novel three-phase 2/3-modulated buck-boost current source

80
1 Novel Three - Phase 2/3 - Modulated Buck - Boost Current Source Inverter System Employing Dual - Gate Monolithic Bidirectional GaN e - FETs International Wide - Bandgap Power Electronics Applications Workshop 14 th May 2019 M. Guacci, M. Tatic, Dr. D. Bortis, Prof. Dr. J.W. Kolar ETH Zurich, Zurich, Switzerland Power Electronic Systems Laboratory Y. Kinoshita, Dr. H. Ishida Panasonic Corporation, Osaka, Japan Energy Solution Development Center Industrial Solution Company

Upload: others

Post on 18-Mar-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

1

Novel Three-Phase 2/3-Modulated Buck-BoostCurrent Source Inverter System Employing

Dual-Gate Monolithic Bidirectional GaN e-FETs

International Wide-Bandgap Power Electronics Applications Workshop

14th May 2019

M. Guacci, M. Tatic, Dr. D. Bortis, Prof. Dr. J.W. KolarETH Zurich, Zurich, Switzerland

Power Electronic Systems Laboratory

Y. Kinoshita, Dr. H. IshidaPanasonic Corporation, Osaka, JapanEnergy Solution Development Center

Industrial Solution Company

2

ETH, Zurich, Switzerland - 7th February 1854

Facts & Figures

509 Professors5800 Staff Members4500 Ph.D. Students14500 M.Sc. & B.Sc. Students

► Main Campus, Zurich City Center

2 Campuses16 Departments - D-ITET136 Laboratories - PES

3

Power Electronic Systems Laboratory

► Organizational Diagram

DC-ACConverter

Johann W. Kolar

AC-DC Converter

M. HellerD. Menzi

D. NeumayrJ. Schäfer

DC-DC Converter

P. BezerraT. Guillod

G. Knabben

Industry RelationsR. Coccia / B. Seiler

AC-ACConverter

J. AzurzaP. Czyz

Multi-DomainModeling

AdvancedMechatronics

SecretariatM. Kohn / Y. Schnyder

AdministrationP. Maurantonio

Computer SystemsM. Eisenstat

Electronics LaboratoryP. Seitz

F. Krismer

Magnetic Levitation

MeasurementTechnology

D. Bortis

Th. HolensteinP. Püntener

S. Miric

M. AntivachisJ. BöhlerM. GuacciM. Haider

P. Papamanolis

Adv. Mechatronic SystemsD. Bortis

D. BortisD. Bortis F. Krismer

P. Niklaus E. Hubmann

4

Introduction

5

Introduction

Electric Mobility

Hybrid Electric Vehicle (HEV) 50 kWBattery Electric Vehicle (BEV) 200kWAir Taxi 400kWMore Electric Aircraft (MEA) 2 MWMore Electric Engine (MEE) 20 MW

Airbus, Siemens, Rolls-Royce: E-FaN Xwww.airbus.com

Tesla Motors: Model 3www.tesla.com

On-Board DC/AC Conversion

Energy StoragePower Electronics

Electric Machine

Power Electronics Requirements

Efficiency > 98 - 99%Power Density > 5 - 15kW/kg

6

Outline

► Introduction

► Voltage vs. Current DC-Link Inverter► Monolithic Bidirectional Switch► 3-φ Buck-Boost CSI System► Hardware & Measurements

► Outlook

7

Voltage vs. CurrentDC-Link Inverter

Continuous Output VoltageWide Input Voltage RangeBidirectional Power Devices

8

Voltage vs. Current DC-Link Inverter

3-φ Voltage DC-Link Inverter

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Advantages

Simple Circuit TopologyNo Magnetic ComponentsOnly Six Power Semiconductors

9

3-φ Voltage DC-Link Inverter Challenges

Switched Output VoltageWave Propagation & ReflectionPartial Discharge (PDIV)Bearing CurrentsElectro-Magnetic (EMI) Emissions

Advantages

Simple Circuit TopologyNo Magnetic ComponentsOnly Six Power Semiconductors

Voltage vs. Current DC-Link Inverter

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

10

3-φ Voltage DC-Link Inverter Challenges

Switched Output VoltageWave Propagation & ReflectionPartial Discharge (PDIV)Bearing CurrentsElectro-Magnetic (EMI) Emissions External Output Filter Reinforced Insulation Ceramic Bearings Shielded Cables

Advantages

Simple Circuit TopologyNo Magnetic ComponentsOnly Six Power Semiconductors

Voltage vs. Current DC-Link Inverter

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

11

3-φ Voltage DC-Link Inverter Challenges

Switched Output VoltageWave Propagation & ReflectionPartial Discharge (PDIV)Bearing CurrentsElectro-Magnetic (EMI) Emissions External Output Filter

Limited Input Voltage RangeTraction Battery ChargeFuel-Cell Operating PointAdvantages

Simple Circuit TopologyNo Magnetic ComponentsOnly Six Power Semiconductors

Voltage vs. Current DC-Link Inverter

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

12

3-φ Voltage DC-Link Inverter Challenges

Switched Output VoltageWave Propagation & ReflectionPartial Discharge (PDIV)Bearing CurrentsElectro-Magnetic (EMI) Emissions External Output Filter

Limited Input Voltage RangeTraction Battery ChargeFuel-Cell Operating Point Input Boost Stage

Advantages

Simple Circuit TopologyNo Magnetic ComponentsOnly Six Power Semiconductors

Voltage vs. Current DC-Link Inverter

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

13

3-φ Voltage DC-Link Inverter

Voltage vs. Current DC-Link Inverter

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Features

Simple Circuit TopologyContinuous Output VoltageWide Input Voltage Range

14

3-φ Voltage DC-Link Inverter 3-φ Current DC-Link Inverter

Features

Simple Circuit TopologyContinuous Output VoltageWide Input Voltage Range

Voltage vs. Current DC-Link Inverter

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

15

3-φ Voltage DC-Link Inverter 3-φ Current DC-Link Inverter

Features

Simple Circuit TopologyContinuous Output VoltageWide Input Voltage Range

Disadvantages

Inductive DC-LinkBidirectional Power Semiconductors

Voltage vs. Current DC-Link Inverter

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

16

MonolithicBidirectional

Switch

SpecificationsDual-Gate StructureGate Injection Driver

17

Conventional GaN e-FET (1x)

Monolithic Bidirectional Switch

► 650V - 25mΩ

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

18

Conventional GaN e-FET (2x)

Monolithic Bidirectional Switch

► ±650V - 50mΩ

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

19

Conventional GaN e-FET (4x)

Monolithic Bidirectional Switch

► ±650V - 25mΩ

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

20

Monolithic Bidirectional Switch

New GaN e-FET (1x)

Monolithic Bidirectional Switch (MBS)Common Drain - Single Drift LayerDual-Gate (2G)

► ±650V - 25mΩ ► ±600V - 26mΩ

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Conventional GaN e-FET (4x)

21

New GaN e-FET

Monolithic Bidirectional Switch (MBS)Common Drain - Single Drift LayerDual-Gate (2G)

Equivalent Circuit

Monolithic Bidirectional Switch

ON

ON OFF

OFF

► Bidirectional Voltage Blocking► Bidirectional Current Flow

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

22

Equivalent Circuit

Monolithic Bidirectional Switch

ON

ON OFF

OFF

Gate Injection 2G Driver

Gate Driver Features

Separate On-Off PathsConstant Current PathMinimum Component Number

► Bidirectional Voltage Blocking► Bidirectional Current Flow

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

23

3-φ Buck-BoostCurrent Source Inverter

System

Operating PrincipleConventional PWMTwo-Third Modulation (TTM)

24

Operating Principle

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

3-φ Buck-Boost Current Source Inverter (CSI) System

25DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Operating Principle

► Three-State Switches (2x)

3-φ Buck-Boost CSI System Equivalent Circuit

26DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Equivalent CircuitActive States

[ab][ac][ba][bc][ca][cb]

Zero States

[aa][bb][cc]

Operating Principle

► Three-State Switches (2x)

► Space Vector (SV)Diagram

► SV Diagram

27DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Active States

[ab] iph = [+idc, -idc, 0][ac] iph = [+idc, 0, -idc][ba] iph = [-idc, +idc, 0][bc] iph = [0, -idc, +idc][ca] iph = [+idc, 0, -idc][cb] iph = [0, +idc, -idc]

Zero States

[aa] iph = [0, 0, 0][bb] iph = [0, 0, 0][cc] iph = [0, 0, 0]

Equivalent Circuit

Operating Principle

► [aa]

► Short-Circuit

Input Voltage

28DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Equivalent CircuitActive States

[ab] iph = [+idc, -idc, 0][ac] iph = [+idc, 0, -idc][ba] iph = [-idc, +idc, 0][bc] iph = [0, -idc, +idc][ca] iph = [+idc, 0, -idc][cb] iph = [0, +idc, -idc]

Zero States

[aa] iph = [0, 0, 0][bb] iph = [0, 0, 0][cc] iph = [0, 0, 0]

Operating Principle

► [ac]

► Rectified Line-to-Line Voltage

Input Voltage

29DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Active States

[ab] iph = [+idc, -idc, 0][ac] iph = [+idc, 0, -idc][ba] iph = [-idc, +idc, 0][bc] iph = [0, -idc, +idc][ca] iph = [+idc, 0, -idc][cb] iph = [0, +idc, -idc]

Zero States

[aa] iph = [0, 0, 0][bb] iph = [0, 0, 0][cc] iph = [0, 0, 0]

3-φ Load Current Waveforms

Conventional Pulse-Width Modulation (PWM)

30DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Active States

[ab] iph = [+idc, -idc, 0][ac] iph = [+idc, 0, -idc][ba] iph = [-idc, +idc, 0][bc] iph = [0, -idc, +idc][ca] iph = [+idc, 0, -idc][cb] iph = [0, +idc, -idc]

Zero States

[aa] iph = [0, 0, 0][bb] iph = [0, 0, 0][cc] iph = [0, 0, 0]

3-φ Load Current Waveforms

Conventional Pulse-Width Modulation (PWM)

31DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Active States

[ab] iph = [+idc, -idc, 0][ac] iph = [+idc, 0, -idc][ba] iph = [-idc, +idc, 0][bc] iph = [0, -idc, +idc][ca] iph = [+idc, 0, -idc][cb] iph = [0, +idc, -idc]

Zero States

[aa] iph = [0, 0, 0][bb] iph = [0, 0, 0][cc] iph = [0, 0, 0]

3-φ Load Current Waveforms

Conventional Pulse-Width Modulation (PWM)

32DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Active States

[ab] iph = [+idc, -idc, 0][ac] iph = [+idc, 0, -idc][ba] iph = [-idc, +idc, 0][bc] iph = [0, -idc, +idc][ca] iph = [+idc, 0, -idc][cb] iph = [0, +idc, -idc]

Zero States

[aa] iph = [0, 0, 0][bb] iph = [0, 0, 0][cc] iph = [0, 0, 0]

3-φ Load Current Waveforms

Conventional Pulse-Width Modulation (PWM)

33DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Active States

[ab] iph = [+idc, -idc, 0][ac] iph = [+idc, 0, -idc][ba] iph = [-idc, +idc, 0][bc] iph = [0, -idc, +idc][ca] iph = [+idc, 0, -idc][cb] iph = [0, +idc, -idc]

Zero States

[aa] iph = [0, 0, 0][bb] iph = [0, 0, 0][cc] iph = [0, 0, 0]

Conventional Pulse-Width Modulation (PWM)

► Two Active States + One Zero State

3-φ Load Current Waveforms

34DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Active States

[ab] iph = [+idc, -idc, 0][ac] iph = [+idc, 0, -idc][ba] iph = [-idc, +idc, 0][bc] iph = [0, -idc, +idc][ca] iph = [+idc, 0, -idc][cb] iph = [0, +idc, -idc]

Zero States

[aa] iph = [0, 0, 0][bb] iph = [0, 0, 0][cc] iph = [0, 0, 0]

Two-Third Modulation (TTM)

3-φ Load Current Waveforms

35DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Active States

[ab] iph = [+idc, -idc, 0][ac] iph = [+idc, 0, -idc][ba] iph = [-idc, +idc, 0][bc] iph = [0, -idc, +idc][ca] iph = [+idc, 0, -idc][cb] iph = [0, +idc, -idc]

Zero States

[aa] iph = [0, 0, 0][bb] iph = [0, 0, 0][cc] iph = [0, 0, 0]

Two-Third Modulation (TTM)

► Two Active States

3-φ Load Current Waveforms

36DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Conventional PWM vs. TTM

► Conventional PWM ► TTM

37DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Conventional PWM vs. TTM

Equivalent Circuit

38DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Conventional PWM vs. TTM

Equivalent Circuit

► 2G MB GaN e-FETs

39DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Conventional PWM vs. TTM

Equivalent Circuit 3-φ Line-to-Line Voltage Waveforms

► 2G MB GaN e-FETs

40DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Conventional PWM vs. TTM

Equivalent Circuit 3-φ Line-to-Line Voltage Waveforms

► State Sequence[aa]

[ab]

[ac]

► 2G MB GaN e-FETs

41DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Conventional PWM vs. TTM

Equivalent Circuit 3-φ Line-to-Line Voltage Waveforms

► State Sequence[aa]

[ab]

[ac]

► 2G MB GaN e-FETs

42DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Conventional PWM vs. TTM

Equivalent Circuit Switching Losses

► State Sequence[aa]

[ab]

[ac]

► 2G MB GaN e-FETs

43DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Conventional PWM vs. TTM

Equivalent Circuit Switching Losses

► State Sequence[aa]

[ab]

[ac]

► 2G MB GaN e-FETs

44DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Synergetic Control

Control Structure

45DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Synergetic Control

Control Structure

3-φ Load Waveforms

► Simulated Waveforms

46

Hardware & Measurements

Hardware DesignMulti-Step Commutation StrategyMeasured Waveforms

47

Hardware Design

DC/AC Operating Point

Input Current idc 20AOutput Power Pout 7.5kW

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

3-φ Buck-Boost CSI System

48

3-φ Buck-Boost CSI System 1-φ Half-Bridge

DC/DC Operating Point

Output Current idc 20A

DC/AC Operating Point

Input Current idc 20AOutput Power Pout 7.5kW

Hardware Design

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

49

3-φ Buck-Boost CSI System 1-φ Half-Bridge

DC/DC Operating Point

Output Current idc 20AInput Voltage Vba 400V

DC/AC Operating Point

Input Current idc 20AOutput Power Pout 7.5kW

Output Voltage vout,pk 250Vvout,ll,pk 433V

Hardware Design

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

50

3-φ Buck-Boost CSI System One-Side Module

► Top-View ► Bottom-View

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Hardware Design

51

► Top-View ► Bottom-View

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Hardware Design

3-φ Buck-Boost CSI System One-Side Module

52

► Top-View ► Bottom-View

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Hardware Design

3-φ Buck-Boost CSI System One-Side Module

53

► Top-View ► Bottom-View

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Hardware Design

3-φ Buck-Boost CSI System One-Side Module

54

► Top-View ► Bottom-View

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Hardware Design

3-φ Buck-Boost CSI System One-Side Module

55

► Top-View

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

► 3.5’’ Floppy Disk

Hardware Design

3-φ Buck-Boost CSI System One-Side Module

56

Measurements

1-φ Half-Bridge

DC/DC Operating Point

Input Voltage Vba 400VOutput Current idc 5A

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Measured Waveforms ►

57

1-φ Half-Bridge

DC/DC Operating Point

Input Voltage Vba 400VOutput Current idc 5A

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Measurements

Measured Waveforms ►

58

1-φ Half-Bridge

DC/DC Operating Point

Input Voltage Vba 400VOutput Current idc 5A

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Measurements

Measured Waveforms ►

59

1-φ Half-Bridge

DC/DC Operating Point

Input Voltage Vba 400VOutput Current idc 5A

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Measurements

Measured Waveforms ►

60

1-φ Half-Bridge

DC/DC Operating Point

Input Voltage Vba 400VOutput Current idc 5A

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Measurements

Measured Waveforms ►

61

1-φ Half-Bridge

DC/DC Operating Point

Input Voltage Vba 400VOutput Current idc 5A

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Measurements

Measured Waveforms ►

62

1-φ Half-Bridge

DC/DC Operating Point

Input Voltage Vba 400VOutput Current idc 5A

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Measurements

Measured Waveforms ►

63

Outlook ConclusionFuture Work

64

Conclusion

Inverter:Continuous Output VoltageWide Input Voltage Range

Outlook

► 3-φ Buck-Boost CSI System

65

Outlook

► Multi-Step Commutation Strategy

Conclusion

Inverter:Continuous Output VoltageWide Input Voltage Range

2G MB GaN e-FET:Dual-Gate - Gate InjectionMonolithic BidirectionalSwitching Performance

66

Conclusion

Inverter:Continuous Output VoltageWide Input Voltage Range

2G MB GaN e-FET:Dual-Gate - Gate InjectionMonolithic BidirectionalSwitching Performance

Two-Third Modulation (TTM):Operating PrincipleSynergetic Control-8% Conduction Losses-86% Switching Losses

Outlook

67

Outlook

Future Research

3-φ Buck-Boost CSI System:Optimization

Conclusion

Inverter:Continuous Output VoltageWide Input Voltage Range

2G MB GaN e-FET:Dual-Gate - Gate InjectionMonolithic BidirectionalSwitching Performance

Two-Third Modulation (TTM):Operating PrincipleSynergetic Control-8% Conduction Losses-86% Switching Losses

68

Outlook

Future Research

3-φ Buck-Boost CSI System:OptimizationComplete Design

Conclusion

Inverter:Continuous Output VoltageWide Input Voltage Range

2G MB GaN e-FET:Dual-Gate - Gate InjectionMonolithic BidirectionalSwitching Performance

Two-Third Modulation (TTM):Operating PrincipleSynergetic Control-8% Conduction Losses-86% Switching Losses

69

Outlook

Future Research

3-φ Buck-Boost CSI System:OptimizationComplete Design

Investigate Different Concepts

► Normally-On

Conclusion

Inverter:Continuous Output VoltageWide Input Voltage Range

2G MB GaN e-FET:Dual-Gate - Gate InjectionMonolithic BidirectionalSwitching Performance

Two-Third Modulation (TTM):Operating PrincipleSynergetic Control-8% Conduction Losses-86% Switching Losses

70M. Guacci – [email protected]

M. Guacci, M. Tatic, Dr. D. Bortis, Prof. Dr. J.W. KolarETH Zurich, Zurich, Switzerland

Power Electronic Systems Laboratory

Y. Kinoshita, Dr. H. IshidaPanasonic Corporation, Osaka, JapanEnergy Solution Development Center

Industrial Solution Company

Thank You !

Tack så mycket !

71

Back-Up Slides

72

Monolithic Bidirectional Switch

Datasheet Parameters

Advantages

CostParasitic Output Capacitance CossOn-State Resistance Rss,onFigure of Merit (FoM)Thermal PerformancePackage Size - PCB AreaSwitching Performance

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

New GaN e-FET

Monolithic Bidirectional Switch (MBS)Common Drain - Single Drift LayerDual-Gate (2G)

73

Equivalent Circuit

Monolithic Bidirectional Switch

ON

ON OFF

OFF

Conventional 2G Driver

Gate Driver Features

Separate On-Off Paths

► Bidirectional Voltage Blocking► Bidirectional Current Flow

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

74

Equivalent Circuit

Monolithic Bidirectional Switch

ON

ON OFF

OFF

Gate-Injection 2G Driver

Gate Driver Features

Separate On-Off PathsConstant Current Path

► Bidirectional Voltage Blocking► Bidirectional Current Flow

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

75DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Active States

[ab] iph = [+idc, -idc, 0][ac] iph = [+idc, 0, -idc][ba] iph = [-idc, +idc, 0][bc] iph = [0, -idc, +idc][ca] iph = [+idc, 0, -idc][cb] iph = [0, +idc, -idc]

Zero States

[aa] iph = [0, 0, 0][bb] iph = [0, 0, 0][cc] iph = [0, 0, 0]

3-φ Load Current Waveforms

Conventional Pulse-Width Modulation (PWM)

► SV Diagram

76DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Active States

[ab] iph = [+idc, -idc, 0][ac] iph = [+idc, 0, -idc][ba] iph = [-idc, +idc, 0][bc] iph = [0, -idc, +idc][ca] iph = [+idc, 0, -idc][cb] iph = [0, +idc, -idc]

Zero States

[aa] iph = [0, 0, 0][bb] iph = [0, 0, 0][cc] iph = [0, 0, 0]

Two-Third Modulation (TTM)

► SV Diagram

3-φ Load Current Waveforms

77

Conventional PWM vs. TTM (2)

► TTM► Conventional PWM

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

78

Conventional PWM vs. TTM (3)

► TTM► Conventional PWM

DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

79DC-Link: V vs. I 2G MB GaN e-FET 3-φ bB CSI System HW & Measurements

Conventional PWM vs. TTM

Equivalent Circuit 3-φ Line-to-Line Voltage Waveforms

80M. Guacci – [email protected]

M. Guacci, M. Tatic, Dr. D. Bortis, Prof. Dr. J.W. KolarETH Zurich, Zurich, Switzerland

Power Electronic Systems Laboratory

Y. Kinoshita, Dr. H. IshidaPanasonic Corporation, Osaka, JapanEnergy Solution Development Center

Industrial Solution Company

Thank You !

Tack så mycket !