nonlinear pdes in sobolev spaces with variable...

37
Preprint CMAF Pre-015 (2013) http://cmaf.ptmat.fc.ul.pt/preprints.html Nonlinear PDEs in Sobolev Spaces with Variable Exponents Stanislav Antontsev and Sergey Shmarev The slide presentation for the invited lecture given at the International Conference “Differential Equations, Function Spaces, Approximation Theory" dedicated to the 105th Anniversary of Sergey Sobolev, August 18-24, Novosibirsk, Russia S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 1

Upload: others

Post on 07-Oct-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Preprint CMAF Pre-015 (2013)

http://cmaf.ptmat.fc.ul.pt/preprints.html

Nonlinear PDEs in Sobolev Spaces with Variable Exponents

Stanislav Antontsev and Sergey Shmarev

The slide presentation for the invited lecture given at the International Conference “DifferentialEquations, Function Spaces, Approximation Theory" dedicated to the 105th Anniversary of SergeySobolev, August 18-24, Novosibirsk, Russia

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 1

Page 2: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Nonlinear PDEs in Sobolev spaces with variableexponents

Stanislav Antontsev 1 Sergey Shmarev 2

1CMAF, University of Lisbon

2University of Oviedo

Differential Equations, Function Spaces, Approximation TheoryAugust 18-24, Novosibirsk, Russia

International Conference Dedicated to 105th Anniversary of Sergey Sobolev

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 2

Page 3: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Physical motivation

Electro-rheological fluidsrot E = 0, div E = 0, div v = 0

−div a(x,E,D(v)) +∇P = div (v⊗ v) + f

a(x,E,D(v)) ≈ (1+ |D(v)|)(p(E)−2)/2D(v)

Non-Newtonian fluids (v · ∇)v = div(µ(θ) + τ(θ)|D(v)|p(θ)−2D(v)

)−∇P+ f)

div v = 0, −∆θ+ v · ∇b(θ) = g(x)

Filtration of an ideal barotropic gas in a non-homogeneous porous medium:

ρt +∑i

Di

(ρ |Dip|

λi(θ)−2Dip

)= h p = ργ(θ)

Processing of digital images, e.g., Perona-Malik anisotropic diffusion models,

ut = div (G(|∇u|)∇u)) G(s) = e−s ≈

1 as s→ 0

0 as s→∞enhances edges big |∇u| ⇒ slow diffusion

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 3

Page 4: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Lavrentiev’s phenomenon

The classical minimization problem J(u) =

∫Ωf(x,∇u)dx, u ∈W1,p0 (Ω), Ω ⊂ Rn

−C1 + C2|r|p 6 f(x, r) 6 C3 + C4|r|

p, p = const

The classical Sobolev spaces

minJ(u)| u ∈W1,p0 (Ω)

= inf

J(u)| u ∈ C∞

0 (Ω)

Minimization of a functional with nonstandard growth

−C1 + C2|r|p(x) 6 f(x, r) 6 C3 + C4|r|

p(x) 1 < p− 6 p(x) 6 p+ <∞Generalized Sobolev spaces: W1,p(x)0 (Ω)

A model problem:

J(u) =

∫Ω

[1

p(x)|∇u|p(x) + ug(x)

]dx u ∈W1,p(x)0 (Ω)

div(|∇u|p(x)−2∇u

)= g(x)

Lavrentiev’s phenomen: M.A. Lavrentiev “Sur quelques problemes du calcul devariations". Annali di Matematica Pura ed Applicata, v.4, (1926) 107-124

Variable exponents Sobolevspaces

PDEs with variablenonlinearity

New mathematical modelsin continuum mechanics

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 4

Page 5: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Main issues

ut =

n∑i=1

Di(|Diu|pi(z)−2Diu) + f(z,u) z = (x, t) ∈ Q = Ω× (0, T)

u(x, 0) = u0(x) in Ωu = 0 on Γ = ∂Ω× (0, T)

existence of weak (energy) solutions

space localization:

u0 ≡ 0 in ω ⊂ Ω ⇒ u(z) ≡ 0 in ω ′ × (0, τ), ω ′ ⊆ ω

vanishing in a finite time:

∃t∗ : ‖u‖2,Ω(t) = 0 ∀ t > t∗

blow-up:

∃t∗, ω ⊆ Ω : ‖u‖∞,ω(t)→∞ as t→ t∗−

the influence of anisotropy on the propagation properties of solutions.

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 5

Page 6: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Lebesgue and Sobolev spaces with variable exponents

Lebesgue-Orlicz spaces (Ω ⊂ Rn)Lp(·)(Ω) = f : Ω 7→ R| f is measurable in Ω,

∫Ω

|f(x)|p(x) dx <∞

‖v‖p(·),Ω = inf

λ > 0 :

∫Ω

(|v(x)|

λ

)p(x)dx < 1

- Luxemburg norm

Sobolev-Orlicz spaces (Ω ⊂ Rn)V(Ω) = v|v ∈ L2(Ω)∩W1,10 (Ω), |Div|pi(x) ∈ L1(Ω)

Vt(Ω) = v(x)| v ∈ L2(Ω)∩W1,10 (Ω), |Div|pi(x,t) ∈ L1(Ω) ∀a.e. t ∈ (0, T)

V ′t(Ω) dual to Vt(Ω) with respect to the scalar product in L2(Ω)

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 6

Page 7: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Parabolic spaces

ut =

n∑i=1

Di(|Diu|pi(z)−2Diu) + f(z,u)

the main space

W =

u(x, t)∣∣∣∣∣∣∣u : [0, T ] 7→ Vt(Ω),

|u|2, |Diu|pi(x, t) ∈ L1(Q)

‖u‖W = ‖u‖2,Q +

n∑i=1

‖Diu‖pi(·,·),Q

the dual space W ′:

w ∈W′ ⇐⇒

w = w0,w1, . . . ,wn, w0 ∈ L2(Q), wi ∈ Lp′i(·)(Q),

∀φ ∈W 〈〈w,φ〉〉 =∫Q

(w0φ+

∑i

wiDiφ

)dz.

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 7

Page 8: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Basic properties

1 if p(x) ∈ C0(Ω), then

C∞(Ω) is dense in Lp(·)(Ω) W1,p(·)0 (Ω) is separable and reflexive

2 C∞0 (Ω) is dense in V(Ω) if p(x) is Log-continuous: ∀ z, ζ ∈ Ω, |z− ζ| < 1

∑i

|pi(z) − pi(ζ)| 6 ω(|z− ζ|), limτ→0+ ω(τ) ln

1

τ= C < +∞.

3 min(‖f‖p

p(·) , ‖f‖p+

p(·)

)6∫Ω

|f(x)|p(x) dx 6 max(‖f‖p

p(·) ,‖f‖p+

p(·)

)4 Hölder’s inequality: f ∈ Lp(·)(Ω), g ∈ Lp′(·)(Ω), p(x) ∈ (1,∞), p ′(x) =

p(x)

p(x) − 1∫Ω

|f g|dx 6

(1

p−+

1

(p′−)

)‖f‖p(·) ‖g‖p′(·) 6 2‖f‖p(·) ‖g‖p′(·)

L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev Spaceswith Variable Exponents, Springer, Berlin, 2011. Lecture Notes in Mathematics, Vol. 2017,1st Edition.

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 8

Page 9: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Existence results for evolution p(x, t)-Laplace equation

Existence theorems for the evolution p(x, t) -laplacianut = div

(a(z,u)|∇u|p(x,t)−2∇u

)in Q

u = 0 on Γ , u(x, 0) = u0 in Ω0 < a− 6 a(z, s) 6 a+ <∞ (1)

1 S.Antontsev, S.Shm. (2006, 2009) - Galerkin’s approximations. Energy solution forp(x, t) continuous in Q with logarithmic module of continuity

2 Yu.Alkhutov, V.Zhikov (2010) - very weak solution for measurable and boundedp(x, t). The theory of monotone operators.

3 L.Diening, P. Nägele, M. Ružička (2011) Existence of energy solution for systems ofequations of the type (1). The theory of monotone operators + p(x, t) ∈ Clog(Q).

(For p independent of t: entropy and renormalized solutions with L1 data, variationalinequalities, equations with nonlocal terms, semi-group theory, stationary solutions,calculus of variations, .... )

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 9

Page 10: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Definition of energy solution

ut =

n∑i=1

Di(|Diu|pi(z)−2Diu) + f(z,u) in Q

u = 0 on Γ , u(x, 0) = u0 in Ω

(2)

Definitionu(x, t) is called energy solution of problem (2) if

1 u ∈W, ∂tu ∈W ′

2 ∀φ ∈W with ∂tφ ∈W ′

∫Q

(φ∂tu+

n∑i=1

|Diu|pi−2Diu ·Diφ− fφ

)dz = 0

3 ∀φ(x) ∈ C∞0 (Ω)

∫Ω(u(x, t) − u0(x))φ(x)dx→ 0 as t→ 0

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 10

Page 11: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Existence of energy solutions ut =

n∑i=1

Di(|Diu|pi(z)−2Diu) + f(z,u) in Q

u = 0 on Γ , u(x, 0) = u0 in Ω

(3)

Theorem (Global in time existence)

Let f(z, r) be a Carathéodory function, |f(z, r)| 6 c0|r|λ−1 + h(z), h ∈ Lλ′(Q) . Assume

that pi(z) are Log-continuous in Q. If one of the conditions

λ = max2,p− − δ with δ > 0, p− = mini

infQpi(z),

λ = max2,p− and c0 << 1

is fulfilled, then for every u0 ∈ L2(Ω) problem (3) has a solution u ∈W, ut ∈W ′.

Theorem (Local in time existence)Let |f(z,u)| 6 d0|u|λ−1 + h(z), λ > 2, h ∈ L1(0, T ;L∞(Ω)). Then ∀ u0 ∈ L∞(Ω) problem(3) has at least one energy solution in a cylinder QT with some T > 0. This solution can becontinued to the maximal interval [0, T∗],

T∗ = supT > 0 : ‖u(t)‖∞,Ω <∞ ∀ t < T S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 11

Page 12: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Sketch of proof: adaptation of Galerkin’s method

C∞0 (Ω) ⊂ Hs0(Ω) ⊂ Vt(Ω) (dense embeddings)

u(k) =∑ki=1 u

(k)i (t)ψi(x), ψi dense in W1,p

+

0 (Ω), (ψi,ψj)2,Ω = δij

monotonicity+

compactness+

integrationby parts in t

⇒ ∫

Q

[(ut + f)φ+

∑i

(|Diu|

pi(z)−2Diu)·Diφ

]dz = 0

integration by parts: finite differencesf(·, t+ h) − f(·, t)

h→ ∂tf wouldn’t work

f(x, t+ h) ∈ Vt+h(Ω), f(x, t) ∈ Vt(Ω), Vt(Ω) 6= Vt+h(Ω)

Lemma (Integration by parts)v,w ∈W(Q), vt,wt ∈W ′(Q), pi(z) are Log-continuous ⇒

∀a.e. t1, t2 ∈ (0, T ]∫t2t1

∫Ωvwt dz+

∫t2t1

∫Ωvtwdz =

∫Ωvwdx

∣∣∣t=t2t=t1

.

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 12

Page 13: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Localization properties in the isotropic case

Isotropic p-Laplacian, p = const: the alternative

ut = div(|∇u|p−2∇u) in Qu(x, 0) = u0(x) in Ω, u = 0 on Γp = const ∈ (1, 2)∪ (2,∞)

Counterpart localization properties

Slow diffusion ⇒ space localizationp > 2 ⇒ u0(x0) = 0 ⇒ ∃ t0 : u(x0, t) = 0 ∀ t ∈ [0, t0]

Fast diffusion ⇒ time localizationp ∈ (1, 2) ⇒ u(x, t) ≡ 0 for t > T∗, x ∈ Ω

No longer true if the diffusion is anisotropic or variable!

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 13

Page 14: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Anisotropic diffusion: new issues in localization

Dirichlet problem for the anisotropic p(z)-Laplacian ut =∑i

Di

(|Diu|

pi(z)−2Diu)+ f(z,u) in Q

u(x, 0) = u0 in Ω u = 0 on Γ

Localization (vanishing) properties

traditional technique: comparison

no explicit super-solutions ⇒ analysis of local energy functions

directional (anisotropic) localization in space

time localization in equations of fast-slow diffusion

localized solutions of eventually linear equations

S. Antontsev, J. I. Diaz, S. Shmarev “Energy methods for free boundary problems.Applications to Nonlinear PDEs and Continuum Mechanics", Progress in Nonlinear PDEs,v.48, Birkhauser (2002)

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 14

Page 15: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Finite speed of propagation

1 Finite speed of propagation of disturbances from the initial data

ut =∑i

Di

(|Diu|

pi(z)−2Diu)+ f pi(z) > p

− > 2

Finite speed of propagation. pi(z) > 2 - slow diffusionu0 = 0, f = 0 en Bρ0(x0) ⇒ u(x, t) = 0 en Bρ(t)(x0), ρ(t) = ρ0 − Ctγ

The set x ∈ Bρ(t)(x0) : u(x, t) = 0 shrinks as t grows

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 15

Page 16: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

The waiting time effect

1 Finite speed of propagation of disturbances from the initial data2 The waiting time effect.

ut =∑i

Di

(|Diu|

pi(z)−2Diu)+ f pi(z) > p

− > 2

The waiting time effect. pi(z) > 2 - slow diffusionu0 = 0, f = 0 en Bρ(x0) ⇒ u(x, t) = 0 en Bρ(x0)× [0, t∗]

y ∈ ∂x ∈ Bρ0(x0) : u(x, t) = 0 is immobile on [0, t∗(y)]

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 16

Page 17: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

The local energy methodReduction to a nonlinear ODI for the energy function

E(r) =

∫t0

∫Br(x0)

∑i

|Diu|p− dz

E ′(r) =

∫t0

∫∂Br(x0)

∑i

|Diu|p− dSdt for a.e. r ∈ (0, dist (x0,∂Ω))

ut =∑i

Di(|Diu|pi(z)−2Diu) + f(z) pi(x, t) ∈ (p−,p+)

u0 ≡ 0 in BR(x0). Multiply by u(z) and integrate by parts in Br(x0)× (0, t):

1

2‖u‖22,Br(t) +min

Ep+

p− (r), E(r)6

t∫0

∫∂Br

|u|∑i

|Diu|pi(z)−1 + F

trace-interpolation inequality + small oscillation of pi(z)⇒∀a.e. r ∈ (0,R) E(r) 6 C(t) (E ′)

1α (r) + F(r) α ∈ (0, 1) if p− > 2

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 17

Page 18: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Analysis of the ODI for the energy function

ut =∑i

Di

(|Diu|

pi(z)−2Diu)+ f

E(r) =

∫t0

∫Br(x0)

∑i

|Diu|p− p− > 2

Eα(t) 6 C(t)E ′(r) +Φ(r)

E ′(r) > 0 0 6 E(r) 6M

α ∈ (0, 1)

if Φ = 0,then

0 6 E1−α(r) 6M1−α −r− ρ0C(t)︸ ︷︷ ︸→ 0 as r grows

Big domain+

small total energy M =∑i

∫Q|Diu|

p− dz

localization:

u(x, t) ≡ 0 in Bρ(t)(x0)× [0, t∗]

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 18

Page 19: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Anisotropic diffusion: the choice of the energy function

ut =∑iDi

(|Diu|

pi(z)−2Diu)+ f(z), x = (x1, x ′)

E(s) =

t∫0

∫Ω∩ x1 > s

∑i

|Diu|pi(z) dz

E ′(s) = −

t∫0

∫Ω∩ x1 = s

∑i

|Diu|pi(z) dx ′ dt ∀a.e. s

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 19

Page 20: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Directional localization•

ut =∑iDi

(|Diu|

pi(z)−2Diu)+ f(z) pi(z) ∈ (p−,p+) ⊂ (1,∞)

• Multiply by u and integrate by parts in Ω∩ x1 > s× (0, t)

12‖u‖

22,Ω∩x1>s

+ E(r) 6∫t0

∫Ω∩x1=s

|u|∑i

|Diu|pi(z)−1 + F

embedding theorems in anisotropic spaces on Ω∩ x1 = s

• Eβ(s) + C(t)E ′(s) 6 Φ(s)

0 6 E(s) 6M, E ′(s) 6 0

1

p−1<

1

n− 1

n∑i=2

1

p+i6

1

n− 1⇒ β ∈ (0, 1) E(s) ≡M for x1 > s∗

Localization in the direction x1The fast diffusion equation admits localized in space solutions

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 20

Page 21: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Anisotropic diffusion: infinite waiting time

ut =∑i

Di

(|Diu|

pi−2Diu)+ f(z) pi(z) > 1

Eβ(s) + CE ′(s) 6 Φ(s) ∼ ‖u0‖22,Ω∩x1>s + ‖f‖22,(Ω∩x1>s)×(0,t)∫s0

s

Φ(z)

(z− s0)1/(1−β)dz <∞ 1

p−1<

1

n− 1

n∑i=2

1

p+i6

1

n− 1

Anisotropic diffusion ⇒ nonpropogation of disturbances !

y

x

u(x,t)=0

a

b

l x*

supp fsupp u0

0

t<T*

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 21

Page 22: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Nonpropagation of disturbances: a simple example

ut = uxx +(|uy|

q−2uy)y

q > 2

Separation of variables: u = X(x, t) · Y(y)

Xt

Xq−1−

Xxx

Xq−1︸ ︷︷ ︸const

=(|Yy|

q−2Yy)yY︸ ︷︷ ︸

constXt = Xxx + µXq−1 in (a,b)× (0, T)(|Y ′|q−2Y ′) ′ = µY in (c,d)µ = const > 0

Y(y) = C (L− y)α+ α =q+ 1

q− 1C = C(µ,q)

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 22

Page 23: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Extinction in a finite time

ut =

∑iDi

(|Diu|

pi(z)−2Diu)− c |u|σ(z)−2u+ f(z)

u = 0 on ΓT , u(x, 0) = u0(x) in Ω

Theorem (Diffusion/absorption balance)If f ≡ 0 for t > tf and

either c(z,u) > c0 > 0 and

1 <1

n

n∑i=1

1

p+i (t)+

1

σ+(t)61

n

n∑i=1

1

p−i (t)+

1

σ−(t)6 1+

2

n,

or c(z,u) > 0, and

1 <2

n

n∑i=1

1

p+i (t)62

n

n∑i=1

1

p−i (t)6 1+

2

n,

then every energy solution vanishes at a finite moment tu > tf.

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 23

Page 24: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Reduction to nonlinear ODI for the energy function

The energy function E(t) =

∫Ωu2(x, t)dx

ut =∑i

Di

(|Diu|

pi(z)−2Diu)− c |u|σ(z)−2u+ f(z)

Multiply by u and integrate over Ω

1

2E ′(t) +

∫Ω

(∑i

|Diu|pi(z) + c|u|σ(z)

)6∫Ω

|f| |u|

embedding theorems in anisotropic spaces ⇒E ′(t) + CEβ(t) 6 F(t) = K

∫Ωf2

1

β(t)=1

n

n∑i=1

1

p+i (t)+

1

σ+(t)or

1

β(t)=2

n

n∑i=1

1

p+i (t)

β(t) ∈ (0, 1), F(t) ≡ 0 for t > tf ⇒ E ≡ 0 for t > tu

Fast diffusion in one direction may cause extinction!

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 24

Page 25: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Conditions of extinction. Model equation: n = 2ut = Dx

(|Dxu|

p1−2Dxu)+Dy

(|Dyu|

p2−2Dyu)

p1,p2 = const

Anisotropic diffusion Isotropic diffusion

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 25

Page 26: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Equations which become linear as t→ ∞ut =

∑i

Di

(|Diu|

pi(z)−2Diu)− |u|σ(z)−2u,

supΩ pi(z)→ 2, supΩ σ(z)→ 2 as t→∞E(t) = ‖u(·, t)‖22,Ω :

E ′(t) + CEβ(t)(t) 6 0

1

β(t)=1

n

n∑i=1

1

p+i (t)+

1

σ+(t)→ 1 as t→∞

Theorem (Extinction in eventually linear equations)β(t) is monotone increasing

Eqn. C∫ t∗0‖u0‖

2(β(t)−1)2,Ω dt =

∫∞0

ds

es(1−β(s))has a root ⇒ u(x, t) ≡ 0 for t > t∗

Examples

1 ut = ∆u− |u|σ(t)−2u σ(t)→ 2 :

∫R

ds

es(σ(s)−1)<∞

2 ut =(|ux|

p(t)−2ux

)x

p(t)→ 2 :

∫R

ds

es(2−p(s))/2<∞

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 26

Page 27: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Space/time localization: an example

ut =

(|ux|

p−2ux)x+(|uy|

q−2uy)y

in QT = (0,a)× (0,b)× (0, T),

u = 0 on Γ , u(x,y, 0) = u0.

1

p+1

q> 1 ⇒

u(x,y, t) vanishes in a finite timeu(x, t) ≡ 0 ∀ t > T∗

1 < q < p ⇒ u(x,y, t) is localized in the direction x:u0 = 0 for x > x0 ⇒ u ≡ 0 for x > x ′

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 27

Page 28: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Blow-up: Kaplan’s method for semilinear equations

ut = ∆u+ b(z) uσ(z) − 1

u|Γ = 0, u(x, 0) = u0(x) > 0 in Ω

−∆φ = λφ in Ω,

φ = 0 on ∂Ω,∫Ωφdx = 1

DefinitionWe say that u(x, t) blows-up in a finite time if ∃ t∗ : ‖u(·, t)‖∞,Ω →∞ as t→ t∗.

A sufficient condition of blow-up:

µ(t) =

∫Ωu(x, t)φ(x)dx 6 ‖u‖∞,Ω

∫Ωφ(x)dx = ‖u(·, t)‖∞,Ω →∞ as t→ t∗

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 28

Page 29: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Blow-up: Kaplan’s method for semilinear equations

ut = ∆u+ b(z)︸ ︷︷ ︸>0

uσ(z) − 1

−∆φ = λφ in Ω, φ = 0 on ∂Ω

µ ′(t) > −λµ(t) + α(t)µσ−−1(t) − β(t), µ(0) > 0, µ(t) =

∫Ωu(z)ψ(x)dx

0 < b− 6 α(t) =

(∫Ωb

12−σ− (z)φ(x)dx

)2−σ−0 6 β(t) =

∫Ωb(z)φ(x)dx 6 b+ <∞

A− = mint>0

(α(t) −

λσ−(t)−1

σ−(t) − 1

), B+ = max

t>0

(β(t) +

σ−(t) − 2

σ−(t) − 1

)<∞.

Theorem (Nonexistence of global solutions)

Every weak solution blows-up if A− > 0, B+ <∞, A−µσ−(t)−1(0) > B+ for all t > 0 and

either σ−(t) = minx∈Ω σ(x, t) > σ− > 2, or

µ(0) > 1, σ−(t) > 2, σ−(t) 2 as t→∞,∫∞lnµ(0)

es(2−σ−(s))ds <∞

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 29

Page 30: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

ExtensionsAn example:

ut = ∆u+ u1+ε(t)∫∞lnµ(0)

eτε(τ)<∞ ε(τ) = α

ln ττ

α > 1

Regional blow-up

µ(t) =

∫Du(x, t)φ(x)dx

−∆φ = λφ in D ⊂ Ω ,φ = 0 on ∂D

Equations with nonlocal reaction terms

ut = ∆u+ b(z)uσi(z)−1 + c(z)

∫Ωd(z)uσ2(z)−1 dx

interaction between b(z) and σ(z): every solution of the equation

ut = ∆u+ b(z)uσ(z)−1

blows-up if I =

∫Ω

ds

bqγ1−q (s, t)

<∞ with some q > 1σ−−1

, γ > 1.

For example:

|Ω| = |x| < 1, b = |x|−α ⇒ I =

∫10sn−1−α qγ

1−q ds <∞ ⇒ α <n(1− q)

γq

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 30

Page 31: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Blow-up in solutions of quasilinear equations ut = div

(a(z)|∇u|

p(x) −2∇u

)+ b(z)|u|

σ(x) −2

u(x, 0) = u0(x) in Ω, u = 0 on ΓT

Theorem1) σ− > 2, p+ = supΩ p(x) 6 σ− = infΩ σ(x), at(x, t) 6 0, bt(x, t) > 0 ,

2)

∫T0

(maxx∈Ω

|at(x, t)|+ |bt(x, t)|)dt <∞, |u0|

σ(x) ∈ L1(Ω), |∇u0|p(x) ∈ L1(Ω)

3)

∫Ω

(a(x, 0)p(x)

|∇u0|p(x) −b(x, 0)σ(x)

|u0|σ(x)

)dx 6 0

⇒ every nonstationary solution blows-up in a finite time:

∃ t∗ ≡ t∗(Ω,‖u0‖∞) <∞ : ‖u(·, t)‖∞,Ω →∞ as t→ t∗.

Reduction to the 2nd-order differential inequality for f(t) =1

2

∫t0

∫Ωu2(z)dx :

1 p+ = supΩp(x) > 2 ⇒ f(t) 6 2λf ′′(t)

1

σ−6 λ 6

1

p+,

2 p+ ∈ (1, 2], σ− > p+ ⇒ K (f ′(t))σ−

2 6 f ′′(t) K =

(λ−

1

σ−

)b−

λ

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 31

Page 32: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Wave equation with p(x, t)-Laplacian

utt = div

(|∇u|p(z)−2∇u+ ε∇ut

)+ b|u|σ(z)−2u+ f

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,u|ΓT = 0, ΓT = ∂Ω× (0, T), ε = const > 0.

(4)

The main function space:

W =

u : u,∇ut ∈ L2 (QT ) , ut, |∇u|

p(z)2 , |u|

σ(z)2 ∈ L∞ (0, T ;L2 (Ω)

), u|ΓT = 0

‖u‖W = ‖u‖2,QT + ‖u‖σ(·),QT + ‖ut‖L∞(0,T ; L2(Ω))

+‖∇u‖L∞(0,T ; L2(Ω)) + ‖∇ut‖2,QT + ‖∇u‖p(·),QT

Definition (The energy solution u ∈ W)

1 u(·, t) u0 in W1,20 (Ω)∩W1,p(·,0)(Ω), ut(·, t) u1 in L2(Ω)

2 ∀ϕ ∈ C∞ (0, T ;C∞0 (Ω)

)such that ϕ(x, T) = 0

∫QT

(−utϕt +

(|∇u|p(·)−2∇u+ ε∇ut

)· ∇ϕ− b |u|σ(·)−2 uϕ

)dxdt

=

∫Ωu1ϕ(·, 0)dx+

∫QT

fϕdx

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 32

Page 33: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Local and global in time existence

utt = div

(|∇u|p(z)−2∇u+ ε∇ut

)+ b|u|σ(z)−2u+ f

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,u|ΓT = 0, ΓT = ∂Ω× (0, T), ε = const > 0.

(5)

u0 ∈ L2(Ω)∩W1,20 (Ω)∩W1,p(·,0)(Ω), u1 ∈ L2(Ω), f ∈ L2(QT )p(z) ∈ Clog(QT ) 1 < p− 6 p(x, t) 6 p+ <∞, |pt| = −pt 6 Cp ,

1 < σ− 6 σ(x, t) 6 σ+ 6∞, 0 6 σt 6 Cσ

(6)

Theorem (Global in time existence)

Let conditions (6) be fulfilled and one of the following conditions holds: a) b < 0 ,

b) σ+ 6 2, or σ+ < p− . Then problem (5) has at least one global in time energy solution.

Theorem (Local in time existence)

Let conditions (6) be fulfilled and b > 0, 2 < σ− 6 σ+ <n+ 2

np−,

2n

n+ 2< p− . Then

problem (5) has at least one solution on a small time interval [0, T0).

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 33

Page 34: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

The energy relations

The energy functional: E(t) =

∫Ω

[|ut(·, t)|2

2+

|∇u|p(·,t)

p(·, t)− b

|u|σ(·,t)

σ(·, t)

]dx

E ′(t) + ε

∫Ω

|∇ut(·, t)|2 dx = Λ1 +Λ2 +Λ3

Λ1 =

∫Ω

[−

|∇u|p

p2(1− p ln |∇u|) pt

]dx,

Λ2 =

∫Ω

(b |u|σ

σ2(1− σ ln |u|) σt

)dx, Λ3 =

∫Ωfutdx.

1 pt = σt = f = 0 ⇒ E(t) + ε

∫t0

∫Ω

|∇ut(x, s)|2 dxds = E(0) ∀t > 0

2 f = 0 ⇒ E(t) + ε

∫t0

∫Ω

|∇ut(x, s)|2 dxds 6 E(0) + Ct

with the constant C = ( bσ2−Cσ + 1

p2−Cp)|Ω|.

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 34

Page 35: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Conditions of the finite time blow-up

utt = div

(|∇u|p(z)−2∇u+ ε∇ut

)+ b|u|σ(z)−2u+ f

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,u|ΓT = 0, ΓT = ∂Ω× (0, T), ε = const > 0.

(7)

Theorem

If b < 0, 2 < p− 6 p+ < σ−, E0 < 0, Z(0) = 2(u0,u1)2,Ω + ε‖∇u0‖22,Ω > 0 , then

∃tmax <∞ :

∫Ω

|u|σdx > CZ(0)

(1−

t(µ− 1)

C(Z(0))µ−1

)− 1µ−1 →∞ as t→ tmax,

where C > 0 and µ > 1 are constants depending only on the data.

Weak dependence of the exponents p(z), σ(z) on t (the constants Cp,Cσ are small):

δ = max (Cp,Cσ) 6 |E(0)| (tmax

(1

p2−+

b

σ2−

)|Ω|)−1

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 35

Page 36: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

BibliographyS. Antontsev, J. I. Diaz, S. Shmarev “Energy methods for free boundary problems", Progress inNonlinear PDEs, v.48, Birkhauser (2002)

S. Antontsev, S. Shmarev. "Parabolic equations with anisotropic nonstandard growth conditions"Free boundary problems, 33–44, Internat. Ser. Numer. Math., 154, Birkhäuser, Basel, 2007.S. Antontsev, S. Shmarev. "Anisotropic parabolic equations with variable nonlinearity". Publ.Mat. 53 (2009) 355–399.

S. Antontsev, S. Shmarev. "Localization of solutions of anisotropic parabolic equations".Nonlinear Anal. 71 (12) (2009) e725–e737.

S. Antontsev, S. Shmarev. "Vanishing solutions of anisotropic parabolic equations with variablenonlinearity". J. Math. Anal. Appl. 361 (2) (2010) 371–391.

S. Antontsev, S. Shmarev. "Blow-up of solutions to parabolic equations with nonstandard growthconditions". Journal of Computational and Applied Mathematics, 234 (2010) 2633–2645.

S. Antontsev, S. Shmarev. "Blow-up of solutions to parabolic equations with nonstandard growthconditions". Journal of Computational and Applied Mathematics 234 pp.2633–2645 (2010)

S. Antontsev, S. Shmarev. "On the Blow-up of Solutions to Anisotropic Parabolic Equations withVariable Nonlinearity". Proceedings of the Steklov Institute of Mathematics, 2010, Vol. 270, pp.27–42.S. Antontsev, S. Shmarev. "Energy Solutions of Evolution Equations with Nonstandard GrowthConditions". Monografías de la Real Academia de Ciencias de Zaragoza 38: 85–111, (2012).

S. Antontsev, S. Shmarev. "Doubly degenerate parabolic equations with variable nonlinearity I:Existence of bounded strong solutions." Adv. Differential Equations 17 (2012), no. 11-12,1181–1212.S. Antontsev, S. Shmarev. "Elliptic equations with anisotropic nonlinearity and nonstandardgrowth conditions". Handbook of Differential Equations. Stationary Partial Differential Equations,V.3 Edited by M. Chipot and P. Quittner, Elsevier (2006), pp. 1–100.

S. Antontsev, S. Shmarev. "Parabolic equations with double variable nonlinearities". Mathematicsand Computers in Simulation, 81 (2011) pp. 2018–2032.

S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 36

Page 37: Nonlinear PDEs in Sobolev spaces with variable exponentscmaf.fc.ul.pt/arquivo/docs/preprints/pdf/2013/Ant... · NonlinearPDEsinSobolevspaceswithvariable exponents StanislavAntontsev1

Bibliography

S. Antontsev, S. Shmarev. "Doubly degenerate parabolic equations with variable nonlinearity I:existence of bounded strong solutions". Adv. Differential Equations 17 (2012), 11-12, 1181–1212.

S. Antontsev, S. Shmarev. "Uniqueness and comparison theorems for solutions of doubly nonlinearparabolic equations with nonstandard growth conditions". CPAA, 12 (4) (2013), pp. 1827–1846.

S. Antontsev, S. Shmarev. "On localization of solutions of elliptic equations with nonhomogeneousanisotropic nonlinearity". Siberian Mathematical Journal, 46 (5) (2005), pp. 765–782.

S. Antontsev, S. Shmarev. "Elliptic equations and systems with nonstandard growth conditions:Existence, uniqueness and localization properties of solutions". Nonlinear Analysis, 65 (2006)728–761.

S. Antontsev. "Wave equation with p(x, t)- Laplacian and damping term: existence and blow-up".Differ. Equ. Appl., 3 (2011), pp. 503–525.

S. Antontsev. "Wave equation with p(x, t)-Laplacian and damping term: Blow-up of solutions".C.R. Mecanique, 339 (2011), pp. 751–755.

P. Amorim and S. Antontsev. "Young measure solutions for the wave equation with p(x,t)-Laplacian: existence and blow-up". Nonlinear Analysis, 92 (2013), pp. 153-167.

S. Antontsev and J. Ferreira. "Existence, uniqueness and blow-up for hyperbolic equations withnonstandard growth conditions". Nonlinear Analysis, Series A: Theory, Methods, Applications, 93(2013), pp. 62–77.

Thank you!S. Antontsev, S. Shmarev PDEs with Variable Nonlinearity 37