nmr sb fan zhang also ferenc zamborszky weiqiang yu david chow pawel wzietek (orsay) sylvie lefebvre...

30
NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic Andreas Baur Dean Tantillo Barakat Alavi Charge order in quasi-1D organic conductors Bourbonnais and Jerome (1999)

Upload: maya-gardner

Post on 28-Mar-2015

222 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

NMRSBFan Zhang

alsoFerenc ZamborszkyWeiqiang YuDavid ChowPawel Wzietek (Orsay)Sylvie Lefebvre (Sherbrooke)

Molecules and crystals:Craig MerlicAndreas BaurDean TantilloBarakat Alavi

Charge order in quasi-1D organic conductors

Bourbonnais and Jerome (1999)

Page 2: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

Summary slide

1. CO ubiquitous to ¼-filled CTS. Pressure can be used to tune interactions, ground states. What does this say about sequence of phase transitions in (TM)2X?

2. AsF6 salt: CO, SP order parameters repulsive3. SbF6 salt: CO, AF order parameters attractive

4. New AF phase in SbF6; also CO (maybe different CO?)

5. Evidence that counterion potential softness plays a role in stabilizing intermediate CO phase? (Brazovskii, Poilblanc)

Page 3: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

13C spectrum in (TMTTF)2AsF6,

signature of CO is emergence of inequivalent sites…

6

5

4

3

2

1

0

abso

rptio

n (a

.u.)

6040200

frequency (kHz)

46K

81K

94K

97K

102K

T=105K

99K

(TMTTF)2AsF6

B=9T

B at magic angle

A B A B

Page 4: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

1D (or Q1D) Extended Hubbard model @ 1/4 filling, T=0 consistent with CO seen by experiments

Seo and Fukuyama, JPSJ (1997):(mean-field approximation in higher dimension)Clay, et al., PRB (2002)

Ground state AF with charge disproportionation

Clay, et al., PRB (2002)

COliquid

i

iii

iii

ii nnVnnUchaatH 11* .).(

Page 5: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

Order parameters for two compounds: (TMTTF)2PF6, (TMTTF)2AsF6

Tco(PF6)~65K

Tco(AsF6)=103KCO transition is probably continuous…

Breaks inversion symmetry of unit cell (Monceau, et al., divergent low freq. susceptibility)

SCN, ReO4, Br, PF6, AsF6, SbF6…: they’re insulating and they’re CO(Coulon, Monceau, Nad, Brown)

Page 6: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

Splitting of the C=C stretching mode results from 2:1 charge disproportionation

T>TCO

T<TCO

From out T1: Charge disproportionation ratio approx. 3:1 ~.25.

Fujiyama and Nakamura obtain 2:1 from NMR(cond-mat/0501063

Page 7: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

1D (or Q1D) Extended Hubbard model @ 1/4 filling, T=0 consistent with CO seen by experiments

Seo and Fukuyama, JPSJ (1997):mean-field approximation in higher dimensionClay, et al., PRB (2002)

Ground state AF with charge disproportionation

1. AsF6

2. SbF6

Clay, et al., PRB (2002)

COliquid

i

iii

iii

ii nnVnnUchaatH 11* .).(

pressure

Page 8: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

Competition between CO/SP phases in (TMTTF)2AsF6: high-pressure experiments

Page 9: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

The appearance of the phase diagram is constrained by the order of the transitions…

CO

D1

D2

CO

CO+D Drepulsive OPs indicates 00 dP

dT

dP

dT COCO

2nd order boundary for CO/SP implies there is a coexistence region D=spin-Peierls

Page 10: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

22

21

422

411

222

2110 ),(),( QcQQbQbQTPaQTPaFF

c=0

c>0b1b2>4c2

c<0

c>0b1b2<4c2

Page 11: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

CO

D1

D2

CO

D

D

CO

CO+D

Dumm, et al., J. Phys. IV (2004)

Page 12: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

A puzzle: (TMTTF)2SbF6 with AF ground state

Salt a (angstrom)* TCO (K) (-cm)-1** Ground state

(TMTTF)2PF6 7.154 65K 40 Spin-Peierls

(TMTTF)2AsF6 7.178 103K 25 Spin-Peierls

(TMTTF)2SbF6 7.195 156K 10 AF

SbF6

AsF6,PF6

TCO(SbF6) “structureless” transition,as in ReO4, SCN, SbF6

RT

T(K)

*R. Laversanne, et al., J. Phys. Lett.45, L393**C. Coulon, et al., PRB 33, 6235

C. Coulon, et al.

Page 13: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

1

2

3

4

5

67

10

2

3

4

5

67

100

2

3

13T

1-1 (

s-1

)

3 4 5 6 7 8 9100

2 3

temperature ( K )

(TMTTF)2SbF6

B=9.00T

0.1

2

4

68

1

2

4

68

10

2

4

68

100

1 H T

1-1(s

-1)

3 4 5 6 7 8 910

2 3

temperature T(K)

(TMTTF)2SbF6

B=9T P=0

SbF6 salt

CO at higher TAF (comm.) at lower T

Page 14: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

1

2

4

6

810

2

4

6

8100

2

tem

pera

ture

T(K

)

0.100.080.060.040.020.00

applied pressure P(GPa)

(TMTTF)2SbF6

?charge ordered

antiferromagnetic

Applied pressure and the (TMTTF)2SbF6 phase diagram:

CO, comm. AF order parameters ATTRACTIVE

(GPa/10)

Page 15: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

P~0.6GPa

ground state?

decreasing with T+ equivalent intramolecular 13C,+ broad spectrumsinglet

Page 16: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

Spectrum characteristics

Peak separation ind. of B, as for AF, only weakly T-dependent

Relative intensity of peaks grows smoothly on cooling, as for 1st order transition

P=1.1GPa

same AF? or different?

Page 17: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

Jump in OP + smooth increase in AF volume fraction

Similar to observations in SDW/AF first order phase boundary (Vuletic, et al., Lee, et al.)

Conclude: new commensurate AF phase in SbF6 salt??accompanied by charge disproportionation??

Page 18: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

SbF6 counterion broken symmetry(stops rotating)

Possible reason for suppression of CO: impeded motion of counterion (Monceau, Nad, Brazovskii, PRL 2001)

ambient pressure order parameter

Page 19: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

150

100

50

0

tem

pera

ture

T(K

)

1.00.80.60.40.20.0

applied pressure P(GPa)

(TMTTF)2SbF6

TCO (c-axis transport)

TCA (121

Sb NMR)

Riera & Poilblanc, PRB (2002)

Does

+

Page 20: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

Summary slide

1. CO ubiquitous to ¼-filled CTS

2. CO at high temperatures influences what further broken symm. observed at low T: AsF6 salts (CO vs. SP), AF in SbF6

3. Different AF phase in SbF6, strongly first order character, different CO also?

4. Counterion potential softness plays a role in stabilizing intermediate CO phase (Brazovskii, Poilblanc): coincident crossovers in OP amplitude, motional narrowing associated with rotations + pressure effects

Page 21: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

Is the suppression of CO in (TMTTF)2SbF6 the result of a competition between these configurations?

Pressure enhances interchain V

View from crystallographic b-direction

Page 22: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

1

2

4

6

810

2

4

6

8100

2

tem

pera

ture

T(K

)

0.100.080.060.040.020.00

applied pressure P(GPa)

(TMTTF)2SbF6

TCO (c-axis transport)

TCA (121

Sb NMR)

TAF (1H NMR)

?

Page 23: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

Papplied=0.5 GPa:

No sign of splitting but lines are broad at higher temperatures

T=10K

At lower temperature, line broadens. 2D experiment demonstrates some molecules see no paramagnetism (somewhat like SP phase)

T=4K

Page 24: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

60

50

40

30

20

10

0

abso

rptio

n (a

.u.)

6040200

frequency (kHz)

8.0K

12.2K

14.4K

T=17.3K

(TMTTF)2AsF6

B=9T

Page 25: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

CO is ubiquitous to TMTTF materials…

H. Javadi, et al. (1988)

? Origin of metal-insulator (“structureless”) transition in (TMTTF)2SbF6

Page 26: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

pressure

CO

SbF6

AsF6,PF6

Page 27: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

OP probably breaks inversion symmetry in MF6 salts…

Divergence of real part of electric susceptibility e’(q=0,=0) observed; see Monceau, et al. (PRL, 2001)

(Ising) symmetry-breaking OP that leads to divergent e’(q=0)

field mean in 2

1 )(~

p

TTk cB

Page 28: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

0.001

2

3

4

567

0.01

2

3

4

567

0.1

2

3

13C

T1-1

(ms-1

)

3 4 5 6 7 8 9100

2 3

temperature T(K)

(TMTTF)2AsF6

B=9.00T

F. Zamborszky, et al., PRB 2002limit) Mott the (indensity particle local the ,

field local gfluctuatin transverse the is ;

2

21

1 )()(cos2

n

hohthtdtT

Charge disproportionation ratio approx. 3:1 ~.25

Fujiyama and Nakamura obtain smaller rate ratio, about 4:1 (cond-mat/0501063)

Page 29: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

¼-filled systems susceptible to charge-disproportionation

Organic D2X 2:1 charge-transfer salts: “½-” and “¼-filled”

(TM)2X here

(BEDT-TTF)2X (TM)2X

Hotta, JPSJ 72, 840

Page 30: NMR SB Fan Zhang also Ferenc Zamborszky Weiqiang Yu David Chow Pawel Wzietek (Orsay) Sylvie Lefebvre (Sherbrooke) Molecules and crystals: Craig Merlic

CO ubiquitous to TMTTF salts:SCN, ReO4, Br, PF6, AsF6, SbF6…(Coulon, Monceau, Nad, )

What does phase diagram look like?

What role does tendency for CO play in determining ground state?

H. Javadi, et al. PRB (1988)