no slide titleusers.encs.concordia.ca/~asim/coen 451/lectures/w_9/nwell_process.pdftwin tub/double...

33
Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 1 Fabrication Steps: N-well Process Diffusion VDD Vo N well P+ P+ n+ n+ Vin p+ N well p+ n+ n+ p+ p+ Substrate p-type

Upload: ngoliem

Post on 14-Mar-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 1

Fabrication Steps: N-well Process

Diffusion VDD

Vo

N well

P+

P+

n+

n+

Vin

p+

N well

p+ n+ n+ p+ p+

Substrate p-type

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 2

Fabrication Steps: N-well Process

Diffusion VDD

Vo

N well

P+

P+

n+

n+

Vin

p+

N well

p+ n+ n+ p+ p+

Substrate p-type

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 3

Fabrication Steps

p+ p+

N well

n+ n+

Substrate P-type

N well

p+ p+ n+ n+

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 4

Fabrication Steps

Oxidation

Substrate p-type

Patterning of N-well mask

Substrate p-type

oxide

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 5

Fabrication Steps

Diffusion: N dopant, Removal of Oxide

Deposit Silicon Nitride

N-well

N-well

Si3N4

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 6

Fabrication Steps

Patterning: Diffusion (active) mask

Oxidation

N-well

substrate

FOX FOX FOX

substrate

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 7

Fabrication Steps

Remove Si3N4 Grow thin oxide

Deposit polysilicon

N-well

N-well

FOX FOX FOX

Thin oxide

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 8

Fabrication Steps

Patterning of Polysilicon

FOX FOX FOX

N -well

Poly gates

substrate

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 9

Fabrication Steps

P+ Layers and n+ Layer in the Layout

N well

p+ layer

n+ layer

polysilicon

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 10

Fabrication Steps

Formation of n+ and p+ Diffusion Areas: P+ Diffusion: - Covering with photo-resist - Patterning of the n+ layer - Diffusion: n+ dopant

PR

FOX

N-well

FOX FOX

p+ dopant

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 11

Fabrication Steps

Formation of n+ and p+ Diffusion Areas: N+ Diffusion: - Cover with photo-resist - Patterning of the n+ layer - Diffusion: n+ dopant n+ dopant

PR

N-well

N-well

p+ p+

p+ p+ n+ n+

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 12

Fabrication Steps

P well

p+ layer

polysilicon

n+ layer

metal

contact

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 13

Fabrication Steps

Strip PR and Deposit Oxide

Patterning of Contact Mask

SiO2

FOX FOX FOX

N-well

Substrate

p+ p+ n+ n+

N-well

Substrate

contact

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 14

Fabrication Steps

Deposit metal layer

Patterning of metal layer

Passivation

N-well

FOX FOX

Substrate Deposit Passivation layer

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 15

CMOS: 3D Structure

N-well

p+ p+ n+ n+

Substrate (P-type)

FOX FOX FOX

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 16

The Bulk Contacts

N well

p+ layer

n+ layer

metal

contact

polysilicon

n+ layer

p+ layer

(substrate)

G

S

D

D

G

S

VDD

GND

B

B

MP

MN

Vin Vout

Note: Butting contacts provide more efficient area utilization

VDD

GND

N-Well

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 17

N-Well CMOS

p+ layer

n+ layer

metal

contact

n+ layer

p+ layer

P-well

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 18

Twin Tub/Double Layer Metal CMOS

Substrate

p-well n-wel l

metal II

Passivation

FOX

Via SiO2 Metal I

P well

Metal II

Via

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 19

Layout Design Rules

Specifies geometrical constrains on the layout art

work

Dictated by electrical and reliability constraints with

the capability of fabrication technology

Addresses two issues:

» reproduction of features on silicon

» interaction between layers

Main approaches to describe rules:

» based (scalability)

» absolute

width spacing

extension

spacing

overlap

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 20

Based CMOS Design Rules : N Well

Process

A. N-well A.1 Minimum size 10 A.2 Minimum spacing 6 (Same potential) A.3 Minimum spacing 8 (Different potentials) B. Active (Diffusion) B.1 Minimum size 3 B.2 Minimum spacing 3 B.3 N-well overlap of p+ 5 B.4 N-well overlap of n+ 3 B.5 N-well space to n+ 5 B.6 N-well space to p+ 3

n+

n+

p+

p+ B4=3

B3=5

B5=5

B6=3

p+

B2=3

B1=3

N-well

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 21

Based CMOS Design Rules

C PolyI C.1 Minimum size 2 C.2 Minimum spacing 2 C.3. Spacing to Active 1 C.4. Gate extension 2 D. p-plus/n-plus D.1 Minimum overlap of Active 2 D.2 Minimum size 7 D.3 Minimum overlap of Active 1 in abutting contact D.4. Spacing of p-plus/n-plus to 3 n+/p+ gate

C2=2 C1=2

C4=2 C3=1

D2=7 D2=7

D1=2

active active

n-plus p-plus

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 22

Based CMOS Design Rules

E. Contact E.1 Minimum size 2 E.2 Minimum spacing (Poly) 2 E.3 Minimum spacing (Active) 2 E.4 Minimum overlap Active) 2 E.5 Minimum overlap of Poly 2 E.6 Minimum overlap of Metal 1 E.7 Minimum spacing to Gate 2 F. Metal 1 F.1 Minimum size 3 F.2 Minimum spacing 3 G. Via G.1 Minimum size 3 G.2 Minimum spacing 3 G.3 Minimum Metal I overlap 1 G.4 Minimum Metal II overlap 1

E3=2 E4=2

E1=2

E6=1

E5=2

F1=3

F2=3

H2=4

H1=3

G3,G4=1 G2=3

Metal II

Metal I

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 23

Based CMOS Design Rules

H. Metal II H.1 Minimum size 3 H.2 Minimum spacing 4 I. Via2 I.1 Minimum size 2 I.2. Minimum spacing 3 J. Metal III J.1 Minimum size 8 J.2. Minimum spacing 5 J.3 Minimum Metal II overlap 2 K. Passivation K.1 Minimum opening 100m K.2 Minimum spacing 150m

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 24

Layout of a CMOS Inverter

Based Design Rules

B3

B4

C1

C4

G1

E4 D1

E6

N-well

n-plus

Metal II

p-plus

metalI

Active Via

p-plus

n-plus

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 25

Stick Diagram Notation

• It helps to visualize the function as well as topology • It helps in floor planning • 4 layers for SLM: Poly, diffusion, metal, contact • 6 layers for DLM: Poly, Diffusion, Metal I, Metal II, Contact, Via • Construction Guidelines:

• When two wires of the same color intersects or touch, they are electrically connected. • Contacts represented by (X) and via by ( ) • When poly crosses diffusion, a transistor is formed • PMOS transistors identified by a small circle around the poly-diffusion intersection

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 26

Stick Diagram Notation

G

S

D

D

G

S

VDD

GND

B

B

MP

MN

Vin Vout Vin

Vout

VDD

GND

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 27

Mixed Notation

A

B

C

C

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 28

Standard Cells

Modularized approach for layout Follows certain guidelines in designing these

modules Each module represents a basic combinational or

sequential logic function. Each module has a standard height and variable

width referred to as Standard Cell A collection of these cells referred to as a Standard

Cell Library ASIC Designers deal with abstracted

representation of these cells to construct a complete design

The abstracted representation is referred to as the Foot Print

Each abstracted representation consists of input and output terminals referred to as I/O Ports

Cell Name

I/O ports

Foot Print

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 29

Standard Cells

Input port

Output port

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 30

Standard Cells

Input Port

Output Port

INV

INPUT OUTPUT

VDD

VSS

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 31

Standard Cells

Routing Channel

For DLM process, vertical routes use metal II. Horizontal routes use Metal I Notice the connections between Metal I and Metal II For Multi-level metal processes cell rows are flipped and butted. Routing can be made on top of the cell rows (More to come in section 5)

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 32

Yield Analysis

Yield is defined as :

Number of Good chips on wafer X 100% Total Number of chips

Influenced by Defect density Chip area Design rule lithography dimensions Number of mask levels Defects Crystal defects film deposition and growth defects photo-resist imperfections

Digital IC Design/ATEC D. Al-Khalili Fab./layout-4 33

Yield Analysis

Y eAD–

=

Y1 e

A– D–

AD----------------------

2

=

Models:

1. Seed’s model for large chips and low yields

A= chip area D= defect density 2. Murphy’s model for small chips and high yields