nonlinear response spectra for probabilistic seismic design … · 2010-05-03 · the general...

108
316109 REPORT NO. EERC 75-38 NOVEMBER 1975 PB 259 530 EARTHQUAKE ENGINEERING RESEARCH CENTER NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN AND DAMAGE ASSESSMENT OF REINFORCED CONCRETE STRUCTURES by MASA Y A MURAKAMI JOSEPH PENZIEN Report to the National Science Foundation COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA • Berkeley, California

Upload: others

Post on 27-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

316109

REPORT NO.

EERC 75-38

NOVEMBER 1975

PB 259 530

EARTHQUAKE ENGINEERING RESEARCH CENTER

NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN AND DAMAGE ASSESSMENT OF REINFORCED CONCRETE STRUCTURES

by

MASA Y A MURAKAMI

JOSEPH PENZIEN

Report to the National Science Foundation

COLLEGE OF ENGINEERING

UNIVERSITY OF CALIFORNIA • Berkeley, California

Page 2: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan
Page 3: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

BIBLIOGRAPHIC DATA \1. Report No. 12. SHEET EERC 75-38

3. Recipient's Accession No.

4. Title and Subtitle "Nonlinear Response Spectra for Probabilistic Seismic

5. Report Date

November 1975 Design and Damage Assessment of Reinforced Concrete J

Structures" 6.

7. Author(s)

Masaya 11urakami and Joseph Penzien 9. Performing Organization Name and Address

Earthquake Engineering Research Center University of California, Berkeley 1301 S. 46th Street Richmond, California 94804

12. Sponsoring Organization Name and Address

National Science Foundation 1800 G Street, N. W. Ivashington, D. C. 20550

15. Supplementary Notes

16. Abstracts

8. Performing Organization Rept. No. 75-38

10. Project/Task/Work Unit No.

11. Contract/Grant No.

NSF-GI-38563

13. Type of Report & Period Covered

14.

In the investigation reported herein, twenty each of five different types of artificial earthquake accelerograms were generated for computing nonlinear response spectra of five structural models representing reinforced concrete buildings. To serve as a basis for probabilistic design and damage assessment, mean values and standard deviations 6f ductility factors were determined for each model having a range of pre­scribed strength values and having a range of natural periods. Adopting the standard philosophy, i.e. only minor damage is acceptable unde~ moderate earthquake conditions and total damage or complete failure should be avoided under severe earthquake condi·­tions, required strength levels were investigated for each model. Selected results obtained in the overall investigation are presented and interpreted in terms of proto-type behavior.

17. Key Words and Document Analysis. 170. Descriptors

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement

Release Unlimited

FORM NTIS-35 (REV. 3-72)

19 •. Security Class (This Report) . .

UNCLASSIFTEn 20. Security Class (This

Page UNCLASSIFIED

121. No. of Pages

USCOMM-OC 14952-P72

Page 4: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan
Page 5: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN AND DAMAGE ASSESSMENT OF REINFORCED CONCRETE STRUCTURES

by

Masaya Murakami

Visiting Assistant Research Engineer, University of California, Berkeley and Associate Professor of Architectural Engineering, Chiba University, Japan.

Joseph Penzien

Professor of Structural Engineering, University of California, Berkeley

Prepared under the sponsorship of the National Science Foundation

Grant NSF-GI-38463

Report No. EERC 75-38 Earthquake Engineering Research Center

College of Engineering University of California

Berkeley, California

November 1975

Page 6: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan
Page 7: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

i 6

ACKNOWLEDGMENT

This report covers one phase of the research program "Seismic

Safety of Existing School Buildings" sponsored by the National Science

Foundation under grant NSF-GI-38463 with Professor Boris Bresler serving

as principal faculty investigator.

Dr. Masaya Murakami's participation was under the program "U.S.­

Japan Cooperative Research in Earthquake Engineering with Emphasis on the

Safety of School Building" sponsored by the U.S.-Japan Cooperative Science

Program administered jointly by the National Science Foundation and the

Japan Society for the Promotion of Science.

A portion of this report was presented at the review meeting of

the cooperative program "U.S.-Japan Cooperative Research in Earthquake

Engineering with Emphasis on the Safety of School Buildings," East-West

Center, University of Hawaii, Honolulu, Hawaii, August 18-20, 1975.

Page 8: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan
Page 9: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

ii

ABSTRACT

In the investigation reported herein, twenty each of five

different types of artificial earthquake accelerograms were generated for

computing nonlinear response spectra of five structural models representing

reinforced concrete buildings. To serve as a basis for probabilistic

design and damage assessment, mean values and standard deviations of

ductility factors were determined for each model having a range of pre­

scribed strength values and having a range of natural periods. Adopting

the standard philosophy, i.e. only minor damage is acceptable under

moderate earthquake conditions and total damage or complete failure should

be avoided under severe earthquake conditions, required strength levels

were investigated for each model. Selected results obtained in the over­

all investigation are presented and interpreted in terms of prototype

behavior.

Page 10: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan
Page 11: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

I. INTRODUCTION

II. GENERATION OF ARTIFICIAL EARTHQUAKE ACCELEROGRAMS

2.1 STOCHASTIC MODELS .

III.

2.2 TIME INTENSITY FUNCTIONS

2.3 HIGH FREQUENCY FILTER CHARACTERISTICS

2.4 LOW FREQUENCY FILTER CHARACTERISTICS

2.5 DISCUSSION ON ARTIFICIAL ACCELEROGRAMS

STRUCTURAL HYSTERETIC MODELS . . .

3.1 BASIC PARAMETERS OF MODELS

3.2 ORIGIN-ORIENTED SHEAR MODEL

3.3 TRILINEAR STIFFNESS DEGRADING FLEXURE MODEL

IV. SELECTION OF MODEL PARAMETERS

4.1 ORIGIN-ORIENTED SHEAR MODEL

4.2 TRILINEAR STIFFNESS DEGRADING FLEXURE MODEL

4.3 VISCOUS DAMPING MODEL

V. DYNAMIC RESPONSE ANALYSIS

VI. DUCTILITY RESPONSE SPECTRA .

6.1 LINEAR ELASTIC MODEL

6.2 ORIGIN-ORIENTED SHEAR MODEL.

6.3 TRILINEAR STIFFNESS DEGRADING FLEXURE MODEL

iii

i

ii

iii

1

3

3

4

4

5

6

9

9

9

10

13

13

13

14

15

17

17

18

19

Page 12: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan
Page 13: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

iv

VII. USE OF DUCTILITY ~SPONSE SPECTRA FOR PROBABILISTIC SEI91IC DESIGN 21

7.1 SELECTION OF REQUI~ED DUCTILITY LEVELS 21

7.2 SELECTI0N OF REQUIRED STRENGTH LEVELS 23

VIII. CONCLUDING STATEMENT 28

IX. BIBLIOGR~PHY 29

TABLES. 30

FIGURES. 31

APPENDIX A 63

EARTHQUAKE ENGINEERING RESEARCH CENTER REPORTS 84

Page 14: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan
Page 15: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

1

I. INTRODUCTION

The general philosophy of seismic resistant design in most

countries of the world, including Japan and the United States, is that

only minor damage is acceptable in buildings subjected to moderate earth­

quake conditions and that total damage or complete failure should be

prevented under severe earthquake conditions. This philosophy serves as

the basic criterion for assessing the potential seismic performance of

existing buildings and for defining design criteria for new buildings.

Usually, the above philosophy is applied to performance assess­

ments and to design in a deterministic manner. In this case, seismic

response analyses are carried out for fixed mathematical models using

fully prescribed ground motion excitations. It should be realized how­

ever that many uncertainties exist in this method. The highly variable

characteristics of ground motions, even for a given site, is the major

cause of these uncertainties. However, other causes also exist such as

the variability of structural properties. For this reason, nondeterministic

methods which formally recognize uncertainties and which predict response

in probabilistic terms should be encouraged. Meanwhile every effort

should be made to reduce the uncertainties through experimental and

analytical research and through improved design and construction methods.

To carry out nondeterministic seismic analyses, an appropriate

stochastic model must be established for the expected ground motions. If

sufficient strong ground motion data were available this model could be

obtained by direct statistical analyses. However, due to the limited

data available, one is forced to hypothesize model forms and to use the

existing data primarily in checking the appropriateness of these forms.

The particular model used in this investigation is essentially

Page 16: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

2

nonstationary filtered white noise as commonly used by many investigators

[1,2]. While this model is admittedly not perfect, it does reflect the

main statistical features of real ground motions; therefore, its use in

seismic response analyses leads to more realistic predictions than does

a single fully prescribed accelerogram.

Since it was the intent of this investigation to concentrate on

low-rise reinforced concrete buildings, two basic single degree of free­

dom structural models were selected for dynamic analysis purposes, namely,

the so called "Origin-Oriented Model" and the "Trilinear Stiffness

Degrading Model" [3]. These models were selected to represent structures

which fail primarily in shear and flexure, respectively. Various strength

values were prescribed for these models and their initial stiffnesses

were varied to produce a wide range of fundamental periods.

Mean values and standard deviations of ductility factor were

generated using the five different classes of earthquake accelerograms

for each structural model having a prescribed period and assigned

strength values. These statistical quantities can be used as the basis

for probabilistic design and damage assessment.

Accepting the basic philosophy previously mentioned, namely

that only minor damage is acceptable under moderate earthquake conditions

and that total damage or complete failure should be avoided under severe

conditions, Umemura has proposed a basic criterion for seismic design

which has been adopted herein [3]. This criterion has been used in

probabilistic terms to establish appropriate strength levels for each

model consistent with the basic design philosophy.

A computer program which generates artiticial earthquake

accelerograms and nonlinear response spectra is presented in Appendix A.

Page 17: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

3

II. GENERATION OF ARTIFICIAL EARTHQUAKE ACCELEROGRAMS

2.1 STOCHASTIC MODELS

Two basic types of nonstationary processes are commonly used to

represent earthquake ground motions, namely, nonstationary filtered white

noise and filtered shot noise [1,4,5]. Shinozuka and Sato suggest that

under similar conditions both types lead to essentially the same response

characteristics of linear systems [6].

In the present investigation, five specific types (Types A, B,

B02

' C, and D) of artificial accelerograms were generated using the

second of the above mentioned basic types. The computer program used for

this purpose was a modified version of the program (PSEQGN) developed by

Ruiz. It follows a procedure consisting of five phases, (1) stationary

wave forms are generated having a constant power spectral density function

(white noise) of intensity S o

over a wide range of frequencies starting

at zero frequency, (2) nonstationary shot noise is next obtained by

multiplying each stationary wave form by a prescribed time intensity

function, (3) each of the resulting wave forms of shot noise is then

passed through a second-order filter which amplifies the frequency con~

tent in the neighborhood of a characteristic frequency and attenuates

the higher frequencies, (4) next each of these filtered wave forms is

passed through a second second-order filter which eliminates the very

low frequency content, and finally (5) a baseline correction is applied

to the double filtered accelerograms in accordance with the procedure of

Berg and Housner [7]. Both second-order filterings are accomplished

digitally by solving numerically the second-order differential equations

relating filter outputs to their corresponding inputs [8]. These

Page 18: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

4

solutions are obtained numerically by the standard linear acceleration

method using constant integration time intervals of 0.01 seconds. By

this procedure, final accelerograms are obtained in digitized form with

each having similar 0.01 second time intervals.

2.2 TIME INTENSITY FUNCTIONS

Five classes of earthquake accelerograms (Types A, B, B02

' C

and D) were generated using four different time intensity functions as

shown in Fig. 1. These intensity functions are the same as those used

previously by Jennings, et al [2]. Note that accelerograms of Types B

and B02 were generated using the same intensity function. All four

intensity functions consist of three phases (1) a parabolic or cubic

build-up phase, (2) a constant intensity phase, and (3) an exponential

decay phase. The total durations of these particular functions are 120,

50, 12 and 10 seconds, respectively; however, since the ends of the decay

phase do not affect maximum response of damped structural systems, they

were cut off at 75, 30, 10 and 5 seconds for Types A, B, C and D,

respectively.

2.3 HIGH FREQUENCY FILTER CHARACTERISTICS

As previously stated, the nonstationary shot noise wave forms

were obtained by multiplying each stationary wave form having a power

spectral intensity S by a prescribed time intensity function. o

The high frequency filtering procedure was then used to shape

the frequency content of the shot noise wave forms using the transfer

function (complex frequency response function [8])

2 2 3 [l + (4 E;, - 1) (w/w ) ] - 2i E;, (w/w )

000 (1)

Page 19: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

5

This transfer function, previously suggested by Kanai and Tajimi for this

purpose [9,10], is usually written in the more familiar form

(2)

Jennings, Ruiz, and other investigators have also used this same transfer

function.

Parameters Wo and ~o appearing in the above filter function

may be thought of as some characteristic ground frequency and damping

ratio, respectively. Kanai has suggested 15.6 rad/sec for W o

and

for ~o as representative values for firm soil conditions. The fre-

0.6

quency transfer function in the form of Eq. (2)is plotted in Fig. 2a for

~o ~ 0.6. These same values of Wo and ~o were used in the present

investigation for four of the five classes of accelerograms, namely,

Types A, B, C, and D. AGcelerograms of Type B02 used the same value for

Wo ' i.e. 15.6 rad/sec., but a different value for ~o' namely, 0.2.

This damping value was selected for Type B02 accelerograms to study t.he

influence of a relatively narrow band excitation on structural response.

2.4 LOW FREQUENCY FILTER CHARACTERlSTICS

The low frequency filter used in this investigation had the

transfer function [2,8]

(W/Wf

) 2

[1 - (w/wf

)2] - 2i ~f(W/Wf)3 222 2

[1 - (w/wf

) ] + 4 ~f (w/wf

) (3)

or

( 4)

Page 20: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

6

where and are the characteristic frequency and characteristic

damping ratio, respectively, for the filter. The damping ratio term ~f

was assigned the numerical value 1/1:2 which reduces Eq. (4) to

(5)

Introducing the period ratio T/Tf

, where T

Eq. (5) becomes

2n/w and Tf

= 2n/wf

,

1 (6)

In this investigation, Tf

equals 7 and 2 seconds for Types A, Band

B02 and for Types C and D, respectively. The square root of the function

given by Eq. (6) is shown in Fig. 2b.

2.5 DISCUSSION ON ARTIFICIAL ACCELEROGRAMS

The constant power spectral intensity S, used in generating o

the stationary wave forms, was assigned the value 0.08952 ft2/sec3

. Using

a family of 20 Type B accelerograms, this intensity resulted in a mean

peak acceleration of 0.300g with a standard deviation of 0.032g. In-

creasing the number of accelerograms to 40 gave a mean peak acceleration

of 0.308g and a standard deviation of 0.037g. Following the method of

Gumbel [11], it is estimated that for an infinite number of similar

accelerograms, the mean peak acceleration would be 0.309g and the standard

deviation would be O.041g. Therefore, in view of this mean peak accelera-

tion and the time intensity function used, the Type B accelerograms

closely represent that class of motions containing the N-S component of

acceleration recorded during the 1940 El Centro, California, earthquake

[2,4].

Page 21: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

7

Table 1 lists the mean values and standard deviations for the

peak accelerations in all 5 classes of accelerograms, i.e. for Types Ai

B, C, D, and B02

' In obtaining these results, So was assigned the same

value 0.08952 ft 2/sec3

in each case. Notice that the mean peak accelera-

tion decreases as the duration of the constant intensity phase in the

motion decreases. This observation is, of course, consistent with the

theory of extreme values. Notice also that the standard deviations are

relatively small in each case.

Following the suggestion of Jennings, et. al. [2], the Type A

accelerograms are intended to represent the upper bound ground motions

expected in the vicinity of the causative fault during an earthquake

having a Richter Magnitude 8 or greater. The Type B accelerograms are in-

tended to represent the motions close to the fault in a Magnitude 7

earthquake, such as the 1940 El Centro, California, earthquake and the

1952 Taft, California, earthquake. The Type C accelerograms are intended

to represent the ground motions in the epicentral region of a Magnitude

5.5 shock, such as occurred during the 1957 San Francisco earthquake,

and the Type D accelerograms are intended to represent the motions present

in the immediate vicinity of the fault of a 4.5 to 5.5 Magnitude earth-

quake having a small focal depth, such as the 1966 Parkfield, California,

earthquake. If the artificial accelerograms generated as Types A, B, C,

and D are indeed to be representative of these conditions, then each

class of motions should be normalized by the appropriate factors to raise

the mean peak acceleration levels from 0.332g, 0.309g, 0.244g, and 0.189g,

respectively, to approximately 0.45g, 0.33g, O.lOg, and 0.50g.

Since the extreme values of response for all 5 structural models

used in this investigation were measured in terms of ductility factors,

the above mentioned normalization of accelerograms is not required. These

Page 22: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

8

ductility factors are controlled by a structural model strength to ground

motion intensity ratio; i.e. p /mv where Ps is the significant s go

structural strength parameter, m is the mass of the single degree of

freedom system, and v go

is the mean peak acceleration. Allowing this

ratio to vary over a prescribed range of values is equivalent to allowing

and/or v go

to vary independently over restricted ranges.

Further, it should be recognized that the structural response

data generated for ground motions of Types A, B, C, D and B02 can be

interpreted in terms of structural response to other classes of motions.

For example, suppose one wished to interpret these response data for

similar classes of earthquake motions but for a change in the characteristic

ground frequency w o

to reflect a change in soil conditions. This

interpretation can be accomplished by considering a change in the time

scale of the accelerograms; thus, forcing corresponding changes in the

time intensity functions, the value of Tfl the value of w , o

and the

mean peak acceleration. Since the value of S representing the new o

classes of accelerograms is to remain unchanged, the mean peak accelera-

tions of the new motions will be changed exactly in proportion to the

square root of the ratio of the original time interval to the new time

interval. Specifically, suppose the time interval is considered to be

changed from 0.01 sec. to 0.005 sec. for the Type A accelerograms. In

this case, the total duration (as represented by OC, Fig. 1) is reduced

from 75 sec. to 37.5 sec., w 0

is increased from 15.6 rad/sec. to 31.2

rad/sec., Tf

is reduced from 7 sec. to 3.5 sec., and the mean peak

acceleration is increased from 0.33g to 0.46g (1:2·0.33 = 0.46).

Page 23: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

9

III. STRUCTURAL HYSTERETIC MODELS

3.1 BASIC PARAMETERS OF MODELS

The single degree of freedom system shown in Fig. 3a was used as

the basic form for all structural models investigated. This model has

a linear viscous dashpot but a nonlinear hysteretic spring. The restor-

ing spring force is therefore some prescribed nonlinear function F(v)

of the relative displacement v(t). The principal quantities used to

characterize this function are Pc' P , v , y c and v

y as shown in Fig. 3b.

Loads and represent the spring restoring forces corresponding

to the concrete cracking strength and the ultimate strength, respectively.

Displacements v c

and v are the corresponding relative displacements 0

y

3.2 ORIGIN-ORIENTED SHEAR MODEL

One of the five structural models used in this investigation

was the so-called "Origin-Oriented" hysteretic model proposed by Umemura,

et. al. [3]. This model is shown in Fig. 4 where it is characterized by

v , sc

and v which represent the concrete shear cracking sy

strength, the ultimate shear strength, the relative displacement produced

by Psc' and the relative displacement produced by Psy' respectively.

Application of this model is restricted to those structural types where

the nonlinear deformations and failure characteristics are controlled

primarily by shear.

This model is defined such that the hysteretic behavior takes

place with increasing relative displacements greater than v sc

or

decreasing displacements less than -v sc

Reduction of loads from values

greater than Psc or less than -Psc follow linear paths always directed

through the origin, e.g. paths A'O and A"O in Fig. 4. Oscillatory

motions can, of course, take place along the linear paths such as A'OA'

Page 24: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

10

and A"OA" without developing hysteretic loops provided the maximum

displacements do not exceed the maximum displacement previously developed.

The particular model plotted in Fig. 4 is for the case where p = 1.9 p , sy sc

v sy

10.0 and

3.3 TRILINEAR STIFFNESS DEGRADING FLEXURE MODEL

Four of the five structural models used in this investigation

were the so-called "Trilinear Stiffness Degrading" hysteretic model [3].

This model is shown in Fig. S where it is characterized by PBc' PBy' vBc

'

and vBy

which represent the load at which the concrete cracks due to

flexure, the load at which the main reinforcing steel starts yielding due

to flexure, the relative displacement produced by p , and the relative Bc

displacement produced by PBy' respectively. Application of this model

is restricted to those structural types where the nonlinear deformations

and failure characteristics are primarily controlled by flexure.

The trilinear model is defined such that linear elastic behavior

(without hysteretic loops) always takes place for oscillatory displace-

ments where the corresponding oscillator loads are in the range

p < PBc; however, hysteretic behavior occurs with every cycle of

-p < Bc

deformation which has load levels above or below During that

period of time between the initiation of loading and that instant at

which the relative displacement first increases above v or decreases By

below -vBy ' the trilinear model behaves exactly like the standard

bilinear hysteretic model having stiffnesses kl and k2 (QPOAB; Fig. Sa).

However, as soon as the relative displacement increases above or

decreases below -v ,a new bilinear hysteretic relation controls the By

response. For example, suppose the relative displacement for the first

time increases above to level v as represented by C in Fig. Sa. max

Upon decreasing the displacement from this level, the corresponding load

decreases along path CD which has a slope equal to ak1 , where

Page 25: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

2 v By

v + V max By

As soon as the load drops by the amount

(7)

2p reaching point D in Fig. Bc

Sa, any further drop in load will follow the continuing path shown

11

having a slope ak2

. It should be noted that point D is located at load

level in Fig. Sa but only because the particular trilinear model

represented in that figure is for PBy/PBC = 3.0. If this ratio had been

assigned a different numerical value, the load level at point D would be

different from

The new bilinear hysteretic model controlling the continuing

motion is shown in Fig. Sb. Note that the origin of the skelton curve

is shifted from point 0, the origin of the original bilinear hysteretic

model, to point 0'. This point is the intersection point of line QC and

the abscissa axis in Fig. Sa; therefore 00' is equal to BC/2. The stiff-

nesses of the new bilinear model are akl

, and ak2

If during the period of response controlled by the second

bilinear model (Fig. Sb) the relative displacement should increase beyond

v (v = vB ,) as represented by point B' to a new level as max max y

represented by C', the continuing response would be controlled by a

third bilinear hysteretic model whose characteristics could be obtained

in exactly the same manner as the characteristics of the second model.

Also, if yielding of the trilinear model had taken place at load level

rather than load level the new bilinear model controlling

the continuing motion would be obtained by a similar procedure.

One characteristic feature of the trilinear stiffness degrading

model worth noting is that when subjected to full-reversal cyclic

displacements at a constant amplitude the bilinear hysteretic loops are

Page 26: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

12

perfectly stable, i.e. each loop retraces the preceding one. The energy

absorbed during each successive cycle must therefore be equal. Using a

period T = 2'[ /m/k , 2 Y

where k Y

is an average stiffness as shown in

Fig. 6, one can calculate the equivalent damping ratio ~ for a linear

viscously-damped single degree system which represents the same energy

absorption per cycle of oscillation. This damping ratio is shown in

Fig. 6 for each of four different bilinear models.

Page 27: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

13

IV. SELECTION OF MODEL PARAMETERS

4.1 ORIGIN-ORIENTED SHEAR MODEL

As previously defined, the origin-oriented hysteretic model

shown in Fig. 4 is completely characterized by any four of the seven

parameters kl

, k2

, k3

, P , P I V , V sc sy sc sy

Based on experimental

data [31, it has been determined that

1.9 p sc

(8)

v sy

10 v sc

(9)

which reduces the number of independent parameters to two. It is most

meaningful to let one of these two parameters be a stiffness parameter

and the other be a strength parameter. For this purpose, it is con-

venient to use period Tl = 2n Im/kl and the concrete cracking force

As shown later, is normalized by the force

is the mean peak ground acceleration.

4.2 TRILINEAR STIFFNESS DEGRADING FLEXURE MODEL

mv , go

where

The general trilinear stiffness degrading hysteretic model

shown in Fig. 5 is completely characterized by any four of the seven

v go

parameters k l , k 2 , k y ' PBc' PBy' vBc ' vBy ' Four specific models, which

were previously studied by other investigators [31, were selected for

this investigation,

1. kl 2k Y PBy 3PBC

2. kl 2k PBy 2PBc y (10)

3. kl ~y PBy 3PBC

4. kl 4k Y PBy 2PBC

Page 28: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

14

These four models were chosen because k y

and are often found in

the ranges 2PBC < P < 3p , By Bc respectively, for

reinforced concrete members. For frame structures, these ranges are not

so well defined so that engineering judgment must be relied upon in

assigning values consistent with their overall nonlinear behaviors.

Having assigned numerical values to the ratios ky/kl and

PBy/PBC' only two independent model parameters remain. In this case it

is most convenient to select a stiffness parameter measured in terms of

Tl = 2~ Im/kl and a strength parameter measured in terms of PBy. Again,

the strength parameter selected (PBy) is normalized by the force

4.3 VISCOUS DAMPING MODEL

mv go

As shown in Fig. 3a, the single degree of freedom model used in

this investigation included a linear viscous dashpot having a variable

coefficient c. The coefficient used with the origin-oriented shear model

is defined by the relation c(t) = 2 ~l k(t)/w(t) where ~l is a con-

stant damping ratio, and k(t) and w(t) are variable stiffness and

natural circular frequency in accordance with the stiffness at time t,

respectively. The coefficient used with the trilinear stiffness degrad-

ing flexure model is defined by the relation c(t) = 2 ~l k(t)/wl

where

WI is a initial natural circular frequency. This coefficient becomes

smaller with a reduction or degradation of stiffness.

Page 29: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

15

v. DYNAMIC RESPONSE ANALYSIS

The complete time history of dynamic response was generated for

the single degree of freedom system using the five different structural

models subjected seperately to the twenty artificially generated earth-

quake ground motions. The equation of motion governing this response is

the well known relation

. m vet) + c(t)v(t) + F(v) - m v (t)

g ell)

where F(v) is the nonlinear spring force defined by the hysteretic

model being considered; i.e. the spring force defined by either Fig. 4

or Fig. 5. Dividing through by

[

1 ] .. ~ go v (t)

mv (a constant) gives go

. v (t) +

F(v)

m v go

v (t) g

v go

(12)

Note that the third term on the left hand side of this equation is the

same force-displacement relation defined by the hysteretic model but with

the force normalized (as previously mentioned) by the constant

Knowing the numerical values assigned to constants VgO

' Sl'

- -.. ..

m v go

and

as well as the prescribed value of p 1m v (or PB 1m v ), one can sc go y go

solve Eq. (12) for the complete time history of response v(t). This

solution is obtained numerically using the standard "linear acceleration"

method. The time interval ~t generally used in the integration was

shortened to a subdivided value ~t' during short periods of time in

which the model stiffness changed value. The numerical values of ~t

and ~t' used for four different ranges of period Tl

, are shown in

Table 2.

Page 30: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

16

The response quantity of primary interest is the ductility

factor ~ which is defined as v(t) Iv max sc

for the origin-oriented

model and as v(t) IVB

for the trilinear stiffness degrading model. max y

This factor was obtained for each of the five structural models when

subjected separately to each of the 20 ground motions generated for Types

A, B, C, D, and B02 ' The damping ratio ~l was assigned the value

0.05 for the origin-oriented model and 0.02 for the trilinear stiffness

degrading model. Since the ductility factor was desired for a range of

stiffnesses, period Tl was assigned 10 different numerical values as

given by

0.1(2)n/ 2 (n 0,1,2, ..• ,9) (13)

Using the origin-oriented model, ductility factors were

.. obtained for a range of values of p 1m sc

v , go

namely 0.50, 0.75, 1.00,

1.25, 1.50, 1.75, 2.00, 2.25, 2.50, and 3.00. Using the trilinear

stiffness degrading model, these values were obtained for p 1m v By go

equal to 0.50, 0.75, 1.00, 1.125, 1.25, 1.50, and 1.75.

Page 31: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

17

VI. DUCTILITY RESPONSE SPECTRA

6.1 LINEAR ELASTIC MODEL

To characterize the five classes of earthquake motions (Types

A, B, C, D, and B02

) in most familiar terms, all 20 accelerograms of each

type were seperately used as the excitation applied to a linear, viscously

damped (~ = 0.05) single degree of freedom system. Mean absolute

acceleration response ratios a as defined by

a

;:t v (t)

max .. v

go

(14)

, where :-:t v (t) is the mean value of 20 maximum absolute accelerations

max .. t

[v (t) ] and where max

.. v

go is the peak mean value of ground accelerations,

were determined for each excitation over a range of periods T. The

coefficients of variation (ratio of standard deviation to mean value) of

··t v (t) were also determined for the 20 accelerograms in each type of max

excitation.

The results of the analyses for all five classes of earthquake

are shown in Fig. 7 where the mean absolute acceleration response ratios

and the coefficients of variation of ··t v (t) are plotted as func-

max

tions of period T. As would be expected, the values of a for the

five classes of earthquakes are widely seperated at the long period end

of the abscissa scale but converge together towards the low period end

of the scale. As the period goes to zero, a must of course, approach

unity. It is seen in Fig. 7 (excluding Type B02

) that a increases with

duration of the earthquake excitation. The very high peak shown in the

function of a for Type B02 is caused by the narrow band excitation in

the ground motion in the neighborhood of T = 0.4 sec.

Page 32: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

18

The coefficients of variation of vt(t) decrease with max

duration of excitation and increase generally with period T. It should

be recognized that as T approaches zero the coefficients of variation of

··t v (t) approach the corresponding coefficients of variation of max

V (t) as given in Table 1. go max'

6.2 ORIGIN-ORIENTED SHEAR MODEL

-Mean ductility factors ~ and their corresponding coefficients

of variation were generated for the origin-oriented shear model using the

20 response time histories for each class of earthquake ground motions.

Values, as obtained over the period range 0.1 < Tl < 1.6 /:2 and over

the normalized load range 0.50 < S < 3.00 (where s

is defined as

the ratio p 1m v ), are shown in Figs. 8a-Se. c go For each type of

earthquake, these ductility factors generally increase with decreasing

period and the spread of ductility factors over the full strength range

increases with decreasing period. Also the ductility factors for a

fixed period increases with decreasing structural strength.

The trends of the coefficients of variation with period are

similar to those previously described for mean ductility factor,

particularly regarding strength level and strength variation. It is

most significant to note that the coefficients of variation are low

when the response is essentially elastic (~ < 1) but they can become very

large with increasing inelastic deformations.

When interpreting the results in Figs. 8a-8e, it should be

noted that the strength ratio ..

S = p 1m v can be expressed in the s c go

form

(p IW) I (v Ig) c go

(15)

Page 33: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

19

where W is the weight of the single degree of freedom mass and g is

the acceleration of gravity. Therefore, this parameter can be considered

as the ratio of base shear to coefficient of mean peak ground acceleration.

If for any particular case one wishes to determine the mean

maximum relative displacement V (t) , max

this can be accomplished by

using the appropriate mean ductility factor ~ taken from Figs. 8a-8e.

By definition of ductility factor, one can state

V (t) max

v fl c

(16)

Making use of the definition of Ss given above, this equation can be

written in the form

V (t)

or

V (t)

max

max

v go

Equation (18) is the most convenient form for calculating

6.3 TRILINEAR STIFFNESS DEGRADING FLEXURE MODEL

(17)

(18)

V (-t) max

Mean ductility factors and their corresponding coefficients of

variation were generated for the four trilinear stiffness degrading

flexure models using the 20 response time-histories for each class of

earthquake ground motions. Values, as obtained over the period range

0.1 < Tl < 1.6 1:2 and over the normalized load range 0.50 < Sf < 1.75

(where is defined as the ratio p 1m v ), are shown in Figs. 9a-9d, y go

lOa-lad, lla-lld, 12a-12d, and 13a-13d for earthquake Types A, B, C, D,

and B02

' respectively.

Page 34: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

20

The general trends of these results are very similar to those

previously described for the origin-oriented shear model. It is worth

pointing out again that the coefficients of variation of maximum response

are relatively low for cases of essentially elastic behavior but can

become very large for cases involving inelastic deformations.

As in the case of the origin-oriented model, mean maximum

response can be calculated using the relation

v(t) max =

..

[~][~] (19)

Page 35: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

VII. USE OF DUCTILITY RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN

7.1 SELECTION OF REQUIRED DUCTILITY LEVELS

It is implied in the basic philosophy of design previously

21

stated that economical considerations do not permit the design of struc-

tures for zero risk of damage in high seismic regions. To minimize total

costs (initial costs, repair costs after earthquakes, etc.), damage is

often permitted to limited degrees under moderate to severe earthquake

conditions. It should be understood that permitting some damage to occur

in a well designed structure has the beneficial effect of limiting damage

to that same structure. This is due to the fact that the energy absorp-

tion associated with damage is effective in limiting the maximum levels

of oscillatory motion in the strucuture. Therefore, a good seismic

resistant structure should be designed for high energy absorption

capacity assuming it will experience controlled damage under severe to

moderate earthquake conditions. In terms of the hysteretic structural

models presented herein, this concept means that the ductility factor

should be limited to certain values consistent with the basic design

philosophy.

Assume for the moment that one prescribes two numerical values

of ductility factor for a given structural model. The smaller value was

chosen to be consistent with light damage under moderate earthquake

conditions and the large value was chosen to be consistent with heavy

damage (but not complete failure) under severe conditions. Two questions

come to mind (1) "What is the probability of these ductility factors

being exceeded during a single earthquake of Types A, B, C, D, or B02

?"

and (2) "What ductility factors are required, consistent with the design

Page 36: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

22

philosophy?". To answer these questions, one must establish the

appropriate probability density or distribution functions.

Previous investigations have shown that the probability dis-

tribution function for extreme value of structural response for a single

earthquake follows closely the Gumbel Type I distribution [1,4]

exp {- exp [- a (~ - u)]} (20)

where ~ is the maximum response measured in terms of ductility factor,

and a and u are parameters which depend on the average and standard

deviation of ~. If only 20 sample values of ~ are available as in

this investigation, a and u can be obtained using the relations [11]

and

CL 1. 063/cr ~

u = ~ - 0.493 cr ~

(21)

(22)

where ]l and cr ]l

are the mean and standard deviation of the 20 sample

values of ~. Using these equations and expressing the standard deviation

of ~ in terms of its coefficient of variation (cr = c ~), Eq. (20) can ]l

be written in the nondimensional form

P (q)

where

exp {- exp [- 1.063 (q - 1 + 0.493c)]} c

q

This probability distribution function is plotted in Fig. 14 over a

range of values of c, i.e. over the range 0 < c < 1.5. Since the

probability distribution function is defined such that

( 23)

(24)

Page 37: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

23

P (x) Probability [~ < x] (25 )

, the probability exceedance function is given by

Q(x) Probability [~ > x] 1 - P (x) (26)

The first question previously raised, namely, "What is the probability of

these ductility factors being exceeded during a single earthquake of

Types A, B, C, D, or B02

?" , can be easily answered using Eq. (26), Fig.

14 and the data provided in Figs. 8a-13d. The second question raised,

i.e. "What ductility factors are required consistent with the design

philosophy?", is more difficult to answer. Before attempting to answer

this question, one must realize that the basic design criteria cannot be

met in absolute terms, i.e. with 100% confidence. This complication is

due to the scatter of coefficient of variation of ductility factor

present for each family of earthquake excitations. The best one can do

is reduce the probability of exceedance associated with each of the two

ductility factors to an acceptable level. Deciding on an acceptable

level is complex as it involves economic, social, and political

considerations.

Suppose for example, it was decided that a 15 percent pro­

bability of exceedance was acceptable, i.e. Q(~) = 0.15 and P(~) = 0.85.

Using Fig. 14 and the data provided in Figs. 8a-13d, one can easily

establish that ductility factor ~85 associated with P(~) = 0.85. This

has been done for all four trilinear stiffness degrading models sub­

jected to Type A ground motions giving the results shown in Fig. 15.

7.2 SELECTION OF REQUIRED STRENGTH LEVELS

To establish the required strength levels of the various struc­

tural models for each class of earthquake motions, one must first prescribe

Page 38: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

24

basic criteria consistent with the basic design philosophy. In the

following discussion, 20, 15, 10 and 5 percent probabilities of exceedance

were selected as examples of acceptable risk and it was assumed that

moderate and severe earthquake conditions are represented by 0.30g and

0.45g, respectively, for the mean peak acceleration of ground motions.

Finally, the two ductility factors, consistent with light and heavy (but

controlled) damage, are chosen as 2 and 10 for the origin-oriented shear

model and 2 and 4 for the trilinear stiffness degrading model. The

values of peak accelerations and ductility factors selected above follow

the suggestions of Umemura, et ale [3].

Using data such as shown in Fig. 15 for each structural model

and for each type of earthquake motions, i.e. using curves of ~85 vs. Tl

,

one can easily obtain the required strength ratios (6 = plm v ) for go

discrete values of Tl

. Linear interpolation between the curves (~85 vs.

Tl

) for a fixed value of Tl can be used for this evaluation. The

resulting required strength ratios for each prescribed risk level can

then be plotted as functions of period Tl as shown in Figs. 16-19 for

the trilinear stiffness degrading flexure model Subjected to earthquake

Types A, B, C and D. Figures 20 and 21 show the required strength ratios

corresponding to ductility ratios ~80' ~85' ~90 and ~95 equal to 6.

Figs. 22 and 23 show similar results but with the ductility ratios equal

to 8. These results have no direct relation to the basic design criteria

but are of interest in showing the influence of high ductility on the

required strength level. One characteristic feature of all sets of

curves in these figures is that the four curves representing earthquake

Types A, B, C and D are quite close to each other, except for the case

of Type D earthquakes when 10 and 5 percent probability of exceedance is

prescribed. One finds the required strength ratios are significantly

Page 39: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

25

influenced by the area of the hysteretic loop; see Fig. 6. The required

strength ratios for the trilinear model subjected to earthquake Type B02

are shown in Figs. 26 and 27.

One very significant feature to notice in these figures for all

five types of earthquakes is that generally, the required strength ratios

for the trilinear model in the range Tl > 0.2 sec. vary in a linear

manner with negative slopes along the log scale for Tl

. Converting to

a linear scale, the required strength ratios would vary in inverse pro-

portion to the square root of Tl

, i.e. s ~ (T )-1/ 2 1

for Tl > 0.2 sec.

This implies that buildings represented by the trilinear model which have

a shorter natural period than the predominant period in the ground motions

are likely to suffer excessive deformation, especially in a case of

earthquake Type B02

' because a lengthening of the period caused by

reduction and degradation of the stiffness brings the characteristic

period more in line with the predominant period in the ground motions.

The required strength ratios (S = p 1m v ) are shown in s c go

Figs. 24 and 25 for the origin-oriented shear model subjected to earth-

quake Types A, B, C and D. The results in Fig. 24 are obtained for the

basic criteria previously established; however, the results in Fig. 25

are for ductility factors ~ set equal to 1.5 and 5 which represent

brittle structures. These latter results show the influence of brittle-

ness on the required strength level. The four curves representing

earthquake Type A, B, C and D are quite close to each other similar to

the corresponding curves for the trilinear model. The required strength

ratios for the shear model subjected to earthquake Type B02 are shown in

Fig. 28. The results in Figs. 24, 25 and especially, in Fig. 28, show

a high tendency to peak at Tl = 0.4 sec. which corresponds with the

predominant period of the input ground motions. This tendency is most

Page 40: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

26

significant in the case of lower ductility factors which correspond to

small degradations in stiffness. The required strength ratios vary in

inverse proportion to the square root of Tl for Tl > 0.4. As for the

shear model, the period at the peak of these curves becomes smaller with

the higher ductility factors which accompany the larger degradations of

the stiffness.

When judging which of the two prescribed ductility factors

control a particular design or damage assessment, one should be careful

not to base the decision on a direct comparison of the required strength

ratios as shown in Figs. 16-19, 24, 26 and 28 since these ratios have

different normalization factors. For example, consider a shear model

with Tl = 0.4 sec. as shown in Figs. 24c and 24d. Using the light

damage criteria, i.e., Vgo = 0.30 g and ~85 = 2, gives S = 2.2 and

p = 0.66 mg. c

Using the heavy damage criteria, i.e. v go

0.45g and

~85 = 10, gives S = 0.8 and p = 0.36 mg. c

Note that for these two

different levels of damage, the resulting values for S have a different

ratio to each other than do the two values for p. Obviously in this c

case, the light damage criteria requiring Pc 0.66 mg control the

design or damage assessment. Let us consider a second example of the

origin-oriented model with Tl = 0.15 sec. In this case the light damage

criteria give S = 1. 7 and p = 0.51 mg and the heavy damage criteria c

give S = 1.3 and Pc = 0.58 mg. For this particular structural model,

the heavy damage criteria requiring Pc = 0.58 mg control the design or

damage assessment. Making similar comparisons for the various trilinear

stiffness degrading models represented in Figs. 16-19 and 26, one finds

that the heavy damage criteria (v = O.45g and ~ = 4) always control . go 85

the design or damage assessment.

Page 41: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

27

When using the results in Fig. 16-28 in accordance with the

above example calculations, one should remember that they are based on the

ground motion parameters w = 15.6 rad/sec (T = 0.4 sec) and ~ 000

which represent firm ground conditions. If one should have quite

different ground conditions, these parameters should be adjusted

appropriately. These adjustments shift the level of the predominant

frequencies in the ground motions and also change the mean intensity

-

0.6

level v go

With considerable experience and using engineering judgment,

certain modifications to the data in Figs. 16-28 can be made to reflect

these new conditions.

One should also keep in mind that these results do not include

the influence of soil-structure interaction which lengthens the natural

period and often increases damping in the overall system.

Page 42: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

28

VIII. CONCLUDING STATEMENT

The response ductility factors and coefficients of variation

presented herein provide the necessary data for carrying out probabilistic

seismic resistant designs and for conducting damage assessments consistent

with basic design criteria and the statistical nature of earthquake

ground motions.

Page 43: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

29

IX. BIBLIOGRAPHY

[1] Ruiz, P., and Penzien, J., "Probabilistic Study of the Behavior of Structures during Earthquakes," Earthquake Engineering Research Center, No. EERC 69-3, University of California, Berkeley, California, March, 1969.

[2] Jennings, P. C., Housner, G. W., and Tsai, N. C., "Simulated Earth­quake Motions," Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, California, April, 1968.

[3] Umemura, H., et. al., "Earthquake Resistant Design of Reinforced Concrete Buildings, Accounting for the Dynamic Effects of Earth­quake," Giho-do, Tokyo, Japan, 1973, (in Japanese).

[4] Penzien, J., and Liu, S-C., "Nondeterministic Analysis of Nonlinear Structures Subjected to Earthquake Excitations," Proceedings of the 4th World Conference on Earthquake Engineering, Santiago, Chile, January, 1969.

[5] Amin, M., and Ang, A. H. So, "A Nonstationary Stochastic Model for Strong-Motion Earthquakes," Structure Research Series 306, University of Illinois, Urbana, Illinois, April, 1966.

[6] Shinozuka, M., and Sato, Y., "Simulation of Nonstationary Random Process," Proceedings, ASCE, Vol. 93, EM1, February, 1967.

[7] Berg, G. V., and Housner, G. W., "Integra ted Velocity and Displace­ment of Strong Earthquake Ground Motion," Bulletin of the Seismological Society of America, Vol. 51, No.2, April, 1961.

[8] Clough, Ro W., and Penzien, J., "Dynamics of Structures," McGraw Hill, 1975.

[9] Kanai, K., "Semi-Empirical Formula for Seismic Characteristics of the Ground," Bulletin of Earthquake Research Institute, University of Tokyo, Japan, Vol. 35, June, 1967.

[10] Tajimi, H., "A Statistical Method of Determining the Maximum Response of a Building Structure during an Earthquake," Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo, Japan, Vol. II, July, 1960.

[11] Gumbel, E. Jo, and Carlson, P. Go, "Extreme Values in Aeronautics," Journal of the Aeronautical Sciences, 21, No.6, June, 1954.

Page 44: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

30

TABLE 1

MEAN VALUES AND STANDARD DEVIATIONS OF PEAK GROUND ACCELERATIONS

Type of Statistical Number of Earthquakes

Earthquake Quantity 20 40 Infinity

A Mean 0.327 0.331 0.332

Std. Deviation 0.023 0.036 0.040

B Mean 0.300 0.308 0.309

Std. Deviation 0.032 0.037 0.041

C Mean 0.240 0.243 0.244

Std. Deviation 0.022 0.035 0.039

D Mean 0.191 0.188 0.189

Std. Deviation 0.041 0.039 0.044

Mean 0.346 0.336 0.337 B02

Std. Deviation 0.048 0.049 0.055

TABLE 2

STANDARD TIME INTERVAL AND SUBDIVIDED TIME INTERVAL

Interval Type Natural Period T

1, sec.

0.1 and 0.14 0.2-0.4 0.57-1.13 1.6 and 2.26

Standard 0.005 0.01 0.01 0.01

Subdivided 0.000625 0.00125 0.0025 0.005

Page 45: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

TY

PE

A

A

O

A:

EN

V(t

)=t

2 /16

B

B

C:

EN

V(t

)=e

xp

[-0

.03

57

(t-3

5)]

I.O~

!~

-I

: ------------_

__

__

__

__

_ ~C

>

: :

~ z ~

75

(S

EC

) w

0

4 3

5

TY

PE

B

AN

D

TY

PE

B

02

LO~

B

-::

OA

: E

NV

(t)=

t2 /16

~ ~ ~

Be

: E

NV

(t)=

ex

pto

.09

92

(t-

15

l]

o 4

15

30

(S

EC

)

TY

PE

C

1.0

' A

B

-o A

: E

N V

(t)

= t

2/4

~ Vi ~c

BC

: E

NV

(t)=

exp

[-

0.2

68

(t-4

D

o 10

(S

EC

) 2

4

TY

PE

D

:= 1.0~

AB

>

i z

II

C

W

II

o 2

2.5

5

OA

: E

NV

(t)=

t3 /8

BC

: E

NV

(t)=

exP

[-1

.60

6(t

-2.5

il

FIG

. 1

TIM

E

INT

EN

SIT

Y

FUN

CT

ION

S W

f-

'

Page 46: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

(\j ]

1.0

...... -

:I:

o 1.

0

1.0

~

0.5

1 HI(

iw )1

2 (..

!:!L)2

1

+4

{o

Wo

-G+

(~)2

J2 +4~:(~)2

2.0

W/W

o

( a )

~o=

0.6

3.0

Tr

=1

/[1

+{T

/Tf)

4JI/

2

Tr =A

H 2(iW

)12

o ~I _

__

_ -L

__

__

-L

__

__

-L

__

__

-L

__

__

-L

__

__

-L

__

__

-J

1.0

2.0

T/T

f

( b )

3.0

FIG

. 2

FIL

TE

R T

RA

NSF

ER

FU

NC

TIO

NS

v(t

)

p

Py Pc

Vc

(0 )

( b

)

v'(

I)=

v(I

)+ v

g( t)

Vy

T=

27

T J

m1

k

( =

c 1

2 ./f

i1k

FIG

. 3

SIN

GL

E

DEG

REE

O

F FR

EED

OM

M

OD

EL

WIT

H

FOR

CE

-DIS

PLA

CE

ME

NT

R

EL

AT

ION

SH

IP

W

tv

Page 47: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

-VSY

C A

ll /7

B

/

/

~

B/

P SY

I ~ k, ~~~/

P SC

rYtf/

-

Vs

c..

#l

VSC

Vsy

PSY

= I.

9 P

sc

Vsy

=

10.

0 Vs

c

-Psc

k

2 =

0.1

k

I

k3

=0

.19

kl

-P sy

FIG

. 4

OR

IGIN

-OR

IEN

TE

D

HY

STE

RE

TIC

M

OD

EL

All

C

OR

IGIN

S

KE

LE

TO

N

CU

RV

E

PB

y I

Bf

C

p ~ =

3

Psc

/ I

/ /f

ak

2

VB

y V

By

vm

ax

::: V

min

a=~

Vm

ox

-V

min

P

By

I 8

1/

Cl

/ r -P

By

;'

. / I

R

) Q

(0

)

,Ja

kl 1a

': /

I I

ak y

I

/ I

I ,I

I A

/l

ak

2 I

""/

///0

/ /

/

-VB

y

VS

y'

Y I

I

SK

EL

ET

ON

C

UR

VE

/

. /"

f I

AF

TE

R

YIE

LD

ING

j'

R ~Q

( b)

FIG

. 5

TR

I-L

INE

AR

HY

STE

RE

TIC

M

OD

EL

w

w

Page 48: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

T 2

= {2

TI

PB

y=

2.0

PB

c

T2 =

{2

TI

PB

/ 3

.0 P

Bc

PS

y

PS

y

~ =

0.1

59

~ =

0.1

06

T2 =

2

T j

PB

y=

2.0

PB

c

T2

=2

1T

.Jm

/ ky

TI

=2

1T

Jm

/kl

T2

= 2

T\

PB

y =

3.0

PB

c

PS

y

~ = 0

.23

9

PS

y

~=0.

159

FIG

. 6

STA

BL

E

BIL

INE

AR

HY

STE

RE

TIC

L

OO

P FO

R

TR

ILIN

EA

R

ST

IFF

NE

SS

D

EG

RA

DIN

G

MO

DEL

w ~

Page 49: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

LIN

EA

R

MO

DE

L

t=0

.05

5

.0 ,

I ------------,

~

4.0

1,\

o ~

a::

--

TY

PE

A

T

YP

E

8

TY

PE

C

T

YP

E D

TY

PE

8

02

'Jt(

l)m

ax

a

= -,--~.:..c..::c:.

·Vg

o

5 3

.0 ~

I ------;---+

----­

f­ <t a::

w

--1

W

U

U

<t w 5

j (f

) f'

~

1.0

\:,~

,,~

a::

o 1

I )

I)

I )

I)))

) I

0.1

0.2

0

.5

1.0

2.0

T

(SE

C)

z o ~

LIN

EA

R

MO

DEL

t

=0

05

0

.5 "

-------,........-----,

\ I I

\

I

" , I

" y_

A

f

0.4

f-I -----~----

I ~ . ..

, I

"', ......

~~

/ \

I f /

i f

a:: :!

0.3

1

i\

...

lL

o f­ Z w

u 0

.2 I

.' .4

>.~2

'1

~~

lL

lL

W o u

0.1 o

I I

I )

I I

I I) Ii)

)

0.1

0.2

0

.5

1.0

2.0

T

(SE

C)

FIG

. 7

RE

SPO

NSE

ACCELERll~.TION

R).I

"TIO

S FO

R

LIN

EA

R

MO

DEL

TYPE

A

EAR

THQU

AKE

'1= 0.

05

p y

=1

.9P C

Vy

= 1

0.O

v e

fL'

v (I

)m

ax/

vc

20

0.0

1\

T, '2

."..

Jm!k

,

t, =

c/2.

./rT

iTk,

1.4

r' ---------

--Ii

: '0

.50

mV

go

1.3 ~

, 0

.75

,

1.0

0

10

0.0

!k

---'

\...

..--

l::l

0::

' 1.

25

0

IT '

1.50

f-

, 1.

75

U Lt

1.1

'2.0

0

, 2

.25

>-

, 2

.50

f-

1.0

'3.0

0

...J

20

.0

~

0::

0 f-1

0.0

u

g 0

.9

Cl

LL.

<[

LL.

o 0

.8

>- f- ...J

z 0 f-0

.7

<[

i=

u =>

Cl

~ 0

.6

>

Z

~ 0

.5

<[

W ~

f- r5 0

4

u iJ:::

0.3

L.!...

0.2

I 'g

I w

8 0.

2

0.1

1-1

----------1

0.

1

0.0

5 I

, )

! )

! !

) )

I ! I)

) I

0 0.

1 0

.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

1.0

2.0

TI

(SE

C.)

TI

(S

EC

. )

FIG

. 8

a

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

OR

IGIN

­O

RIE

NT

ED

M

OD

EL

HA

VIN

G

DIF

FE

RE

NT

ST

RE

NG

TH

L

EV

EL

S w

V

1

Page 50: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

w

0'\

TYPE

B

EAR

THQ

UAK

E TY

PE

C

EART

HQ

UAK

E e- I= 0

.05

p

= I.

9 p

v

=IO

.Ov

e- 1=0

.05

p

= 1

.9 p

v

= 1

0.O

v y

c y

c y

c Y

c

1.4

1.4

p. =

v (1

1mox

/ve

j --~ =

0.5

0m

Vgo

p

.=v(

11

mo

x/ve

--~ =

0.5

0 m

V90

T, =

217"

.Jm

ik,

20

0.0

T,

= 21

7".J

mik

, 1.

3 =

O. 7

5 1.

3 =

0.7

5

',=

e/2

.Jm

7k,

= 1

.00

" =

e/2.

Jm7k

, =

1.0

0

0::

= 1

.25

0::

= 1

.25

0 1.

2 =

1.5

0 0

1.2

= 1

.50

f-=

1.7

5 f-

= 1

.75

<..>

<..>

~

1.1

= 2

.00

5

0.0

~

= 2

.00

=

2.2

5 1.1

V

y =

2.2

5

>-=

2.5

0

>-=

2.5

0

I::i.

f- -.J

1.0

=3

.00

I:

:i.

f- :::::i

1.0

=

3.0

0

~

~

0::

g 0

.9

0::

g 0

.9

0 0

f-0

r-1

0.0

0

u u

~

~

0.8

<

! ~

0.8

IJ.

..

>-Z

>-

5.0

z

f-o

0.7

r-

o 0

.7

-.J

f--.

J f-

~

<!

~

<!

U

0::

0.6

u

2.0

~

0.6

::>

<

! ::>

0

>

0 >

Z

~

0.5

z

1.0

~

0.5

<

! <

! W

f-

w

f-:::!

: z

:::!:

~

0.4

w

0

.5

u u

iL:

0.3

iL:

0

.3

IJ...

IJ...

°T ~I w

w

8

0.2

0

.2

8 0

.2

0.1

0.1

0.

1

0::

' I

I I I

I I

I , I'

I ,

I 0

0.0

5

0 0.

1 0

.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

1.0

2.0

0.

1 0

.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

1.0

2.0

TI

(SE

C.

) TI

(S

EC

.)

TI

(SE

C.

) TI

(S

EC

. )

FIG

. 8

b

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

FIG

. 8

e

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

OR

IGIN

-C

OE

FF

ICIE

NT

S

OF

VA

RIA

TIO

N

FOR

O

RIG

IN-

OR

IEN

TE

D

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

STR

EN

GT

H

OR

IEN

TE

D

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

STR

EN

GT

H

LE

VE

LS

LE

VE

LS

Page 51: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

TY

PE

D

E

AR

TH

QU

AK

E

',= 0

.05

p

= I. 9

p

y c

v =

IO.O

v

y c

1.4

20

0.0

1

fL ~

v (

I )m

a,/

vc

j --~ ~0.50mOgo

T, =

2 "IT

.;;;;

7k,

1.3

= 0

75

~, =

c/2

,;m

7k,

=

1.0

0

10

0.0

I I

a::

= 1

.25

~,

, 1.

2 0

= 1

.50

f-=

'.7

5

U

50

.0 1

" V,

'.

.J

i1: =

2.0

0

I

I

1.1

Vc

Vy

=2

.25

>- f-

l:::l

~ \.

--

l 1.

0

i=

~

0.9

a::

0 f-

10

.0

0

U

LL

« o

0.8

LL

5.0

z

>-0

f-f-

--l

« i=

u

2.0

~

0.6

:::

J 0

>

z 1.

0 ~

0.5

« w

f-

::!!:

r5 0

.4

0.5

u iJ::

0

.3

LL

W

0.2

1

"I\(

?~\'

.I

8 0

.2

0.1

1

'\~~~ I

0.1

0.0

5 I

I

I I

I I

t I

I t I!!

I I -

I 0

0.1

0.2

0

.5

1.0

2.0

0.

1 0

.2

0.5

1.

0 2

.0

T,

(SE

C.

) T,

(

SE

C.)

FIG

0 8

d

MEA

N

DU

CT

ILIT

Y FACT~)RS

.A.N

D C

OR

RE

SPO

ND

ING

C

OE

FF

ICIE

NT

S

OF

VA

l:C

NI 'I

Oi'i

f FO

R.

OR

IGIN

·­O

RIE

NT

ED

lv

(OD

EL

H?c

JIIl

·]G

D

IPF

ER

EN

'T

STR

EN

GT

H

LE

VE

LS

TY

PE

B

02

EA

RT

HQ

UA

KE

',= 0

.05

p

= 1.9

p

v =

10.O

v

y c

Y

c

1.4

fL ~

v (

t)m

ax/v

C

--~ =

0.5

0m

Ogo

2

00

.0

T, =

2 "IT

.;;;;

7k,

1.3

= 0

.75

~, =

c 1

2 ,;m

7k,

= '

.00

10

0.0

a:

: =

'.2

5

1.2

0 =

'.5

0

f-=

1.7

5 U

5

0.0

Lt

f =

2.0

0

1.1

Vy

, =

2.2

5

I >-

I =

2.5

0

l:::l

f-1.

0 ,

= 3

.00

--

l I

~

I

a::

I

g 0

.9 \

I

0 ,

f-1

0.0

0

, U

,

« L

L

LL

0

>-5

.0

z f-

~

0.7

--

l f-

~

« u

2.0

a:

: :::

J «

0 >

z

1.0

~

0.5

« W

f-

::!!:

r5 0

.4

0.5

u LL

0

.3

LL

w

0.2

8

0.2

0.1

t=

0.1

0.0

5 0.1

0.2

0

.5

1.0

2.0

0.

1 0

.2

0.5

1.

0 2

.0

T,

(SE

C.

) T,

(S

EC

.)

FIG

. 8

e

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

OR

IGIN

­O

RIE

NT

ED

M

OD

EL

HA

VIN

G

DIF

FE

RE

NT

ST

RE

NG

TH

L

EV

EL

S W

-..

J

Page 52: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

w

TY

PE

A

E

AR

TH

QU

AK

E

00

TY

PE

A

E

AR

TH

QU

AK

E

{,o

:O.0

2

T 2 .. ./

2T

, p.

:: 2

p. y

c e-,

= 0

.02

T2=~T,

p =

3p

y

c

20

0.0

T.

= 21

f'../

m/k

7,

1.3

--

~ =

05

0 m

VQO

20

0.0

T2

= 2

7r.,

;m7k

2

'T --

Py=

0.5

0m

Vgo

1

00

.0 T

r-

T, =

27r.

jiTi7

k,

--

=0.

75

= 1

.00

T, =

2 7r

.jiTi

7k,

--

=0.

75

~,=

c/2

./rTi

Ik,

a:

1.2

= 1.1

25

10

0.0

~,

= c/2

./rTi

Ik,

~ 1.

2 =

1.0

0

~ =

1.25

=

1.12

5

50.0~-+

P Yk 4k ,

~ -( 1

= 1

.50

j'k,

/ =

1.25

U

I.

, 5

0.0

I,

--(

1

~

1.1

= 1

.50

/':;:

'k

fJ. =

, , m

ox Iv

y ~

= I. 7

5 /':

;:'k

fJ.

=v

I m

ox/v

y P,

/'-r z

/'-r 2

u.

=

I. 75

L_

--L

_

~

1.0

1::1..

Vc

Vy

I::l..

Vy

~

1.0

20

.0

-l

20

.0

:J

a:

t; 0

.9

a:

t 0

.9

0 .... 1

0.0

:::>

0

u 0

I-1

0.0

:::>

Lt u.

0

.8

u 0

0 ~

u.

0.8

>-5

.0

5.0

0

I-~

0.7

>-

~

0.7

I-

-l

i=

-l

i=

I-<t

0

.6

i=

u 2

.0

u <t

0

.6

:::>

a:

:::>

a:

0 <t

0

<t

Z

1.0

>

0

.5

z >

0

.5

<t

lI..

1.0

lI..

0 <t

0

LtJ

LtJ

~

I-0

.4

~

I-0

.4

0.5

z

0.5

z

LtJ

LtJ

U

0.3

U

0

.3

lI..

lI..

0.2

!---

lI..

0.2

lI.

.

~

0.2

~

0.2

U

U

°t:

0.1

0.1

0.1

0.0

5

I II

I

I I

I II

I I

I 0

.05

0

0.1

0.2

0

.5

1.0

2.0

0

.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

1.0

2.0

0.

1 0

.2

0.5

1.

0 2

.0

TI

(SE

C.)

T,

(S

EC

.)

TI

(SE

C.)

TI

(S

EC

.)

FIG

. 9

a

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

FIG

. 9

b

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

TR

ILIN

EA

R

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

TR

ILIN

EA

R

ST

IFF

NE

SS

D

EG

RA

DIN

G

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

ST

IFF

NE

SS

D

EG

RA

DIN

G

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

STR

EN

GT

H

LE

VE

LS

STR

EN

GT

H

LE

VE

LS

Page 53: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

TYPE

A

EA

RTH

QU

AK

E TY

PE

A E

AR

THQ

UA

KE

e- 1=O

.02

T

2 =

2T

I P

=

2 p

e- 1=

O.0

2

T2

= 2

TI

P

= 3

p

y c

y c

10

0.0

1

00

.0

T 2 =

2 ".

. ..,/i

TlTk

2

--

P. =

05

0 m

Vgo

T2

= 2"

....,/

iTlT

k 2

--

P. =

05

0 m

V90

50

.0 f

----

T, =

2 ".

...;m

7ii,

1.3

--

Y=0

.75

T, =

2 1T

..;m

7ii,

'l --

Y=

0.75

=

1.0

0 5

0.0

(,

=e/

2.jI

TiI

k,

= 1

.00

(, =

e/2

JIT

ilk,

= 1.

125

= 1.

125

a::

1.2

= 1

.25

~

1.2

= 1

.25

0 =

1.5

0 =

1.5

0 I-

20

.0 I-

--\-

0 \-;-

----...

-.:r;;

,LL =

v \!

)m

ax

I V

y -l

t)

I I

= 1

.75

20

.0

~

1.1

= 1

.75

~

u..

lo.ob

\

Vy

Vy

>-I:::

\...

.... ~

1.0

I:::

\...

10

.0

I-1.

0

--l

--l

a::

I-0

.9

a::

5.0

I-

0.9

0

5.0

t)

0 t)

I-:::>

I-

:::>

t)

Cl

0.8

t)

Cl

<t

<t

u..

0.8

u.

. u..

u.

. 2

.0

0 2

.0

0 >-

>-I-

~

0.7

I-

~

0.7

--

l --

l

i=

10

I-

i=

1.0

l-

t)

<t

0.6

t)

<t

0.6

:::>

a::

:::>

a::

C

l <

t C

l 0

.5

<t

0.5

>

0.5

>

0

.5

z z

<t

u..

<t

u..

w

0 w

0

::!!:

I-0

.4

::!!:

I-0

.4

0.2

z

0.2

z

w

w

t)

0.3

t)

0.3

0.1

I u..

0.

1 u.

. u.

. u.

. ~

0.2

~

0.2

0.0

51

t)

0.0

5

t)

0.1

0.1

0.0

2 !

, I

! I

I I

I I! III

I I

I 0

.02

0

0.1

0.2

0

.5

1.0

2.0

0

.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

1.0

2.0

0.

1 0

.2

0.5

1.

0 2

.0

TI

(SE

C.

) T

I (

SE

C.)

T

I (S

EC

.)

TI

(SE

C.)

FIG

. 9

c

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D CO~RESPONDING

FIG

. 9

d

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ES

PO

ND

ING

C

OE

FF

ICIE

NT

S

OF

Vi',

RIA

TIO

N

FOR

T

RIL

INE

AR

C

OE

FF

ICIE

NT

S

OF'

V

AR

IAT

ION

F

OR

T

RIL

INE

AR

S

TIF

FN

ES

S

DE

GR

AD

ING

J'

:F);

':)E

;L

HA

VIN

G

DIF

FE

RE

NT

S

TIF

FN

ES

S

DE

GR

AD

ING

M

OD

EL

HA

VIN

G

DIF

FE

RE

NT

sr

J'RE

NG

rl'H

L

EV

EL

S

S'l'R

EN

GT

B

LE

VE

LS

w

\.0

Page 54: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

I::i

..

lr

o I­ o Li: >­ I- ...J i=

o :::>

o z <X:

w

::E

TYPE

B

EA

RTH

QU

AK

E

'1=

0.0

2

T2 =

./2

TI

20

0.0

" -----------,

10

0.0

50

.0

T 2: 2

7f F

mTk2

T,

: 2

Tr.j

iTi7

k,

~,:

c/2

./iiiT

k,

Py~ /

jk,

~ _

I. 3k

/-

L: v

(tl

mo

x/V

y

~ ./,

2

"--

--V

c Vy

5.0

I

'< "\

2.0

I

.• '.

. \:,

\

0.5

1

".:c ....

. ' .....

. '" 1

0.2

1

'\~I

0.1

~I ------------------~

0.0

5!

I!

I I

[ I

! I

[ I

I t

I

0.1

0.2

0

.5

1.0

2.0

T,

(S

EC

.)

1.3

~

1.2

I- ~

1.1

IJ... >- t::

1.0

...J i=

o 0

.9

:::>

o IJ...

O.B

o ~

0.7

!i lr

<X:

0.6

>

0.5

IJ.

.. o I-0

.4

z w

o 0

.3

IJ...

IJ... w

0.2

o o

0.1

P =

2 P

y

c --

p. :0

.50

mVg

O

--

Y:0

.75

:

1.00

:

1.12

5 :

1.25

:

1.50

:

1.75

0.2

0

.5

1.0

2.0

T,

(SE

C.)

FIG

. lO

a

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

TR

ILIN

EA

R

ST

IFF

NE

SS

D

EG

RA

DIN

G

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

STR

EN

GT

H

LE

VE

LS

::i..

a::

o I­ o Lt >­ I- ...J

I­ o :::> a z <! w

::E

TYPE

B

EA

RTH

QU

AK

E

'1=

0.0

2

T2 =

./2

TI

20

0.0

" ------------,

1.0

0.5

1

"II,,'

..:"

' ...

...

"I

0.2

1

......

.. 1

0.1 cL~----------------~

0.0

5'

! I

, I!!

I I

!!

, I

I

0.1

0.2

0

.5

1.0

2.0

T,

(S

EC

.)

1.3

a::

1.2

o I- ~

1.1

~ '

1.0

...J i=

0.9

o :::>

o

0.8

IJ.

.. o ~

0.7

i=

~

0.6

lr

<X

: >

0.5

IJ.

.. o I-0

.4

z w

o IJ...

IJ...

W

0.2

o o

0.1

P y =

3 P

c --

p.:

0.5

0 m

Vgo

--

Y:0

.75

:

1.0

0

: 1.

125

: 1.

25

: 1

.50

:

I. 7

5

0.2

0

.5

1.0

2.0

T,

(S

EC

.)

FIG

. lO

b

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

TR

ILIN

EA

R

ST

IFF

NE

SS

D

EG

RA

DIN

G

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

STR

EN

GT

H

LE

VE

LS

~

o

Page 55: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

TYPE

B

EAR

THQ

UAK

E 'I

=0

. 0

2

T2

= 2

Tj

p =

2

P

Y

c

10

0.0

T2

= 2

7r,J

m7i

i2

1.3

--

p. =

05

0 m

V90

50

.0 ~ T,

=27

rJni

Tk,

--

Y=

0.7

5

= 1

.00

,,=

c/2

.,/m

7k,

rr

1.2

= 1.

125

PI j'k

, /

= 1

.25

0 =

1.5

0 y

I, _

_

I-2

0,0

I--

\---

-~ ~(t)mox/Yy

~

1.1

= 1

.75

, LA

.. Y

c Y

y

~

1.0

1::1..

1

0.0

:::::i

rr

i= 0

.9

0 5

.0

u I-

::J

U

Cl

08

« LA

.. LA

.. .

2.0

0

>- I-~

0.7

-I

i=

1'.0

I-

U

~

0.6

::

J rr

C

l 0

.5

« z

> 0

.5

« LA

.. w

0

~

I-0

.4

0.2

z w

u

0.3

0.

1 I

~I

LL

LA.. ~

0.2

OOl

I I

U

0.1

1,1

,,1

11

,,1

0

.02

'

0.1

0.2

0

.5

1.0

2.0

0.

2 0

.5

1.0

2.0

TI

(SE

C.

) T

I (S

EC

. )

FIG

. lO

c

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AH

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AH

IAT

I·JN

FO

R

TR

ILIN

EA

R

ST

IFF

NE

SS

D

EG

RA

DIN

G

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

STR

EN

GT

H

LE

VE

LS

TYPE

B

EA

RTH

QUA

KE

'1=

0.0

2

T2 =

2 T

I P

=

3p

y

c

10

0.0

T2

= 2

7r..,

/ii17k

2

''t --

p. =

05

0 m

V90

T,

= 2

7r .J

rilTk ,

--

Y=

0.7

5

50

.0

" =

c/2.

,/m7k

, =

1.0

0

g 1.

2 =

1.12

5 =

1.2

5 =

1.5

0 2

0.0

~

1.I

= 1

.75

LA..

Yy

~

1.0

1::1..

1

0.0

-I

rr

I-0

.9

0 5

.0

u I-

::J

u C

l 0

.8

« LA..

LA..

2.0

0

>- I-~

0.7

-I

i=

1.

0 I-

u «

0.6

::

J rr

C

l 0

.5

« z

> 0

.5

« LA

.. w

0

~

I-0

.4

0.2

z w

U

0

.3

0.1

LA..

LA.. ~

0.2

0.0

5

U

0.1

0.0

2

0 0.

1 0

.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

!.O

2.0

TI

(SE

C)

TI

( S

EC

)

FIG

. lO

d

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

TR

ILIN

EA

R

ST

IFF

NE

SS

D

EG

RA

DIN

G

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

STR

EN

GT

H

LE

VE

LS

"'" I-'

Page 56: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

TYPE

C

EA

RTH

QU

AK

E

'1=

0.0

2

T 2=

V2

TI

P

= 2

P

y c

20

0.0

T2 =

271

'./iT

iTk2

1.

3 --

R =

05

0 m

V90

100.0~ T

, =

271'

/iTiT

k,

--

Y=

0.75

=

1.0

0 ~,

= c/2

./m7k

, a::

1.

2 =

1.1

25

0 j'k

, /

I-=

1.2

5 P y

I, _

_ (

) u

1.1

= 1

.50

/'::::

k fL

= v

t m

ax I

vy

~

= 1

.75

~ /T

2

lJ...

I~

>-1

.0

Vy

l- ::::i

a::

t; 0

.9

0 I-::

J U

0

Lt lJ.

.. 0

.8

>-5

.0

0

I-~

0.7

-l

--...,

~

~

'e,

U

2.0

~

0.6

::

J a::

C

l ~

z 1

.0

>

0.5

lJ.

.. ~

0 lJ.

J :2:

~

0.4

0

.5

lJ.J

U

0.3

lJ.

..

0.2

1

'\~\\I

lJ... ~

0.2

u

01

~

(I 0.

1

1,1

,,1

11

,,1

,

, !

r I

( I! I

I till

, I

I 0

.05

'

0 0

.1

0.2

0

.5

1.0

2.0

0.

1 0

.2

0.5

1.

0 2

.0

TI

(SE

C.)

TI

(S

EC

.)

FIG

. ll

a

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

TR

ILIN

EA

R

ST

IFF

NE

SS

D

EG

RA

DIN

G

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

STR

EN

GT

H

LE

VE

LS

TYPE

C

EA

RTH

QU

AK

E

'I =

0.0

2

T =

./2

T

2 I

P

= 3

p

Y

c

20

0.0

T2 =

2 7

1'./i

TiTk

2

'T --

R =

0.5

0 m

V90

T,

= 2

7T./ri

i7k,

--

Y=

0.75

1

00

.0

= 1

.00

~,=

c/2

./m7k

, a::

1.

2 0

= 1

.125

j'k,

/ I-

= 1

.25

50

.0

I, _

_ (

) U

1.

1 =

1.5

0 /::

::k

fL =

v t

max

Ivy

~

= I.

75

/T

2

lJ...

'::l..,

>-1

.0

Vy

I- -l

a::

~

0.9

0 I-

10

.0

::J

U

o 0

.8

it lJ.

..

>-5

.0

0

I-z

-l

0 ~

t=

u 2

.0

~

0.6

::

J a::

C

l ~

z 1

.0

>

0.5

lJ.

.. ~

0 lJ.

J :2:

~

0.4

0

.5

lJ.J

~

0.3

lJ.

..

0.2

lJ.

.. ~

0.2

u

0.1

0.

1

0.0

5 0.1

0.2

0

.5

1.0

2.0

0.

1 0

.2

0.5

1.

0 2

.0

TI

(SE

C.)

TI

(S

EC

.)

FIG

. ll

b

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

TR

ILIN

EA

R

ST

IFF

NE

SS

D

EG

RA

DIN

G

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

STR

EN

GT

H

LE

VE

LS

..,. N

Page 57: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

TYPE

C

EA

RTH

QUA

KE

TYPE

C

EA

RTH

QU

AK

E '1

= 0

.02

T

2 =

2T

I P

=

2 p

'1

=0

.02

T

2 =

2 T

I P

=

3 p

y

c Y

c

10

0.0

1

00

.0

T 2;

2 Tr

Jffi/

. 2

1.3

--

p. ;0

.50

mV Q

O

T2 ; 2

Tr Jf

fi/k

2

'l --

p. ;0

.50

mV Q

O

50

.0 ~ T,

;2T

r.,/rT

iTk,

--

Y;0

.75

T,

; 2 T

r.,/rT

iTk,

--

Y;0

.75

;

1.00

5

0.0

;

1.00

(,

;c/2

Jm

!k,

1.2

; 1.

125

(, ;

c/2

Jm

!k,

~

1.2

; 1.

125

a::

; 1.

25

; 1.

25

Rl~

0 ;

1.50

;ik

, /

; 1.

50

Y

I /"_

_

~

/ ':

:..s

k"'

p.;

v (

t lm

ax I

vy

20

.0k-

p /

::..

sk_

}L;v

(tlm

ax/v

y t.

) 1.1

;

I. 75

2

0.0

~

1.1

; I.

75

~

/'

, 2

"--

I.L

I.L

Vy

~

1.0

Vc

Vy

~

1.0

l::l

10

.0

l::l

10

.0

-l

-.J

a::

i=

0.9

a::

5

.0

i=

0.9

0

5.0

t.

) 0

t.)

~

:::)

~

:::)

t.)

0 t.

) o

0.8

i1

I.L

0.8

~

I.L

I.L

2.0

0

2.0

0

>->-

~

~

0.7

~

~

0.7

::::

i -.

J

i=

1.0

~

i=

1.0

~

~

0.6

~

t.)

t.)

:::)

a::

::

:)

a::

0 ~

0 ~

0.5

>

0.5

0

.5

>

0.5

z

z ~

I.L

~

I.L

W

0 W

0

::E

~

0.4

::E

~

0.4

0

.2

z 0

.2

z w

w

~

0.3

u

0.3

0.1

I '\~\"I

I.L

0.1

I.L

I.L

I.L

~

0.2

~

0.2

0.0

51

'!I

t.)

0.0

5

u

0.1

0.1

0.0

2 I

[

I I

I I

I I

I I III

[ I

I 0

0.0

2

0.1

0.2

0

.5

1.0

2.0

0.

1 0

.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

1.0

2.0

0.

1 0

.2

0.5

1.

0 2

.0

TI

(SE

C.)

T

I (S

EC

.)

TI

l S

EC

.)

TI

( S

EC

.)

FIG

. ll

c

I~AN

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

FIG

. ll

d

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

TR

ILIN

EA

R

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

TR

ILIN

EA

R

ST

IFF

NE

SS

D

EG

RA

DIN

G

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

ST

IFF

NE

SS

D

EG

RA

DIN

G

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

STR

EN

GT

H

LE

VE

LS

STR

EN

GT

H

LE

VE

LS

"'" w

Page 58: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

"" "" TY

PE

D E

ARTH

QUA

KE

TYPE

D

EA

RTH

QU

AK

E

e- 1=O

.02

T z =

../2

TI

p =

2 p

e- 1=

O.0

2

T Z =

../2

TI

P =

3p

y

c y

c

20

0.0

2

00

.0

T2 =

211'

Fm

Tk2

1.

3 -

R =

0.5

0 m

V90

T2 =

211'

Fm

Tk2

13~

--

R =

0.5

0 m

V90

10

0.0

c----

---T,

= 2

11'

./rii7

k,

--

Y=

0.7

5

T, =

2 7

T./r

ii7k,

--

Y=

0.7

5

= 1

.00

1

00

.0

= 1

.00

(,

= c

/2./

riiT

k,

a::

1.2

= 1

.125

(,

= c

/2 ./r

iiTk,

gs 1.

2 \

= 1

.125

0

= 1

.25

I-p

jk,

/ I-

. \

= 1

.25

50

.0 f

---

P y

u 1.1

=

1.5

0 5

0.0

y

I, _

_ (

) ~

[,1

. =

1.5

0

~

~ 1.

75

I. ~k

,.. =

v ,

max

/ Vy

~

1.75

~

~ /7

2

IJ...

t.

I:::!...

~

1.0

I:::!...

V

y ~

[,0

2

0.0

--

l 2

0.0

--

l a::

t;

0.9

a::

i=

0

.9

0 0

u I-

10

.0

=>

I-1

0.0

=>

u

0 u

o 0

8

~ IJ.

.. 0

.8

~

IJ...

>-5

.0

0 >-

5.0

0

I-~

0.7

I-

~

0.7

--

l --

l i=

I-

i=

~

u 2

.0

<{

0.6

u

2.0

<

{ 0

.6

=>

a::

=>

a::

0 <

{ 0

<{

Z

>

0.5

z

-.......

>

0.5

1.

0 IJ.

.. 1

.0

IJ...

<{

0 <

{ 0

lJJ

lJJ

::!:

I-0

.4

::!:

I-0

.4

0.5

z

0.5

z

lJJ

lJJ

~

0.3

~

0.3

IJ.

.. IJ.

..

0.2

1

~."

\ \

1 IJ.

.. 0

.2

IJ...

HI;."

lJJ

02

~

0.2

o

. u

u 0.

1 I

~ ..

WI

.\'.

0.1

0.1

0.1

0.0

5 I

I

I I

II

I I

I I III

I Ib

J 0

, I

I II1

I1

11

11

1

I I

I 0

.05

1

I I

I II

I

I I

I III

l'i.l

0

0.1

0.2

0

.5

1.0

2.0

0.

1 0

.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

1.0

2.0

0.

1 0

.2

0.5

1.

0 2

.0

TI

(SE

C.)

T

I (S

EC

.)

TI

(SE

C.)

T

I (S

EC

.)

FIG

. 1

2a

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

FIG

. 1

2b

M

EAN

D

UC

TIL

ITY

FA

CT

OR

S A

ND

C

OR

RE

SPO

ND

ING

C

OE

FF

ICIE

NT

S

OF

VA

RIA

TIO

N

FOR

T

RIL

INE

AR

C

OE

FF

ICIE

NT

S

OF

VA

RIA

TIO

N

FOR

T

RIL

INE

AR

S

TIF

FN

ES

S

DE

GR

AD

ING

M

OD

EL

HA

VIN

G

DIF

FE

RE

NT

S

TIF

FN

ES

S

DE

GR

AD

ING

M

OD

EL

HA

VIN

G

DIF

FE

RE

NT

ST

RE

NG

TH

L

EV

EL

S ST

RE

NG

TH

L

EV

EL

S

Page 59: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

TYPE

D

EAR

THQ

UAK

E ';1

=0

.02

T

2 =

2T

I P

=

2

P

y c

10

00

T2

= 27

1'..j

iii7k

2

1.3

--

P. =

0.5

0 m

V90

50

.0 f

---

T, =

271

'../ri

iTk,

--

Y=

0.7

5

',=

c/2

.Jm

7k,

= 1

.00

a::

1.2

= 1

.125

R~M

= 1

.25

0 2

0.0

f---;

/ '~

"'fi.=ii(tlmax/Vy

I-=

1.5

0 ~

1.1

= 1

.75

C

/'"

I 2

"---

LL

Vy

~

1.0

I::

:i..

10

.0

::::i

a::

I-0

.9

0 5

.0

C,.)

l-

=>

U

00

. 8

it LL

>-2

.0

0

I-~

0.7

-l i=

1.0

I-

C,.)

<

! 0

.6

=>

a::

0 <

! 0

.5

> 0

.5

z <!

LL

W

0 :E

I-

0.4

0

.2

z w

C,.)

0

.3

0.1

I ~~.V,\ I

LL

LL

8:: E

0.0

5 I

~.\I

0.0

21

,

I [

I!

I I

I I

I! I

, I

I I

, I,

I,l

l II

II

, I~

o

' 0.

1 0

.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

1.0

2.0

TI

(SE

C.

) T

I (

SE

C.)

FIG

. 1

2c

MEA

N

DU

CT

ILIT

Y

FAC

TOR

.S

AN

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AR

I1\T

ION

FO

R

TR

ILIN

EA

R

ST

IFF

NE

SS

D

EGR

A_D

ING

M

GO

BL

HA

VIN

G

DJ:

FF'E

R'E

NT

ST

RE

NG

TH

L

EV

EL

S

TYPE

D

EA

RTH

QU

AK

E ';

1=

0.0

2

T2

= 2

lj

P

= 3

p

y c

10

0.0

T2

= 27

1'..j

iii7k

2

'l --

p. =

05

0 m

V90

T,

= 2

71' ..

/riiT

k ,

--

Y=

07

5

50

.0

" =

c/2

Jm

7k,

=

1.0

0

I. 2

\ =

1.1

25

Ijk

, /'

a::

0

= 1

.25

/ '~"'fi.=ii(t)max/Vy

I-=

1.5

0 2

0.0

C

,.)

1.1

= I.

75

./

,

2 <

! LL

Vc

Vy

>-

I:::i.

. 1

0.0

I-

1.0

-l

a::

I-0

.9

0 5

.0

C,.)

l-=>

C

,.)

0 <

! LL

0

.8

LL

2.0

0

>- I-~

0.7

-l

t= i=

1

.0

C,.)

<

!

=>

a::

0 <

! 0

.5

>

0.5

z <

! LL

W

0

:E

I-0

.4

0.2

Z

W

C,.)

0

.3

0.1

LL

LL ~

0.2

0.0

5

C,.)

0.1

0.0

2 '

,

IIIIIIIIII!

I ,

0 0.

1 0

.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

1.0

2.0

TI

(SE

C.

) T

I (S

EC

.)

FIG

. 1

2d

M

EAN

D

UC

TIL

ITY

FA

CT

OR

S A

ND

C

OR

RE

SPO

ND

ING

C

OE

FF

ICIE

NT

S

OF

VA

RIA

TIO

N

FOR

T

RIL

INE

AR

S

TIF

FN

ES

S

DE

GR

AD

ING

M

OD

EL

HA

VIN

G

DIF

FE

RE

NT

ST

RE

NG

TH

L

EV

EL

S

,):>.

U1

Page 60: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

TY

PE

B

02

E

AR

THQ

UA

KE

~1=O

.O2

T2 =

..!2

TI

P

= 2

p

y c

20

0.0

T2

= 2

7T

.Jm

7k2

1.3

--

p. =

0.5

0 m

V90

I 00

. o

.l--

----

T, =

2 7r

...;m

7i<,

--

Y=

0.7

5

= 1

.00

~, =

cf 2

.,(rii

7k,

~

1.2

= 1.

125

0

P~~

I-=

1.2

5 ()

= 1

.50

50

.0 I

--\:

--Y

/

'%

ii =

" (t

) Iv

Li:

1.1

c.:Jk

m

ax

y =

1.7

5 /,

2

I::L

>- I-1.

0 2

0.0

..

J ~

I-0

()

I-1

0.0

::

J ()

.0

« u..

O

.S

u..

>-5

.0

0

I-Z

..J

o 0

.7

i=

;::

()

2.0

«

0.6

::

J ~

.0

« z

1.0

>

0.5

«

u..

w

0 ::E

I-

0.4

0

.5

z w ~

0.3

u..

0

.21

";

'1

u.. ~

0.2

()

0.1 ~

I I

0.1

I , I

, '

I I "'

I ,

0.0

5

' 0.

1 0

.2

0.5

1.

0 2

.0

0.2

0

.5

1.0

2.0

TI

(SE

C.)

TI

(S

EC

.)

FIG

. 1

3a

MEA

N

DU

CT

ILIT

Y

FAC

TO

RS

AN

D

CO

RR

ESP

ON

DIN

G

CO

EF

FIC

IEN

TS

O

F V

AR

IAT

ION

FO

R

TR

ILIN

EA

R

ST

IFF

NE

SS

D

EG

RA

DIN

G

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

STR

EN

GT

H

LE

VE

LS

TY

PE

B

02

E

AR

TH

QU

AK

E

e- 1=

O.0

2

T2 =

..!2

TI

p =

3p

y

c

20

0.0

T2 =

2 7

T.J

m7k

2

'T --

p. =

0.5

0 m

V90

T, =

2 7r

...;m

7i<,

:~ ~ -

-Y

=0.7

5 1

00

.0

~

= 1

.00

0 =

1.12

5 I-

jk,

/ ()

= 1

.25

50

.0

« =

1.5

0 I,

__

(

) u..

/

~k

I'-=

V 'm

ax

Ivy

= 1

.75

/T 2

>-

I::L

t: V

y ..

J 1.

0 2

0.0

;::

~

g 0

.9

0 I-1

0.0

.0

()

u..

« o

O.S

u..

>-5

.0

z I-

0

..J

i=

0.7

;::

« ()

2.0

~ 0

.6

::J

.0

>

z 1

.0

~

0.5

« w

I-

::E

~

0.4

0

.5

()

iL

0.3

u..

w

0

.2

8 0

.2

0.1

§

I--J

0.

1

I I

I II I

, "' I

0

0.0

5

I 0.

1 0

.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

1.0

2.0

TI

(SE

C.)

T

I (S

EC

.)

FIG

. 1

3b

M

EAN

D

UC

TIL

ITY

FA

CT

OR

S A

ND

C

OR

RE

SPO

ND

ING

C

OE

FF

ICIE

NT

S

OF

VA

RIA

TIO

N

FOR

T

RIL

INE

AR

S

TIF

FN

ES

S

DE

GR

AD

ING

M

OD

EL

HA

VIN

G

DIF

FE

RE

NT

ST

FBN

GT

H

LE

VE

LS

"'" (j\

Page 61: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

TYPE

B

02

EA

RTH

QU

AK

E ';1

= 0

02

T

2 =

2T

I P

=

2 P

y

c

10

0.0

T2

~27T

Fm7k

2 I

3 --

p. ~

0.5

0 m

V90

50

.0 f

----

T, ~

27T

./rTi

Tk,

--

Y~0.

75

~ 1.

00

" ~ c

/2 J

m7k

, 1.

2 ~

1.12

5 a::

:

1.25

~

0 ~

1.50

2

0.0

~

D f-

/ '~;'--jL:V(I)mox/Vy

l- <..)

1.1

:

1.75

./

,

2 <

{ -'-

----

u..

Vy

>-I:::

!...

10

.0

I-1.

0

--1

a::

\ i=

0

.9

0 5

.0

<..)

l-=>

<

..)

o 0

.8

<{ u..

u..

2.0

0

>- I-~

0.7

--1

I-

i=

1.0

<..)

<

{ 0

.6

=>

a::

0 <

{ 0

.5

>

0.5

z <

{ u..

w

0

~

I-0

.4

0.2

z w

<

..)

0.3

0.1

1 '~I

u..

u.. ~

0.2

0.0

51

<

..)

0.1

0.0

2l

1 I

I I I

I

I "

I I I

I I

0 0.

1 0

.2

0.5

1.

0 2

.0

0.1

0.2

0.

5 1.

0 2.

0

TI

(SE

C.

) T

I (

SE

C.)

FIG

. 1

3c

lVlE

AN

DU

CT

ILIT

Y

Fli

Cl'

OR

S

l\~\

TD

CO

RR

ESP

ON

DIN

G

CO

EFE

'ICIE

N::'

:'S

OF

VIJ,

.R~~

.:::

TI(i

N FO

R

TR

ILIN

El-

1R

STIF

F)\1

ESS

DEGRAD~-i\iC

j'/iC

;')F

":

I-lA

ITTN

C D

TE"F

EREN

'? S'

l'REN

GTI

-I L

EV

EL

S

TYPE

B

02

EA

RTH

QU

AK

E ';

1=

0.0

2

T2

= 2

TI

P

= 3

p y

c

10

0.0

T2~27TFm

7k2

''t --

p. ~050 m

VgO

T, ~

2 7T

./rT

iTk,

--

Y~0.

75

50

.0

~ 1.

00

" :c

/2Jm

7k,

1.2

: 1.

125

a::

: 1.

25

0 :

1.50

I-

20

.0

<..)

1.1

:

I. 75

<

{ u..

Vy

>-1:

:1..

10

.0

I-1.

0

--1

a::

i=

0.9

0

5.0

<

..)

l-=>

<

..)

o 0

8

<{

u..

u..

.

2.0

0

>- I-~

0.7

--1

i=

1.0

I-<

..)

<{

0.6

=>

a::

0

<{

0.5

>

0

.5

z <{

u..

w

0

~

I-0

.4

0.2

z w

(3

0

.3

0.1

u..

u.. ~

0.2

0.0

5

<..

)

0.1

0.0

2

0 0.

1 0

.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

1.0

2.0

TI

( S

EC

.)

T,

(SE

C.)

FIG

. 1

3d

M

EAN

D

UC

TIL

ITY

FA

CT

OR

S A

ND

C

OR

RE

SPO

ND

ING

C

OE

FF

ICIE

NT

S

OF

VA

RIA

TIO

N

FOR

T

RIL

INE

AR

S

TIF

FN

ES

S

DEG

RA

DIN

G

MO

DEL

H

AV

ING

D

IFF

ER

EN

T

STR

EN

GT

H

LE

VE

LS

"'" -...J

Page 62: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

48

5.0~~~----~--~----~--~--~----~------~~

_ fL q =-=-

}L

1.4

4.0 t-----+-----+-----+-----+---+----j------+---+-f-+_ I. 3

1.2

1.1

1.0 o ~ 3.0~---+---~----~----+--4--~--~yy~+-~~~

c:: a:: o t­U

~ >=

0.8

0.7

0.6

0.5 ~ 2.0t-----+---~----~----+_-4~~77~~~~~~~

0.4 -I

~ U :::> o

0.3

0.2

0.1

1.0 c= 0 =--r---+------+-----~ 0

0.1

0.2 0.3

0.4 0.5 0.6

0 0.05 0.2 0.4 0.6 0.7 0.8 0.9 0.95

PROBABILITY DISTRIBUTION FUNCTION, P(q])

FIG. 14 PROBABILITY DISTRIBUTION FUNCTIONS FOR DUCTILITY FACTOR RATIOS ON GUMBEL PLOTS

Page 63: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

10

CD

::i..

0:: o t­ O ~

>­ t- -.-J 1=

o ::>

o

TYPE

A

EA

RTH

QU

AK

E

'=0

.02

T

=.I

2T

p

=2

p

I 2

lye

20

0.0

.-, ------------,

T, =

2 ...

.jffi

7k,

T, =

2 ... .J

rii7k,

e, = c

12 ../

riiIk,

jk,

//

Ir

T

_ I

0ik

, 1

'-.5

-v .

5

Vy

'/

I

Vy

0.5

1

"" ~'._ ...

... I

0.2f

--1 ---------1

0.1

f-I -----------1

0.0

51

[ I

! I

I I

I I

I , I!

I I

!

'=0

.02

T

=

-i2

T.

p =

3p

I

2 lye

--

R =

0.5

0 m

Vgo

--

Y=

0.7

5

L\

= 1

.00

=

1.1

25

= 1

.25

=

1.5

0 =

I. 7

5

0.1

0.2

0.5

1.

0 2

.0

0.1

0.2

0

.5

1.0

2.0

T

I (S

EC

.)

FIG

. 15

0.

RE

SPO

NSE

D

UC

TIL

ITY

Fl

,C'I'

OR

S FO

R

85

9 6

LE

VE

L

ON

PRO

B1.

l,13I

LI':

:'Y

DIS

TR

IBU

TIO

N

FUN

CT

ION

S

III ex>

::i..

0::

0 t- O

<t

ll.. >- t- -.-J i=

0 ::>

0

TYPE

A

EA

RTH

QU

AK

E

'1=

0.0

2

T2

=2

TI

Py =

2p c

10

0.0

,r-----------,

T, =

2 7T

.;;;

;7k,

50

.0

20

.0

10

.0 t\

\ ~ l(

/ -yk

, '~

lie

V

y

5.0

2.0

t-"',

1.0

0.5

0.2

0.1

0.0

5

0.0

2'

I I

I I!

I !

!! I!'

! I

'1=

0.0

2 T2

=2~

P y =

3P c

--

R =

0.5

0 m

Vgo

--

y=

0.7

5

I \

= 1

.00

\

= 1

.125

= 1

.25

=

1.5

0

= I.

75

0.1

0.2

0.5

1.

0 2

.0

0.1

0.2

0.5

1.0

2.0

TI

(S

EC

.)

FIG

. 1

5b

R

ESP

ON

SE

DU

CT

ILIT

Y

FAC

TO

RS

FOR

85

%

LE

VE

L

ON

P

RO

BA

BIL

ITY

D

IST

RIB

UT

ION

FU

NC

TIO

NS

..,. ~

Page 64: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

50

CQ

~ I-« !l::

I l-e.!)

Z w !l:: I-(f)

0 w !l:: ::; 0 w !l::

CQ

~ I-« !l::

I I-(!)

z W !l:: I-(f)

0 w ~ ::> 0 w !l::

f1, =2 80 T2 = ./2T,

Py = 3 Pc

1.7 (0 )

1.6

1.5 /

/

\ 1.4

,

1.3

1.2

1.1

1.0.

0.9

0..8

0.7

0.6

0..5

fL80 = 2 T2 = .j2 T,

Py = 2 Pc

( b)

~ , , \

\

~~. / \\ \\

'\\ ~\ \\ \\

\\ \

\ I I I I j

fL80 .= 2

(c)

\ \ \

fL80 = 2

(d) -- TYPEA -- TYPE B -.- TYPE C

----- TYPE D

Py {3=--=­

m Vgo

0..1 0..2 0.5 0..1 0..2 0..5 0.1 0..2 0..5 0..1 0..2 0..5

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0.

0..9

0..8

0..7

0..6

0..5

fL80= 4 T2 =./2 T,

Py = 3Pc

(0 )

~ '\~\

\\ '\~ \\~

\'~ .~

f\ \ \

[ [ [ 1[[

TI (SEC.)

fL80=4 T2 =./2T,

Py = 2 Pc

( b)

, , .~ ~ \

,\ \\ \\ \:~ . ..

I [ I 1\.1 I

fL80 = 4 T2 = 2T,

Py = 3 Pc

(c)

\

~ '\ '\ \\

\';\ \ \ .-

I \ I I II

fL80 =4 T2 = 2T,

Py = 2 Pc

(d) -- TYPE A -- TYPE B

1----.- TYPEe

----- TYPE D

I--- Py {3=~

I--- m Vgo

,

~ \'\\, \~l

\\ \~ \,

I \~I I I I I 0..1 0..2 0..5 0..1 0..2 0..5 0..1 0..2 0..5 0..1 0..2 0..5

TI (SEC.)

FIG. 16 REQUIRED STRENGTH RATIOS FOR STRUCTURAL MODELS, DUCTILITY FACTORS, PROBABILITY DISTRIBUTION LEVELS AND EARTHQUAKE TYPES INDICATED

Page 65: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

en.

Q f-<l: a::: I f-(!)

Z w a::: f-en 0 w a::: :::J CI w a:::

52 ~ 0::

:r: I­<.!l

j-L8s=2 T2 =J2T,

1.7 Py =3pc

( 0 )

1.6

,'I. I \

1.5

14

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.2 0.5 0.1

~8S=4 T2 =v'2T,

I. 5 .-___ --'P ,,-=_3_P...:.c-,

(0 ) 14 r---------j

1.3 1----------1

I. I v----'~----___I

j-L 8S=2 T2 = f2T, j-L8s=2 T2 = 2 T, j-L85 =2 T2 = 2 T,

Py = 2 Pc P y = 3 Pc Py = 2 Pc

(b) (c) (d)

-- TYPE A -- TYPE B

_.- TYPE C

----- TYPE D

f3=~ m Vgo

0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

TI (SEC)

~8S=4 T2=f2T, P, =2P c .-___ P'-','--=_3_P...:.C -, P, = 2 Pc

(b) (C) (d) --TYPE A -- TYPE B _.- TYPE C

------ TYPE D

f3=+ m Vgo

I---------l ,

~ I.Or-----;h\r----j I 1--';--------: 0:: I­en o W 0::

0.9 r------1-\1r----j

::> 0.8 f----11\\-----1 c w 0::

0.7 r------\---'<------i

0.6 1----------1

O. 5 L---'---'-.LL...LL.LL~ 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

T, (SEC)

FIG. 17 REQUIRED STRENGTH RATIOS FOR STRUCTURAL MODELS, DUCTILITY FACTORS, PROBABILITY DISTRIBUTION LEVELS AND EARTHQUAKE TYPES INDICATED

51

Page 66: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

52

1.7

1.6

1.5

Ql. 1.4

0 i= 1.3 <t 0:

I 1.2 I-l? Z w 1.1 0: I-(f)

1.0 0 w I!: 0.9 :)

a w 0.8 0:

0.7

0.6

0.5

1'-90 =2

(0 )

f'.,

/ \ \

\

T2 =./2 T,

Py = 3 Pc

\ , \

1'-90 = 2 T2 = ./2 T,

Py = 2 Pc

( b)

'\ \.

\ .-'I' .. '

//-:y, /0;\\

V 1 -.... , ,

\ \ \\

,\\~

\ \

L 1 -' J J

1'-90 =2 T2 = 2T,

Py = 3Pc

(C)

, , \

\ \

0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2

Ql.

1'-90 =4 T2 = ./2T, Py = 3Pc

1.7 (0)

1.6 1--------1

1.5f------

o 1.4 f--------I

i= ~ 1.3 t---=------

I t; 1.2 I"-~'o------_I z W 0: 1.1 1---'"*----1 I­(f)

o W 0:

1.0 1-------'cIt-----j

:) 0.9 f------I\\----I a w 0: 0.8 I----~+_---j

0.7 f-----+-;-\__-I

0.6 I-------'r'--I

0.5 '----'---.L....l....L.J...LLL1-U

TI (SEC.)

1'-90 =4 T2 =./2 T,

Py = 2 Pc

(b)

-"'\

..... \ ,/~ '\,

~\ '~,

\, '\ \\

\.

I I I I I

1'-90 =4 T2 = 2T, Py = 3Pc

(c)

\ \ \

~\\ \\\

~\ W' .~~

\\ I I ~ I II

I'- =2 gO T2 = 2 T,

Py = 2 Pc

(d) -- TYPE A

-- TYPE B -.- TYPE C

----- TYPE D

Py {3= ---.=;

mVgo

\ , ,

1'-90 =4 T2 = 2T,

Py = 2 Pc

(d) -- TYPE A

-- TYPE B r---___ TYPE C

----- TYPE D

r-- Py (3=---.=;

r-- mVgo

\ \ \

~\ \\~ ~

\\\ \~ \~ \\

I 1\ III 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

TI (SEC)

FIG. 18 REQUIRED STRENGTH RATIOS FOR STRUCTURAL MODELS, DUCTILITY FACTORS, PROBABILITY DISTRIBUTION LEVELS AND EARTHQUAKE TYPES INDICATED

Page 67: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

<l:l.

0 i= <[

0::

:r I-t9 Z w 0:: I-en 0 W 0::

~ 0 w 0::

<l:l.

0 I-<[ 0::

:r I-t9 z W 0:: I-en 0 w 0::

~ 0 w 0::

fL95 = 2 T2 =hT,

Py = 3Pc

1.7 (0) ...

\ \ \

1.6

/'1 \ 1.5

. ,

f 1.4

1.3

1.2

1.1

1.0

0.9

08

0.7

06

0.5 0.1 0.2 0.5

,u95=4 T2 = ./2T,

Py = 3 Pc

1.7 (0)

1.6 1--------1

1.5

1.4 /

1.3

1.2

1.1

1.0

0.9

08

0.7

0.6

0.5

fL95 = 2 T2 =hT, fL95 = 2 T2 = 2 T,

Py = 2Pc Py =3Pc

(b) (c)

, , , -..

\ , ~ ,

\ \

0.1 0.2 0.5 0.1 0.2 0.5 TI (SEC.)

,u95 =4 T2 =./2 T,

Py = 2 Pc

(b)

" / , \ \

N ' .. \

\~\

\~ ~ \0,\

1 1 1 1'1

fL95=4 T2=2~ Py = 3~

(c)

, , , , ,

~, " ~\

~\ . \ \

'\" . .. ,

\\ \ \~

1 1,\ I II

fL95 = 2 T2 = 2T,

Py = 2 Pc

(d) TYPE A

TYPE B

TYPE C

TYPE D

Py f3 = -----;0;

m Vgo , \

\ \ ,

0.1 0.2 0.5

,u95 =4 T2 = 2T,

Py = 2 Pc

(d) -- TYPE A

-- TYPE B -_.- TYPE C

----- TYPE D

c---- Py f3 = -----;0;

I--- mVgo

\ \

\

~\ \\~\

~~. .\

1 I ~ III 0.1 0.2 0.5 0.1 0.2 0.5 0.1 02 0.5 0.1 0.2 0.5

TI (SEC,)

FIG. 19 REQUIRED STRENGTH RATIOS FOR STRUCTURAL MODELS, DUCTILITY FACTORS, PROBABILITY DISTRIBUTION LEVELS AND EARTHQUAKE TYPES INDICATED

53

Page 68: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

54

<Xl.

0 i= « a:: :I: ~ (!)

z w a:: ~ (/)

Q

w a:: S 0 w a::

en.

~ ~ « a:: :I: ~ (!) Z w a:: ~ (/)

Q w !!: :::> 0 w a::

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

1-'-80 = 6 T2 = .j2 T, Py = 3Pc

(0 )

~;~ \ \

''<\\ \\\ \\\

'~

I I I I II

1-'-80 = 6 T2 = .j2 T,

Py = 2 Pc

(b)

~ .~

.,

,~

\ "\ ..

I I I II I

1-'-80=6 T2=2T, Py = 3 Pc

(c)

~ \~

'\\ t\

\'

I \1 I, I I I

1-'-80 = 6 T 2 = 2 T, Py = 2 Pc

(d) - TYPEA

-- TYPE B --.- TYPEC

----- TYPE D - Py

f3=~ - m Vgo

:~ \\~ \~

1\ 1111 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

1-'-85= 6 T, = .j2 T,

Py = 3 Pc

(a)

~

\~~ '\ .. .

,,~~

\~ \\~ ~\\ "X I I) I' I

1-'-85 = 6 T, = .j2T,

Py = 2 Pc

(b)

~ '~ ~ .'

"~ \~

\

T, (SEC.)

1-'-85=6 T,=2T,

Py = 3 Pc

(c)

~ "\ .~

\ I I I I II I \ I I I I

I-'-85 = 6 T, = 2 T, Py = 2Pc

( d) - TYPEA -- TYPE B

1----.- TYPEC

----- TYPE D

- Py f3=~

- m Vgo

I~\

<:\ \\ \\ 1.\ I III

0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 T, (SEC.)

FIG. 20 REQUIRED STRENGTH RATIOS FOR STRUCTURAL MODELS, DUCTILITY FACTORS, PROBABILITY DISTRIBUTION LEVELS AND EARTHQUAKE TYPES INDICATED

Page 69: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

~ I-« a: :r: I-e.!)

z w a: I-en a w !!: :J a w 0::

~ I-« 0::

:r: l-e.!)

Z w a: I-en a w a: :J a w 0::

1'-90; 6 T2 = -12 T,

Py = 3 Pc

1.7 (0)

1.6 f---------1

I 5 f----------1

IA

1.3

1.2

I I

1.0

0.9

0.8

0.7

0.6

0.5

1'-90 =6 T2 = -I2T, Py = 2Pc

(b)

,

~ ~\

... -

\,~ . , \~ \' ,

I I ~,~ I

1'-90 = 6 T 2 = 2 T,

Py ; 3 Pc

(c)

\ \

\

'.~~ '~\ \~

\ \

I "I I I 1 I

1'-90=6 T2 ;2T,

Py = 2 Pc

( d)

-- TYPE A

-- TYPE B f--_._ TYPEe

----- TYPE D

f-- Py {3= --;:;

I--- mVgo

f-.

\

~'. I\\!, \\\ \~

'\ 1 \~I 1,1 1 I

0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

1'-95; 6 T2 =';-2 T,

Py = 3 Pc

1.7 "'(-"'0-'..) ____ -1

1.5 f--------j

IA

1.3

1.1

1.0

0.8

0.7

0.6

0.5

1'-95;6 T2 ; -I2T,

Py ; 2 Pc

(b)

, , )

F\\-~\ \~, \ \

\~ . \

\ '

\\

TI (SEC.)

1'-95;6 T2 =2T,

Py = 3 Pc

(c)

, ~, ~:, . ,

\ ,

\\ ~\ \~

I I .~ ~ I 11 I, I I I

1'-95 ; 6 T 2 = 2 T,

Py = 2Pc

(d) -- TYPEA -- TYPE B

f--- -.- TYPE C

----- TYPE D f-- Py

{3= --;:; I--- mVgo

, \

~, .~ . ,

\. \

\~ ,

1K \,

I \1 1 I II 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

T, (5 EC.)

FIG. 21 REQUIRED STRENGTH RATIOS FOR STRUCTURAL MODELS, DUCTILITY FACTORS, PROBABILITY DISTRIBUTION LEVELS AND EARTHQUAKE TYPES INDICATED

55

Page 70: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

56

at

Q I-et a:: :z: I-t!)

Z W a:: l-(/)

D w !!: ::::> 0 w a::

at

0 ~ <t a:: :z: l-t!)

Z W a:: l-(/)

D W

!!: => 0 w a::

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

fL80= 8 T2 = ../2T,

Py = 3 Pc

(a)

l:\ ." (.'\ '\,

\.

'1\ \ ~

\\ \'\

I I} I I I

fL80 = 8 T 2 = ../2 T,

Py = 2 Pc

(b)

~ \\ '~J

1).\\

\\ I "I \ I II

fL80 = 8 T2 = 2T,

Py = 3 Pc

( c )

~

~\ .\

. \~ \\~ \t ~ I I I I II

fL80=8 T2 =2T,

Py = 2 Pc

(d)

-- TYPEA -- TYPE B

I--- _._ TYPE C

----- TYPE D I--- Py

f3=~ I--- mVgo

\ \\ '~~ \ I I I II

0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

L7

L6

1.5

14

1.3

1.2

1.1

LO

0.9

0.8

0.7

0.6

0.5

fL85=8 T2 =hT,

Py = 3 Pc

(0 )

~ "\\ '\

\\ f~ b\ ~\\

\ I I I 1 II

fL85 = 8 T2 =./2 T, Py = 2Pc

(b)

~ r-, \~ \~

'~\\

\\

TI (SEC.)

fL85 = 8 T2 = 2T,

Py = 3 Pc

(c)

~ \\

~'~\I\ .~

1 1,\ I 1 1 ,\ 1 1 1 1

fL85 = 8 T2 = 2T, Py = 2Pc

(d)

-- TYPEA

t--- - - TYPE B -.- TYPEC

----- TYPE D t--- Py

f3=~ t--- m Vgo

~ \'\

\~~ .~

I 1 I II i 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

TI (SEC)

FIG. 22 REQUIRED STRENGTH RATIOS FOR STRUCTURAL MODELS, DUCTILITY FACTORS, PROBABILITY DISTRIBUTION LEVELS AND EARTHQUAKE TYPES INDICATED

Page 71: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

<ll.

~ l-e:( a: J: I-<!> Z w a: l-I/)

Cl w a: :::l CI W a:

<ll.

~ l-e:( a: J: I-<!> Z w a: l-I/)

Cl w a: :::l CI w a:

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

fL.a= 8 T2 = ../2 T,

Py = 3 Pc

(a)

\~ f"\,,,\

'\\ ~ \~\ \~\\

.~

"~ .~

I I I I II

fL.a=8 T2 =../2T,

Py = 2 Pc

(b)

\

~ .", . \

\\\

'\ \i

\\ I I ,\~ I I I

fL.o =8 T2 = 2T,

Py = 3Pc

(c)

~~ \\ ,\ '\ 1,\ I III

fLgo

=8 T2 =2T,

Py = 2 Pc

(d) - TYPEA -- TYPE S

-_.- TYPEC

----- TYPE 0 - Py

(3=~ - mVgo

\

~~ \\ \~

\~

I I I I II 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

fL.; 8 T2 = ../2T,

Py = 3Pc

( c;J )

~ ~\

'\ "\ \\\ \\~ .\

\~ I I \ II II

TI (SEC,)

fL., = 8 T2 = ../2T,

Py = 2 Pc

(b)

\

:-l, ~

'\ '~\

\X\ \

\~

I I ~ I I I

fL'5

= 8 T2 = 2 T,

Py = 3 Pc

(c)

\ \

~\ \~\ '~

'\ \'

I ,~ I I II

fL'5

= 8 T2 = 2 T,

Py = 2 Pc

( d)

- TYPEA _-- TYPES

_.- TYPEC

----- TYPE 0 -

Py (3=~

- m Vgo

\

~\

I\~~, \ \ ~, '" \~ \ I \ I III

0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 TI (SEC.)

FIG. 23 REQUIRED STRENGTH RATIOS FOR STRUCTURAL MODELS, DUCTILITY FACTORS, PROBABILITY DISTRIBUTION LEVELS AND EARTHQUAKE TYPES INDICATED

57

Page 72: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

58

<ll.

~ I-« n::: I l-t!)

Z W n::: I-en 0 w ~ ::J a w n:::

<ll.

~ I-« n::: I l-t!)

Z w n::: I-en 0 w ~ ::J a w n:::

3.0

2.5

2.0

(0 )

Py =1.9Pc Vy = lOVe

F-,r, ''.\ U ... \ \

,iY \\ \\ (} I. " \

1.5 r! 'I \,

1.0

0.5 0.1

3.0

2.5

2.0

\"\ \'iI. \ \\,\ \,\ .,

I I I I I I 0.2 0.5

fL90= 2 Py = 1.9 Pc

Vy = lOVe

(e)

fl. ./lY\\ r,r/ \ ~\

/l/ 'II \ \ i,// \\ \

/J/ ,,\ "\ ./ '~U

1.5 V \~\\ ~\\\ \~

"

1.0

0.5 I I I I I I

fLao =10 Py = 1.9 Pc

Vy = lOVe

(b)

;:~

IF'>---~\\ [;'~/A, ,\\

" \ \\ ,!, \~ ',\, \\.

I I I 1\1 I 0.1 0.2 0.5

1j

fL90= 10 Py = 1.9 Pc

Vy = 10 Ve

(f)

r\. I,F-"""", \

(1,0. , , :\\ I , \~

"'\ '\ \1-\\~~

"\\ I I I 1'1 I

(c)

Py = 1.9 Pc

Vy=IOVc

I~ .lL. \ \

fIt\ "\\ If/I '0.11

ijY ,,"\ \ \ r::l \\\\ II ,,\ \

I', \ \\\

\1" 1,\

I I II I I 0.1 0.2 0.5 (SEC.)

fL95 = 2 Py = 1.9 Pe Vy =IOVe

-.l g)

A r/I .~,

i''! / \ '\ /l/ \ 1\

/;// ~\'\' " Iii \\ \

... --f \~\ / ~

1/ l\ \

I I I I I I

fLa5 =10 Py = 1.9 Pc

Vy = 10 Vc

(d)

f---------- TYPEA

f----------- TYPE B --- TYPE C

f--------- ----- TYPE D f--------- Py I-- (3= -=-f--------- mVgo

7 •. --4'\ lf'l ',\\

/ ", \',,-'\ \. ~

.... \\ ~\~

\\" I -[ 11\1 I

0.1 0.2 0.5

fL95 = 10 Py = 1.9 Pe Vy = 10 Ve

(h)

f---'- TYPE A

I--- -- TYPE B _.- TYPE C

I--- _____ TYPE D

f--- Py f--- {3=~ I--- mVgo

~

//I'~ Il.?! \'\

I I

,,-..,-, " \'\

,,-~.~\

\\ ~

.~

I I I, I I I 0.1 0.2 - 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

T, (SEC.)

FIG. 24 REQUIRED STRENGTH RATIOS FOR STRUCTURAL MODELS, DUCTILITY FACTORS, PROBABILITY DISTRIBUTION LEVELS AND EARTHQUAKE TYPES INDICATED

Page 73: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

30

2.5 <!l.

~ I-« a:: I

2.0 l-e!)

Z W a:: l-(/)

1.5 0 w ~ :::l 0 W a::

1.0

0.5

f-Lao=1.5

(0 )

Py =1.9Pc,

Vy = 10 Vc

--

.1-... o'!~

l"f /\ \ I~ f// \1 '. \

d/J 'I". \ i / if I '. \ \ \

v"" ',\ \ I '.~\

~/ "1;\\ , ., 1,\

I I I I II

f-Lao=50 FY = 1.9 Pc

Vy = 10 Vc

( b)

~ i~A'\

1/ ~\\~

If ,.'-_, \ , , ,\ , ..... " \\

"'\\ \'\ ~ \:

I I I i I I

f-L = 1.5 a5

(c)

A

Py = 1.9 Pc

Vy=IOVc

riA. /j~ ~7 / \', '0-

/ / \., I " /"/1 I ~\\\

, )// \\ \\ f \\

1.1 \-\ r7 II

I I I I I I

f-La5=50 Py =1.9Pe Vy = 10 Vc

(d) ~- TYPEA

~ == ~~:~~ ~ ----- TYPE D ~ Py ~ f3=~ ~ m Vgo

/'~ 7/''::'''\-

C7.. \\ , / \ ,\ '0.,o

\\ ~\ \\\,\ ~ \'

I I I I I I 0.1 0.2 0.5 01 0.2 0.5 01 0.2 0.5 0 I 0. 2 0.5

3.0

~ 2.5 Cll.

~ I­« a:: I 2.0 l-e!)

Z W a:: l-(/)

o w a:: :::l o W a::

1.5

1.0

0..5

f-L90= 1.5 Py = 1.9Pe Vy = 10 Ve

(e)

1\ I ,

1"/,1\ i 1/ Ii),

.1,/ f\ \\ I i / / \\\~

: / / \, \ \ I 11/ \\ 11 ,.~

/J '~ V

.' I I I II I

TI (SEC.l

(f )

Py = 1.9 Pc

Vy = 10 Vc

~

h~ .... ' "-/\ ,\

t1i,' \ \ \\ , .. \~\

'\\ .~~ .~~

~~\ '\ ~

I I I I II

, ,

Py = 1.9 Pc

Vy = lOVe

(a) " I' , , , , \ ,

'1/-"" \ ,. i' " \ :\j:;~ , 'I I 1\ ~ , ! ; I m , , ! i I \

11 j \~I if " II \i

1/ . ,

I I I, II I

(h)

Py = 1.9Pc Vy = 10 Vc

-'- TYPE A

--- TYPE B TYPE C

------ TYPE D - Py - f3=~ - m Vgo

~ 7 " \\ 1 \ -.\

I;" '" \\ -m ~ \\ ~ '~

'i

I I I I I I

0..1 0..2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 TI (SEC.)

FIG. 25 REQUIRED STRENGTH RATIOS FOR STRUCTURAL MODELS, DUCTILITY FACTORS, PROBABILITY DISTRIBUTION LEVELS AND EARTHQUAKE TYPES INDICATED

59

Page 74: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

60

<n.

0 i= « a:: I: I-(9

Z w a:: I-m 0 w a:: ::>

" w a::

<n.

2 I-« a:: I: I-(9 Z w a:: I-m 0 W a:: ::>

" w a::

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

fL = 2 T2 = .j2 T,

Py = 3 Pc

(a) ,

I I I

I

1\

~\\ ~\ \~\ ~\

\\1

1 1 1 1 II

TYPE B02 EARTHQUAKE fL=2 T2 =.j2 T,

Py = 2Pc

(b) . , I

]/1'\ \ fh\l\

~/I \ I

V '1 1

I: ., Ii 11\:

!~\ \1

I ·1

I \ I

.1

1\\

~;\ \\ \\\

1 1 1 1 0

fL = 2 T2 = 2 T, Py = 3 Pc

(c)

l/ \ i -'\ \ I

\i l

\i\ ~(I III

·1

\\\ I .1

\1\ I I

II .1

~\ '1

~\ ,~

\ •

1 1 1111 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

I

fL = 4 T2 = .j2 T, Py =3Pc

• (a) I

I

....... ...,\

"-1,\1

IAil

V ~I\ ~\\ ~;\ ~\\ ~\\\

\1)

t \

~;\ ,~\

1 1 1 I~ 1

T, (SEC.)

TYPE B02 EARTHQUAKE fL = 4 T2 =.j2 T,

Py = 2 Pc

(b)

I , I ,

vA",

.\

\\ .\

fL = 4 T2 = 2 T, Py = 3 ~

(c)

, , ,

~\\ \ II \,1\

,~\ \\\

~~, ~\ \~ ~\ \ ~\

\ \

\

1 1 \~, 1 1 1

fL= 2 T2 = 2T, Py = 2Pc

(d) -- fLeo

-- fLe5

- - fLso

----- fLS5 -'\

Py (3= ---

m Vgo

fL=4 T2 =2T, Py = 2Pc

(d) -- fLeo

-- fLe5

- - fLso

----- fLS5

Py {3= ---

m Vgo

0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

T, (SEC.)

FIG. 26 REQUIRED STRENGTH RATIOS FOR STRUCTURAL MODELS, DUCTILITY FACTORS, PROBABILITY DISTRIBUTION LEVELS AND EARTHQUAKE TYPES INDICATED

Page 75: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

1.7

1.6

<l'l. 1.5

0 IA I-« a: 1.3

::I: I- 1.2 l!)

Z W a: I I I-Cf)

Cl 1.0 w a: :::> 0.9 0 W a: 0.8

0.7

0.6

0.5

J1- = 6 T2 = .j2 T,

Py = 3 Pc

(0 )

\ /' \ /

\

i' ~11\

~\ \

!\ ~I

1\ \ '\ \

\ .\

~\ ~~ ~

I 1 1 III

TYPE B02 EARTHQUAKE J1- = 6 T2 = .j2 T,

Py = 2 Pc

(b)

-"-\

" h

K~i\ l~\

~\ ~\ t

~~\

't I 1 1 1 1 1

J1-=6 T2 = 2T,

Py = 3 Pc

(c)

\ \ \

\'. .\\

'i\ .\ ~~ ~\\ ~~\ \~\ .\ ~:~

1 'I 1 1 II

J1-=6 T2 =2T,

Py = 2 Pc

(d) -- J1-ao -- J1-a5

- - J1-90

----- J1-95

0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

J1-=8 T2 =J2T,

Py = 3 ~

1.7 f-'(c.::0'-!)'---___ ----i

1.6 f---------1

I. 5 +-,----------1 \

" o 1.4 1+---".--

I­« a: ::I: I­l!) Z

~ 1.1 1---"'"*----] I­Cf)

Cl W a: :::> o w a:

0.7 i-----\W\-----i

0.6 1------\\\---]

0.5 '----L--'---l--L-J-LLLLLJ

T, (SEC.)

TYPE B02 EARTHQUAKE J1-=8 T2 =J2 T,

Py = 2 Pc

( b)

\

[\~." M\ \\'-\

'V il \11

h;\

\~ l

.\

\\ I'

I I ,~.I I

J1- = 8 T 2 = 2 T,

Py = 3 Pc

(c)

\ \

. \

~ \

l\ '\\ ,~ \

\ t\

\

\

1 'I 1 1 1 1

J1-=8 T2 =2T,

(d)

Py = 2 Pc

-- /Lao

-- J1-a5 - - J1-90

----- J1-95

Py {3= ---

m Vgo

0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 T, (SEC.)

FIG. 27 REQUIRED STRENGTH RATIOS FOR STRUCTURAL MODELS, DUCTILITY FACTORS, PROBABILITY DISTRIBUTION LEVELS AND EARTHQUAKE TYPES INDICATED

61

Page 76: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

<U..

0 I- <t

Q: ::r:

I- (!) z W

Q:

I- en

Cl

w

Q:

:J

0 W

Q:

J-L

=2

3.0

(a

)

2.5

II

2.0

fl I /f til tl

1.5

if ,/

l ,.

1.0

Py=1.9~

Vy

= lO

Ve

, II

i /

iT I

ill

I i I

\ \ \; III 1\\\

\\.

\ \ \ .\

TY

PE

B

02

E

AR

TH

QU

AK

E

J-L

= 1

0 P y

= I.

9 P

e V

y =

lOV

e

( b )

--

J-L80

--

J-L85

_

. -

J-Ls

o ~

-----

J-LS

5 - -

P y (3

=--

-;:;

-

m V

go

-

/1

I 1

I \

.l~~·

\ /.V~~I

~

'\\ "

tt

l\ "

11\ ,~\ \~, t,\ ~~~

J-L

= 1

.5

(c)

I j j 1 1 -:1

~l

P y =

1.9

Pe

Vy

= l

OV

e

~ , ~\ ., , 1\

' , .1 I I .\

, 1 I .\ 1

J-L

=5

( d )

, I /~

/f/

/'

I ,

P y =

1.9

~

Vy

= lO

Ve

, i,;

'~'

'/ '

!~~

1/,11

., f.

\ I.~

~ .

\ . , . , \ \ . , \ \ \\ ' t\

\\i\ ~ 1-:, ,(~, \h ~

0.5

0.1

I I

I I

I I

0.2

0

.5

0.1

I I

I I

I I J~

U_

I I

I I

I I

I I

I I

I I

I 0

.2

0.5

0.

1 0

.2

0.5

0.

1 0

.2

0.5

TI

(S

EC

.)

FIG

. 2

8

RE

QU

IRE

D

STR

EN

GT

H

RA

TIO

S FO

R

STR

UC

TU

RA

L

MO

DE

LS,

D

UC

TIL

ITY

F

AC

TO

RS

, P

RO

BA

BIL

ITY

D

IST

RIB

UT

ION

L

EV

EL

S A

ND

EA

RTH

QU

AK

E T

YPE

S IN

DIC

AT

ED

(})

to

Page 77: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

63

APPENDIX A

COTvIPUTER PROGRA"1 "SHOCHU"

Page 78: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

C C C C C C C C C C C C C C C C C C C C C C C C C

C

C

C

64

PROGRAM S~OCHU ( INPUT, OUTPUT, PUNCH

• • • • • • • • * • * • * ~ * • • * * • * * * * * * * *.* * * • *

INPUT DATA

MCONTL

MCONTL 0 1

" 2

'" ·3

,. 4

INDEA FO~ ~1~DS OF JuB

STOP PSEUDU EA~TH~UAKt ~tNEKATION

EARTHQUAKE ~tNE~AT1UN.AN0 ~ESPON~E ANALYSl~ UF ORIGIN-URIENTtD SHEAR MJOEL EAKTH(JUAII.E GENEKATION A,~,) KESPUN~E Ar"ALY~I~ UF TRI-LINtAR STi~FNES~ OE~RAOING FLEXJ~E ~COEL EARTHQUAKE GENERATIUN AN,) RESPUNSE A~ALY~lS ~F

BOTH ,.-IJDELS

• * * • • * • * * * * • * * * * * * • * * * * * * * * * * * * * * DATA ARE READ IN THE CORRESPONDING SUBROUTiNES ( PSEQGN , ORIGIN , OTR1Ll )

NSlEP 2 NUMBER OF INTERPULATION OF ACCELEkOGRAM

• * * • • • * • • * • • • • * * * * * * • • * * * • • * * * * * *

COM;-10N AA! 32000) COMMON ICNTRll NEQREC,T,DT,EAMAX,DA~P,Fu,Tl,TO,CE2,NUUTlo),HED(u) 1.NEQ,ISHAPE,ACC~AX(~J),VELMAXI40J,DiSMAXI401

COMMJN IGE~CI PI2,Nu,NI,NDEC,NTOT,AMPL,Ol,G2,u3,O~,wJ,o.c, 1 Al,A2,A3,A4,A5,Ao,A1,CL,OL,NACC,N~EL

1 READ 100, MCONTL

IFI MCONTl.EQ.O I GO TJ 2

C PSEUDO EART~~UAKE GENE~ATION

C CALL PSEQGN

C IF I MCONTL .E\.i. 1 ) GO TO 3

C C LINEAR INTERPOLATIUN uF tAKTH\.iUAKE ACCELERATIuN C

C

C

NSTEP"'Z NTOTZ=NSTEP*NTOT TH=DT/FLUATINSTEPI CALL ERIKO lAAINACCI,AAINVEL),NTOT,NSTEPI

IF I MCONTL .EQ. 3 ) GO TU 4

C RESPONSE ANALYSIS OF ORIGIN ORIENTED SHEAR MODEL C

CALL ORIGIN IAAIN~ELI,NTOT2,TH,ACCMAX(1)1 c

IF I MCONTL .EQ. Z ) GO TO 3 C C RESPONSE ANALYSIS Of TRI-L1NEAR STIFFNESS DEGRADING FLEXURE MODEL C

4 CALL DTRILI IAAIN~ELI,NTUTZ,TH,ACCMAXI1)1

- -- - -.---~-.

SHCH 1 StiCH 2 StiCH .l SHCH 4 SHCH 5 SHCH C>

SHCH 1 SHCH 8 SHCH 9 SHCH LO SHCH 11 SHCH 1.2 SHCH 1.3 SHCH l4 SHCH l~

~HCH 10 SHCH 11 SHCH 18 SHCH 19 SHCH 20 SHCH 2l SHCH .2l SHCH 23 SHCH 24 SHCH 2.:> SHCH ;'0

StiCH 21 SHCH 28 SHCH 29 SHCH 30 SHCH .H SHf-H 32 St:lCH h SHCH J4 SoHCH y, SHCH jb SHCH H SHCH 36 SH(.H .)'1 SHCH .. 0 SHCH 41 SHCH 't2 SHCH 43 SHCH 'tit SHCH 45 S,HCH 4b SHCH 47 SHGH 48 StiCH 't9 SHCH. )0 SHCH 5l SHCH 5, SHCH 53 SHCH 54 SHCH 55 SHCH 5b SHCH 51 SHCH 58 SHCH 59 SHCH 00

Page 79: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

C

c

3 GO TO i 2 STOP

100 FOKMAT 15 I END

SUBROUTINE PSEQGN

c * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * * * C C PSEUDO EARTHQUAK~' GENERATIUN C C PROGRAMMERS •• P MUll AND J PENlIEN,UNIV OF CAllf,BEMKtlEY. 1969 C M00IFICATIONS •• NISEE 1972 C MODI~ICATIUNS •• M MURAKAMI 1975 C

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ * * C

C

COMMLJIII /UHRl/ ~tQRI:c.,r,DT,I:AMA)(,JA:"f',FJ,TI,rJ,CEL"'OLJI (o),rlcU(bl 1 , "E tJ , i SHA PI::, AC C HA X ( .. 0) ,V t L ,~A X ( '> J) ,i) I S "lAX ( '+ \) ) CO""'1U,~ /GE,iC/ PIL,,·,c),Ni ,'~LitC"~rJT,AMPL,ul,[)2.,Uj,04,,,~,U,4,

1 Al,AL,A3,A4,A~,Au,A7,Cl,DL,NACC,NV~L

C * * * * ~ ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * C C INPUT DATA C C ~EQKEC = NUMbER Ur EAkTH~UA~E RtCURDS C T = OURATJUN OF REC0MDS C TH = DT = TIMe INCKt~ENI C DENST z POWER SP~(.T~AL OlNSITY ICM**Z/StC**j) C NOUT=UUTPUT CUNTRuL ARKAY C C HIGH FREUUENCY FilTER PAkAMETERS C C DAMP· DAMPING ~ATIO C FO - UNDAMPED NATURAL FKL~UENCY (CPSJ C DENST z puwER SPECTKAL INTENSITY C C LOw FREQUENCY FILTER PARAMETERS C C DAMPl : DAMPING RATIU C FOL - UNDAMPED NATUNAL FReQuENCY '(CPSI C C SHAPiNG FUNCTION PARAMETERS C C Tl z DURATION OF INITIAL PAKAtiUliC dUllDUP C TO - Ti~E AT END OF STATIuNARY PUKTiON C CEZ - EXPONENTIAL OECAY CONSTANT C lSHAPE - 2 (PARABOLIC BUILD-UP PHASEI C • 3 (CUijIC 8UIlD-UPI C C • • * • • • • * * • * * * * * • * • * • * * * • * * * • • * * * * C C BLANK COMMON STOkAGE AlLO.CATllJN C SET COHMlJN AAINNNI AND NAA-NNN C

65

SHCH SHCH SHCH SHCH SHCH

SHCH SHCH SHCH SHCH SHCH StolCH SHCH SHCH SHCH ~H('H

SH('H ~HCH

SH(.H ~HCH

SH('H SliCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCM SHCH SHCH SHCH SH('H StiCH SHOi SHCH 5,HCl-I SHCH S~H

SHCH SHCH SHCH SHCH StiCH SHCH SliCH SHOt

01 02 03 64 05

60 07 od 09 70 71 U 13 1<+ 1':> 70 17 7;;) 79 tiO 01 dL dJ tl't tl:i 136 tJ I tid /j'J 'JU 'ill <02-93 941 95 ';16

~7

~8

99 100 11l! 102 hI.; 10«0 105 lOb 101 108 10'.1 lAO UJ. li..l 1.13 HI, 115 !.It>

Page 80: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

66

C wHERE NNN EXCEEDS 3*NTOT+NI+NOEC C C wHERE NTDTsT/OT+l C NlsTI/DT+1 C NOECsNTOT-TO/OT C

C • • • • • * • * • • • • • * • * * • * * • * * • * • • * • * • • • C C NEQREC s 1 IS RE~UI~ED FOR RESPUNSE ANALYSIS. C IF LAST hlO CARl) ARE "BLANK", SUdRIJUTINE KETURI'4S TU MAIN. C

C * • * • * • * * * * • • • • * • * • * * * • • • • • • • * • • • • c

C

COMMON AA( 320001 NAA~320000

C READ SPECIFICATIONS C

C

C

READ 6, HEO,~E~K~C,T,TH,DcN~T IF (NtQREC.tQ.O) GO TU:) . DT=TH READ d, DA'IP,FO REAO 9, ISHAP" READ a, TI,TO,CEZ READ 8,DAMPl,FOl READ 9, NOUT PRINT 10, HtD,NtQKtC,U~N~r.T.OT,NGUT,FJ,UAMP.FJl,uAMPL.rl,I~HAP~.

lTO,CE2

NTUT=T/Df+1.000 1 NO=TO/OT+l.OOOl NI=TI/DT+l.uOOl NDEC=NTOT-NO+l MAA=3·NTOT+NDEC+~I+l IF (NAA-MAA) 2,3.3

2 PRINT 1. MAA STOP

3 CO"lTlNUE

C STORA~E ALLOCAT[ON C

c

~P:l

NP l:NP+NDEC r-IACC=NP1+NI NIJEL=NACC+NTUT NDI SPzNIJEL+NTlH

C GENERATE INTEN!>lTY-TIME FUNCTIO~ C

CALL SHA~E &AA(NPI,AA(NP1),NI.NOECI c C GENERAL CONSTANTS C

P 12"0.2831853 IIIOsPI2·FO 0-2 •• 0AMP.wO A2 s b./OT Al~A2IOT

. A3a3./OT 44"'OT/2.

SHCH 111 SHeH 11d SHeH 119 SHCH llO SHCH 12l SHCH 12~ StiCH 12l SHCH 121t SHCH 1~5 SHCH 120 StiCH 121 SHCH 12~ SHCH 129 SHCH 130 SHCH 131 SHCH 132 SHCH 1.;3 SHCH 1 . .H SHCH 135 SHCH Ull SHCH u1 SH~H US SHC.H LJ9 SHCH 140 SIiC H 141 !>HI.H l .. l SHCH 14J SHCH 144 SIiCH 14> SIiC ti 140 SIiCH 141 SHCH 1'08 SHCH 1 .. 9 SHCH 151) SHCH 151 SHCH 15l SHCH 153 SHCH 1H !>HCH I» SHCH 15ll SHCH 151 SHCH 15d SHCH 159 SHCH 100 SHCH 101 SH(.H l<>2 SHCH l<>j SHCH lb~ SHCH l&S SHCH 1<>6 .SHCH 1&1 SHCH lb8 StiCH 109 SHCH 170 SH(.H H1 SHCH 112 SHCH 113 SHCH 114 SHCH 115 SHCH 11~

Page 81: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

C C C

C C

·c C C C C C

A1-A4 A5-A1*OT/3.Q Ao"Z.0*A5 C-Al+0*A3+WO*kojO WOL-PI2*FOL -Dl-2.*OAiI4Pl* .. 0l Cl·Al+Ol*A3+~Ol*wOL AMPL"PIZ*OENST/Ur AMP(-SQRTIAMPll 01'"OTIT 02'"01*01/T 03-02*01 04-03*01

GENERATE, PRINT AND PUNCH RECuRDS

DO 4 NEQ:l,NEO~EC CAll GEN IAAINPI,AAINPll,AAINACCI,AAINVill,AAINUlSPI) CALL OUT IAAINACC),AAINVEll,AAINOISPI,NfOTI

It CONTINUE GO TO 1

5 CONTINUE RETURN

o FOaMAT 18A4/l5,3FlO.OI 1 FORMAT IIIIZIH EXECUTIU~ TERMINATEOI -i 21H ••••• SEE USER ~UIDE fO SEf I 1 35H NAA AND-DIMENSIUN OF ARRAY AA )

8 FORMAT 18FIO.4) 9 FORMAT (6111

10 fORMATIIHI,8A411 132M NUMBER OF EARTH~UAKE RECORDS .Ijl 2 3ZM INTENSITY ICM*.2/SEC.*3) ,FIO.51 3 32H DURATION OF RECORDS IStes) ,FIO.51 4 32_H TIME INCRb"IENT (::>EC51 ,. ,FlO.,1 5 32H OUTPUT CUNT~Ul ARRAY z ,011/1/1 6 33H HI~H FREQUENCY FllTtR PKUPERTltS II 1 20H NATURAL FKtQUtNCY ;,FIO.jl 8 20H DAMPING RATIO ; ,FIO.51111 9 33H la .. FRE~Ui~CY ~llTER PKUPtRTIE~ II ~ 20H NATURAL FREJUENCY =,FIO.jl $ 20H OAMPING RATIO = ,FID.51/11 $ 28H SHAPING FU~CTIUN PARAMETEKS // ~ 32H DURATION OF SUllD-U~

$ 32H BUILD-UP CURVE $ 32H TIME AT ~iGINNING OF DECAY $ 32H EXPONENTIAL DECAY CUNSTANT

END

SUBROUTINE SHAPE (P,Pl,NI,NDEC)

• .. * • -* * * * • * * * * * .. .. .. * * .. *

- ,FIO.51 • ,IZI z ,FIO.51 z ,FIO.51111)

* * • .. * '" * •

SHAPING FUNCT ION FOR INITIAL PARAtiOLIC OR CUSIC BUILD-UP

• .. * * • • .. * * * * * .. * .. * * * * .. * * .. * * .. .. .. *

.. .. *' *

.. * * ..

67

SHCH SHCH SHCH StiCH StiCH StiCH SHCti SHCti SHl.H SHCH SHCti SHCH StiCH ~HCh

.sHCH SnCH StiCH SHCh SHCti StiCH StiCH SHCH ShiCh SHCH SHCH SHCH SHCH SHCH ShlCH SHCH SHCH ~H('H

StiCH SHCH SHCH SHCH SHCH StiCH :)HCh StiCH SHCH SHCH StH.H SHCH :iHCH SHCH SliGH :iHl;;H S,HCtI

SHLH SHCH StiCH SHCH StiCH StiCH SHCH

177 US .1.19 1!W un 182 183 1(1 ..

185 itlc lii7 188 Ul9 190 191 192 193 194 195 19b l'i7 198 19'» LOu .201 202 203 204 2Jj 200 2u1 2u8 2uS! 210 ZlJ. 212 213 21 .. n::. 21b 217 .lld 2!3 220 221 222 2n 224 us

Z26. 221 228 LZ9 230 LH L32

Page 82: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

C

C C C

C C C C C C C

C C C

C

C C

68

CO~~JN ICNTRLI NEWKtC,T,OT.E4M4X,DAMP,FO,TI,rO,LE2,NGUrl~I,HED(8) 1,~EJ,ISHAPE,ACCMAXI401,VELMAXI.OI,OISMAXI401

DI'1E'.SlO'I PIlI,P1l1l IF PHI 3,3,1

1 CJEFF=IDT/TII**ISHAPE 00 2 ,,: 1, N I F='l**ISHAPE

2 PIOj)=f*CClEFF 3 CO'lT I We

SHAPING FUNCTION 1-01<. EXPJI<ENTIAL DECAY

IF IN:)cCI 0,0,4 4 CE2:-CE2*DT

OJ j lIl=l,NO"C F::,

5 P(N)=lXP(CE2*FI 6 RETUc<.N

E\j.)

SUo~0uT[\jE GEN IP,Pl,ACC,VtL,OI~PI

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * •

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * DI'lcNSILJ\j P(lI,PlIl),ACCIl),Vt::Lll),OISP(lI CO~M')N IGENel PI2,NO,~I,NUt::C,NTuT,AM~L,Dl,D2,03,D4,~u,0,c,

1 Al,A2,A3,A4,A5,Ao,A1,CL,OL,NACC,NVEL CJMMON I:NTI<.LI NEWI<.EC,T,OT,t:AMAX,DAMP,FO,Tl,TO,Ct2,NLJUTlol,HEOI81

l,NtJ,ISrlAPE,ACCMAX(401,VELMAXI4ul,OISMAX(401 .

INITIAL CONDITIONS

J= 1 £=,).0 lO=O.O £00=0.0 lL=.).O lDL=O.O lODL=O.O F=O.O AG1=0.0 v=').o Sl=').O 52=0.0 S3=.).0 OI:.PIll=O.O VEl(1):O.O ACc( 11-:0.0

DO iI N=2,NTOT

,mITE NOISE

SHCH lOHCH ~HCH

SHCH SHCH SHCH SHCH ~HCH

SHCH ~HCH

SHCH SHCH SHCH SHCH SI1CH SHCH SHCH SHCH SHCH SHCH

:'HCH SHCH SHCH SliCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SI1CH SIiCH S~H

StiCH StiCH StiCH SHeH SMCH SHC.H £HeH S~H

~H SHeW SH(.H

SHtH SHeH SHeH SHC.H 5H(;H

~H iNCH iHCH SHeH

lH 234 2:>5 231> 211 2.:i8 239 240 241 242 243 244 245 24~

241 248 2't~ 250 251 252

253 25.4 2SS 251> 257 2S8 259 2~0 2t.1 202 2t.3 2b'o 2t.5 2t.b 267 2t.1I 2t.9 270 271 272 27) 27. l1S 27t. lH 218 2H lllO 281 21112 lU 2" US 2h ll1· l ...

Page 83: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

C (M) TO B,2J, J

C • • ~ • • • • • • * '* * * * * * * * * * * * * * * • C RANF IS THE CDC KANOUM NUMiiEk GENtkATIUN fUNCTiON C AT EACH CALL' IT RETURNS A RA~~0~ hUM~tR bET~EEh 0.0

C * • * * • * * * * * • • * • * * * * * * • * • * • *

C

1 lU-RANFtll.OI XZ-P 12*'RANF (0.0) U--ALOGtxll X 1-S~R TC Xl +X11 ifaXl*COStXl' J-Z

,GO TO 3 2 W"Xl*S'~(X21

J-1 3 COt.lTINUE

C SHAPE THE WHITE NJISE C

C

l-I\t-N I IF' U 4,5.5

it .-"*PllNI 5 CONTlI'o4UE

I-N-:-40, IF ", 1,l,b

b ,.-"*PCII

C fILTER THE SHOT NOISE C

C

1 A-Al*Z+A2*ZD+ZDQ+ZOO 8-A3*Z+ZO+ZO+A4*ZOO Z-tA-w+O*S'/C ZDo-A3*Z-B ZOOsAIH-A _-IIi+ZOO

C LO_ FREQUENCY FILTER C

c; C C

~-Al*ZL+A2*ZOL+ZJDL+ZDOL

8-A]*ZL+ZOL+ZOL+A4*ZDDL Zl-tA-ioI+QL*SI/CL ZOl-Aj*ZL-B ZOOl..-Al*ZL-A AGaZOOL

BASELINE CORRECTION FACTORS

C1a F+.5 C2-F/o.+.125 '3"'f/3.+5./24. Sl-S1+C1*V+(C2*AG+C3*AG11*OT fZ-F*F Cl-f2+F+l./3. C2-F2/6.+F/4.+0.1 C3-F2/J.+F/l.4+.15 S2-S2+C1*V+(Cl*AG+Cj*AG11*OT F3-F*Fl CI-F3+1.5*fl+F+.25 C2·f3/6.+.115*F2+.3*F+l~/12. C]-F3/3.+.bl5*F2+.45*F+l./bO.

69

'- --~-----..:..--

SHCH 289 SHCH 290

* * • * * * * £HI.H 291 SHCH 292

Ahu l..u SHCH 291 * * * * * * * StiCH 294

SHt;H 295 SHCH Z\ilt> ~CH 291 SHCH 298 SHCri .l"J9 SHCH 300 SHCH 301 SHCH 302 SHCH 303 SHCH 304 SHCH 30~ SHCH 300 SHCH 301 StiCH 308 SHCH )09 SHCH, .HO SHCH .H! SHeH 3!l SHCH 313 SHeH 31.4 SHCH 315 SHCH Jtb SHCH .Hl SHCH 318 SHCH 319 SHICH 320 SHtCH 321 SI1CH 32" SHCH 323 SHCH 32'> SHCH 325 SHCH 321> SHi;.H 321 SHCH 3.<:1:1 SHtCH ~29

SHi.H :no SH-CH 331 SHCH 332 SHCH 333 StK.H 33't SM,CH :ns S,HCH 330 S,H<CH 337 £I1CI1 3:18 SHICH 339 S!1CH 340 SHCH 341 SHCH H2 SI1CH 343 SHCH 344 SHCH 3 .. 5 SHCH 34b SHCH 3",7 !>HCH 348

Page 84: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

c

70

Sl-Sl+Cl*V+{C2*AG+C3*AG1'*OT faf+l. Va V+IAG+AG lJ *AIt AG1 z AG ACCIN ,sAG

8 CONTINUE

C BASELINE COR~ECTION COEffiCIENTS C

c

Bl .. 02*51 B2·03*52 B3a 04*53 Clz-300.*Sl+900.*S2-630.*ti3 C2:1800.*81-5760.·82+4200.*83 C lz-1890." tll +6 300. *82-'0725. *S3

C BASELINE CORRECTIuNS AND MAXIMUM VALUES C

C C C C C C C

4CCMAXINEQ)=0.0 VElMAXINEQ)zO.O DISMAXINEQ)~O.O

Xl=O.O Ou 9 N=2,NTOT Xl=/(1+01 ACC(N)-(ACCIN)+Cl.C2·Xl.C3*Xl*Xl)*AM~L CAll AV0~AXIACC(NI,ACC~AXIN~WI) VElIN)-VElIN-1)+(4CCIW)+ACC(N-1))*Al C4ll AVUMAXI~ElIN),VtlMAX(NEWI) OlSprN)-DISPIN-1).V~lIN-1).DT+ACC(N-1)*Ab+ACCIN)*A5 CALL AVO~AX(DlSP(N),UIS~AXINtQII

9 CONTiNUE PKINT 10, NEQ

10 FORMATIIH ,11111 1 28H ACCELEKATION KECURU ~UMtl~R ,12)

PRINT 11,ACCMAX{NEU),VtLMAXINt~),OISMAX'NE~1 11 FURMATll.-i ,/

1 36ti MAXIMUM 1 36ti MAXIMU~ 1 36ti MAXIMU~

RETURN END

ACCElERATIOIIIICM/SEC**21 VELOCITYICM/SEC) DISPLACE MtN T I CMI

SUSRJUTINE OUT (ACC,VEl,OISP,NTOT)

,f7.~/

,F7.1I .f7.21

* * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * *

PRINT AND PUNCH RECOKOS

* • * * • * * * * * * * * * * * * • * * *.* * * * •• * * * • * *

COMMON ICNTRll NE~KEC,T,OT.EAMAX,DAMP,FO,TI,TO,CE2,NGUT{b'.HEO(dl 1.NE~,ISHAPE,ACCMAX(~UI,VElMAA'~OI,OISMAX'401 OIMENSIUN ACC{NTOTI,VElINTOT).UIS~(NTuT) OT5=5.*OT IF (NOUTlll.NE.O) GO TO 1 PRINT 7, HEO,NE~ CAll PRIN (ACC,NTOT,OT51

.$HeH SHeH 5H'H SHeH ~H SHeH SHCH SHeH SHeH SHCH SH(;H SHeH SHCH SHeH SI1CH SHeH SHeh StiCH SHCH SrtCH SHCH SHCH SHCH SHCH SHCH ~HCH

SHCH SHCH SHeH SHCH SHCH SHCH SHeH SHC" SHeH SHeH StiCH SHCH SHeH SHeH SHeH

SHe" SHCH SHC,H SHCH StiCH $HCH 5;HCH SHeH SHeH :.HC11 SHCH SHeH SttCtf $Ii'H SHCH

.~ '~'" 1

" ... , ;.

1~9 lsa lSi 352 lS.l n~

lSS l5Ct 351 lSi 359 l60 )61 102 103 361t 305 166 307 168 109 370 371 372 17J 311t 31!) 370 171 318 319 381l lSi 382 3&3 381t 3115 1116 381 lii 389

390 391 392 193 391t 39§ 19o 391 398 399 .. 00 ~l

~02 ~Ol

~O.

Page 85: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

c

C C C C C C ,

;:

C

... .- --..... ------~---- .. --.- -_._------ -" - .

1 IF CNOUTC2).NE.O) GO TU 2 PRINT 8, HED,NE,;j CALL PRIN CVEl,NJOJ,Dlj)

2 IF INOUTC3).NE.O) GO TO) PRINT 9, liED,NE>! CALL PRIN IDISP,NTOT,DTS)

3 IF CNOUTI~).NE.O) GO TO 4 PUNCH 11, HED,NE~,NTUT,Or PUNCH la, IACCII).I·i,NT~TI

~ IF CNOUTIS).NE.OI GO TO ~ PUNCH 12, HEO,NEU,NTUT,JT PUNCH la, IVElIlI,l"l,NTUT)

5 IF lNOUT(bl.NE.OI GO TO 0

PUNCH 13. HED,NE>!,NTO~,DT PUNCH 10, lOISPIII,I-l,NTOTI

6 CONTINUE RETuRN

1 FORMAT 1

8 FORMAT 1

9 FORHAT 1

11Hl,8A~,;X,26HACC~LERATIUN KeCURO NUMdE~,1311 6X,~TIME,;I~X,lbHACCN (CM/SEC •• 2))1

IIH1,8A4,5X,22HVElOCITY' ~ECURO NUl4oEK,l~II 6X,~HTIME,518X,12HVEl (CM/SEC))) 11Hl,8A~,;X,lbHOISPlACcMENT RECURD NU~deR,I~11 6X,~HTl"E,511lX,9HDISP 'C~II)

10 FORMAT 11 FORMAT 12 FORMAT 13 FORMAT

18Fl0.~t 18A4,IZH 18A4,12H '8A~, lZH

A~CN RECORD,13,lH VEL RECO~D,13,lH

OlSP RECORD,13,7H

NPTS-,I; ,5H NPT!)",lj,5H NPTS",1),5H

DT .. ,F503) DT=,F5.31 Dl=,F5:JI

ENP

SUBROUTINE PRIN IA,NHl'T,OT51

• ... . • • . ... •••••• • • • • • • . ... ... . • • . ..... . . ... ... ... . PRINT RECORDS

... ... ... ... ... ... ... ... ... ... ... . ... . . ... . ... ... ... ... ... . ........ * ... • * ... • ... DIMENSION A'NrOT) Ni-i "'2'"'5 TT-O.

1 PRINT 2, TT,IAll),12Nl,N2) IF 'N2.EQ.NrOT. RETURi~

Nl"'Nl+5 NZ-NZ+5 TT-TT+OTS If INZ.GT.NfOll N2,aNTOT GO TO 1

2 FORMAT 'FlO.3 ,lP5E 20.3) END

SUBROUT1NE AVDMAX(A,81

71

SI1CH <t05 Sri!.H 4u6 !)I1CH 401 SHCI1. <t08 StiCH 4u9 SHCH 410 SHCti 'oil SHCti 412 SHCH 4U SHCH 41.4 SHCH 41:) StiCH 416 SHI.H 417 SHCH 4!8 SHI.H 419 StiCH ~20

SHCH 421 SHCH 422 StiCH 423 SHCH 424 SIiCH 425 SHCH 426 SHCIi 421 SHCH 't28 StiCH 429 SHCH 430 SHCH '+31 SHCH 432 SHCIi <t33

SHCH 't3't SHCH .. 35 ~Hl.H 't36 S,HCH '+37 SHCH 4.HI SHCH .. 39 SHCH 440 SHCH 441 !iHCH "~2 SHCH 443 SHCI1 4,,10 SHCH .. 't5 SHCH 446 StlCH 441 SHCH 4~8

StiCH 449 SHCH 450 SHCH '0:>1 SHCH 45.2 SHCH 453 SHCH 454 SHCH 45,

SHCH 450

Page 86: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

72

---~-------~:- -- ._:.... ______ ~ __ .. __ ~ ___ .. _.~_ J ___ ...... _ • ..-...._~~

C C C C C C e

C C C C C C C C C. C C C C C C C C C C C C C C C C C C C C C C C C C C C C C

1000

• • • •• • • • • • • • • • • • ••••• • • • • * •. * * • • • • DETERMINAT ION OF MAXIMuM VALUE

• * • * • • • • * • * • • • • * ............ ~ . ... '. X:A8S1 A I IF!X.GT.BI S-=X RETURN END

SU8ROUTINE ORIGINIII,MJSKt,TH,IMAXI

• • • • • • 4< • • • • • • • • • • • • • • 4<.. • • • • ••.• • • •

NONLINEAR KESPONSE ANALYSIS fOR URIGIN-ORIENTtD MODEL

PROGRAMMER •• M.MURAKAMI 1975

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • INPUT OATA

NAME OF MODEL INITIAL NATURAL PERIOD ISEC)

NAMEI Jl X1STR X2SH DAMP AMAX 10

CRACKING STKEN~TH IN TEKMS OF SASE SHEAR COEFFiCIENT ULTIMATE SrREN~TH IN TERMS OF dASt SHEAR COEFFICIeNT DAMPING RATIO AVERAGE OF MAXIMUM ACCELERATION IN TERMS Of GRAViTY' NUMBtR uF Tl INCREASED IN GEO~crK1CAl RATlu I S:;)R Til. 0 II

• • • • • • • * * • • • • • • • • • • • • • • • • • • • 4< • • • •

zz MJSKE Th l~AX

81 XLI U X1l21

EARTHQUAKE ACCELEROGRAM NUMdER OF DATA uF EA,{THi,lUAKE ACCELERO"RAM T Ha: INCREMlNT MAXIMUM ACCELERATION

STIFFNESS Of EACH REGION C~AC~ING DISPLACEMENT YIELDING DI5PLAClMlNT

• • • • • • • • * • • * • * • • • • * * * * • • * • • • * * * * •

IF LAST CARD IS ~STOP"1COLU~N 1-41, SUBROUTINE RETuRNS TO MAIN.

• • • • • • • • • • • • • • • • * • * • * • • • * • * • • • • • •

DIMENSION NAME1IHI,BI1J),XI12),lllMJSKE),DXEI21 DATA ~AERE/4rlSTOP/

READ 100, NAMCI. IF lNAMElIll.EQ.II.AEKEI GO TO 9999 READ 102, Tl,XI5TR,DAMP,AMAX,lO X2STR=1.9*X1STR

SHCt+ S~H

SHC:H SHeH SHeH S",H SHtH SHeH SHC.H SHeH SHCH

SHeH StiCH SHCH SHeH SHeH SHeH SHeH SHeH StICH SHeH SHeH SHCH SHeH SHeH SHCH SHeH SHCH SHGH SriCH SHCH SHCH iHCH SH<:H SHCH SHCH SHeH ShCH SHCH SHCH SHeH SH(;H S~H

SHeH SHeH SHCH SHeH SHCH StiCH SHCH SHCH SHeH SHert SHCH SHCH SHeH

~51 . ItS8 ~S9 ·~O

'"1 ,"2 ItU .... •• s ." ltd

-.oi '"9 ~10

.11 ~12 ~B

~n ~lS

~1t. ~71 Hi ~N

~80

.81 ~82 'oal ~8. ~8S 'tab ~81

~tla

~8'i '090 ~91

1t92 ~9l '09'0 'o9~ 49(> ~91 ~98

~99 ,00 501 ,02 SOl ,04 ,0, ,06 SOl 508 S09 S10 ~Hl 512

Page 87: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

C

REOUCT-O.19 00 1 11-1,10 IIRR"II-1 T1a Tl*SQkTCl.01*.IIRK PRINT 10~, NAMEl,AMAX,X1SrR,X2~TK,REOUCT,OAMP

81(1."C6.l8318,/T11**2 81(l."REOUCT*SI111 8X-980.*CXlSTR-X1STKI X1(1I a 980.*XlSTR/blCll X112.,,980.*XlSTK/b11Z1 81ll. s aX/CX1Cl'-Xlil" 81131:0.001*SI121 NSTEP"l IF(II.GI.lI ~STEP=2 OELTAT=TH*FLOATINSTtPI PRiNT 106, Tl,OELTAT,Xl Ad.,SlIll AR=2.*OAMP*SQRrlABI LLL=l IOA z 8 IFIll.liT.'>1 10A=" IFIII.GT.71 IOA=2 A2=O.O '12=0.0 02=0.0 '11/2=0.0 OUMAX=O .0 OXEI 1I=xl( 11 OXEI21=xlI21 K2"1 GGz lOA OTzOELT AT IGG

C RESPONSE ANALVSIS C

C

00 l la1,MJSKE,NSTEP A1 a A2 .

.'11-'12 01-0l VVl-VVl Kl-Kl IFCJ.NE.11 GO To 10 l.LZlllaZlC 11 GO TO 15

10 II la I-NS TEP llllllallCII-llI!111

15 CONTINUE 1.1.lllla980.*llllll*AMAXllMAX CALL RESPl IlllllZ,A2,AK,AS,Al,vl,Dl,uELTAT,VL,Ui,vl/i,LLL) lll-O IFC I-U 20,25,2J

20 CONTINUE

C JUDGE FOR CHANGE OF POSITION C

CAll MASA'VV1.VV2.D2,OXt,~1,LLLI IFClLll 30,2,,30

25 CONTINUE CALL AVOMAXC02.DOMAXI

GO TO l

73

StiCH ,13 -SHCH ,14 SHCH ,1'> SHCH ,1t. SHCH 511 SHCH ,Ab SHCH 519 SHCH 520 SHCH 5.!l SnCH '>22 SHCH 523 SHCH '>24 SHCH 5,,~

StiCH 520 SnCH 527 SHGH 5iB SHCH '>29 SHCH 530 SHCH 531 SHCH 532 SHCH 533 :'rlCH 534 StiCH 53:> SHCh 530 StiCH '>)7 ~tiCti 53d SHCH :'J'j StiCH 54lJ StiCH :'41. SHCH ~42

SHCH :.43 SHCH ~44

SHCH 545 SnCH 540 SHCH 5'01 SHCH 54d SHCH 5 .. 9 SHCH 550 SHCH 551 SHCH 552 ~HCH 553 SHCH 55<; SHCH 555 SHCH 556 StiCH 557 SHCH 551l SHCH '>5':1 SHCH '><>0 SNCH 50! SHCH 51>2 SHCH 503 SHCH ')6'0 SHCH '>05 SHCH 506 SHCH 561 SHCH 'Gd SHCH 5<>9 ~H('H ,10 :.HCH 571. SHCH 512

Page 88: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

C C C

C C C

C C C C

74

30 ZZZZZZ&ZlZZlZ/GG

RESPONSE ANALYSIS fOR SUBOIVIDEO INTE~VAL

DO 3 (Aa 1 ,lOA (FIlA-II ~0,45,40

ItO CONTINUE AI-A2 Vl"V2 01-02 VVlaVV2 Kl"'Kl

45 CUNTINUE CALL RESPI IllZlZZ~Al,AR,A8,Al,Vl,Dl,DT

lLL=O .V2,Dl,VV2,LLU

JUOGE FOR CHANGE Of PQSITION ANU DETERMINATION OF STIFfNESS

CALL JUNKU(~l,A8.X2STR,VWl.VV2,OZ.DXE.Kl,K2,LLLI IFtLLLI 50.55,50

50 CONT INUE AR=2.*OAMP*SQRTIAdl CALL AVDMAXID2,DOMAXI GO TO 3

55 CONTINUE CALL AVO~AX(02,OJ~AXI

3 CONT INUE LLl=l

2 CONTINUE DUCT=DUMAX/XlIlI PRINT lu8, OQMAX,uUCT

1 CONTINUE GO TU 1000

100 FORMA T( 8A41 102 FORMAT(4F8.0,141 104 FORMAT (IHl,8A~11

1 35H AVERAGE OF MAAIMUM ACCELERATION 2 35H CRACKING 5HEA~ ST~ENGTH 3 35H ULTIMATE SHEAR STRENGTH 4 35H ~ATIO OF K2 TO Kl (REJUCTIUNI

,Fo.31 • ,fr..31 ~ ,fo.21

,Fo.31 5 35H DAMPING RATIU • ,F~.3IJ)

106 FORMAT (IH ,/ 1 25H NATURAL PERI00 '" ,F8.31 2 25H TIME INCREMENT • ,Fd.31 3 25H CRACKING DISPLACEMENT'" ,F8.3,2X,3HCM I 4 25H ULTIMATE DISPLACEMENT ,Fd.J,lX,3HCM III

108 FORMAT 11H ,/ 1 24H MAXIMJM DISPLACEMENT ,FIO.3,2X.3HCM I 2 24H DUCTILITY FACTUR NT - ,FIO.3111

9999 RETURN END

SUdROUTlNE JUNKO 'dl,Ad.X2~TR.V~.Vl.02,DXE.~l.K2.KI

• • • • • • • • • • * • • • • * • • • • • • • • • • . . .. SElECT ION llF STIFFNESS AT NEXT STEP

• • • •

SHeH SHc:H SHc:H

. SHc:H SHCH. SHCH SHCH SHCH SHeH StiCH SHCH StiCH SHeH SHC.H SHCH SrlcH StiCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SH('H SHCH SHCH SHCH SH<.H StiCH SHCH SHCH SHCH StiCH SHCH SHeH SHCH SHCH SHeH StiCH SHCH SHCH Sm;H SHcH StiCH SHCH SHCH SHeH

~KCH

SIiCH SIiCH $H'H ~H

S13 Slit

. ·575 510 S7I 518 5N 580 581 582 5i13 581t 585 58t. 581 5d8 5i1~

59U 591 592 593 594 59) 590 597 598 )9'1

600 toOL b02 603 oO~

605 00" b07 008 b09 010 011 612 613 ollt 615 t>lto 611 b18 tJl.9 blO 021 4>22 623

&l~

025 026 6U 628

Page 89: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

c , c c c c C c c C C C C C C C C C C C

c c c c

INPUT DAU

IH X2STR '11 '12 02 DXE

K1

OUTPUT DAU

AS K2 K

STIFfNESS OF EACH REGION ULTIMATI: ;;TKENGTH I,~ TE'{MS OF liASt: SHtAk COI::FFICltNT INC'{EME~TAL Dis~lAC~MtNT AT LAST ~TEP INCRE~ENTAl DISPLACt:MENT ~l:lATIVE Ol~PLACI:MI:NT ORIGINAL Ok M~DIFIEU DI;;PlACE~t:NT CUKRI:SPONUING TU SREAI<.-PUINT INDeX full. POSITION

STIFFNES~ AT NEXT ~TEP

l.NDEX fUR POSITlO~ AT NEXT _STEP INDEX fOR CHANGE ~F PuSITION K=O NUN

• $ • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Ol~NSION DXE(2),Bll3) Ifl'l1.V2) 10.1(1,20

10 IfCK1.E~.1) GO Tu 30 ZaASSlD2) IflKl-2J 40,40,50

40 ST-B1Il).OXEI1J GO TO bO

50 ST"'980.*X2STR 60 ST"'ST+Bl(Kl).(l-DXEIKl-ll.

AS-STIZ 811lJ-AB OXEll'·Z 1(2&1 K--l GO TO 10

20 IfIKl.NE.l) GO TO 70 Z--ASSl02) IFIZ.lT.DXEI1JI GO TO 30 IfCZ.GT.UXEll)) GO Tu dO AB--S1I2. K"Z K2-2 GO TO 10

70 IFIK1.EQ.l) GO TO 30 Z-ASS(D2) Ifll.lT.DXE(2)) GQ TO 30

80 K"l KZ-1 AS-S1I31

10 RETURN END-

SUSROUTINE MASA (Yl.V2,D2,OXE,Kl,l<.)

• • • • • • • • • • • • • • • • • • • • • • • • • • • * • * • * • JUDGE fOR CHAIlGE OF POSIT ION

75

SHCH 629 SHCH b3\) SHCH 631 SHCH b32 SH\:.H oj)

SHCH 034 SHCH bj)

SHCH 030 SHCH 031 StiCH 63d

- SHCH td9 SHCH 640 SHCt1 b41 SHCH 642 SliCH 6 .. 3 SHCH 64 .. SHCti 045 SHCH b'to StiCH 04-1 SHCH b48 SliCH 64'1 SHCH b50 SHCH oS! StiCH 05L StiCH b53 SHCH 054 SHCH b55 StiCH 65b SHCH 651 SttCH 6:i8 SHCH 659 SHCH boO SHCH bol SHCH 602 SkCH 6b3 SHCH bolo SHCH 06) SHCH 000 SHCH 067 SHCH bbd SHCH oog SHCI1 b ,u SKCH tdl SH\:.t-j 672 ShiCH 013 StJCH b 74 SrlCH 075 SHCH 076 SrlCH 671 SI-KH 6ra SI'li..H 019

St-ICH 6BO SHCH 681 SHCH 68L SHCH 683 Sl-ICH 6B4

Page 90: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

76

------._----------

c c C 'C C C C C C C C C C C C C

C C C C C C C C C C C C C C C C C C C C C C C C C C C

,C

10

20

30

INPUT DATA

VI INCREMENTAL DISPLACEMENT AT LAST STEP V2 INCREMENTAL OISPLACt~ENT 02 RELATIVe DISPLACEMENT DXE OklGINAL OR MODIFIED DISPLACEMENT CORRESPONDING TU

BREAK-PO HH

JUTPUT DUA

Kl K

INDEX FOR PUSITION INDEX FOR CHANGE OF PUSITION K.Q NuN

• * • • • * * * * ~ * • * • * * * * * * * * • * * • • • • • • • •

DIMENSION DXE (2)

IFIVl*V21 10,10,20 IFIK1.EQ.1l GO TO 30 K= 1 GO TO 30 IF(Kl.E[~.31 Gll TO )0 .l= AB S (02 I IF Il.L T .DXEIKI I I GO 1U 30 K=2 RUUKN END

SUBROUTI~E DTRIlIlll,MJSKE,TH,lMAXI

• • * • • • • • • * * • • * • • • • * • • • * • • * • • * * * • *

NONLINEAR RESPONSE ANALYSIS FOR D~GRAUING TRI-LINEAR MODEL

ORIGINALLY PROGRAMED BY UMEMURA LABORATURY IUNl~EK~lTY OF TO~Yul MOOIFICATIUNS •• M.MURA'(AMI 1915

• * • * • • * • • • • • • * * • * • • • • * * • • • • * • • • • •

INPUT DATA

NAMEl Tl REDUCT

X1STR X2STR OM4P AMAX 10

NAME OF MO)El INITIAL NATURAL PERIOD ISECt RATlll OF Tl TU NATURAL PERIOD CURRESPUNDING fa YIELDING STIFFNtS$ CRACKING STRENGTH I~ TERMS OF SASE SHEAR COEFFICieNT YIELDING STRENGTH IN TtRMS uF SASE SHEAR COEFFICIENT DAMPING RATiO AVERAGE OF MAXIMUM ACCELERATION IN TERMS OF GRAVITY NUMBER UF Tl INCREASED IN GEOMETRICAL RATIU , SQR Tl2. u) •

• * •• * • * •• * ••• * •• * • * * * • * • * ••••••• -.'

ZZ MJSKE

EARTHQUAKE ACCElEROGRAM NUMBER OF DATA OF EARTH~UAKE ACCELER0GRAM

StiCH SHCH SHCH SHCH SHCH SHCH StiCH SHCH SHCH SHCH SHCH SHCH StiCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SItCH SHCH SHCH SHCH SHCH

SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SliCH SHCH SHCH SHCH SHtH SHCH SHCH SHCH SHCH SHCH StiCH SHCH StiCH ~H

SHCM SHCH SHCH StiCH SHCH

685 6do 687 688 b89 690 091 6'12 bY3 691t 695 696. b97 b98 699 700 101 702 Iv} 10 .. 105 106 101 70a 709 110 111

112 1-13 714 715 116 71.7 718 719 7l.U 7ll 7ll. 713 12.4 '125 no 721 na 7H 730 HI. 132 113 U" 115 11b 137 Ui 139 H>~

Page 91: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

c c c c c c C c c c c c c

c c c

1000

TH ZHU

81 Xl( 1)

xlfz,

T IHE INCI(EHENT MAXIMUM ACCELERATIUN

STIFFNESS OF EACH R~GION CRACKING OISPLACEMENT YI~LOIN~ OI::oPLACE~ENT

• • • • • • • • • • • • • • • • • • • • * * * * • * • • * * * * •

IF LAST CARD IS "STUP"tCOlUMN L-~). ::oUSROuTIN~ RETURNS TO MAIN.

* • • * * • • • • • • • • • • • • • • * * * * • * •. • * * • • • *

DIMENSION NAMHldl. S1(3). x1(2) .ll(.'USt<.b) 04'A KAERE/4HSTUP/ REAO 100. NAMtl I~ INA~ELll).E~.KAEKE) GO TO 9999 READ 10Z. TL.XISTR.X2STR.~EDUCT.DAMP.AMAX.IO OOlllsl,lO IIRR-II-1 Tl-rl*SQRTIZ.O) •• IIRR PRINT 104, NAME1.AMAX.XISTR,X2STR,REoucr,OAMP RR a OAMP*Tl/1.14159 81'1'-'6.Z8118)/Tl).*2 ~1'Z)sREOUCT.~111)

BX-980.*'XZSTR-XISTRI Xl(1)-980 •• X1STR/BlI11 Xl(Z)-980 •• XZSTR/BlIZ) 811Z)-8X/IXIIZ)-X1111) 81(1)-0.001*SlI2) NsrEP-l Iflll.GT.Zl NSTEP-2 OELTAr-rH*fLOATINSTEP) PRINT 106, Tl,OfLTAT,Xl A8-811U AR""SlIU*RR lll-l IOA-8 Iflll.Gr.5) iOA 3 4 IfU I .GT.1I IOA~2 AZ-1).O vz-o.o OZ-O.O VVZ-O.O OOI4AX-O.O OI4AX-X1(Z) . DIUN--JUI ZI 001"0.0 002-0.0 DCE-Xl (11 DC-XlIlI Oy-xlIZ) AlPHs1.0 KZ-1 (;GaIOA DT-OELTATIGG

RESPONSE ANALYSIS

DO Z I-l,MJSKE.NSTEP

77

£HCH. SHCH SHCH SHCH SHCH SHCH SHCH SH("H SHCH SHCH SHCH ~HCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SHCH SrI(..H SHCH SHCH SHCH SHCH SHCH SHCH SHCH S~lCH

::oMCH S~,CH

SHCH SHCH SHCH SHCH SriCH SHCH SHCH SHeH SHCH SHCH

7'tl HZ 743. 7440 7't5 746 1'01. H8 749 751.1 HJ. 75Z 7)3 754 755 756 hl 75<:1 15'J 160 76!. 762 7,,3 71:>4 105 706 701 768 709 770 771. 712. 773 17'. 175 110 777 778 17 .... l8U 181 lci2 ld3 184 1115 100 787 188 789 7'10 791 HZ 793 794 7'1) 796 791 798 7'i9 800

Page 92: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

C C C

c c C

C C C

C C C

78

A1=A2 V1:V2 01"'02 YV1=Vv2 K1 s K2 IFII.NE.11 GU TO 10 llZlll=LZl11 GO TO 15

10 Ill'" I-NSTEP ZZZZZZ=ZZIII-lZIIIII

15 CONTINUE ZZZLZZ=990.*ZZlLZZ*AMAX/ZMAX CAll kESPI (ZZllZl,AZ,AR.AB,Al,Vl.Dl,OElTAT,VZ,02~VV2,lll' IFIl-lI 20,25,20

20 CONTINUE DE=02-DOI-D02

JUOG~ FOR CHANGE OF POSITION

CALL KAlUIVVl.VVZ,D2,DMAX,OMIN,Dt,OCE.Kl,~2,LlL.JJJI IFILlLl JO,25,jO

25 COiH INJE CALL AVOMAXI02,OUMAXI

GU TO 2 30 lZllll=ZZLllllGG

RE~PONSE ANALYSIS FOR SUdDIVIDEO INTtKVAl

DO 3 I A= 1, lOA IFIIA-ll 40,45,40

40 CONTINUE Al=A2 V 1=\12 01=02 VVl=VV2 Kl=K2

45 CONTINUE CALL RESPI IZZZllZtAl,AR,A8,Al,~1.Dl,DT

lll=O OE"'02-DOI-002

JUDGE FOK CHAN~E OF POSITION

.Vl,Ol,VlJ2,llll

CALL KAZJ(VVl,VV2,D2,DMAX,OMIN,OE,DCE,Kl,K2,llL,JJJI IFILLLl 50,55,50

DETERMINATION OF STIFFNESS

50 CALL SHUBOOIBl,AB,lll,JJJ,OMAX,OMIN,DOI,D02,OCE,AlPH,OY,DC,021 AR=AB*RR CAll AVOMAX(D2,OOMAX) GO TO 3

55 CONTINUE CALL AVO~AX(D2,DJMAXI

3 CONTINUE llL=l

l CONTINUt DUC T=DUMAX/XUZ) PRINT 108. DOMAX,OUCT

1 CONTINUE

.. '

SHCH SHeH SHCH SHeH SHeH SHeH SHeH SHeH SHeH SHCH SHCH SHeH SHeH SHeH SHeH SHeH SHeH SHeH SHCH SHCH SHCH SH(;H SHCH SHeH SHeH SHCH SHeH SHCH SHCH SHeH SHeH SHCH SHCH SHeH SHeH SHeH SHeH SHeH SHeH SHeH

, SHeH SH(.H SHeH SHeH SHCH SI't(;H SH<:H SHeH SHeH iHCH SHeH SHeH SHeH SliCH SHC;H SHeH ~H SHC;H $tiCH Sri(;H

I 801 . 802 80) 80~ iO~

80~ 801 808 809 al0 811 812 813 8lit Cll~ 8lb 811 818 819 820 821 822 8£3 8;':4 825 dZt. 8n d28 8.t9 1130

·831 tU2 8ll 834 835 8l~

ill III a 8)9 8itO 8 .. 1 8~l a41 il41t 3 .. 5 3~~

s .. 7 848 849 850 a51 ·a52 a53 u .. iSS ase. as} as. .59

.hO

I .

Page 93: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

C C C C C C C

c c c c c c c

, ,'------,---

coo 1:0 1000 100 FORMAT'SAIt) 102 fO~MATI6f8.0,l~1 104 FORMAT 11Hl,aA~11

1 35H AVERAG~ Of ~AXIMUM ACCELERATION a ,Fo.ll 2 35H CRACKING STR~~GTH - ',Fo.ll 3 35H YIELuiNG STR~MGTH a ,F6.31 It 351"1 RATIO Of K2 TU Kl 'K~OUCTIUN) - ,FoAJI 5 351"1 DAMPING KATIO ,. ,Fo.lll)

106 FORMAT 'lH ,I 1 25H NATU~AL P~KIJD % ,Fa.ll 2 25H TIME INCREM~NT = ,Fa.31 3 25H CKAC~ING OISPLACEMENT - ,Fd.3,lX,JHCM I It 25H YIELDING DISPLACtMtNT a ,Fd.3,2X.3HCM II)

108'FORMAT IlH ,I 1 241"1 MAXIMU~ DISPLACEMENT ,Fl~.J,2X,3HCM I 2 241"1 DUCTILITY fACTOR NT .. ,Flu.JIII

9999 RETURN

1

3 2

END

SU8ROUTI~E ERIKOIZ,ZZ,N,NSTEP)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • LINEAR INTERPOLATION FOR EARTHQUAKE MuT ION

• •••• •••••• • • • • • • • • • • • * * * • * * * * * * *

DIMENSION Zll',Zlll' fN'"'NSTEP DO 1 J"'l,NSTEP ZZIJ'aZlll*FlOATIJI/FN CONTINUE 00 2 I a 2,N ll-NSTEP*II-li DO 3 Jal,NSTEP II 1-1-1 IIJJ-Il+J ZZIIIJJ'-IZII)-Zllll))*FLOATIJ)/FN+lIII1) CONTINUE CONTINUE RETURN ENO

• • • • • • • • • * • • • • • • * • * • • • * • • * • • * * • • *

LINEAR ACCELERATION METHOD

• • • • • * • • * • • • * * • * • • • * * • • * • • • • * * • • * IFIKKK.EQ.O) GO TO 100 OTZsDT /2.0

79

SHCH d61 StiCH 802

'SHCH li63 SHCH 86ft SHCH 8b5 SHCH 860 SHCH 861 SHCH 868 SHCH db9 SHCH 810 :)HCH all SHCH a 12 SHCH 813 StiCH 8H SHCH 1315 StiCH 81b StiCH 817 SHCH 818 SHCH 819

StiCH 880 SHCH aal StiCH 882 SHCH a8l SHeH 884 SnCH 885 SHCH b86 SHCH 887 SHeH 888 SHCH 869 SHCH 890 SHeH 891 SHCH 8n SHCH 8<,13 SHCH 89'<-SHCH 895 SHCH d~6

SHCH 897 SHCH a98 StiCH 8'>19 SHeH 900 StiCH 901 SHCH 902

SHCH 903 SHCH 90'0 SHCH 905 SHCH 900 SHCH 901 SHCH 90d SHCH 909 SHCH 910 SHCH 9il SHCH 912

Page 94: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

c c C C C C C C C C C C C C C C C C C C C C C C

C

C

C

80

OT3 .. 0T**2/2.0 OTo .. OT3/3.0 51"'OT6*S+OTZ*A+l 5Z=OT3*6+0T*A 53:DT*S

100 AZz-(SZ*A1+S3*Vl+ZZI/Sl YVZsDT*Vl+OT3*Al+OTo*AZ 02a Dl+VVZ V2-Vl+0T*Al+DTZ*A2 AZ-..A1+AZ RETURN END

SUBROUTINE SHUSOO(S,B~,~,J.DMAX,OMIN,001,DOZ,OCE.ALFA,DY.OC,OZI

* * * * • * * * * * * • * * * • • * * * * * * * • • • • • • • • •

SELECTION OF STIFFNESS AT NEXT STEP

INPUT DATA B DC DY K J D2

OUTPUT OAT A B~

OMAX DMIN 001 DOZ OCE ALFA

ORIGINAL STIFFNESS Of EACM REGION ORIGINAL CRACKING UISPLACEMENT O~IGIN~L YIELDING UISPlACEMENI INDtX FUR CHAN~t Of PuSITION K~O NON INDEX FuR CHANGE OF SIGN OF VELOCITY J_O NuN RELATIVE OISPLACEMENT

STIFFNESS AT NEXT STEP YIELDING O~ MAXIMUM DISPLACEMENT NEGATIVE YItlDING OK MINIMUM UISPLACEMENT CENTER OF FIRST REGION CENTER OF SECOND REGION ORIGINAL OR MOOIFIEu CRACKING DISPLACtMENT RAHO QF fkUUCTlON IN RIGIDITY

• * • • • • • • * * * * • * * * • • • • * • • • • * • • * • * * •

DIMENSION st 31

GO TO (1000,ZOOOI,J

1000 GO TO IIIOO,1200,1300I,K 1100 BK=ALFA*BIll

GO TO 9000 lZ00 BK=ALFA*S(ZI

GO TO 9000 1300 BK=ALFA*B(31

GO TO 9000

2000 IF(KI 3000,3000,4000 C

3000 K=IABSIKI GO TO 16000,3200,3300I,K

3200 001=02-D02+0CE GO TO 6000

3300 OMIN=02

$titH SHCH ~H

SHCH SlitH SHeH SHCH SHeH SHeH SHeH ~CH SHCH

~HCH SHCH SHCH SHCH

f c}13 9H 'liS cU. 911 918' 919 920 921 922 923 920\

925 9Z6 927 '121l

SHCH --92<# SHCH 930 SHeH 9.31 SHCH 'IJ2 SHCH 933 ~HCH 9J't SHCH 935

- SHCH 93t. SHeH 937 SHCH 'HS SHCH 939 SHCH 9'00 SHCH 'HI SHCH 9102 SHCH 9'03 5HCH 91010 SHCH 9105 SHCH 91t6 SttCH 9'07 SttCH 9108 SttCH - 'lit 9 SttCH 9,0 SHCH 9~H StitH 952 SHC.H 9!j]

SHeH 9SIt S~H 955 SHeH 9,co StICH 951 SHCH 958 SHeH 959 SHC.H 9foO SHeH 901 SitCH 962 SiiCH 9U SHCH 9010 SKtH 9.S SHeH 9" SHeH 'jet 7 SHeH 9 foil

Page 95: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

ll-DHAX-DMIN ZZ-DY-DC DGI--Zl*ZZ/12.0.0YI GO TO 5000

C 4000 GO TO IbOOO~.100,~LO~I,~

C

c c c C C C C C C C C C C C C C C C C C C

C

4100

.200

5000

6000 9000

001-1)2-002-DCE Go TO 6000 OMAXsOZ 1l-OMAX-0141N ZZ-Oy-OC 001-Zl*Z2/(2.0*OYI

Z3-IZ1-Z.0*OY)*d(3) Z.·S(11·0C+SI21*l2 ZS-2.0+Z31l.4 Al·FA-OY*l. 51 l.1 OOZ-(~AX+DMIN)/2.0

DC~-Zl.DC/2.0/0Y BK-ALFA*SI11 CONT INUE RETURN END

SU~RoutINE KAZUIY1,YZ,X,XI4AX,XMIN.XE,XCE,Kl,K2,K,JI

• • • • * • • • * * * • * • • • • • • • • • • • * • • • • * * * •

JUDGE FOR CHANG~ OF POSITION AND OErEKMINATIO~ OF POSITION

INPUT DATA V1 VZ X XMAX XMIN XE XCE Kl

OUTPUT DATA K2 K J

INCREM~NTAL OISPLACE~~~T

INC~EM~NTAL DI:'PLACb'1ENT UF LAST SrEf> KELATIYE DISPLACEMt~r

YIELDING Ok MAXIMUM uISPLAC~M~~T NEGATI~E YIELDING ~R MI~I~UM UI"PLA~EMENr

RELATIVE OISPLACEMtNT SHI~TED IN :>~tLtlG~ CURVE ORIGINAL OK MQUIFIE~ CRAC~lNG DISPLACt:Mt~r

INDEX FO~ POSITIUN

INDEX FOR PuSITION AT NEXT STEP INDEX FOR CHANGE Of PUSITIUN ~gJ NUN INDEX FOR CHANGE uF D1RECTIUN

• * • * * • • • • • * • * • • • • * • • • • • • * • * • * * * * * IF(Vl*Y2) 2000,2000,100

100 J.sl IFIY21 1000,110,110

110 IF'X-XMAX) 200,150,150 150 KZ s 3

GO TO 1600 200 IF(XE-XCE) 300,250,250 z~o K2 s 2

GO TO 1600 300 IFIXE+XCEI 9999,350,350

81

SHCH '>o~

SH('H 'i10 :>I1CH 911 :>HCH 912 SHCH '173 :,ra.H -if'+ SHCH '11') :>t1CH 'ITo SH(;H '117 :'r1CH ':178 :>riCH '17'> SHCH 980 SHCH 931 SHCH 9dL StiCH '>83 SHCH 9d4 SHCH 935 SHCH 98b SHCH ~81

SHCH 980 SHCH 989 SHCH 990 SHCH 991

St'lCH 99;(, SHCti 993 SnCH 994 SHCH 99j SHCH '>90 StiCH 9 'H SHCH .. 90 SHCH '1':19 :>HCH 1000 SI1~H 1u01 :>hCH 1u~2 SHCH 10,)3 SHCH 1u04 StiCH 100:. SHCH lUOo SliCH 1~0 1 :>HCH 1008 :iHCrl 1009 SHCH 1010 StiCH 1011 "HCH 1012 SnCH 1013 SHCH 101'+ SHCH 1015 SHCH 1016 SHCH 10 11 SHCH l.u18 SHCH 1019 SHCH lOLO SHCH 1021 SHCH LULL SliCH IJ23 SHCI1 10L4

Page 96: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

C

C

C C

C

C C. C

82

350 K2=1 GO TO 1600

1000 IFIX-X,'IlN) 1150,1150,1200 1150 K2=3

GO TO lbOO 1200 IF (XE+XCE:) 1250,1250,1300 1250 K2=2

GO TO 1600 1300 (F I XE-XCE) 1350,1350,9999 1350 K2=1

GO TO 1600

1600 IF IK2-Kll 1620,1630,16l0 1610 K=Kl

GO TO 5000 1630 K=O

GO TO 5000

2000 J=l IFIV21 3100,3100,2100

2100 IF I X-AMINI 2150,L150, aoo 2150 K2=-3

GO TO 3500 2200 IF (xE+XCE) 22'>0,2250,4000 2250 1<.2=-2

GO TO :;500 3100 IF (X-XMAXI 3200,jI50dl:>O 3150 K2=3

GO TO 3500 3200 IF(XE-XCE) 4000,3250,3250 3250 K2=2

GO TO 3500 4000 Kl=l

IFIKl-Kll 3500,5500,35,)0 5500 K=O

GO TO 5000 3500 K=K2

j( 2=.1 GO TO 5000

9999 WRITEI6,8000) 3000 FORMATI//,5X,ldH**** LOGICAL MISTAKES * ••• //) 5000 COiH (NUE

4

RETURN END

DATA

D TYPE 15.0

EXAro1PLE

0.01 S.Ho.792 0.6 2.5 3 2.0 2.5 1.606

SHCH 1025 SHCH 1026 SHCH 1027 SHCH 1028 SHCH 1029 SHeH 1039 SHCH 1031 SHeH 1032 SHeH lOB SHCH 10.H SHCH 10:;5 SHCH 10J~

SHCH 1031 SHCH 1038 SHCH 1039 SHCH 1040 SHCH 10 .. 1 SHCH 1042 SHCH 1043 SHCH 1044 SHCH 104) SHCIf 1046 SHCH 10'07 SHCH 10lt8 SHCH l.049 SHCH 1050 :)HCH 1051 SHCH lI)2 SHCH 1053 SHCH 1054 SHCH 1055 SHCH 1056 SHCH 1057 SHCH 10)8 SHCH 1059 SHC"H lObO SHCH lObi SHeH 10b2 SHeH 10bJ ShCH 1064 SHCH lObS StiCH 10bc> SHCH 10b7 SHCH 10b8 SHCH 1009 SHCH 1070 SHCH 1011

SHCH 1012 SHCH lon StiCH 10H Sli(;H 1075 SHCH 1070 SHCH i1l7] StiCH 10./8 SHCH 1019 StiCH 1080

Page 97: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

0.707113 0.5 011111

ORIGIN ORIENTED MODEL 0.1 u.50 u.o~ 1.0 STJP DEGRADING TRI-lINEA~ MUDEl 0.1 0.25 v.50 0.25 STOP

2

0.1.12 1.0 2

, 83

SHCH 1081 SHCH 108l SHCH lOiU SHCH 10114 SHCH 1u85 SHCH .l.Otlo SHCH 10tl7 SHCH 1088 SHCH lu89 SHCH 1090 SHCH 1u91

Page 98: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

84

EERC 67-1

EERC 68-1

EERC 68-2

EERC 68-3

EERC 68-4

EERC 68-5

EERC 69-1

EERC 69-2

'EERC 69-3

EERC 69-4 •

EERC 69-5

EAR'l'HQUAKE ENGINEERING RESEARCH CENTER REPORTS

"Feasibility Study Large-Scale Earthquake Simulator Facility," by J. Penzien, J. G. Bouwkamp, R. W. Clough and D. Rea - 1967 (PB 187 905)

Unassigned

"Inelastic Behavior of Beam-to-Column Subassemblages Under Repeated Loading," by V. V. Bertero - 1968 (PB 184 888)

"A Graphical Method for Solving the Wave Reflection­Refraction Problem," by H. D. McNiven and Y. Mengi 1968 (PB 187 943)

"Dynamic Properties of McKinley School Buildings," by D. Rea, J. G. Bouwkamp and R. W. Clough - 1968 (PB 187 902)

"Characteristics of Rock Motions During Earthquakes," by H. B. Seed, I. M. Idriss and F. W. Kiefer - 1968 (PB 188 338)

"Earthquake Engineering Research at Berkeley," - 1969 (PB 187 906)

"Nonlinear Seismic Response of Earth Structures," by M. Dibaj and J. Penzien - 1969 (PB 187 904)

"Probabilistic Study of the Behavior of Structures During Earthquakes," by P. Ruiz and J. Penzien - 1969 (PB 187 886)

"Numerical Solution of Boundary Value Problems in Structural Mechanics by Reduction to an Initial Value Formulation," by N. Distefano and J. Schujman - 1969 (PB 187 942)

"Dynamic Programming and the Solution of the Biharmonic Equation," by N. Distefano - 1969 (PB 187 941)

Note: Numbers in parenthesis are Accession Numbers assigned by the National ~echnical Information Service. Copies of these reports rnay be ordered from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia, 22161. Accession Numbers should be quoted on orders for the reports (PB --- ---) and remittance must accompany each order. (Foreign orders, add $2.50 extra for mailing charges.) Those reports without this information listed are not yet available from NTIS. Upon request, EERC will mail inquirers this information when it becomes available to us.

Page 99: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

EERC 69-6

EERC 69-7

EERC 69-8

EERC 69-9

EERC 69-10

EERC 69-11

EERC 69-12

EERC 69-13

EERC 69-14

EERC 69-15

EERC 69-16

EERC 70-1

EERC 70-2

"Stochastic Analysis of Offshore Tower Structures," by A. K. Malhotra and J. Penzien - 1969 (PB 187 903)

"Rock Motion Accelerograms for High Magnitude Earthquakes," by H. B. Seed and r. M. Idriss - 1969 (PB 187 940)

"Structural Dynamics Testing Facilities at the University of California, Berkeley," by R. M. Stephen, J. G. Bouwkamp, R. W. Clough and J. Penzien - 1969 (PB 189 111)

"Seismic Response of Soil Deposits Underlain by Sloping Rock Boundaries," by H. Dezfulian and H. B. Seed - 1969 (PB 189 114)

"Dynamic Stress Analysis of Axisymmetric Structures under Arbitrary Loading," by S. Ghosh and E. L. Wilson - 1969 (PB 189 026)

"Seismic Behavior of Multistory Frames Designed by Different Philosophies," by J. C. Anderson and V. V. Bertero - 1969 (PB 190 662)

"Stiffness Degradation of Reinforcing Concrete Structures Subjected to Reversed Actions," by V. V. Bertero, B. Bresler and H. Ming Liao - 1969 (PB 202 942)

"Response of Non-Uniform Soil Deposits to Travel Seismic Waves," by H. Dezfulian and H. B. Seed - 1969 (PB 191 023)

"Damping Capacity of a Model Steel Structure," by D. Rea, R. W. Clough and J. G. Bouwkamp - 1969 (PB 190 663)

"Influence of Local Soil Conditions on Building Damage Potential during Earthquakes," by H. B. Seed and I. M. Idriss - 1969 (PB 191 036)

"The Behavior of Sands under Seismic Loading Conditions," by M. L. Silver and H. B. Seed - 1969 (AD 714 982)

"Earthquake Response of Concrete Gravity Dams," by A. K. Chopra - 1970 (AD 709 640)

"Relationships between Soil Conditions and Building Damage in the Caracas Earthquake of July 29, 1967," by H. B. Seed, I. M. Idriss and H. Dezfulian - 1970 (PB 195 762)

85

Page 100: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

86

EERC 70-3

EERC 70-4

EERC 70-5

EERC 70-6

EERC 70-7

EERC 70-8

EERC 70-9

EERC 70-10

EERC 71-1

EERC 71-2

EERC 71-3

EERC 71-4

EERC 71-5

"Cyclic Loading of Full Size Steel Connections," by E. P. Popov and R. M. Stephen - 1970 (PB 213 545)

"Seismic Analysis of the Charaima Building, Caraballeda, Venezuela," by Subcommittee of the SEAONC Research Committee: V. V. Bertero, P. F. Fratessa, S. A. Mahin, J. H. Sexton, A. C. Scordelis, E. L. Wilson, L. A. Wyllie, H. B. Seed and J. Penzien, Chairman - 1970 (PB 201 455)

"A Computer Program for Earthquake Analysis of Dams," by A. K. Chopra and P. Chakrabarti - 1970 (AD 723 994)

"The Propagation of Love Waves across Non-Horizontally Layered Structures," by J. Lysmer and L. A. Drake -1970 (PB 197 896)

"Influence of Base Rock Characteristics on Ground Response," by J. Lysmer, H. B. Seed and P. B. Schnabel - 1970 (PB 197 897)

"Applicability of Laboratory Test Procedures for Measuring Soil Liquefaction Characteristics under Cyclic Lo'ading," by H. B. Seed and W. H. Peacock -1970 (PB 198 016)

"A Simplified Procedure for Evaluating Soil Liquefaction Potential," by H. B. Seed and 1. M. Idriss - 1970 (PB 198 009)

"Soil Moduli and Damping Factors for Dynamic Response Analysis," by H. B. Seed and I. M. Idriss - 1970 (PB 197 869)

"Koyna Earthquake and the Performance of Koyna Dam," by A. K. Chopra and P. Chakrabarti - 1971 (AD 731 496)

"Preliminary In-Situ Measurements of Anelastic Absorption in Soils Using a Prototype Earthquake Simulator," by R. D. Borcherdt and P. W. Rodgers -1971 (PB 201 454)

"Static and Dynamic Analysis of Inelastic Frame Structures," by F. L. Porter and G. H. Powell - 1971 (PB 210 135)

"Research Needs in Limit Design of Reinforced Concrete Structures," by V. V. Bertero - 1971 (PB 202 943)

"Dynamic Behavior of a High-Rise Diagonally Braced Steel Building," by D. Rea, A. A. Shah and J. G. Bouwkamp - 1971 (PB 203 584)

Page 101: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

EERC 71-6

EERC 71-7

EERC 71-8

EERC 72-1

EERC 72-2

EERC 72-3

EERC 72-4

EERC 72-5

EERC 72-6

EERC 72-7

EERC 72-8

EERC 72-9

EERC 72-10

"Dynamic stress Analysis of Porous Elastic Solids Saturated with Compressible Fluids," by J. Ghaboussi and E. L. Wilson - 1971 (PB 211 396)

"Inelastic Behavior of Steel Beam-to-Column Subassemblages," by H. Krawinkler, V. V. Bertero and E. P. Popov - 1971 (PB 211 335)

"Modification of Seismograph Records for Effects of Local Soil Conditions," by P. schnabel, H. B. Seed and J. Lysmer - 1971 (PB 214 450)

"Static and Earthquake Analysis of Three Dimensional Frame and Shear Wall Buildings," by E. L. Wilson and H. H. Dovey - 1972 (PB 212 904)

"Accelerations in Rock for Earthquakes in the Western United States," by P. B. Schnabel and H. B. Seed -1972 (PB 213 100)

"Elastic-Plastic Earthquake Response of Soil-Building Systems," by T. Minami - 1972 (PB 214 868)

"Stochastic Inelastic Response of Offshore Towers to Strong Motion Earthquakes," by M. K. Kaul - 1972 (PB 215 713)

"Cyclic Behavior of Three Reinforced Concrete Flexural Members with High Shear," by E. P. Popov, V. V. Bertero and H. Krawinkler - 1972 (PB 214 555)

"Earthquake Response of Gravity Dams Including Reservoir Interaction Effects," by P. Chakrabarti and A. K. Chopra - 1972 (AD 762 330)

"Dynamic Properties on Pine Flat Dam," by D. Rea, C. Y. Liaw and A. K. Chopra - 1972 (AD 763 928)

"Three Dimensional Analysis of Building Systems," by E. L. Wilson and H. H. Dovey - 1972 (PB 222 438)

"Rate of Loading Effects on Uncracked and Repaired Reinforced Concrete Members," by S. Mahin, V. V. Bertero, D. Rea and M. Atalay - 1972 (PB 224 520)

"Computer Program for static and Dynamic Analysis of Linear Structural Systems," by E. L. Wilson, K.-J. Bathe, J. E. Peterson and H. H. Dovey - 1972 (PB 220 437)

87

Page 102: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

88

EERC 72-11

EERC 72-12

EERC 73-1

EERC 73-2

EERC 73-3

EERC 73-4

EERC 73-5

EERC 73-6

EERC 73-7

EERC 73-8

EERC 73-9

EERC 73-10

EERC 73-11

EERC 73-12

"Literature Survey - Seismic Effects on Highway Bridges," by T. Iwasaki, J. Penzien and R. W. Clough -1972 (PB 215 613)

"SHAKE-A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," by P. B. Schnabel and J. Lysmer - 1972 (PB 220 207)

"Optimal Seismic Des ign of Multistory Frame s ," by V. V. Bertero and H. Kamil - 1973

"Analysis of the Slides in the San Fernando Dams during the Earthquake of February 9, 1971," by H. B. Seed, K. L. Lee, I. M. Idriss and F. Makdisi -1973 (PB 223 402)

"Computer Aided Ultimate Load Design of Unbraced Multistory Steel Frames," by M. B. EI-Hafez and G. H. Powell - 1973

"Experimental Investigation into the Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment and Shear," by M. Celebi and J. Penzien - 1973 (PB 215 884)

"Hysteretic Behavior of Epoxy-Repaired Reinforced Concrete Beams," by M. Celebi and J. Penzien - 1973

"General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures," by A. Kanaan and G. H. Powell - 1973 (PB 221 260)

"A Computer Program for Earthquake Analysis of Gravity Dams Including Reservoir Interaction," by P. Chakrabarti and A. K. Chopra - 1973 (AD 766 271)

"Behavior of Reinforced Concrete Deep Beam-Column Subassemblages under Cyclic Loads," by o. Kustu and J. G. Bouwkamp - 1973

"Earthquake Analysis of Structure-Foundation Systems," by A. K. Vaish and A. K. Chopra - 1973 (AD 766 272)

"Deconvolution of Seismic Response for Linear Systems," by R. B. Reimer - 1973 (PB 227 179)

"SAP IV: A Structural Analysis Program for static and Dynamic Response of Linear Systems," by K.-J. Bathe, E. L. Wilson and F. E. Peterson - 1973 (PB 221 967)

"Analytical Investigations of the Seismic Response of Long, Multiple Span Highway Bridges," by W. S. Tseng and J. Penzien - 1973 (PB 227 816)

Page 103: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

EERC 73-13

EERC 73-14

EERC 73-15

EERC 73-16

EERC 73-17

EERC 73-18

EERC 73-19

EERC 73-20

EERC 73-21

EERC 73-22

EERC 73-23

EERC 73-24

EERC 73-25

EERC 73-26

"Earthquake Analysis of Multi-Story Buildings Including Foundation Interaction," by A. K. Chopra and J. A. Gutierrez - 1973 (PB 222 970)

"ADAP: A Computer Program for Static and Dynamic Analysis of Arch Dams," by R. W. Clough, J. M. Raphael and S. Majtahedi - 1973 (PB 223 763)

"Cyclic Plastic Analysis of Structural Steel Joints," by R. B. Pinkney and R. W. Clough - 1973 (PB 226 843)

"QUAD-4: A Computer Program for Evaluating the Seismic Response of Soil Structures by Variable Damping Finite Element Procedures," by I. M. Idriss, J. Lysmer, R. Hwang and H. B. Seed - 1973 (PB 229 424)

"Dynamic Behavior of a Multi-Story Pyramid Shaped Building," by R. M. Stephen and J. G. Bouwkamp - 1973

"Effect of Different Types of Reinforcing on Seismic Behavior of Short Concrete Columns," by V. V. Bertero, J. Hollings, O. Kustu, R. M. Stephen and J. G. Bouwkamp - 1973

"Olive View Medical Center Material Studies, Phase I," by B. Bresler and V. V. Bertero - 1973 (PB 235 986)

"Linear and Nonlinear Seismic Analysis Computer Programs for Long Multiple-Span Highway Bridges," by W. S. Tseng and J. Penzien - 1973

"Constitutive Models for Cyclic Plastic Deformation of Engineering Materials," by J. M. Kelly and P. P. Gillis - 1973 (PB 226 024)

"DRAIN - 2D User's Guide," by G. H. Powell - 1973 (PB 227 016)

"Earthquake Engineering at Berkeley - 1973" - 1973 (PB 226 033)

Unassigned

"Earthquake Response of Axisymmetric Tower Structures Surrounded by Water," by C. Y. Liaw and A. K. Chopra -1973 (AD 773 052)

"Investigation of the Failures of the Olive View Stairtowers during the San Fernando Earthquake and Their Implications in Seismic Design I" by V. V. Bertero and R. G. Collins - 1973 (PB 235 106)

89

Page 104: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

90

EERC 73-27

EERC 74-1

EERC 74-2

EERC 74-3

EERC 74-4

EERC 74-5

EERC 74-6

EERC 74-7

EERC 74-8

EERC 74-9

EERC 74-10

EERC 74-11

EERC 74-12

"Further Studies on Seismic Behavior of Steel Beam­Column Subassernblages," by V. V. Bertero, H. Krawinkler and E. P. Popov - 1973 (PB 234 172)

"seismic Risk Analysis," by C. S. Oliveira - 1974 (PB 235 920)

"Settlement and Liquefaction of Sands under Multi-Directional Shaking," by R. Pyke, C. K. Chan and H. B. Seed - 1974

"Optimum Design of Earthquake Resistant Shear Buildings," by D. Ray, K. S. Pister and A. K. Chopra -1974 (PB 231 172)

"LUSH - A Computer Program for Complex Response Analysis of Soil-Structure systems," by J. Lysmer, T. Udaka, H. B. Seed and R. Hwang - 1974 (PB 236 796)

"Sensitivity Analysis for Hysteretic Dynamic Systems: Applications to Earthquake Engineering," by D. Ray -1974 (PB 233 213)

"soil-Structure Interaction Analyses for Evaluating Seismic Response," by H. B. Seed, J. Lysmer and R. Hwang - 1974 (PB 236 519)

Unassigned

"Shaking Table Tests of a Steel Frame - A Progress Report," by R. W. Clough and D. Tang - 1974

"Hysteretic Behavior of Reinforced Concrete Flexural Members with Special Web Reinforcement," by V. V. Bertero, E. P. Popov and T. Y. Wang - 1974 (PB 236 797)

"Applications of Reliability-Based, Global Cost Optimization to Design of Earthquake Resistant Structures," by E. Vitiello and K. S. Pister - 1974 (PB 237 231)

"Liquefaction of Gravelly Soils under Cyclic Loading Conditions," by R. T. Wong, H. B. Seed and C. K. Chan 1974

"Site-Dependent Spectra for Earthquake-Resistant Design," by H. B. Seed, C. Ugas and J. Lysmer - 1974

Page 105: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

EERC 74-13

EERC 74-14

EERC 74-15

EERC 75-1

EERC 75-2

EERC 75-3

EERC 75-4

EERC 75-5

EERC 75-6

EERC 75-7

EERC 75-8

EERC 75-9

"Earthquake Simulator Study of a Reinforced Concrete Frame," by P. Hidalgo and R. W. Clough - 1974 (PB 241 944)

"Nonlinear Earthquake Response of Concrete Gravity Dams," by N. Pal - 1974 (AD/A006583)

"Modeling and Identification in Nonlinear Structural Dynamics, I - One Degree of Freedom Models," by N. Distefano and A. Rath - 1974 (PB 241 548)

"Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. I: Description, Theory and Analytical Modeling of Bridge and Parameters," by F. Baron and S.-H. Pang - 1975

"Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. 2: Numerical Studies and Establishment of Seismic Design Criteria," by F. Baron and S.-H. Pang - 1975

"Seismic Risk Analysis for a Site and a Metropolitan Area," by C. S. Oliveira - 1975

"Analytical Investigations of Seismic Response of Short, Single or Multiple-Span Highway Bridges," by Ma-chi Chen and J. Penzien - 1975 (PB 241 454)

"An Evaluation of Some Methods for Predicting Seismic Behavior of Reinforced Concrete Buildings," by Stephen A. Mahin and V. V. Bertero - 1975

"Earthquake Simulator Study of a Steel Frame Structure, Vol. I: Experimental Results," by R. W. Clough and David T. Tang - 1975 (PB 243 981)

"Dynamic Properties of San Bernardino Intake Tower," by Dixon Rea, C.-Y. Liaw, and Anil K. Chopra - 1975 (AD/A008406)

"Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. I: Description, Theory and Analytical Modeling of Bridge Components," by F. Baron and R. E. Hamati - 1975

"Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. 2: Numerical Studies of Steel and Concrete Girder Alternates," by F. Baron and R. E. Hamati - 1975

91

Page 106: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

92

EERC 75-10

EERC 75-11

EERC 75-12

EERC 75-13

EERC 75-14

EERC 75-15

EERC 75-16

EERC 75-17

EERC 75-18

EERC 75-19

EERC 75-20

EERC 75-21

EERC 75-22

EERC 75-23

"Static and Dynamic Analysis of Nonlinear Structures," by Digambar P. Mondkar and Graham H. Powell - 1975 (PB 242 434)

"Hysteretic Behavior of Steel Columns," by E. P. Popov, V. V. Bertero and S. Chandramouli - 1975

"Earthquake Engineering Research Center Library Printed Catalog" - 1975 (PB 243 711)

"Three Dimensional Analysis of Building Systems," Extended Version, by E. L. Wilson, J. P. Hollings and H. H. Dovey - 1975 (PB 243 989)

"Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests," by Pedro De Alba, Clarence K. Chan and H. Bolton Seed - 1975

"A Literature Survey - Compressive, Tensile, Bond and Shear Strength of Masonry," by Ronald L. Mayes and Ray w. Clough - 1975

"Hysteretic Behavior of Ductile Moment Resisting Reinforced Concrete Frame Components," by V. V. Bertero and E. P. Popov - 1975

"Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source, Local Site Conditions for Hoderately Strong Earthquakes," by H. Bolton Seed, Ramesh Murarka, John Lysmer and I. M. Idriss - 1975

"The Effects of Hethod of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands," by J. Paul Mulilis, Clarence K. Chan and H. Bolton Seed - 1975

"The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear and Axial Force," by B. Atalay and J. Penzien - 1975

"Dynamic Properties of an Eleven Story Masonry Building," by R. M. Stephen, J. P. Hollings, J. G. Bouwkamp and D. Jurukovski - 1975

"State-of-the-Art in Seismic Shear Strength of Masonry -An EVdluation and Review," by Ronald L. Mayes and Ray W. Clough - 1975

"Frequency Dependencies Stiffness Matrices for Viscoelastic Half-Plane Foundations," by Anil K. Chopra, P. Chakrabarti and Gautam Dasgupt.a - 1975

"Hysteretic Behavior of Reinforced Concrete Framed Walls," by T. Y. Wong, V. V. Bertero and E. P. Popov - 1975

Page 107: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan

EERC 75-24

EERC 75-25

EERC 75-26

EERC 75-27

EERC 75-28

EERC 75-29

EERC 75-30

EERC 75-31

EERC 75-32

EERC 75-33

EERC 75-34

EERC 75-35

EERC 75-36

EERC 75-37

EERC 75-38

"Testing Facility for Subassemblages of Frame-Wall Structural Systems," by V. V. Bertero, E. P. Popov and T. Endo - 1975

"Influence of Seismic History on the Liquefaction Characteristics of Sands," by H. Bolton Seed, Kenji Nori and Clarence K. Chan - 1975

"The Generation and Dissipation of Pore Water Pressures During Soil Liquefaction," by H. Bolton Seed, Phillippe P. Martin and John Lysmer - 1975

"Identification of Research Needs for Improving a Seismic Design of Building Structures," by V. V. Bertero - 1975

93

"Evaluation of Soil Liquefaction Potential during Earth­quakes," by H. Bolton Seed, 1. Arango and Clarence K. Chan 1975

"Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses," by H. Bolton Seed, I. N. Idriss, F. Makdisi and N. Banerjee 1975

"FLUSH - A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems," by J. Lysmer, T. Udaka, C.-F. Tsai and H. B. Seed - 1975

"ALUSH - A Computer Program for Seismic Response Analysis of Axisymmetric Soil-Structure Systems," by E. Berger, J. Lysmer and H. B. Seed - 1975

"TRIP and TRAVEL - Computer Programs for Soil-Structure Interaction Analysis with Horizontally Travelling Waves," by T. Udaka, J. Lysmer and H. B. Seed - 1975

"Predicting the Performance of Structures in Regions of High Seismicity," by Joseph Penzien - 1975

"Efficient Finite Element Analysis of Seismic Structure -Soil - Direction," by J. Lysmer, H. Bolton Seed, T. Udaka, R. N. Hwang and C. -F. Tsai - 1975

"The Dynamic Behavior of a First Story Grider of a Three­Story Steel Frame Subjected to Earthquake Loading," by Ray W. Clough and Lap-Yan Li - 1975

"Earthquake Simulator Study of a Steel Frame Structure, Vol. II - Analytical Results," by David T. Tang - 1975

"ANSR-I General Purpose Computer Program for Analysis of Non-Linear Structural Response," by Digambar P. Mondkar and Graham H. Powell - 1975

"Nonlinear Response Spectra for Probabilistic Seismic Design and Damage Assessment of Reinforced Concrete Structures," by Masaya Murakami and Joseph Penzien - 1975

Page 108: NONLINEAR RESPONSE SPECTRA FOR PROBABILISTIC SEISMIC DESIGN … · 2010-05-03 · The general philosophy of seismic resistant design in most countries of the world, including Japan