions and Max Error Estimate

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    49/228

    Restrictions and Max Error Estimate

    Restrictions function slices x-axis at root

    start with two points a and b f(a)f(b) < 0 graphing tool (e.g., Matlab) can help to find a

    and b

    require C0[a, b] (why? note: not a big deal) Max error estimate

    after n steps, guess midpoint of current range

    error: ba2n+1

    (think of n = 0, 1, 2)

    note: error is in x; can also look at error in f(x) orcombination

    enters entire world of stopping criteria

    Question: Given tolerance (in x), what is n? . . .

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 6

    Convergence Rate

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    50/228

    Convergence Rate

    Given tolerance (e.g., 106), how many steps are needed?

    Tolerance restriction ( from before):

    b a2n+1

    < 1) 2, 2) log (any base)

    log (b a) n log2 < log2or

    n >log (b a) log2

    log2

    Rate is independent of function.

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 7

    Convergence Rate (cont )

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    51/228

    Convergence Rate (cont.)

    Base 2 (i.e., bits of accuracy)n > log2 (b a) 1 log2

    i.e., number of steps is a constant plus one step per bit

    Linear convergence rate: C [0, 1)xn+1 r C|xn r|, n 0i.e., monotonic decreasing error at every step, andxn+1 r Cn+1|x0 r|

    Bisection convergence

    not linear (examples?), but compared to init. max error:

    similar form: xn+1 r Cn+1(b a), with C = 12Okay, but restrictive and slow.

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 8

    Nonlinear Equations

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    52/228

    Nonlinear Equations

    Motivation Bisection Method

    Newtons Method Secant Method Summary

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 9

    Newtons MethodDefinition

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    53/228

    Newton s Method Definition

    Approximate f(x) near x0 by tangent (x)f(x) f(x0) + f(x0)(x x0) (x)

    Want (r) = 0

    r = x0

    f(x0)

    f(x0),

    x1 := r, likewise:

    xn+1 = xn f(xn)

    f(xn)

    Alternatively (Taylors): have x0, for what h is

    f

    x0 + h

    x1

    = 0

    f(x0 + h) f(x0) + hf(x0) or h = f(x0)f(x0)

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 10

    Newtons MethodExample

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    54/228

    Newton s Method Example

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    x0x1x2x3

    fun

    ction

    value

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 11

    Convergence Rate

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    55/228

    Convergence Rate

    English: With enough continuity and proximity quadratic convergence!

    Theorem: With the following three conditions:1)f(r) = 0, 2)f(r) = 0, 3)f C2

    B

    r,

    x0

    B(r, ) and

    n we have xn+1 r C()|xn r|

    2

    for a given , C is a constant (not necessarily < 1)

    Note: again, use graphing tool to seed x0

    Newtons method can be very fast.

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 12

    Convergence Rate Example

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    56/228

    Convergence Rate Example

    f(x) = x3 2x2 + x 3, x0 = 4n xn f(xn)0 4 33

    1 3 92 2.4375 2.0368652343753 2.21303271631511 0.2563633850614184 2.17555493872149 0.006463361488813065 2.17456010066645 4.47906804996122e

    06

    6 2.17455941029331 2.15717547991101e 12 Stopping criteria

    theorem: uses x; above: uses f(x)often all we have

    possibilities: absolute/relative, size/change, x or f(x)

    (combos, . . . )But proximity issue can bite, . . . .

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 13

    Sample Newton Failure #1

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    57/228

    p #

    -4

    -3

    -2

    -1

    0

    12

    3

    4

    5

    xn

    function

    valu

    e

    Runaway process

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 14

    Sample Newton Failure #2

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    58/228

    p #

    -4

    -2

    0

    2

    4

    xn

    function

    valu

    e

    Division by zero derivativerecall algorithm

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 15

    Sample Newton Failure #3

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    59/228

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    xnxn+1

    function

    valu

    e

    Loop-d-loop (can happen over m points)

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 16

    Nonlinear Equations

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    60/228

    Motivation Bisection Method

    Newtons Method Secant Method Summary

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 17

    Secant MethodDefinition

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    61/228

    Motivation: avoid derivatives

    Taylor (or derivative): f(xn) f(xn)f(xn1)xnxn1

    xn+1 = xn f(xn)xn

    xn

    1

    f(xn) fxn1 Bisection requirements comparison:

    2 previous points

    f(a)f(b) < 0

    Additional advantage vs. Newton:

    only one function evaluation per iteration

    Superlinear convergence:xn+1 r C|xn r|1.618...

    (recognize the exponent?)

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 18

    Nonlinear Equations

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    62/228

    Motivation Bisection Method

    Newtons Method Secant Method Summary

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 19

    Root FindingSummary

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    63/228

    Performance and requirementsf C2 nbhd(r) init. pts. speedy

    bisection 2 1 Newton 1 2 secant 2 1 \requirement that f(a)f(b) < 0function evaluations per iteration

    Often methods are combined (how?), with restarts fordivergence or cycles

    Recall: use graphing tool to seed x0 (and x1)

    Copyright c2011 by A. E. Naiman NM Slides Nonlinear Equations, p. 20

    Interpolation and Approximation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    64/228

    Motivation

    Polynomial Interpolation

    Numerical Differentiation Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 1

    Motivation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    65/228

    Three sample problems {(xi, yi)|i = 0, . . . , n}, (xi distinct), want simple (e.g.,

    polynomial) p(x) yi = p(xi), i = 0, . . . , n interpolation

    Assume data includes errors, relax equality but stillclose, . . . least squares

    Replace complicated f(x) with simple p(x) f(x)

    Interpolation similar to English term (contrast: extrapolation) for now: polynomial

    later: splinesUse p(x) for p(xnew),

    p(x) dx, . . . .

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 2

    Interpolation and Approximation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    66/228

    Motivation

    Polynomial Interpolation

    Numerical Differentiation Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 3

    Constant and Linear Interpolation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    67/228

    y0

    y1

    x0 x1

    function

    value

    p0(x)

    p1(x)

    n = 0: p(x) = y0 n = 1: p(x) = y0 + g(x)(y1 y0), g(x) P1, and

    g(x) = 0, x = x0,

    1, x = x1 g(x) = xx0x1

    x0

    n = 2: more complicated, . . . .

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 4

    Lagrange Polynomials

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    68/228

    Given: xi, i = 0, . . . , n; Kronecker delta: i j = 0, i = j,

    1, i = j

    Lagrange polynomials: i(x) Pn, i

    xj

    = i j, i = 0, . . . , n

    independent of any yi values

    E.g., n = 2:

    0

    1

    x0 x1 x2

    function

    value

    0(x) 1(x) 2(x)

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 5

    Lagrange InterpolationWe have

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    69/228

    We have

    0(x) =x x1

    x0 x1 x x2

    x0 x2,

    1(x) =x x0

    x1 x0 x x2

    x1 x2,

    2(x) =x x0

    x2 x0 x x1

    x2 x1,

    y00

    xj

    = y00j =

    0, j = 0,y0, j = 0

    y11xj = y11j = 0, j = 1,y

    1, j = 1

    y22

    xj

    = y22j =

    0, j = 2,y2, j = 2

    !p(x) P2, with pxj = yj, j = 0, 1, 2: p(x) =2

    i=0 yii(x)

    In general: i(x) =n

    j = 0j = ix xjxi

    xj

    , i = 0, . . . , n

    Great! What could be wrong? Easy functions (polynomials),interpolation ( error = 0 at xi) . . . but what about p(xnew)?

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 6

    Interpolation Error & the Runge Function(xi f (xi)) i = 0 n f (x) p(x) ?

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    70/228

    {(xi, f(xi))

    |i = 0, . . . , n

    },

    |f(x)

    p(x)

    | ?

    Runge function: fR(x) =

    1 + x21

    , x [5, 5] and uniform

    mesh: ! p(x)s wrong shape and high oscillations

    limn max5x5 |fR(x) pn(x)| =

    0

    1

    x0x1x2x30x5x6x7x8

    fu

    nction

    valu

    e

    (= 5)(= x4)(= 5)

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 7

    Error Theorem

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    71/228

    Theorem: . . . , f Cn+1[a, b], x [a, b], (a, b)

    f(x)

    p(x) =1

    (n + 1)!f(n+1)()

    n

    i=0 (x xi)

    Max error

    with xi and x, still need max(a,b) f

    (n+1)()

    with xi only, also need max of without xi:

    max

    (a,b)

    n

    i=0 (x xi) = (b

    a)n+1

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 8

    Chebyshev Points1

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    72/228

    0 x0x1x2x3x4x5x6x7x8

    func

    tion

    value

    (= 1)(= 0)(= 1)

    Chebyshev points on [1, 1]: xi = cos

    in

    , i = 0, . . . , n

    In general on [a, b]: xi = 12(a + b) + 12(b a) cos in

    ,

    i = 0, . . . , n

    Points concentrated at edgesCopyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 9

    Runge Function with Chebyshev Points

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    73/228

    0

    1

    x0x1x2x30x5x6x7x8

    f

    unction

    va

    lue

    (= 5)(= x4)(= 5)

    Is this good interpolation?

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 10

    Chebyshev Interpolation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    74/228

    Same interpolation method Different interpolation points

    Minimizes

    ni=0

    (x xi)

    Periodic behavior interpolate with sins/coss instead of Pn uniform mesh minimizes max error

    Note: uniform partition with spacing = cheb1 cheb0

    num. points

    polynomial degree

    oscillations

    Note: shape is still wrong . . . see splines later

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 11

    Interpolation and Approximation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    75/228

    Motivation

    Polynomial Interpolation

    Numerical Differentiation Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 12

    Numerical Differentiation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    76/228

    Note: until now, approximating f(x), now f(x)

    f(x) f(x+h)f(x)h

    Error = ?

    Taylor: f(x + h) = f(x) + hf(x) + h2 f()2

    f(x) =f(x + h) f(x)

    h 1

    2hf()

    I.e., truncation error: O(h)

    Can we do better?

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 13

    Numerical DifferentiationTake Two

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    77/228

    Taylor for +h and h:f(x h) =

    f(x) hf(x) + h2 f(x)2! h3f(x)

    3! + h4 f

    (4)(x)4! h5

    f(5)(x)5! +

    Subtracting:

    f(x + h) f(x h) = 2hf(x) + 2h3f(x)3!

    + 2h5f(5)(x)

    5!+

    f(x) =f(x + h) f(x h)

    2h 1

    6h2f(x)

    We gained O(h) to O

    h2

    . However, . . .

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 14

    Richardson ExtrapolationTake Three

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    78/228

    We have

    f(x) =f(x + h) f(x h)

    2h

    (h)+a2h

    2 + a4h4 + a6h

    6 +

    Halving the stepsize,

    (h) = f(x) a2h2 a4h4 a6h6 h

    2

    = f(x) a2h

    2

    2 a4h2

    4 a6h2

    6 (h) 4

    h

    2

    = 3f(x) 3

    4a4h

    4 1516

    a6h6

    Q: So what? A: The h2 term disappeared!

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 15

    RichardsonTake Three (cont.)

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    79/228

    Divide by 3 and write f(x)

    f(x) = 43h

    2 13(h) 14a4h4 516a6h6

    =

    h

    2

    +

    1

    3

    h

    2

    (h)

    ()+O

    h4

    () only uses old and current information

    We gained O

    h2

    to O

    h4

    !!

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 16

    Interpolation and Approximation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    80/228

    Motivation Polynomial Interpolation Numerical Differentiation

    Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 17

    Additional NotesThree f(x) formulae used additional points

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    81/228

    vs. Taylor, more derivatives in same point

    Similar for f(x):

    f(x h) = f(x)hf(x)+h2f

    (x)

    2! h3f

    (x)

    3! +h4f(4)(x)

    4! h5f(5)(x)

    5! + Adding:

    f(x + h) + f(x

    h) = 2f(x) + h2f(x) +

    1

    12

    h4f(4)(x) +

    or:

    f(x) =f(x + h) 2f(x) + f(x h)

    h2+

    1

    12h2f(4)(x) +

    error = O

    h2

    Copyright c2011 by A. E. Naiman NM Slides Interpolation and Approximation, p. 18

    Numerical Quadrature

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    82/228

    Introduction Riemann Integration

    Composite Trapezoid Rule

    Composite Simpsons Rule Gaussian Quadrature

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 1

    Numerical QuadratureInterpretation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    83/228

    f(x) 0 on [a, b] bounded ba f(x) dx is area under f(x)

    a b

    function

    value

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 2

    Numerical QuadratureMotivation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    84/228

    Analytical solutionsrare:2

    0sin x dx = cos x|20 = (0 1) = 1

    In general:2

    01 a2 sin2 13 d

    Need general numerical technique.

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 3

    DefinitionsMesh: P a = x0 < x1 < < xn = b , n subintervals (n + 1

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    85/228

    { }points) Infima and suprema (or minima and maxima):

    mi inff(x) : xi x xi+1Mi supf(x) : xi x xi+1

    Two methods (i.e., integral estimates): lower and upper sums

    L(f; P) n

    1

    i=0mixi+1 xi

    U(f; P)

    n1

    i=0 Mixi+1 xi For example, . . . .Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 4

    Lower SumInterpretation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    86/228

    x0 x1x2 x3x4

    function

    va

    lue

    (= a) (= b)

    Clearly a lower bound of integral estimate, and . . .

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 5

    Upper SumInterpretation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    87/228

    x0 x1x2 x3x4

    function

    va

    lue

    (= a) (= b)

    . . . an upper bound. What is the max error?

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 6

    Lower and Upper SumsExample

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    88/228

    Third method, use lower and upper sums: (L + U)/2 f(x) = x2, [a, b] = [0, 1] and P =

    0, 14,

    12,

    34, 1

    . . . , L = 7

    32, U = 15

    32 Split the difference: estimate 1132 (actual 13) Bottom line

    naive approach

    low n still error of 196. (!) Max error: (U L)/2 = 18

    Is this good enough?

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 7

    Numerical QuadratureRethinking

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    89/228

    Perhaps lower and upper sums are enough? Error seems small

    Work seems small as well

    But: estimate of max error was not small (18)

    Do they converge to integral as n

    ?

    Will the extrema always be easy to calculate? Accurately?(Probably not!)

    Proceed in theoretical and practical directions.

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 8

    Numerical Quadrature

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    90/228

    Introduction Riemann Integration

    Composite Trapezoid Rule

    Composite Simpsons Rule Gaussian Quadrature

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 9

    Riemann Integrability

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    91/228

    f C0[a, b], [a, b] bdd f is Riemann integrable

    When integrable, and max subinterval in P 0 (|P|0):

    lim|P|0 L(f; P) =

    ba

    f(x) dx = lim|P|0 U(f; P)

    Counter example: Dirichlet function d(x)

    0, x rational,1, x irrational

    L = 0, U = b a

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 10

    Challenge: Estimate n for Third Method

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    92/228

    Current restrictions for n estimate:

    Monotone functions

    Uniform partition

    Challenge:

    estimate

    0

    ecos x dx

    error tolerance = 12 103 using L and U n = ?

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 11

    Estimate nSolution

    f (x) = ecos x on [0 ] mi = fxi+1 and Mi = f (xi)

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    93/228

    f(x) = ecos x on [0, ] mi = fxi+1 and Mi = f(xi) L(f; P) = h

    n1

    i=0f

    xi+1

    and U(f; P) = hn1

    i=0f(xi), h =

    n

    Want 12(U L) < 12 103 or n

    e1 e1

    < 103

    . . . n

    7385 (!!) (note for later: max error estimate = O(h))

    Number of f(x) evaluations 2 for (U L) max error calculation

    > 7000 for either L or U

    We need something better.

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 12

    Numerical Quadrature

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    94/228

    Introduction Riemann Integration

    Composite Trapezoid Rule

    Composite Simpsons Rule Gaussian Quadrature

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 13

    Composite Trapezoid Rule (CTR) Each area: 12xi+1 xif(xi) + fxi+1

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    95/228

    Rule: T(f; P) 1

    2

    n1i=0

    xi+1 xi

    f(xi) + f

    xi+1

    Note: for monotone functions and any given mesh (why?):T = (L + U)/2

    Pro: no need for extrema calculations Con: adding new points to existing ones (for a

    non-monotonic function)

    T can land on bad point

    no monotonic improvement (necessarily) L, U and (L + U)/2 look for extrema on

    xi, xi+1

    monotonic improvementCopyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 14

    CTRInterpretation

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    96/228

    x0 x1x2 x3x4

    function

    va

    lue

    (= a) (= b)

    Almost always better than L or U. (When not?)

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 15

    Uniform Mesh and Associated Error

    Constant stepsize h = ban

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    97/228

    Constant stepsize h n

    T(f; P) h

    n1

    i=1f(xi) +

    1

    2[f(x0) + f(xn)]

    Theorem: f C2[a, b] (a, b)

    ba f(x) dx T(f; P) =

    1

    12(b a)h2

    f() = Oh2 Note: leads to popular Romberg algorithm (built on

    Richardson extrapolation)

    How many steps does T(f; P) require?

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 16

    ecos x RevisitedUsing CTR

    Challenge: cos x d error tolerance 1 103 ?

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    98/228

    Challenge:

    0ecos x dx, error tolerance = 12 10 3, n = ?

    f(x) = ecos x f(x) = ecos x sin x . . .f(x)

    e on (0, )

    |error| 112(/n)2e 12 103

    . . . n 119

    Recall perennial two questions/calculations of NM monotonic estimate of T produces same (L + U)/2 but previous max error estimate was less exact (O(h))

    Better estimate of max error better estimate of n

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 17

    Another CTR Example

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    99/228

    Challenge:1

    0ex2 dx, error tolerance = 12 104, n = ?

    f(x) = ex2

    , f(x) = 2xex2

    and f(x) = 4x2 2ex2

    f(x) 2 on (0, 1) |error|

    1

    6h2

    1

    2 104

    We have: n2 13 104 or n 58 subintervals

    How can we do better?

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 18

    Numerical Quadrature

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    100/228

    Introduction Riemann Integration

    Composite Trapezoid Rule

    Composite Simpsons Rule Gaussian Quadrature

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 19

    Trapezoid Rule as

    Linear Interpolant

    Linear interpolant, one subinterval: p1(x) = xbabf(a) + xaba f(b),

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    101/228

    ( ) a b ( ) b a ( )

    intuitively:

    b

    a

    p1(x) dx =f(a)

    a b b

    a

    (x

    b) dx +

    f(b)

    b a b

    a

    (x

    a) dx

    =f(a)

    a b

    b2 a2

    2 b(b a)

    +

    f(b)

    b a

    b2 a2

    2 a(b a)

    =

    f(a)

    a + b

    2 b + f(b)

    a + b

    2 a

    = f(a)

    a b2

    + f(b)

    b a

    2

    =b a

    2(f(a) + f(b))

    CTR is integral of composite linear interpolant.

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 20

    CTR for Two Equal Subintervals

    n = 2 (i.e., 3 points):

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    102/228

    T(f) =b a

    2

    f

    a + b

    2

    +

    1

    2[f(a) + f(b)]

    =

    b

    a

    4 f(a) + 2fa + b

    2 + f(b)with error = O

    ba

    2

    3

    (Previously, CTR error = Oh2 = TR error n subintervals= O

    h3

    O

    1h

    )

    Deficiency: each subinterval ignores the other

    How can we take the entire picture into account?

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 21

    Simpsons Rule

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    103/228

    Motivation: use p2(x) over the two equal subintervals

    Similar analysis actually loses O(h), but . . .

    (a, b)

    ba

    f(x) dx =b a

    6

    f(a) + 4f

    a + b

    2

    + f(b)

    1

    90

    b a

    2

    5f(4)()

    Similar to CTR, but weights midpoint more Note: for each method, denominator =

    coefficients

    Each method multiplies width by weighted average of height.

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 22

    Composite Simpsons Rule (CSR)

    For an even number of subintervals n h = ba (a b)

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    104/228

    For an even number of subintervals n, h = n , (a, b)

    b

    a

    f(x) dx =h

    3

    [f(a) + f(b)] + 4

    n/2

    i=1 f[a + (2i 1)h] odd nodes +

    2(n2)/2

    i=1

    f(a + 2ih)

    even nodes

    b a180

    h4f(4)()

    Note: denominator =

    coefficients = 3n

    but only n + 1 function evaluations

    Can we do better than O

    h4

    ?

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 23

    Evaluating the Error

    Another important accuracy angle

    until now: error = O(h)

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    105/228

    now on, looking at f(): error = 0 f P1

    With higher , p(x) can approximate any f(x) better

    Define (x) f(x) p(x)

    f = (p + ) = p + = methodp + =method(f) method() +

    As

    : (x)

    , method() method(f) f

    Can we do better than Simpsons P3?

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 24

    Integration Introspection

    Simpson beat CTR because heavier weighted midpoint

    B CSR i il l ff bi l i b d i

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    106/228

    But CSR similarly suffers at subinterval-pair boundaries(weight = 2 vs. 4 for no reason)

    All composite rules ignore other areas patch together local calculations

    will suffer from this

    What about using all nodes and higher degree interpolation?

    Also note: we can choose weights location of calculation nodes

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 25

    Numerical Quadrature

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    107/228

    Introduction Riemann Integration

    Composite Trapezoid Rule

    Composite Simpsons Rule Gaussian Quadrature

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 26

    Interpolatory Quadrature

    xi, i(x) =n

    j = 0

    x

    xj

    xi xj , i = 0, . . . , n; p(x) =n

    i=0f(xi)i(x)

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    108/228

    j 0j = i

    j

    i 0

    If f(x)

    p(x)

    hopefully

    b

    af(x) dx

    b

    ap(x) dx

    b

    ap(x) dx =

    ba

    ni=0

    f(xi)i(x) dx =n

    i=0

    f(xi)b

    ai(x) dx

    Ai Ai = Ai

    a, b;

    xjn

    j=0

    , but Ai = Ai(f) !

    (Endpoints, nodes) Ai ba

    f(x) dx n

    i=0

    Aif(xi).

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 27

    Interp. Quad.Error Analysis

    f P f ( ) ( ) and

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    109/228

    f Pn f(x) = p(x), and f Pn

    ba

    f(x) dx =n

    i=0Aif(xi), i.e., error = 0

    n + 1 weights determined by nodes xi (and a and b)

    True for any choice of n + 1 nodes xi

    What if we choose n + 1 specific nodes (with weights, total:2(n + 1) choices)?

    Can we get error = 0 f P2n+1?

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 28

    Gaussian Quadrature (GQ)Theorem

    Let

    q(x) Pn+1 b

    xkq(x) dx = 0, k = 0, . . . , n

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    110/228

    q(x) n+1

    ax q(x) dx 0, k 0, , n

    i.e., q(x) all polynomials of lower degree

    note: n + 2 coefficients, n + 1 conditions

    unique to a constant multiplier

    xi, i = 0, . . . , n, q(xi) = 0i.e., xi are zeros of q(x)

    Then f P2n+1, even though f(x) = p(x) (f Pm, m > n)ba

    f(x) dx =n

    i=0Aif(xi)

    We jumped from Pn to P2n+1!

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 29

    Gaussian QuadratureProof

    Let f P2n+1, and divide by q f = sq + r s, r Pn

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    111/228

    We have (note: until last step, xi can be arbitrary)

    b

    a

    f(x) dx = b

    a

    s(x)q(x) dx + b

    a

    r(x) dx (division above)

    =b

    ar(x) dx

    ity of q(x)=

    n

    i=0Air(xi) (r Pn)

    =n

    i=0

    Ai[f(xi) s(xi)q(xi)] (division above)

    =n

    i=0Aif(xi) (xi are zeros of q(x))

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 30

    GQAdditional Notes

    Example qn(x): Legendre Polynomials: for [a, b] = [

    1, 1] and

    qn(1) = 1 ( a 3-term recurrence formula)

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    112/228

    q0(x) = 1, q1(x) = x, q2(x) =3

    2x2 1

    2, q3(x) =

    5

    2x3 3

    2x , . . .

    Use qn+1(x) (why?), depends only on a, b and n

    Gaussian nodes (a, b)

    good if f(a) =

    and/or f(b) =

    (e.g.,

    1

    0

    1

    xdx)

    More general: with weight function w(x) in original integral q(x) orthogonality weights Ai

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 31

    Numerical QuadratureSummary

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    113/228

    n + 1 function evaluations

    composite? node placement error = 0 PCTR

    uniform (usually) 1

    CSR

    uniform (usually) 3interp. any (distinct) n

    GQ

    zeros of q(x) 2n + 1

    P.S. There are also powerful adaptive quadrature methods

    Copyright c2011 by A. E. Naiman NM Slides Numerical Quadrature, p. 32

    Linear Systems

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    114/228

    Introduction Naive Gaussian Elimination

    Limitations

    Operation Counts Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 1

    What Are Linear Systems (LS)?

    a1 1 x1 + a1 2 x2 + + a1 n xn = b1

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    115/228

    a2 1 x1 + a2 2 x2 + + a2 n xn = b2... + ... + . . . + ... = ...

    am 1 x1 + am 2 x2 + + am n xn = bm

    Dependence on unknowns: powers of degree 1

    Summation form:n

    j=1ai j xj = bi , 1 i m, i.e., m

    equations

    Presently: m = n, i.e., square systems (later: m

    = n)

    Q: How to solve for [x1 x2 . . . xn]T? A: . . .

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 2

    Linear Systems

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    116/228

    Introduction Naive Gaussian Elimination

    Limitations

    Operation Counts Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 3

    Overall Algorithm and Definitions

    Currently: direct methods only (later: iterative methods)

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    117/228

    General idea: Generate upper triangular system

    (forward elimination)

    Easily calculate unknowns in reverse order(backward substitution)

    Pivot row = current one being processedpivot = diagonal element of pivot row

    Steps applied to RHS as well.

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 4

    Forward Elimination

    Generate zero columns below diagonal

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    118/228

    Process rows downwardfor each row i := 1, n 1 { // the pivot row

    for each row k := i + 1, n { // rows below pivotmultiply pivot row ai i = ak isubtract pivot row from rowk // now ak i = 0

    } // now column below ai i is zero

    } // now ai j = 0, i > j

    Obtain triangular system

    Lets work an example, . . .

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 5

    Compact Form of LS

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    119/228

    6 x1 2 x2 + 2 x3 + 4 x4 = 1612 x1

    8 x2 + 6 x3 + 10 x4 = 26

    3 x1 13 x2 + 9 x3 + 3 x4 = 19 6 x1 + 4 x2 + 1 x3 18 x4 = 34

    6 2 2 4 16

    12

    8 6 10 263 13 9 3 19

    6 4 1 18 34

    Proceeding with the forward elimination, . . .

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 6

    Forward EliminationExample

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    120/228

    6 2 2 4 1612

    8 6 10 26

    3 13 9 3 196 4 1 18 34

    6 2 2 4 160

    4 2 2

    6

    0 12 8 1 270 2 3 14 18

    6 2 2 4 160

    4 2 2

    6

    0 0 2 5 90 0 4 13 21

    6 2 2 4 160

    4 2 2

    6

    0 0 2 5 90 0 0 3 3

    Matrix is upper triangular.

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 7

    Backward Substitution

    6 2 2 4 160 4 2 2 60 0 2 5 9

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    121/228

    0 0 2 5 90 0 0 3 3

    Last equation:

    3x

    4=

    3

    x

    4= 1

    Second to last equation: 2x3 5 x4=1

    = 2x3 5 = 9

    x3 = 2

    . . . second equation . . . x2 = . . .

    . . . [x1 x2 x3 x4]T = [3 1 2 1]T

    For small problems, check solution in original system.

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 8

    Linear Systems

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    122/228

    Introduction Naive Gaussian Elimination

    Limitations

    Operation Counts Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 9

    Zero Pivots

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    123/228

    Clearly, zero pivots prevent forward elimination

    ! zero pivots can appear along the way

    Later: When guaranteed no zero pivots?

    All pivots = 0 ? we are safe

    Experiment with system with known solution.

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 10

    Vandermonde Matrix

    1 2 4 8 2n11 3 9 27

    3n

    1

    1 4 16 64 4n1... ... ... ... . . . ...

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    124/228

    1 n + 1 (n + 1)2 (n + 1)3 (n + 1)n1

    Want row sums on RHS

    x

    i= 1, i = 1, . . . , n

    Geometric series:1 + t + t2 + + tn1 = t

    n 1t

    1

    We obtain bi, for row i = 1, . . . , nn

    j=1(1 + i)j1

    ai j 1xj

    =(1 + i)n 1(1 + i)

    1

    =1

    i[(1 + i)n 1]

    biSystem is ready to be tested.

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 11

    Vandermonde Test

    Platform with 7 significant (decimal) digits n = 1, . . . , 8 expected results9: error > 16 000% !!

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    125/228

    n = 9: error > 16,000% !!

    Questions: What happened? Why so sudden? Can anything be done?

    Answer: matrix is ill-conditioned Sensitivity to roundoff errors Leads to error propagation and magnification

    First, how to assess vector errors.

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 12

    Errors

    Given system: Ax = b and solution estimate x

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    126/228

    Residual (error): r Ax b

    Absolute error (if x is known): e x x

    Norm taken of r or e: vector scalar quantity

    (more on norms later)

    Relative errors: ||r||/||b|| and ||e||/||x||

    Back to ill-conditioning, . . .

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 13

    Ill-conditioning

    0 x1 + x2 = 1x1 + x2 = 2

    0 pivot

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    127/228

    General rule: if 0 is problematic

    numbers near 0 are problematic

    x1 + x2 = 1x1 + x2 = 2

    . . . x2 =

    21/11/ and x1 =

    1x2

    small (e.g., = 109 with 8 significant digits) x2 = 1 andx1 = 0wrong!

    What can be done?

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 14

    Pivoting

    Switch order of equations, moving offending element offdiagonal

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    128/228

    diagonal

    x

    1+ x

    2= 2

    x1 + x2 = 1 , x2 = 121 and x1 = 2 x2 = 11

    This is correct, even for small (or even = 0)

    Compare size of diagonal (pivot) elements above, to

    Ratio of first row of Vandermonde matrix = 1 : 2n1

    Issue is relative size, not absolute size.

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 15

    Scaled Partial Pivoting

    Also called row pivoting (vs. column pivoting)

    Instability source: subtracting large values: ak j -= ai j ak iai i

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    129/228

    W|o l.o.g.: n rows, and choosing which row to be first

    Find i rows k = i, columns j > 1: minimize ai j ak 1ai 1 O

    n3

    calculations! simplify (remove k), imagine: ak 1 = 1

    find i

    columns j > 1: mini

    ai j

    ai 1 Still 1)O

    n2

    calculations, 2)how to minimize each row?

    Find i: mini

    maxj |ai j||ai 1|

    , or: maxi

    |ai 1|maxj ai j (e.g., first matrix)

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 16

    Linear Systems

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    130/228

    Introduction Naive Gaussian Elimination

    Limitations

    Operation Counts Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 17

    How Much Work on A?

    Real life: crowd estimation costs? (will depend on accuracy)

    Counting and (i.e., long operations) only Pivoting: row decision amongst k rows = k ratios

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    131/228

    First row:

    n ratios (for choice of pivot row) n 1 multipliers (n 1)2 multiplications

    total: n2 operations

    forward elimination operations (for large n)n

    k=2

    k2 =n

    6(n + 1)(2n + 1) 1 n

    3

    3

    How about the work on b?

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 18

    Rest of the Work

    Forward elimination work on RHS:n

    k=2 (k 1) =n(n

    1)

    2

    n n(n + 1)

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    132/228

    Backward substitution:k=1

    k =n(n + 1)

    2

    Total: n2 operations

    O(n) fewer operations than forward elimination on A

    Important for multiple RHSs known from the start do not repeat O

    n3

    work for each

    rather, line them up, and process simultaneously

    Can we do better at times?

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 19

    Sparse Systems

    0 0 . . . . . . ...0 . . . . . .

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    133/228

    ... . . . . . . ...

    . . . 0

    ... . . . . . . . . . 0 0

    Above, e.g., tridiagonal system (half bandwidth = 1)

    note: a

    ij= 0 for

    |i

    j|

    > 1

    Opportunities for savings storage

    computations Both are O(n)Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 20

    Linear Systems

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    134/228

    Introduction Naive Gaussian Elimination

    Limitations

    Operation Counts Additional Notes

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 21

    Pivot-Free Guarantee

    When are we guaranteed non-zero pivots?

    Diagonal dominance (just like it sounds):

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    135/228

    Diagonal dominance (just like it sounds):

    |ai i| >n

    j = 1j = i

    ai j, i = 1, . . . , n

    (Or > in one row, and

    in remaining)

    Many finite difference and finite element problems diagonally dominant systems

    Occurs often enough to justify individual study.

    Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 22

    LU Decomposition

    E.g.: same A, many bs of time-dependent problem

    not all bs are known from the start Want A = LU for decreased work later

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    136/228

    Then define y: L U xy

    = b

    solve Ly = b for y solve U x = y for x

    U is upper triangular, result of Gaussian elimination

    L is unit lower triangular, 1s on diagonal and Gaussianmultipliers below

    For small systems, verify (even by hand): A = LU

    Each new RHS is n2

    work, instead of On3Copyright c2011 by A. E. Naiman NM Slides Linear Systems, p. 23

    Approximation by Splines

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    137/228

    Motivation Linear Splines

    Quadratic Splines

    Cubic Splines Summary

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 1

    Motivation

    20

    4060

    value

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    138/228

    -40

    -200

    20

    -4 -2 0 2 4

    function

    Given: set of many points, or perhaps very involved function Want: simple representative function for analysis or

    manufacturing

    Any suggestions?

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 2

    Lets Try Interpolation

    20

    40

    60

    value

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    139/228

    -40

    -200

    20

    -4 -2 0 2 4

    function

    Disadvantages:

    Values outside x-range diverge quickly (interp(10) = 1592)

    Numerical instabilities of high-degree polynomials

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 3

    Runge FunctionTwo Interpolations

    1

    n

    value

    Chebyshevuniform

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    140/228

    0

    c0c1c2c30x5x6x7x8

    function

    (= 5)(= x4 = c4)(=

    5)

    More disadvantages:

    Within x-range, often high oscillations

    Even Chebyshev points often uncharacteristic oscillations

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 4

    Splines

    Given domain [a, b], a spline S(x) Is defined on entire domain

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    141/228

    Provides a certain amount of smoothness

    partition of knots (= where spline can change form)

    {a = t0, t1, t2, . . . , tn = b}

    such that

    S(x) =

    S0(x), x [t0, t1],S1(x), x [t1, t2],

    ... ...

    Sn1(

    x)

    , x tn1, tnis piecewise polynomial

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 5

    Interpolatory Splines

    Note: splines split up range [a, b] opposite of CTR CSR GQ development

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    142/228

    pp Q p

    Spline implies no interpolation, not even any y-values

    If given points

    {(t0, y0), (t1, y1), (t2, y2), . . . , (tn, yn)}interpolatory spline traverses these as well

    Splines = nice, analytical functions

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 6

    Approximation by Splines

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    143/228

    Motivation Linear Splines

    Quadratic Splines

    Cubic Splines Summary

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 7

    Linear Splines

    Given domain [a, b], a linear spline S(x)

    Is defined on entire domain

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    144/228

    Provides continuity, i.e., is C0

    [a, b]

    partition of knots

    {a = t0, t1, t2, . . . , tn = b

    }such that

    Si(x) = ai x + bi P1

    ti, ti+1

    , i = 0, . . . , n 1

    Recall: no y-values or interpolation yet

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 8

    Linear SplineExamples

    ue

    undefined part

    di ti

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    145/228

    a b

    functionv

    alu discontinuous

    nonlinear part

    linear spline

    Definition outside of [a, b] is arbitrary

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 9

    Interpolatory Linear Splines

    Given points

    {(t0, y0), (t1, y1), (t2, y2), . . . , (tn, yn)}spline must interpolate as well

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    146/228

    Are the Si(x) (with no additional knots) unique? Coefficients: ai x + bi, i = 0, . . . , n 1 total = 2n Conditions: 2 prescribed interpolation points for Si(x),

    i = 0, . . . , n

    1 (includes continuity condition)

    total = 2n

    Obtain

    Si(x) = ai x + (yi ai ti), ai =yi+1

    yi

    ti+1 ti , i = 0, . . . , n 1

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 10

    Interpolatory Linear SplinesExample

    40

    60

    ue

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    147/228

    -40

    -20

    0

    20

    -4 -2 0 2 4

    function

    val

    Discontinuous derivatives at knots are unpleasing, . . .

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 11

    Approximation by Splines

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    148/228

    Motivation Linear Splines Quadratic Splines Cubic Splines Summary

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 12

    Quadratic Splines

    Given domain [a, b], a quadratic spline S(x) Is defined on entire domain

    Provides continuity of zeroth and first derivatives i e is

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    149/228

    Provides continuity of zeroth and first derivatives, i.e., is

    C1[a, b]

    partition of knots

    {a=

    t0, t1, t2, . . . , tn=

    b}such that

    Si(x) = ai x2 + bi x + ci P2

    ti, ti+1

    , i = 0, . . . , n 1

    Again no y-values or interpolation yet

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 13

    Quadratic SplineExample

    f(x) = x

    2

    , x 0,x2, 0 x 1,1 2x, x 1,

    f(x)?

    = quadratic spline

    Defined on domain (, )

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    150/228

    De ed o do a ( , )

    Continuity (clearly okay away from x = 0 and 1): Zeroth derivative:

    f

    0

    = f

    0+

    = 0

    f1 = f1+ = 1 First derivative:

    f

    0

    = f

    0+

    = 0

    f1 = f1+ = 2

    Each part of f(x) is P2

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 14

    Interpolatory Quadratic Splines

    Given points

    {(t0, y0), (t1, y1), (t2, y2), . . . , (tn, yn)}spline must interpolate as well

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    151/228

    Are the Si(x) unique (same knots)? Coefficients: ai x2 + bi x + ci, i = 0, . . . , n 1

    total = 3n

    Conditions:

    2 prescribed interpolation points for Si(x),i = 0, . . . , n 1 (includes continuity of functioncondition)

    (n

    1) C1 continuities

    total = 3n 1

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 15

    Interpolatory Quadratic Splines (cont.)

    Underdetermined system

    need to add one condition

    Define (as yet to be determined) zi = S(ti), i = 0, . . . , n

    Write

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    152/228

    Write

    Si(x) =zi+1 zi

    2

    ti+1 ti(x ti)2 + zi(x ti) + yi

    therefore

    Si(x) =z

    i+1

    zi

    ti+1 ti (x ti) + zi

    Need to

    verify continuity and interpolatory conditions

    determine zi

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 16

    Checking Interpolatory Quadratic Splines

    Check four continuity (and interpolatory) conditions:

    (i) Si(ti)

    = yi

    (ii) Si

    ti+1

    = (below)

    (iii) Si(ti)= zi

    (iv) Si

    ti+1

    = zi+1

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    153/228

    (ii) Si

    ti+1

    = zi+1 zi2

    ti+1 ti

    + zi

    ti+1 ti

    + yi

    =zi+1 + zi

    2

    ti+1 ti

    + yi

    set= yi+1

    therefore (n equations, n + 1 unknowns)

    zi+1 = 2yi+1 yit

    i+1 t

    i

    zi, i = 0, . . . , n 1

    Choose any 1 zi and the remaining n are determined.

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 17

    Interpolatory Quadratic SplinesExample

    40

    60

    alue

    z0 := 0

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    154/228

    -40

    -20

    0

    20

    -4 -2 0 2 4

    function

    va

    Okay, but discontinuous curvature at knots, . . .

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 18

    Approximation by Splines

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    155/228

    Motivation Linear Splines Quadratic Splines

    Cubic Splines Summary

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 19

    Cubic Splines

    Given domain [a, b], a cubic spline S(x) Is defined on entire domain

    Provides continuity of zeroth, first and second derivatives,

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    156/228

    i.e., is C2[a, b]

    partition of knots

    {a = t

    0, t

    1, t

    2, . . . , tn = b

    }such that for i = 0, . . . , n 1

    Si(x) = ai x3 + bi x

    2 + ci x + di P3

    ti, ti+1

    ,

    In general: spline of degree k . . . Ck1 . . . Pk . . .

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 20

    Why Stop at k = 3?

    Continuous curvature is visually pleasing

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    157/228

    Usually little numerical advantage to k > 3

    Technically, odd ks are better for interpolating splines

    Natural (defined later) cubic splines best in an analytical sense (stated later)

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 21

    Interpolatory Cubic Splines

    Given points

    {(t0, y0), (t1, y1), (t2, y2), . . . , (tn, yn)}spline must interpolate as well

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    158/228

    Are the Si(x) unique (same knots)? Coefficients: ai x3 + bi x2 + ci x + di, i = 0, . . . , n 1

    total = 4n

    Conditions:

    2 prescribed interpolation points for Si(x),i = 0, . . . , n 1 (includes continuity of functioncondition)

    (n

    1) C1 + (n

    1) C2 continuities

    total = 4n 2

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 22

    Interpolatory Cubic Splines (cont.)

    Underdetermined system need to add two conditions Natural cubic spline

    add: S(a) = S(b) = 0Assumes straight lines (i e no more constraints)

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    159/228

    Assumes straight lines (i.e., no more constraints)

    outside of [a, b]

    Imagine bent beam of ship hull Defined for non-interpolatory case as well

    Required matrix calculation for Si definitions Linear: independent ai = yi+1yiti+1ti diagonal Quadratic: two-term zi definition bidiagonal

    Cubic: . . . tridiagonal

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 23

    Interp. Natural Cubic SplinesExample

    40

    60

    value

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    160/228

    -40

    -20

    0

    20

    -4 -2 0 2 4

    function

    v

    Now the curvature is continuous as well.

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 24

    Optimality of Natural Cubic Spline

    Theorem: If f C2[a, b], knots: {a = t0, t1, t2, . . . , tn = b}

    interpolation points: (ti, yi) : yi = f (ti), i = 0, . . . , n

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    161/228

    interpolation points: (ti, yi) : yi f(ti), i 0, . . . , n

    S(x) is the natural cubic spline which interpolates f(x)then

    b

    a S(x)

    2dx

    b

    a f(x)

    2dx

    Bottom line average curvature of S that of f compare with interpolating polynomial

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 25

    Approximation by Splines

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    162/228

    Motivation Linear Splines Quadratic Splines Cubic Splines Summary

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 26

    Interpolation vs. SplinesSerpentine Curve

    0.5

    1

    1.5

    2

    value

    interpolator

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    163/228

    -2

    -1.5

    -1

    -0.5

    0

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    function

    v

    linear spline

    Vs. oscillatory interpolatoreven linear spline is better.

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 27

    Three Splines

    40

    60

    80

    value

    quadratic

    natural cubic

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    164/228

    -20

    0

    20

    -4 -2 0 2 4

    function

    linear

    Increased smoothness with increase of degree.

    Copyright c2011 by A. E. Naiman NM Slides Approximation by Splines, p. 28

    Ordinary Differential Equations

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    165/228

    Introduction Euler Method Higher Order Taylor Methods Runge-Kutta Methods Summary

    Copyright c2011 by A. E. Naiman NM Slides Ordinary Differential Equations, p. 1

    Ordinary Differential EquationDefinition ODE = an equation

    involving one or more derivatives of x(t)

    x(t) is unknown and the desired target somewhat opposite of numerical differentiation

    E.g.: x37(t) + 37 t ex

    2(t) sin 4 x(t) log 1 = 42

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    166/228

    t Which x(t)s fulfill this behavior? Ordinary (vs. partial) = one independent variable t

    Order = highest (composition of) derivative(s) involved

    Linear = derivatives, including zeroth, appear in linear form

    Homogeneous = all terms involve some derivative(including zeroth)

    Copyright c2011 by A. E. Naiman NM Slides Ordinary Differential Equations, p. 2

    Analytical Approach

    Good luck with previous equation, but others . . .

    Shorthand: x = x(t), x = d(x(t))dt , x =d2(x(t))

    dt2, . . .

    Analytically solvablex x = et x(t) = t et + c et

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    167/228

    ( )

    x + 9x = 0 x(t) = c1 sin3t + c2 cos3t x + 12x = 0 x(t) =

    c t

    c, c1 and c2 are arbitrary constants

    Need more conditions/information to pin down constants Initial value problems (IVP) Boundary value problems (BVP)

    Here: IVP for first-order ODE.

    Copyright c2011 by A. E. Naiman NM Slides Ordinary Differential Equations, p. 3

    First-Order IVP

    General form:

    x = f(t, x), x(a) given

    Note: non-linear, non-homogeneous; but, x not on RHS

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    168/228

    Examples x = x + 1, x(0) = 0 x(t) = et 1 x = 6t 1, x(1) = 6 x(t) = 3t2 t + 4

    x

    = t

    x+1, x(0) = 0

    x(t) = t2 + 1 1

    Physically: e.g., t is time, x is distance and f = x isspeed/velocity

    Another optimistic scenario . . .

    Copyright c2011 by A. E. Naiman NM Slides Ordinary Differential Equations, p. 4

    RHS Independence of x

    f = f(t) but f = f(x)

    E.g. x = 3t2 4t1 +

    1 + t2

    1x(5) = 17

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    169/228

    Perform indefinite integral

    x(t) =

    d(x(t))

    dtdt =

    f(t) dt

    Obtain x(t) = t3 4 ln t + arctan t + CC = 17 53 + 4 l n 5 arctan 5

    And now for the bad news . . .

    Copyright c2011 by A. E. Naiman NM Slides Ordinary Differential Equations, p. 5

    Numerical Techniques

    Source of need Usually analytical solution is not known Even if known, perhaps very complicated, expensive to

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    170/228

    compute

    Numerical techniques Generate a table of values for x(t) Usually equispaced in t, stepsize = h ! with small h, and far from initial value

    roundoff error can accumulate and kill

    Copyright c2011 by A. E. Naiman NM Slides Ordinary Differential Equations, p. 6

    Ordinary Differential Equations

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    171/228

    Introduction Euler Method Higher Order Taylor Methods Runge-Kutta Methods Summary

    Copyright c2011 by A. E. Naiman NM Slides Ordinary Differential Equations, p. 7

    Euler Method

    First-order IVP: given

    x=

    f(t, x),

    x(a), want

    x(b)

    Use first 2 terms of Taylor series (i.e., n = 1) to get fromx(a) to x(a + h)

    t ti

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    172/228

    x(a + h) = x(a) + h x(a) use f(a, x(a))

    +truncation error

    O

    h2

    Repeat to get from x(a + h) to x(a + 2h), . . . Total n = bah steps until x(b)

    Note: units of time/distance/speed are consistent

    Copyright c2011 by A. E. Naiman NM Slides Ordinary Differential Equations, p. 8

    Euler MethodExample

    x(a)

    value,

    x(t)

    Euler

    B

    !

    http://jct.ac.il/~naiman/nmhttp://jct.ac.il/~naiman/nm
  • 7/28/2019 nm-slides-b-and-w

    173/228

    a

    function

    t

    h