nonlinear poisson-nernst planck equation for ion flux · 2. step:operator gis well de ned on a set...

38
Motivation Modelling Analysis for stationary Model Nonlinear Poisson-Nernst Planck Equation for Ion Flux arbel Schlake Westf¨ alische Wilhelms-Universit¨ at M¨ unster Institute f¨ ur Computational und Applied Mathematics 01 December 2010 Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universit¨ at M¨ unster

Upload: others

Post on 15-Jul-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Nonlinear Poisson-Nernst Planck Equation for IonFlux

Barbel Schlake

Westfalische Wilhelms-Universitat MunsterInstitute fur Computational und Applied Mathematics

01 December 2010

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 2: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Credits

this talk is based on joint work with

• martin burger (WWU Munster)

• marie-therese wolfram (Vienna)

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 3: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Motivation

Modelling

Analysis for stationary Model

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 4: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Motivation

aim: modelling of transport and diffusion with size exclusion

application:

• ion channels/nanopores

• human crowds

• swarming

• chemotaxis

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 5: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Motivation

so far, mainly transport and diffusion for one species investigated

Fokker-Planck equation

∂tρ = ∇ · (D∇ρ+ ρ(1− ρ)∇V )

• linear diffusion

• logistic mobility

• size exclusion

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 6: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Modelling

two possible approaches in microscopic modelling;

1. force-basedNewton equation of motion(macroscopic limit difficult)

2. jump exclusion processcellular automata

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 7: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Jump Exclusion Process

lattice based modelling:

~~ ~-

• jump probability to neighbouring lattice sites given bydiffusion, external and interaction fields

• modified by exclusion principle, only jumps to free sites

• closure relation: probability of finding empty site instead ofexact exclusion in the ensemble average

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 8: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Model with Size-Exclusion

rescaling of lattice

limit of lattice site distance to zero

Taylor expansion of master equation

resulting model:

∂tci = ∂x(Di ((1− ρ)∂xci+ci∂xρ+ zici (1− ρ)∂xV ))

total volume density ρ(x , t) =∑

cj(x , t)

1D ⇒ single file movement

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 9: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Model with Size-Exclusion

multidimensional model:

∂tci = ∇ · (Di ((1− ρ)∇ci + ci∇ρ+ zici (1− ρ)∇V )︸ ︷︷ ︸flux −Ji

)

• movement is mainly driven by diffusion and interactionsamong particles and externally applied field

• mean field approach

• model describes average densities of particles

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 10: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Ion Channels so far

PNP system in three dimensions for ion densities ci :

− λ2∆V =∑

zici + f Poisson equation

∂tci = ∇ · (Di (∇ci + cizi∇V ))

• λ2 permittivity

• f (x) protein charge

problem: size effects in small channels

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 11: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Ion Channels so farentropie:

E =

∫Ω

∑(ci log ci + ziciV ) dx

equilibria:

0 = Ji∞ = −Di (∇ci∞ + zici∞∇Vi∞)

Boltzmann statistics:

ci∞ = ki exp (−ziVi∞) ki ≥ 0

Poisson-Boltzmann equation:

−λ2∆V∞ =∑

zjkj exp(−zjV∞) + f

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 12: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Model including Size Effects

−λ2∆V =∑

zjcj + f

∂tci = ∇ · (Di ((1− ρ)∇ci+ci∇ρ+ zici (1− ρ)∇V ))

boundary conditions differ with different model setup

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 13: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Boundary Conditions for Ion Channels

PPPPPP

PPPP

PP

channelΓD ΓD

ΓN

ΓN

left bath right bath

concentration: ci (x , t) = γi (x) x ∈ ΓD

no flux: Ji (x , t) · n = 0 x ∈ ΓN

charge neutrality:∑

zjγj(x) = 0 in bathes

electrical potential: V (x , t) = V 0D(x) + UV 1

D(x) x ∈ ΓD

no flux: ∇V (x , t) · n = 0 x ∈ ΓN

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 14: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Entropy

entropy for this process:

E =

∫Ω

∑(ci log ci + (1− ρ) log(1− ρ) + ziciV ) dx

entropy variables: ui = ∂ciE = log ci − log (1− ρ) + ziV ,

entropy dissipation:

d

dtE = −

∫Ω

∑cj(1− ρ) |∇uj |2 dx

⇒ decreasingin equilibrium, entropy is minimal at fixed total mass.

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 15: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Equilibriastationary solutions are minimizers of the entropy

0 =Ji∞ = −Di ((1− ρ∞)∇ci∞ + ci∞∇ρ∞ + zici∞(1− ρ∞)∇Vi∞)

generalized Boltzmann distributions:

ci∞ =ki exp (−ziVi∞)

1 +∑

kj exp (−zjVj∞)ki ≥ 0

modified Poisson-Boltzmann equation:

−ε∆V∞ =

∑zjkj exp(−zjV∞)

1 +∑

kj exp(−zjV∞)+ f

entropy variables ui∞ are constant

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 16: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Analysis

system of equations:

−λ2∆V =∑

zjcj + f ,

0 = ∇ · (Di ((1− ρ)∇ci + ci∇ρ+ zici (1− ρ)∇V ))

several challenges

• double degeneracy

• no maximum principle (only 0 ≤ ciρ ≤ 1)

• coupling in highest order terms (cross diffusion)

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 17: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Formulations of the Problem

ui = log ci − log (1− ρ) + ziV ,

system in entropy variables

−λ2∆V −∑ zk exp(uk − zkV )

1 +∑

exp(uj − zjV )= f

∇·

(Di

exp(ui − ziV )

(1 +∑

exp(uj − zjV ))2∇ui

)= 0

• no cross diffusion

• maximum principle for ui

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 18: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Formulations of the Problem

Fi (c1, ..., cM) = log(ci )− log(1− ρ)vi = F−1

i (Fi (c1, ..., cM) + ziV )

system in Slotboom variables:

−λ2∆V −∑ zkvk exp(−zkV )

1 +∑

vj [exp(−zjV )− 1]= f

∇ ·

(Di

exp(−ziV ) (∇vi (1−∑

vj) + vi∑∇vj)

(1 +∑

vj [exp(−zjV )− 1])2

)= 0

• Nernst-Planck case: mulitplication with exponentials of V

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 19: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Global Existence

(A1) f ∈ L∞(Ω)

(A2) V 0D ∈ H1/2(ΓB) ∩ L∞(ΓB), γi ∈ H1/2(ΓB) ∩ L∞(ΓB)

Let assumptions (A1), (A2) be satisfied. Then, there exists a weaksolution

(V , c1, ..., cn) ∈ H1(Ω)M+1 ∩ L∞(Ω)M+1

of

−λ2∆V =∑

zjcj + f

0 = ∇ · (Di ((1− ρ)∇ci + ci∇ρ+ zici (1− ρ)∇V )) ,

and boundary conditions as above, such that further

0 ≤ ci ≤ 1, ρ ≤ 1 a.e. in Ω.

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 20: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Global Existence

proof:

1. Step: construction of fixed point operator F = H G2. Step: operator G is well defined on a set M3. Step: G is continuous on M and maps M into M×K, where K is

a bounded subset of H1(Ω)× L∞(Ω)

4. Step: H is well defined, continuous and maps G(M) into compactsubset of M

5. Step: Schauders fixed point theorem: fixed point which is solution

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 21: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Global Existence

G :L2(Ω)M → L2(Ω)M × H1(Ω)

(u1, . . . , uM) 7→ (u1, . . . , uM ,V )

V is unique solution of nonlinear Poisson equation

−λ2∆V =∑

zkexp(uk − zkV )

1 +∑

exp(uj − zjV )+ f

with boundary conditions as above

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 22: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Global Existence

H :DH ⊂ L2(Ω)M × H1(Ω) → L2(Ω)M

(u1, . . . , uM ,V ) 7→ (v1, . . . , vM),

vi are unique weak solutions of linear elliptic equations

∇ ·(

exp(ui − ziV )

(1 +∑

exp(uj − zjV ))2∇vi

)= 0

subject to boundary conditions above

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 23: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Global Existence

J(V ) =λ2

2

∫Ω|∇V |2 dx +

∫Ω

log(

1 +∑

exp(uj − zjV ))

dx

• strictly convex and coercive on H1(Ω) ⇒ unique minimizer V

• maximum principle ⇒ uniform bound for V in L∞(Ω)

• weak formulation of Poisson equation with Friedrichsinequality ⇒ G is Lipschitz-continuous on M

⇒ G well defined and continuous

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 24: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Global Existence

Ai = Diexp(ui − ziV )

(1 +∑

exp(uj − zjV ))2∈ L∞(Ω),

standard theory ⇒ existence and uniqueness of weak solution of

∇ · (Ai∇vi ) = 0

H1(Ω) → L2(Ω) compact ⇒ H(G(M)) precompact⇒ H well defined and maps G(M) into compact subset of M

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 25: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Global Existence

Continuity of H:

• Aki → Ai in L2(Ω)

• vi uniformly bounded in H1(Ω) ⇒ weakly convergingsubsequence vkli → vi

• 0 =∫

Ω Ai∇vi∇φ dx for φ ∈W 1,∞0 (Ω) and also for φ ∈ H1

0 (Ω)

• trace theorem ⇒ boundary condition

• uniqueness of limits: vki → vi weakly in H1(Ω) and strongly inL2(Ω)

Schauders fixed point theorem ⇒

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 26: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Regularity

existence: (V , c1, ..., cm) ∈ (H1(Ω) ∩ L∞(Ω))M+1

−λ2∆V =∑

zjcj + f

• rhs in L2(Ω)⇒ ∆V ∈ L2(Ω)⇒ V ∈ H2(Ω)

• Sobolev embedding theorem ⇒ H2(Ω) ⊂ L∞(Ω) forn = 1, 2, 3

(1− ρ)∆ci + ci∆ρ = −∇(zici (1− ρ)∇V ) ∈ L2(Ω)

• ⇒ ∆ci ∈ L2(Ω)

• (V , c1, ..., cm) ∈ H2(Ω)M+1

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 27: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Uniqueness

uniqueness in general case cannot be expected!

but we can find uniqueness in simpler situations applying theimplicit function theorem. We can show:

• uniqueness around small potential

• uniqueness around small boundary values

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 28: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Uniqueness

F(U, η;V , u) denotes operator

V − V 0D − UV 1

D on ΓE

ui − γi on ΓB

−λ2∆V −∑k

exp(uk − zkV )

1 +∑

exp(uj − zjV )− f ∈ L2

∇ ·(Di

exp(ui − ziV )

(1 +∑

exp[uj − zjV ])2∇ui

)∈ L2

F(U, η;V , u) Frechet-differentiable with respect to V ,U, γ and u

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 29: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Uniqueness for small Voltage

• U = 0: equilibrium state, well posed

• linearized system in entropy variables is partially decoupledand Frechet derivative and has continuous inverse

implicit function theorem:

‖U‖H3/2(ΓB) sufficiently small. Then, for γ ∈ (H3/2(ΓB))M thereexists a locally unique solution

(V , c1, ..., cM) ∈ H2(Ω)M+1

of the above problem and the transformed, linearized problem iswell-posed.

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 30: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Uniqueness for small Bath Conzentration

• γi = 0 ⇒ ci = 0, V0 solution

• linearized system is partially decoupled

• after Slotboom transformation: system of linear ellipticequations

• Frechet derivative and has continuous inverse

implicit function theorem:

‖γi‖H3/2(ΓB) sufficiently small. Then, for U ∈ H3/2(ΓB), thereexists a locally unique solution

(V , c1, .., cM) ∈ H2(Ω)M+1

of the above problem and the transformed, linearized problem iswell-posed.

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 31: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Reduction to One Dimension

• cross section of filter much smaller than longitudinal extension⇒ nearly one dimensional process

• approximate three dimensional model by one dimensional one

rescale: x , y ε = εy , zε = εz , (y , z) ∈ Ω1

V ε(x , y ε, zε) = V ε(x , y , z)

weak formulation with test function:

ϕ(x , y , z) = V ε(x , y , z)− g(x)

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 32: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Reduction to One Dimension

weak formulation:

−λ2

∫ ∫ ∫Ω1

(∣∣∣∂x V ε∣∣∣2 +

1

ε2

∣∣∣∂y V ε∣∣∣2 +

1

ε2

∣∣∣∂z V ε∣∣∣2) dx dy dz ≤ k

for ε→ 0: ∥∥∥∂y V ε∥∥∥L2(Ωε)

→ 0∥∥∥∂z V ε

∥∥∥L2(Ωε)

→ 0

andV ε(x , εy , εz) = V ε(x , y , z) V 0(x) in H1(Ωε)

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 33: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Reduction to One Dimension

uniform bounds:

0 < k1 ≤exp(uεi − ziV )(

1 +∑

exp(uεj − zjV ))2≤ k2

analogous estimates

‖∂y uεi ‖L2(Ωε) → 0 ‖∂z uεi ‖L2(Ωε) → 0

uεi (x , εy , εz) = uεi (x , y , z) u0i (x) in H1(Ωε)

same for ci

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 34: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Reduction to One Dimension

λ2

∫ ∫ ∫Ωε∂xV

ε(x , y ε, zε)∂xϕ(x) dx dy dz →

λ2

∫∂xV

0(x)∂xϕ(x)

∫ ∫dy dz dx

Assume a(x) =∫ ∫

dy dz denotes shape/ area function of tunnel

reduced one dimensional system

−λ2∂x(a∂xV ) = a(∑

cj + f)

Di∂x

(a

exp(ui − ziV )

(1 +∑

exp(uj − zjV ))2∂xui

)= 0

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 35: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Conductance for L-type Calcium selective Channel

PPPPPP

PPPP

PP

Na+Ca2+

Cl−

Na+Ca2+

Cl−O12−O

12−

0mV 100mV

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 36: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Numerical Results for L-type Calcium selective Channel

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 37: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

Open Questions

• at the moment: same size for different speciesin reality: often different sizes for different spezies

• explanation of biological phenomena such as gating

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster

Page 38: Nonlinear Poisson-Nernst Planck Equation for Ion Flux · 2. Step:operator Gis well de ned on a set M 3. Step: Gis continuous on Mand maps Minto MK , where Kis a bounded subset of

Motivation Modelling Analysis for stationary Model

thank you for your attention!

Nonlinear Poisson-Nernst Planck Equation for Ion Flux Universitat Munster