nov 25 analytic geometry recap

3
1 Analytic Geometry A Recap! 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 #3. Find the coordinates of a point R on AB with A(8, 0) and B(4, 8), such that AR = 2RB. Distance and Midpoint Assignment 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 Find a point on the xaxis that is a distance of 10 units from the pt. (4,8). Explain why there are two answers. Find the standard form of the equation of a line containing (1, 8) and (3, 4)

Upload: dmci

Post on 18-May-2015

240 views

Category:

Technology


2 download

TRANSCRIPT

Page 1: Nov 25 Analytic Geometry Recap

1

Analytic Geometry

A Recap! 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

­1

­2

­3

­4

­5

­6

­7

­8

­9

­1­2­3­4­5­6­7­8­9

#3.  Find the coordinates of a point R on AB with A(8, 0) and B(4, ­8),   such that AR = 2RB.

 Distance and Midpoint Assignment

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

­1

­2

­3

­4

­5

­6

­7

­8

­9

­1­2­3­4­5­6­7­8­9

Find a point on the x­axis that is a distance of 10 units from the pt. (4,8).Explain why there are two answers.

Find the standard form of the equation of a line containing (1, ­8) and (3, 4)

Page 2: Nov 25 Analytic Geometry Recap

2

Determine whether the triangle with vertices (­5, 3), (­1, ­8) and (6, ­1) is an isosceles triangle. 

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

­1

­2

­3

­4

­5

­6

­7

­8

­9

­1­2­3­4­5­6­7­8­9

Find the area of triangle ABC with A(2, 0), B(6 ,0), and C(5, 6)

Find an equation of a line which passes through the point (2, ­1) and is

a. parallel to the line 5x ­ 4y + 3 = 0 

b. perpendicular to the line x + y ­ 2 = 0 

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

­1

­2

­3

­4

­5

­6

­7

­8

­9

­1­2­3­4­5­6­7­8­9

Find the area of the triangle formed by the following 3 lines.l1: x­axisl2: y­axisl3: 2x ­ y + 6 = 0

Page 3: Nov 25 Analytic Geometry Recap

3