notes on laminates optimization - isae-supaero

46
Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters Notes on Laminates Optimization Joseph Morlier / Dimitri Bettebghor January 2010 Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 1 / 46

Upload: others

Post on 03-Nov-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

Notes on Laminates Optimization

Joseph Morlier / Dimitri Bettebghor

January 2010

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 1 / 46

Page 2: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

Summary

1 Overview of Composites

2 Ply mechanics

3 Classical Laminates Theory

4 Laminates optimization: laminated Parameters

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 2 / 46

Page 3: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

Definition

Composite materials (Latin: componere) ”‘A macroscopic combination oftwo or more distinct materials into one with the intent of surpressingundesirable properties of the constituent materials in favour of desirableproperties”’

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 3 / 46

Page 4: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

At Macro Level

Isotropic”‘The same properties in all directions”’ (Metals, plastics, concrete, etc)Anisotropic”‘Different properties in different directions”’ (Wood, reinforced concrete,fibre composites, bone, and almost all natural building materials)An example would be the dependence of Young’s modulus on the directionof load

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 4 / 46

Page 5: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

Laminates composites

Combination of two or more constituent materials on a macroscopic examinationto produce a new material with enhanced properties: Fibers (carbon, glass, Kevlar)and matrix (Epoxy resin)

Strength and stiffness are proportional to the amount of fibers in the matrix (Fibervolume fraction)The reinforcing fibers provide the useful engineering properties e.g., strength andstiffness); whereas the matrix serves to protect and stabilize the fibers whiletransferring loads among the fibers predominantly through shear.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 5 / 46

Page 6: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

Stacking Sequence

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 6 / 46

Page 7: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

Mirror symetry?

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 7 / 46

Page 8: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

Coupling terms

When the local coordinate changes : some terms of Compliance matrix aredifferent of Zero (Distortion of right angle)

For anistropic material, Stress-Strain Equations depend on Coordinate.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 8 / 46

Page 9: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

Stress and Strain in a laminate

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 9 / 46

Page 10: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

Equivalent material

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 10 / 46

Page 11: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

Simple rules: Mixture Law

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 11 / 46

Page 12: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

Elasticity Review: stress tensor

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 12 / 46

Page 13: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

stress tensor: Matrix notation

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 13 / 46

Page 14: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

Plane stress assumption

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 14 / 46

Page 15: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

1

strain tensor: Matrix notation

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 15 / 46

Page 16: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Stress-Strain Equations in Material Coordinate

In material coordinate, we can calculate: any load cases (in plane) is a combinationof these 3 cases

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 16 / 46

Page 17: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Normal strain in coupon along O1 (Material Coordinate

When loading is normal to face 1 (normal stress σ1) , the structure elongates along O1(ε1) and shortens along O2 (ε2).

Loading is in the axis of orthotropy (axis of symetry of materials), so right angle keepsbeeing right: ε12 is null.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 17 / 46

Page 18: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Shear Loading

Under pure shearing force τ12 ,no ε1 and ε2 appears.G12 (shear modulus) is defined by : τ12 = 2G12ε12

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 18 / 46

Page 19: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Stiffness Equations in Material Coordinate

any load cases (in plane) creating σ1 , σ2 , τ12 is a combination of these elementarycases: 0@ ε1

ε22ε12

1A =

0@ 1/E1 − ν21E2

0

− ν12E1

1/E2 0

0 0 1/G12

1A 0@ σ1

σ2

τ12

1Aequivalent to (Hooke’s Law): [ε]=[S][σ],where [S] is the Compliance Matrix (9 terms)Multiplying by S−1, : [σ]=[Q”][ε]we can obtain: [Q ′′] Reduced Stiffness Matrix in the orthotropic coordinate:

[Q ′′] =

0@ βE1 βν12E2 0βν12E2 βE2 0

0 0 G12

1Aavec β = 1

1−ν12ν21

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 19 / 46

Page 20: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Hooke’s Law for a 2D Angle Lamina

From local to global coordinate ?

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 20 / 46

Page 21: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Coordinate Transformations

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 21 / 46

Page 22: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Coordinate Transformations

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 22 / 46

Page 23: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Stress Transformation

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 23 / 46

Page 24: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Strain Transformation

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 24 / 46

Page 25: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Stress-Strain relationship in Global Coordinate

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 25 / 46

Page 26: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Stress-Strain relationship in Global Coordinate

Multiplying by [T ]−1

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 26 / 46

Page 27: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Stiffness and Compliance Matrix in Global Coordinate

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 27 / 46

Page 28: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

2

Exemple 1

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 28 / 46

Page 29: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

3

Macromechanics

Nx = normal force resultant in the x direction (per unit length) Nxy = shear force

resultant (per unit length) Mx = bending moment resultant in the yz plane (per unit

length) Mxy = twisting moment resultant (per unit length)

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 29 / 46

Page 30: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

3

Displacement field

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 30 / 46

Page 31: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

3

Strain in the laminate

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 31 / 46

Page 32: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

3

Strain in the laminate for each layer

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 32 / 46

Page 33: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

3

Plate resultant forces

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 33 / 46

Page 34: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

3

Constitutive equation for laminated plate

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 34 / 46

Page 35: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

3

Laminate stiffness matrix

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 35 / 46

Page 36: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

3

ABD?

18 terms are governing:

A = [in-plane stiffness matrix]

D = [bending stiffness matrix]

B = [bending-extension coupling matrix]

B=0 if symetrical vs middle plan

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 36 / 46

Page 37: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

3

Aij, Bij, Dij Coefficients

Aij, Bij, Dij depends on thickness, orientation, stacking and materialsproperties of each ply.

where zk are ply coordinate (sup and inf) (i,j=1,2,6)IS THERE ANY COMPACT FORM OF THIS COMPLEX PROBLEMEXISTING ???????

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 37 / 46

Page 38: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

4

Optimal Fibers Orientation

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 38 / 46

Page 39: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

4

Lamination parameters

Lamination parameters are a compact representation of the stackingsequence. Miki, Tsaı and Pagano carried out this representation of themechanical behaviour of a laminate by decomposing thematerial-dependent part and the stacking-sequence dependent part, endingup with :

5 so-called material invariants or Tsaı-Pagano parameters {Ui}i=1...5

that only depend on the material properties (E11, E22, G12 and ν12

the longitudinal, transerve and shear moduli and the Poisson’s ratio)

12 so-called lamination parameters ξA{1,2,3,4}, ξB{1,2,3,4}, ξ

D{1,2,3,4} that

only depend on the stacking sequence (fiber orientations and numberof plies).

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 39 / 46

Page 40: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

4

Lamination parameters

The knowledge of both U and ξ is enough to derive the constitutive law ofthe material. More precisely, they allow ud to compute the ABD stiffnesstensor where :

A is the in-plane stiffness tensor that describe the tensile compressivebehaviour of the material

D is the out-of-plane stiffness tensor that describe the flexuralbehaviour

B is the coupling stiffness tensor

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 40 / 46

Page 41: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

4

Lamination parameters

Their definition is :

ξA{1,2,3,4} =1

h

∫ h/2

−h/2{cos(2θ(z)), cos(4θ(z)), sin(2θ(z)), sin(4θ(z))}dz (1)

ξB{1,2,3,4} =1

h

∫ h/2

−h/2{cos(2θ(z)), cos(4θ(z)), sin(2θ(z)), sin(4θ(z))}zdz

(2)

ξD{1,2,3,4} =1

h

∫ h/2

−h/2{cos(2θ(z)), cos(4θ(z)), sin(2θ(z)), sin(4θ(z))}z2dz

(3)where h denotes the thickness of the laminate and θ the orientation offiber at height z ∈ [−h/2, h/2]. It is a general definition of ξ. For laminatecomposite it turns down to a simple finite sum of Nplies terms

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 41 / 46

Page 42: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

4

Lamination parameters

Knowing these lamination parameters and the material invariants U. Thestiffness tensors can be obtained by

I11

I22

I12

I66

I16

I26

=

1 ξI1 ξI2 0 01 −ξI1 ξI2 0 00 0 −ξI1 1 00 0 −ξI2 0 10 −ξI3/2 ξI4 0 00 ξI3/2 −ξI4 0 0

U1

U2

U3

U4

U5

(4)

where I stands for A, B and D.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 42 / 46

Page 43: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

4

Lamination parameters based lay-up optimization

The lamination parameters offers another representation of the stackingsequence

They represent the stacking sequence description through 12variables, no matter how many plies there are.

A lot of work has been done on describing the feasible design spacefor lamination parameters : Miki, Diaconu, Weaver... and theboundaries may be described with a closed form expression. RecentlyWeaver and al. carried out an implicit relationship to describe tofeasible space for any set of arbitrary orientations.

They can be used to build up surrogate model.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 43 / 46

Page 44: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

4

Lamination parameters

Figure: Exemple of feasible design space into the lamination parameterrepresentation

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 44 / 46

Page 45: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

4

Lamination parameter based lay-up optimization

This representation has been used with different optimization techniques:

Evolutionnary techniques : Haftka, Leriche, Todoroki...

Gradient based techniques : Herencia, Kere

other metaheuristics (SA, AC...) : Todoroki

Nonetheless, once an optimum has been found in the laminationparameters space, we have to find a corresponding stacking sequence

This is not trivial and in the litterature, this problem is usually solved withevolutionnary techniques. though some author derived original methods :Todoroki used for instance a brounch-and-bound that is based on thefractal structure of the lamination parameters space.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 45 / 46

Page 46: Notes on Laminates Optimization - ISAE-SUPAERO

Overview of Composites Ply Mechanics Classical Laminates Theory Laminates optimization: laminated Parameters

4

Others representations

Note that this representation is not the only one to be used for lay-upoptimization

We can use directly the reduced stiffness tensors A and D and usecontinous techniques (gradient descente techniques) (Adams,Herencia,...). Note that we still have the post-identification problem.

There also exists an equivalent representation used by Vanucci : thepolar form

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 46 / 46