n+n+n international meeting for young scientists (a british council initiative)

54
PPARC, Adv. Summer School, Palma 2006 N+N+N International Meeting for Young Scientists (a British Council initiative) From our star to far stars: variation and variability Budapest (Hungary) 15-18 January, 2007 details to follow soon (check the forthcoming issues of UK Solar Newsletter; if you are not subscribed, speak to Robertus ASAP) …for more info see http://astro.elte.hu/nnn2007

Upload: kami

Post on 11-Jan-2016

28 views

Category:

Documents


1 download

DESCRIPTION

N+N+N International Meeting for Young Scientists (a British Council initiative) From our star to far stars: variation and variability Budapest (Hungary) 15-18 January, 2007. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

N+N+N International Meeting for Young Scientists

(a British Council initiative)

From our star to far stars: variation and variability

Budapest (Hungary)

15-18 January, 2007

…details to follow soon (check the forthcoming issues of UK Solar Newsletter; if you are not subscribed, speak to Robertus ASAP)

…for more info see http://astro.elte.hu/nnn2007

Page 2: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Coronal heating: a Coronal heating: a theoretical approachtheoretical approach

Istvan BallaiSPARG, University of Sheffield

Page 3: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

IntroductionIntroduction

•The eclipse of 1869 revealed emission line in the green part of the corona- was named coronium.•Grotrian in 1939 finally showed that this emission line to be due to Fe XIV at 5303Å.•This demonstrated that the corona has a temperature > 1MK, and so the coronal heating problem began….

Page 4: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Publications/year (ADS for coronal heating)(more than 4,600 publications)

0

50

100

150

200

250

300

350

1960 1964 1968 1972 1976 1989 1984 1988 1992 1996 2000 2004

TRACE

SoHO

Yohkoh

Skylab

Page 5: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

• Problem: very high temperature of the upper atmosphere

• Question: what heating mechanism(s) do operate?

IntroductionIntroduction

Page 6: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Multi-temperature vision of the Sun

Blue: EIT 171 A (0.95 MK)

Green: EIT 195 A (1.5MK)

Red: EIT 284 A (2MK)

Page 7: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

“The literature of coronal heating is primarily theoretical. Observations are often cited in support of a proposed theory or another, ..but…neither existing observations nor the current generation of models are sufficiently detailed to test any mechanism critically.” (Zirker, 1993)

• We now have an explosion of high resolution space datasets (Yohkoh, SOHO, TRACE, RHESSI and more to come) – that are providing constraints on theory and distinguishing between possible models.

The coronal heating is still an unsolved problem in the solar and stellar physics

IntroductionIntroduction

Page 8: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Observational factsObservational facts

• Highly inhomogeneous

• Rôle of magnetic field

Page 9: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

• Highly inhomogeneous

• Role of magnetic field

Observational factsObservational facts

Page 10: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

• Consists of myriads of coronal loops

Observational factsObservational facts

Page 11: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

• length scale: from resolution up to 700 Mm

• radius: from resolution up to 10 Mm

• temperature: from 1-2x104 K to 2x106 K

• magnetic field strength: 1- 104 G

• equilibrium bulk motion

Flux tubes

Observational factsObservational facts

Page 12: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

The complex problem of coronal heatingThe complex problem of coronal heating

Energy sourceConversion mechanism

Heating

Plasma response

Radiation

Observables

Klimchuk, 2006

Page 13: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

The energy requirementParameter(erg cm-2s-1)

Coronalhole(open)

Activeregion(closed)

Chromosphericradiation loss

4 106 2 107

Radiation 104 < 106

Conduction 5 104 105 – 106

Solar wind (5-10) 105 ( < 105 )

× ×

×

×

Page 14: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

       

The energy source

Widely accepted: mechanical motions in and below the photosphereFootpoint motions can generate stresses (DC currents) and waves (AC currents) depending on the time-scale of the motion compared to the Alfven time

EUV, UV, X-ray coronal images and magnetograms firmly established that coronal heating is a magnetic phenomenon (e.g. Vaiana and Rosner 1978)

Heating models DC models

AC models

Hybrid AC/DC models

tdr>tA

tdr<tA

(Kinetic, turbulences)

Page 15: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

The energy source – DC heating

• Footpoint motions perform work on the coronal magnetic field and increase its free energy at a rate given by the Poynting flux through the base

• Magnetic field concentrated in small tubes (~kG) which expand out in the chromosphere and transition region

• Small loops form a low-laying “magnetic carpet” and they do not penetrate into the corona

• Part of the inter-network flux extends above the carpet and spreads out in the corona the magnetic field in the quiet Sun is a mixture of network field and surviving inter-network field.

• Bv~100 G (AR), 5-10 G (QS), Vh~105 cm/s, assume Bh~Bv:

hh VB vB1

F

F≈108 erg/cm2 s

Page 16: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Thin tubes merge into corona

Peter (2001)

Tu et al. (2005)

Page 17: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Heating by DC currentsHeating by DC currents

2D reconnection theories2D reconnection theories¤ 2D reconnection: X-point collapses to a singular sheet

¤ Magnetic energy heat+K.E.+ fast particles

¤ Well understood

¤ Source of heating and of many dynamic processes (flares, EEs, TRBs)

Page 18: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

2D reconnection theories2D reconnection theories

¤ In 2D well-developed

Slow Sweet-Parker reconnection (1958); rec. rate ≈R-1/2

Fast Petschek reconnection (1964)rec. rate ≈1/ln R

Many other fast regimes (depend on B.C.’s)

Almost uniform (Priest &Forbes, 1986)

Non-uniform (Priest & Lee, 1992)

Excellent review by Priest and Forbes (Magnetic reconnection, CUP, 2000)

Page 19: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

3D reconnection theories3D reconnection theories

Key question: structure of null-point

¤ Simplest: B=(x,y,-2z)

¤ Two families of field lines through null-point:

Spine field lines

Fan surface

Page 20: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

3D reconnection theories3D reconnection theories

Three types of reconnection at Null

¤ Spine reconnection

¤ Fan reconnection

¤ Separator reconnection

Double 3D null-point topology

(courtesy of K. Garlsgaard)

Page 21: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

3D reconnection theories3D reconnection theories

Spine reconnection Fan reconnection

Page 22: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

3D reconnection theories3D reconnection theories

¤ So, can reconnection heat the corona?

¤ Yes, possibly, in different ways…but observations are needed to see which way!

Examples:

Reconnection at null-point, e.g., XBP interpreted as converging flux

(Parnell et al. 1993, Priest et al. 1994)

Page 23: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

The energy source – AC heatingThe energy source – AC heating

• The turbulent convection that stresses the coronal magnetic field generates a large flux of upwardly propagating waves (acoustic, Alfvén, slow and fast magnetosonic)

• Mode coupling and other processes transfer energy between different types of waves, so the mix of waves changes as a function of height.

• Theoretical and observational estimates suggest energy fluxes at the top of

convection zone of several 107 erg/cm2s (Narain & Ulmschneider,1996) more than adequate to heat the corona

• Only a small fraction of the flux is able to pass through the very steep density and temperature gradients in the chromosphere and transition region.

• Acoustic and slow waves steepen into shock waves and are strongly damped, while fast waves are strongly refracted and reflected, only Alfvén waves are able to penetrate into the corona. The do not form shocks since they are transversal and their energy is ducted along the magnetic field rather than being refracted across it.

Page 24: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Behaviour of acoustic wavesBehaviour of acoustic waves

Chromospheric heating by acoustic waves

• Convection generates acoustic waves propagating upwards, steepens into shock waves or are reflected by the density gradients in the TR

2vCF SM KmHe Hh

160,0 22 Av

Hh

eA 2

22

22

hA

v kv

k 02vk

evanescent

waves

so

Page 25: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Behaviour of AlfvBehaviour of Alfvéén wavesn waves

• Significant transmission of Alfvén waves is possible only within narrow frequency bands centered on discrete values where loop resonance conditions are satisfied (Hollweg, 1981)

• Enough flux may pass through the base of long (>100 Mm) active regions loops to provide their heating (Hollweg, 1985); in the case of short loops this does not apply.

• Waves can be generated in the corona itself by, e.g. magnetic reconnection and change of the equilibrium (AC/DC heating mechanism)

Page 26: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Heating by AC currentsHeating by AC currents• Recent high resolution observations show undoubtful evidence for

waves in the corona• Prominences• Plumes• Corona (EIT/SoHO, TRACE)

– Flare excited waves in loops-fast kink modes (Aschwanden et al. 1999, Nakariakov and Ofman 1999)

– Feet of long loops-slow waves (De Moortel et al. 2002ab, Aschwanden et al. 2002 )

– CME/flare excited global waves (EIT waves) –fast waves (Thompson et al. 1999, Ballai and Erdélyi 2003a,b, Ballai et al. 2005)

For an effective damping these waves require small scales

Page 27: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Resonant absorptionResonant absorption

Ideal MHD equations singular dissipation heating

Concept of Connection Formulae

ωdriver = ωlocal

(Ionson 1978, Rae & Roberts 1982, Hollweg 1984, Poedts et al. 1989, Goossens 1991, Ruderman et al 1997ab, Ballai et al. 1998ab, Ballai and Erdélyi 1998,2000ab, etc,etc)

Page 28: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Why resonant absorption ?Why resonant absorption ?

• Inhomogeneous plasmas: natural behaviour

• Easy wave energy transfer resulting in heating

• Condition to occur: ωdriver = ωlocal

• Could/may/viable to explain:

- local/atmospheric heating

- power loss of acoustic waves in sunspots

- damping of helioseismic (p/f/g) eigenmodes

- energisation of MHD waves in magneto/heliosphere

Page 29: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Resonant absorptionResonant absorption

• High frequency Alfvén waves are able to reach corona

• They are incompressible and transversal subject to damping due to ohmic and/or shear viscosity

• In the corona ν/µ≈1011 and η0/η1≈105 , so they have a very weak damping.

• For effective damping small trasversal scales are requiredresonant absorption

))()((

)(

222222

1131

121

CAA

r

rr

vcD

PCCdr

dPD

rPCrCdr

rdD

Page 30: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

• Driven problem ω is prescribed• Eigenvalue problem ω is searched for

constC

B

TCBiP

B

Cgi

A

A

Az

ABr

sgn2

sgn

21

2

Jumps are independent of dissipative coefficient

Concept of connection formulaeConcept of connection formulae

Page 31: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Resonant a

bsorption is

working!

Resonant absorptionResonant absorption

Page 32: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Internal background motionInternal background motion

•Steady large-scale flows (e.g., Doyle et al. 1997)•Flow has a major influence on resonant absorption

5-6% vA

Page 33: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

But…

• ε– the dimensionless amplitude of the perturbations; R– total Reynolds number; f—any large variable

• linear theory

• nonlinear theory

• Suppose

32

2

2 R

rf

zff

1

1

32

32

1010

11

R

R

for

Resonant absorption is a nonlinear phenomena

(Ruderman et al.1997, Ballai et al. 1998,1999, 2000, Ballai and Erdélyi 1998)

Page 34: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

But…

• Nonlinearity gives just a small correction to the net absorption coefficientlinear theories give acceptable solutions (Ruderman 2000)

• Nonlinearity in dissipative layers generate a mean flow outside the layer

• The mean (turbulent) flow can locally enhance the dissipative coefficients

• The observation of the generated mean flow could be a first evidence of the resonant absorption

Page 35: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

(Ofman and Davila 1995)

Page 36: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Resonant absorption/phase mixingResonant absorption/phase mixing

• To have a heating for the entire loop, we have to suppose that waves are not monochromatic or stochastic processes have to be taken into account (Tsiklauri and Nakariakov 2002, Ruderman 2003)

• Dissipative layer the oscillations are in phase as long as ω and kvA are in phase

• If they start to be out of phase phase mixing (Heyvaerts and Priest 1983, Browning and Priest 1984, Hood et al 1997, Nakariakov et al 1997, Ruderman et al. 1998, De Moortel et al. 2000, Tsiklauri et al. 2003, etc.)

Page 37: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Energy conversion-conclusionEnergy conversion-conclusion

• Through energy conversion, the magnetic stress energy and wave energy is transformed into heat.

• Since classical dissipation coefficients are small in the corona, significant heating requires the formation of steep gradients and small length scales.

Magnetic gradients heating by reconnection and Ohmic dissipation

Velocity gradients heating by viscous dissipation

• Gradients are formed through slow quasi-static evolution and through dynamical processes

• Possible scenarios: instabilities, turbulences, loss of equilibrium, simple and complex flow patterns at the base of complex coronal magnetic fields (DC) and resonant absorption, phase mixing (AC)

Page 38: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Energy conversion and microphysicsEnergy conversion and microphysics

• Microphysics is likely to play a key role in the energy conversion process, e.g. anomalously large (nonclassical) transport coefficients are required for significant heating even in the presence of steep gradients.

• Coronal transport coefficients are not known with precision but indirect techniques are used to infer values for, e.g. viscosity, thermal and electrical conduction, etc. CORONAL SEISMOLOGY (Nakariakov et al. 1999, Ofman and Aschwanden 2002, Klimchuk et al. 2004, Ballai and Erdélyi 2005)

• Collisionality of the coronal plasma: the collisionless effects are extremely important for reconnection (Bhattacharjee 2004) and wave propagation (Ballai et al. 2002)

• Hybrid codes developed to take into account both the MHD and particle aspects of the plasma

Page 39: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Plasma responsePlasma response

• The fundamental principle: the close thermal and dynamic connection between the corona and the lower atmosphere (coupled system)

• In the case of static equilibrium, thermal conduction transports more than a half of the coronal heating energy down to the transition region, where it is more efficiently radiated

• When heating is time-dependent, an increase in the heating rate causes the coronal temperature to rise, producing an increase of the downward heat flux. The TR is unable to radiate the additional energy, so heated plasma flows into corona through “chromospheric evaporation”

• If the upflow is fast, it can be explosive causing shocks, if the heating rate then decreases, an inverse-like process occurs in which the plasma drains from the loop and “condenses” back into the chromosphere.

Page 40: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

RadiationRadiation

• We determine the radiation spectrum emitted by the heated corona• If the plasma is in ionisation equilibrium, this task is relative simple

(see the CHIANTI software, Dere et al. 1997).

• If the plasma is not in ionisation equilibrium the problem is much more complicated. The equilibrium can be destroyed by, e.g.

– Rapid evolution of an impulsive heating– Rapid cooling– Flow through a steep temperature gradient

In this case we have solve the ionisation rate equation in order to determine the radiation spectrum

)(2 TGnemissivity e

Page 41: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Observation of heating eventsObservation of heating events

• Even the present high resolution satellites provide a minimum information about the heating and the findings are often the result of averaging over space, time and wavelength.

• The best resolution at the moment is ≈ 350 km. In order to see heating at work we would need 10-103 m (!!!)

• Small-scale events have different names but they may turn out to belong to identical physical processes.

- ephemeral regions - nanoflares

- emerging flux events - microflares

- flux cancellation - soft X-ray jets

- events, blinkers - AR transient brightening

- soft X-ray bright points

Page 42: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Small-scale phenomena and their occurrence domain (QS- quiet Sun, AR-active region, Ph–photosphere, TR–transition region, C–corona)

Phenomenon Horizontal domain

Vertical domain Wavelength

Ephemeral regions

QS Ph Optical

Emerging flux events

QS, AR Ph Optical

Flux cancellation QS, AR Ph OpticalExplosive events QS TR EUVBlinkers QS, AR TR EUVNano- and microflares

QS, AR C EUV, SXR

X-ray brightpoints

QS C SXR

Soft X-ray jets QS, AR C SXRAR brightenings AR C SXR

Page 43: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Physical parameters of coronal small-scale phenomena (L-

spatial scale, T-electron temperature, n-electron density) Phenomenon L [Mm] T [MK] n [x108 cm-3]

Nanoflares 2.8-7.9 1-1.4 2.9-4.4

QS transient brightening

3.2-14.1 1.3-1.7 …..

QS heating event 4.5-7.9 1.2-1.5 7-20

AR transient brightening

5-40 4-8 20-200

SXR jets 15-100 3-8 7-40

Page 44: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Open questions in the coronal heating Open questions in the coronal heating problemproblem

• Are distinct coronal loops heated differently from the diffuse corona?

• Are there different classes of loops that are heated in different ways?

• Is quiet Sun heating similar to active regions heating?

• How the AC/DC mechanisms work together?

• Are stellar coronae heated in the same way as the solar corona?

Page 45: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

UVCS results: solar minimum (1996-1997 )UVCS results: solar minimum (1996-1997 )

On-disk profiles: T = 1–3 million K Off-limb profiles: T > 200 million K !

• The fastest solar wind flow is expected to come from dim “coronal holes.”

• In June 1996, the first measurements of heavy ion (e.g., O+5) line emission in the extended corona revealed surprisingly wide line profiles . . .

Page 46: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Heating of the open coronal structuresHeating of the open coronal structures

Very strong perp. heating of the oxygen (Cranmer et

al. 1998)

(Xing et al. 2002)

Page 47: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

The impact of UVCSThe impact of UVCSUVCS has led to new views of the collisionless nature of solar wind acceleration.Key results include:

• The fast solar wind becomes supersonic much closer to the Sun (~2 Rs) than previously believed.

• In coronal holes, heavy ions (e.g., O+5) both flow faster and are heated hundreds of times more strongly than protons and electrons, and have anisotropic temperatures. (e.g., Kohl et al. 1997,1998)

Page 48: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

• SUMER and UVCS (SoHO) have provided very strict constraints on heating of coronal holes

• H+ are mildly anisotropic (Tperp>Tparallel); O 5+ are strongly anisotropic (Tperp/Tparallel=10-200) above 2-3 RSun

• At r=3RSun, Tperp for O5+ is 2x108K (vth=450 km/s), while H+ have Tperp=3x106K (vth=225 km/s)

• At r=3.5 RSun the outflow speed of O5+ is twice the outflow speed of H+

• These properties can be explained by the resonant interaction of coronal ions with ion-cyclotron waves, i.e. by ion-cyclotron resonance

• Ion cyclotron waves (10-104 Hz) have not yet been observed in the solar wind or corona (Cranmer et al. 1999)

• Some attempts to describe waves in collisionless plasmas (Nakariakov and Oraevski 1995, Ballai et al. 2002)

Ion-cyclotron resonanceIon-cyclotron resonance

Page 49: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Ion-cyclotron resonanceIon-cyclotron resonance

• The condition of resonance

• This mass-dependent mechanism is a wave-particle interaction

• Ωi decreases with distance more and more energy injected at lower k is swept into the high frequency domain, where is dissipated by the ions

• Dissipation of ion-cyclotron waves produces diffusion in velocity space, along contours of constant energy

• Ions are accelerated along the field lines

cmBqvkk

i

iii ,||||||

Page 50: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Where do cyclotron waves come from?Where do cyclotron waves come from?

(1) Base generation by, e.g., “microflare” reconnection in the lanes that border convection cells (e.g., Axford & McKenzie 1997).

Both scenarios have problems . . .

(2) Secondary generation: low-frequency Alfven waves may be converted into cyclotron waves gradually in the corona.

Page 51: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

How the ion-cyclotron waves are How the ion-cyclotron waves are generated?generated?

• Alfvén waves with frequencies > 10 Hz have not been observed in the corona or solar wind

• Base generation: by, e.g. “microflare” reconnection in the lines that border convection cells.

• Problem: Low Z/A ions consume base-generated wave energy before it can be absorbed

• Secondary generation: The Sun is suspected to emit low-frequency (<10 mHz) Alfvén waves. This source of “free energy” may be converted into ion cyclotron waves gradually throughout the corona (MHD turbulent cascade, instabilities seeded by non-Maxwellian distributions)

• Problem: Turbulence produces mainly high-kperp fluctuations (i.e. still low frequency). Ion-cyclotron waves propagating parallel to B0 may compromise only a small fraction of the total fluctuation power

Page 52: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Heating mechanismsHeating mechanisms

• A surplus of proposed ideas? (Mandrini et al. 2000; Aschwanden et al. 2001)

Page 53: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Conclusions: What do weConclusions: What do we need?need?

• Data analysis

• Direct observations

• Direct or indirect evidence for heating, e.g. mean flow for resonant heating

• Observe reconnection driven resonant MHD waves

• Use the newly developed coronal seismology for plasma and field parameters

Page 54: N+N+N International Meeting for Young Scientists  (a British Council initiative)

PPARC, Adv. Summer School, Palma 2006

Conclusions Conclusions

• MHD heating occurs across S-STP

• Theories (waves, reconnection, turbulence) progressed

• “Candidates” are all natural for plasma heating/acceleration

• MHD heating is sensitive to flows

• Various structures may be heated by different mechanisms

• More observations are needed (Solar B, STEREO, SDO, etc…) to establish the effects of magnetic carpet, and of zoo of transients!