noncommutative poisson geometry and cluster integrable systemsart/data/presentation-camp.pdf ·...

26
Noncommutative Poisson Geometry and Cluster Integrable Systems S. Arthamonov Rutgers, The State University of New Jersey May 7, 2018 Cluster Algebras and Mathematical Physics S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 1 / 26

Upload: others

Post on 10-Jul-2020

8 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Noncommutative Poisson Geometry and ClusterIntegrable Systems

S. Arthamonov

Rutgers, The State University of New Jersey

May 7, 2018

Cluster Algebras and Mathematical Physics

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 1 / 26

Page 2: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Cluster algebras associated to triangulated surfaces

Figure: Flip of an ideal triangulation.

S. Fomin, M. Shapiro, and D. Thurston. Cluster algebras and triangulatedsurfaces. Part I: Cluster complexes. Acta Mathematica, 201(1):83–146, 2007.

A. Goncharov, and R. Kenyon. Dimers and cluster integrable systems. Annalesscientifiques de l’Ecole Normale Superieure. Vol. 46. No. 5., 2013.

A. Berenstein and V. Retakh. Noncommutative marked surfaces. Advances inMathematics, 328:1010–1087, 2018.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 2 / 26

Page 3: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Cluster algebras and Poisson Geometry

Let k be a ground field of characteristic zero.

DefinitionLet A be a commutative associative algebra over k, a k-linear map

{, } : A⊗A −→ A

is called a Poisson bracket on A if it satisfies for all f ,g,h ∈M

{f ,g} = −{g, f} skew-symmetry condition,{f ,gh} = g{f ,h}+ {f ,g}h Leibnitz identity,{f , {g,h}}+ {g, {h, f}}+ {h, {f ,g}} = 0 Jacobi identity,

Geometric Cluster Algebras can be equipped with a Poisson bracketcompatible with mutations.

M. Gekhtman, M. Shapiro, and A. Vainshtein. Cluster algebras and Poissongeometry. Moscow Mathematical Journal, 3(3):899–934, 2003.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 3 / 26

Page 4: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Ribbon Graphs

DefinitionA ribbon graph Γ is a graph with cyclic order of edges adjacent to each vertex.

(a) Ribbon Graph(b) Disc in SΓ correspondingto the vertex.

Figure: Surface with boundary SΓ associated to a ribbon graph.

Each ribbon graph Γ defines an oriented surface SΓ with boundary.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 4 / 26

Page 5: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Ideal triangulations and bipartite graphs

Figure: Bipartite ribbon graph associated to triangulation of surface Σ.

DefinitionA conjugate surface SΓ associated to the ribbon graph Γ is a surfacecorresponding to the ribbon graph with reversed cyclic order of edges at eachvertex.

Both SΓ and SΓ have the same fundamental group as the underlying graph

π1(SΓ) = π1(SΓ) = π1(Γ). (1)

The identification (1) allows one to introduce two different Poisson structureson the character variety of π1(Γ).

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 5 / 26

Page 6: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Poisson bracket on graph connectionsEach 1-dimensional representation

ϕ ∈ Hom(π1(SΓ),C×)

is determined by

x1 = ϕ(M1), . . . , xn = ϕ(Mn).

We can equip C[x1, . . . , xn] with a Poisson bracket as follows

{, } :(C[x1, . . . , xn]

)⊗2 → C[x1, . . . , xn], {xi , xj} =∑

p

εi,j (p)xixj ,

εij (p) =

+1Mj Mi

p

−1Mi Mj

p

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 6 / 26

Page 7: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Rectangle move

y1

y2 y3

y4

y0

z1

z2 z3

z4

z0

Figure: Rectangle move in one dimensional case.

Proposition (Goncharov-Kenyon’2013)The following map extends to a homomorphism of Poisson algebras

τ :

z0 → y−10 ,

zi → yi (1 + y0), i = 1,3,zi → yi (1 + y−1

0 )−1, i = 2,4.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 7 / 26

Page 8: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Algebra of polyvector fields

A vector field d onM can be viewed as the derivation of C∞(M), the algebraof smooth functions onM

d : C∞(M)→ C∞(M), d(fg) = fd(g) + d(f )g,

for all f ,g ∈ C∞(M).

LemmaThe space of vector fields

D1 = Der(C∞(M),C∞(M))

forms a C∞(M)-module.

One defines an algebra of polyvector fields as D• = TC∞(M)D1.

Puzzle: Der(A,A) is no longer an A-module for a noncommutative algebra A.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 8 / 26

Page 9: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Double Geometry

W. Crawley-Boevey, P. Etingof, and V. Ginzburg. Noncommutative geometry andquiver algebras. Advances in Mathematics, 209(1):274 – 336, 2007

M. Van den Bergh. Double Poisson algebras. Trans. Amer. Math. Soc.,360:5711–5769, 2008.

DefinitionLet A be an associative algebra. We say that map δ is a noncommutativevector field if

δ : A → A⊗A, δ(ab) = (a⊗ 1)δ(b) + δ(a)(1⊗ b)

for all a,b ∈ A.

LemmaNoncommutative vector fields DA = Der(A,A⊗A) form an A-bimodule.

One defines a noncommutative algebra of polyvector fields as TADA

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 9 / 26

Page 10: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Vector fields on a linear category

DefinitionLet C be a small k-linear category. For all V ,W ∈ Obj C we say that a map

δ : Mor C → hom(W ,−)⊗ hom(−,V )

is a (V ,W )-vector field if

δ(f ◦ g) = (f ⊗ 1V ) ◦ δ(g) + δ(f ) ◦ (1W ⊗ g).

for all composable f ,g ∈ Mor C. Here 1V and 1W are the identity morphismson V and W .

In what follows we denote the space of (V ,W )-vector fields as D1V ,W . Let

(a ? δ ? b)(f ) = (δ′(f ) ◦ b)⊗ (a ◦ δ′′(f )) (3)

LemmaD1 is a covariant functor on C × Cop.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 10 / 26

Page 11: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Modules over a linear category

Fix a small k-linear category C.

Definition (Tensor product)Let R be a contrvariant functor on C and L be a covariant functor on C, thetensor product R ⊗C L is defined as

R ⊗C L =

⊕V∈Obj C

RV ⊗ LV

/ρ◦f⊗λ∼ρ⊗f◦λ

.

Definition (Trace)LetM be a bifunctor on C, the trace over C is defined as

trC : M→M\ :=

⊕X∈Obj C

MX ,X

/f◦m∼m◦f

.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 11 / 26

Page 12: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Category of polyvector fieldsThe space of k-vector fields associated to V ,W ∈ Obj C is defined as

DkV ,W =

⊕U1,...,Uk−1∈Obj C

D1V ,U1⊗C . . . ⊗C D1

Uk−1,W ,

where for k = 0 we assume that

D0V ,W = hom(W ,V ).

CorollaryDk is a covariant functor on C × Cop.

D•V ,W =∞⊕

k=0

DkV ,W

We define the category V of polyvector fields on C as

Obj V = Obj C, homV(W ,V ) = D•V ,W .

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 12 / 26

Page 13: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Traces of polyvector fields and polyderivationsLet δ1, . . . , δk be a chain of composable vector fields. The tracetrC(δ1 ? · · · ? δk ) is equivalent to the following map

trC(δ1 ? · · · ? δk ) : (Mor C)⊗k → (Mor C)⊗k ,

f1 ⊗ · · · ⊗ fk 7→ (δ′k (fk ) ◦ δ′′1 (f1))⊗ (δ′1(f1) ◦ δ′′2 (f2))⊗ . . .

· · · ⊗ (δ′k−1(fk−1) ◦ δ′′k (fk )).

Proposition∆ = trC(δ1 ? · · · ? δk ) is a polyderivation, i.e.,

∆(h1⊗ · · · ⊗ f ◦ g↑j

⊗ · · · ⊗ hk )

=(1t(hk ) ⊗ · · · ⊗ f↑

j+1

⊗ · · · ⊗ 1t(hk−1)) ◦∆(h1 ⊗ · · · ⊗ g↑j

⊗ · · · ⊗ hk )

+ ∆(h1 ⊗ · · · ⊗ f↑j

⊗ · · · ⊗ hk ) ◦ (1s(h1) ⊗ · · · ⊗ g↑j

⊗ · · · ⊗ 1s(hk ))

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 13 / 26

Page 14: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Double Quasi Poisson Bracket on a category

DefinitionA k-linear map R is said to be a Double Quasi Poisson Bracket if it satisfies

Skew-Symmetry condition

R(f ⊗ g) = −(R(g ⊗ f )

)op

Double Leibnitz Identity

R((f ◦ g)⊗ h) =(1t(h) ⊗ f ) ◦ R(g ⊗ h) + R(f ⊗ h) ◦ (g ⊗ 1s(h)),

R(f ⊗ (g ◦ h)) =(g ⊗ 1t(f )) ◦ R(f ⊗ h) + R(f ⊗ g) ◦ (1s(f ) ⊗ h).

Double Quasi Jacobi Identity

R1,2 ◦ R2,3 + R2,3 ◦ R3,1 + R3,1 ◦ R1,2 =∑

V∈Obj C

trC(∂V ? ∂V ? ∂V ).

Ri,j (f1 ⊗ · · · ⊗ fn) =f1 ⊗ · · · ⊗ R′(fi ⊗ fj )︸ ︷︷ ︸i

⊗ · · · ⊗ R′′(fi ⊗ fj )︸ ︷︷ ︸j

⊗ · · · ⊗ fn.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 14 / 26

Page 15: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Category associated to a ribbon graph

C0 = kπ1(SΓ,V1, . . . ,Vn).

The objects Obj C0 = {Vi} correspond to marked points.

x3

x1x2

(a) Disk corresponding to white vertex

f1f2

f−11 ◦ f−1

2

(b) Disc corresponding to black vertex

Figure: Building blocks for bipartite graph with trivalent black vertices

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 15 / 26

Page 16: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Double Quasi Poisson BivectorFor each object V ∈ C0 consider a noncommutative bivector

PV =12

∑i<j

(xj ?

∂xi? xi ?

∂xj− xi ?

∂xj? xj ?

∂xi

).

Here ∂∂fi∈ Ds(fi ),t(fi ) is a vector field on defined on generators of C0 as

∂fi(fj ) =

{1t(fi ) ⊗ 1s(fi ), i = j ,0, i 6= j .

LemmaThe following map is a double Quasi Poisson Bracket on C0

{{, }}=∑

V∈Obj C0

trC0PV .

V. Fock and A. Rosly. Poisson structure on moduli of flat connections on Riemannsurfaces and r-matrix In Moscow seminar in math. phys., pp. 67-–86. AMS, 1999.G. Massuyeau and V. Turaev. Quasi-Poisson structures on representation spacesof surfaces. IMRN, 2014(1):1–64, 2012.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 16 / 26

Page 17: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Noncommutative rectangle move

Let Csub1 ⊂ C1 be a subcategory generated by Y±1

1 ,Y±12 ,Y±1

3 ,Y±14 . Similarly

we define a subcategory Csub2 ⊂ C2.

Y1

Y2 Y3

Y4

v1

v2

v3

v4

(a) Original morphisms

Z1

Z2 Z3

Z4

v1

v2

v3

v4

(b) Morphisms after the move

Figure: Rectangle move

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 17 / 26

Page 18: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Quasi Poisson Functor

Now let τ : C2 → C1 be a functor defined as

τ(Z1) =Y1 ◦ f1(M), τ(Z4) =f4(M) ◦ Y4,

τ(Z2) =Y2 ◦ Y1 ◦ f2(M) ◦ Y−11 , τ(Z3) =Y−1

4 ◦ f3(M) ◦ Y4 ◦ Y3,

where f1, . . . , f4 are the same as in one-dimensional case:

f1(M) = f3(M) = (1v1 + M)−1, f2(M) = f4(M) = 1v1 + M−1.

τ(Zi ) = Yi i ≥ 5.

Theorem (S.A.’2017)The functor τ preserves Double Quasi Poisson Bracket:

τ({{Zi ⊗ Zj}}

)= {{τ(Zi )⊗ τ(Zj )}}, 1 ≤ i , j ≤ n.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 18 / 26

Page 19: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Representation SchemeFollowing general philosophy by M. Kontsevich any algebraic property thatmakes geometric sense is mapped to its commutative counterpart by

Representation Functor

RepN : fin. gen. Associative algebras→ Affine schemes,RepN(A) = Hom(A,MatN(C)).

ϕ(x (i)) =

x (i)

11 . . . x (i)1N

......

x (i)N1 . . . x (i)

NN

. (5)

Representations of A then form an affine scheme V with a coordinate ringC[V] := C

[x (i)

j,k

]/ϕ(R). Denote as CV — the corresponding sheaf of rational

functions.Maxim Kontsevich. Formal (non)-commutative symplectic geometry. The GelfandMathematical Seminars, 1990–1992, pages 173–187. Birkhauser Boston, 1993.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 19 / 26

Page 20: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Induced Brackets on Representation Scheme

Let {{, }} be a double Quasi Poisson bracket. Define induced bracket {, }V ongenerators of C[V] as{

x (m)ij , x (n)

kl

}V= ϕ

({{x (m) ⊗ x (n)}}

)(kj),(il)

(6)

and then extend it to the entire CV ⊗ CV by Leibnitz identities

{ab, c}V =a{b, c}V + b{a, c}V , (7)

{a,bc}V =c{a,b}V + b{a, c}V . (8)

Lemma{, }V is a Quasi-Poisson bracket.

1 A. Alekseev, Y. Kosmann-Schwarzbach, and E. Meinrenken. Quasi-Poissonmanifolds. Canad. J. Math., (54):3–29, 2002.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 20 / 26

Page 21: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Induced Poisson Bracket

PropositionThe following restriction

{ , }V : CGLN (C)V ⊗ CV → CV (10)

satisfies the left Loday-Jacobi identity: for all f ,g ∈ CGLN (C)V and h ∈ CV :

{f , {g,h}V}V − {g, {f ,h}V}V = {{f ,g}V ,h}V . (11)

For all f ,g ∈ CGLN (C)V we have {f ,g}V ∈ CGLN (C)

V and {f ,g}V = −{g, f}V .

PropositionThe following restriction of {, }V

{, }inv : CGLN (C)V ⊗ CGLN (C)

V → CGLN (C)V (13)

is a Poisson bracket.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 21 / 26

Page 22: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Simpelst example: Kronecker quiver

abc

(a) Original ribbon graph

a

b

c

v

u

(b) Conjugate surface T\D

Figure: Conjugate surface for Kronecker quiver with three vertices

Here CK = k〈u±1, v±1〉 becomes a group algebra of a π1(T\D).

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 22 / 26

Page 23: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Bracket on a torus and Kontsevich mapBracket on CK then reads

{{u ⊗ u}}=1⊗ u2 − u2 ⊗ 12

, {{v ⊗ v}}= v2 ⊗ 1− 1⊗ v2

2,

{{u ⊗ v}}=u ⊗ v − v ⊗ u − vu ⊗ 1− 1⊗ uv2

.

Proposition (S.A.’2016)Let K be an automorphism of CK defined on generators as

K :

{u → uvu−1,v → u−1 + v−1u−1.

Bracket {{, }} defined above is equivariant under the action of K

K({{a,b}}

)= {{K (a),K (b)}}

for all a,b ∈ CK .

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 23 / 26

Page 24: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Kontsevich system

Map K is a symmetry of the following system of noncommutative ODEdudt

= uv − uv−1 − v−1,

dvdt

= −vu + vu−1 + u−1.

Denote the induced H0-Poisson structure as

{, }K : A⊗ A→ A; ∀a,b ∈ A, {a,b}K = µ({{a,b}}K ).

Lemma (S.A.’2015)Noncommutative ODE defined above is a generalized Hamilton flow , namely

∀x ∈ A,dxdt

= {h, x}K , where h = u + v + u−1 + v−1 + u−1v−1.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 24 / 26

Page 25: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

Higher Hamilton flows

Proposition (S.A.’2015)There exists an infinite family of commuting flows, for all m, j ∈ N

ddtm

: A→ A,d

dtm(x) := {hm, x}K ;

[d

dtm,

ddtj

]= 0.

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 25 / 26

Page 26: Noncommutative Poisson Geometry and Cluster Integrable Systemsart/data/presentation-CAMP.pdf · Noncommutative geometry and quiver algebras. Advances in Mathematics, 209(1):274 –

THE END

Thank you for your attention!

S. Arthamonov NC Poisson Geometry and Cluster Algebras CAMP-2018, East Lansing MI 26 / 26