novel uv-transparent 2-component polyurethane resins for

1
Novel UV-transparent 2-component polyurethane resins for Chip-on-Board LED micro lenses M. Gutke a , J. Bauer a , V. Stoycheva a , A. Kaltenbach b , M. Burkhardt b , M. Gruenefeld c , M. Gamp c , M. Edling a , P. Steglich a , F. Heinrich a , S. Steffen e , C. Gerhard d, M. Herzog a , C. Dreyer a,e , S. Schrader a a Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany b resintec GmbH, Hellsternstr. 1, 04895 Falkenberg/Elster, Germany c EPIGAP Optronic GmbH, Koepenicker Str. 325, Hs. 40, 12555 Berlin, Germany d University of Applied Sciences and Arts, Von-Ossietzky-Straße 99, 37085 Göttingen, Germany e Fraunhofer Institute for Applied Polymer Research IAP, PYCO, Kantstrasse 55, 14513 Teltow, Germany This optimized material (resPUR-OT) has an excellent transparency, high thermal stability up to 344 °C and provides the possibility of a simple and cost-effective dispensing technique to ensure a stable encapsulation of LEDs with the possibility of lens formation [7, 8]. The optical properties and the parameters of the band structure of PU can be changed in a wide range by the mixing ratio of the material components. The method presented here turns out to be a useful approach for the development of optical materials. The result confirms that highly transparent PU can be produced from aliphatic isocyanates and polyester polyol with optimized mixing ratios. Summary: Thermogravimetry (TGA) curve of the polyurethane. Temperature program: Heat from 20 °C to 600 °C with heating rate of 10 °C/min, in nitrogen atmosphere with a purge rate of 10 mL/minute. Marked are the 5 % weight loss temperatures. Differential scanning calorimetry (DSC) measurements at temperatures from -150 to 500 °C. The points indicate the glass transition temperatures T g and the degradation temperatures T d of the PU. Secondary reactions of the isocyanates are shown in the range from 150 to 220 °C. Abstract An optical high-performance plastic based on polyurethane elastomer (PU) was developed, which combines excellent UV transparency with high thermal stability, good hardness, high surface tension and a long pot life. The material is well suitable for microlens applications for Chip-on-Board (CoB) LED technology. Goal Lighting optics with micro lenses and LEDs must be manufactured in a particularly cost- effective and flexible manner. The major challenge is to achieve excellent transparency, high temperature stability, good mechanical strength and long-term stability of the polymers. Fabrication results dome-type package of InGaN-CoB-LED with resPUR-OT at different surface tension and corresponding light distributions at = 525 nm. Optical properties of PU, refractive index n and extinction coefficient k a determined by reflection and transmission measurement and Tauc-Lorentz [1, 2] and Lorentz exciton [3 - 5] oscillator model fit of thin films and thick plane-parallel plates of PU. The relatively high k a in the long wavelength region of resPur-OT-T24000 is caused by the exciton absorption and scattering effect. Packaging and lens forming Thermal properties Optical properties Transmittance of optical polymers [6] at a film of 3.174 mm compared to resPUR-OT . thickness sdfgsfgsdfg References: [1] G. E. Jellison and F. A. Modine, Parameterization of the optical functions of amorphous materials in the interband region, Appl. Phys. Lett., 69 (3), 371-373 (1996). [2] Erratum, G. E. Jellison and F. A. Modine, Appl. Phys. Lett., 69(14), 2137 (1996). [3] M. Cardona, Modulation Spectroscopy, Suppl. vol. 11 of Solid State Physics, edited by F. Seitz, D. Turnbull, and H. Ehrenreich, Academic, New York (1969). [4] P. Lautenschlager, M. Garriga, S. Logothetidis and M. Cardona, Interband critical points of GaAs and their temperature dependence, Phys. Rev. B 35, 9174 (1987). [5] D.E. Aspnes: Modulation spectroscopy/electric field effects on the dielectric function of semiconductors , In Handbook of Semiconductors, Vol. 2, ed. by M. Balkanski (North-Holland, Amsterdam, 1980) pp. 109–154. [6] W. S. Beich, N. Turnera, Polymer optics design, fabrication, and materials, Proc. of SPIE Vol. 7788, 778805 (2010), edited by David H. Krevor, William S. Beich, GS Plastic Optics, 408 St. Paul Street, Rochester, NY 14605 (2010). [7] J. Bauer, M. Gutke, M. Edling, S. Schrader, and C. Gerhard, Verfahren zur Herstellung asymmetrischer oder asphärischer Linsen sowie Leuchteinheit mit einer derart hergestellten Linse, Patent EP19196944, filed on 09/12/2019. [8] M. Burghardt, A. Kaltenbach, D. Krüger, J. Bauer, M. Gutke, S. Schrader, Polyurethan Gießharz mit hoher UV Transparenz und hoher Temperaturstabilitat, Patent DE 10 2019 133 078.5, filed on 12/04/2019. [9] J. Bauer, M. Gutke, F. Heinrich, M. Edling, V. Stoycheva, A. Kaltenbach, M. Burkhardt, M. Gruenefeld, M. Gamp, C. Gerhard, P. Steglich, S. Steffen, M. Herzog, C. Dreyer and S. Schrader, Novel UV-transparent 2-component polyurethane resin for chip-on-board LED microlenses, Vol. 10, No. 9 / 1 September 2020 / Optical Materials Express 2085 PU material and component specification *Aliphatic isocyanate hexamethylene diisocyanate oligomer (HDI) **Aromatic methylenediphenyl diisocyanate polymers (P-MDI) -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 -150 -50 50 150 250 350 450 DSC (mW/mg) Temperature (°C) T g T d -42.6 °C -12.5 °C 3.0 °C 358.2 °C 372.8 °C 355.7 °C resPUR-OT-T24000 resPUR-OT-3000 resPUR-OT -10 10 30 50 70 90 0 100 200 300 400 500 600 Weight (%) Temperature (°C) T d 362 °C 349 °C 402 °C 1,45 1,5 1,55 1,6 1,65 1,7 1,75 200 300 400 500 600 700 800 900 Index of refraction, n Wavelength (nm) resPUR-OT-T24000 resPUR-OT-3000 resPUR-OT 1,E-08 1,E-07 1,E-06 1,E-05 1,E-04 1,E-03 1,E-02 1,E-01 1,E+00 200 300 400 500 600 700 800 900 Extinction coefficient, k a Wavelength (nm) 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 200 300 400 500 600 700 800 900 Transmittance Wavelength (nm) ResPUR-OT Acrylic COP/COC PMMA Polystyren Polycarbonat Polyurethane resPUR OT-3000 OT-T24000 OT A-component Polyester polyol Polyol OH contend [mg KOH/g] > 130 > 50 > 130 B-component P-MDI** HDI* HDI* resPUR-OT-T24000 resPUR-OT-3000 resPUR-OT resPUR-OT-T24000 resPUR-OT-3000 resPUR-OT 0,05 0,06 0,07 0,08 0,09 Reflectance resPUR-OT-T24000 0,05 0,06 0,07 0,08 0,09 Reflectance 0,05 0,06 0,07 0,08 0,09 200 300 400 500 600 700 800 900 Reflectance Wavelength (nm) resPUR-OT resPUR-OT-3000 www.th-wildau.de/photonik Arbeitsgruppe: Photonik, Laser- und Plasmatechnologien Projektleiter / Professor: Prof. Dr. rer. nat. habil. Sigurd Schrader Telefon: +49 (0) 3375 / 293 E-Mail: [email protected] Laser scattering properties: a) resPUR-OT-3000 material, shows fluorescence and has a scattering coefficient of k s = 5.1E -6 , b) resPUR-OT-T24000, k s = 7.5E -6 c) resPUR-OT, k s = 3.9E -7 The scattering coefficient k s was determinded by using Lambert-Beer’s law. Simulated (red) and experimental (black) transmission and reflection spectra of PU thin films, measured with the low resolution ( = 200 – 890 nm) and superimposed with high-resolution reflection ( = 400 – 600 nm) spectrometer. The thin film interferences are used to determine the film thickness. 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 200 300 400 500 600 700 800 900 Transmittance Wavelength (nm) resPUR-OT-T24000 resPUR-OT-3000 resPUR-OT a) b) c)

Upload: others

Post on 24-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Novel UV-transparent 2-component polyurethane resins for

Novel UV-transparent 2-component polyurethane resins for Chip-on-Board LED micro lenses

M. Gutkea, J. Bauera, V. Stoychevaa, A. Kaltenbachb, M. Burkhardtb, M. Gruenefeldc, M. Gampc, M. Edlinga, P. Steglicha, F. Heinricha, S. Steffene, C. Gerhardd , M. Herzoga, C. Dreyera,e, S. Schradera

a Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germanyb resintec GmbH, Hellsternstr. 1, 04895 Falkenberg/Elster, Germany

c EPIGAP Optronic GmbH, Koepenicker Str. 325, Hs. 40, 12555 Berlin, Germanyd University of Applied Sciences and Arts, Von-Ossietzky-Straße 99, 37085 Göttingen, Germany

e Fraunhofer Institute for Applied Polymer Research IAP, PYCO, Kantstrasse 55, 14513 Teltow, Germany

• This optimized material (resPUR-OT) has an excellent transparency, high thermalstability up to 344 °C and provides the possibility of a simple and cost-effectivedispensing technique to ensure a stable encapsulation of LEDs with the possibility oflens formation [7, 8].

• The optical properties and the parameters of the band structure of PU can bechanged in a wide range by the mixing ratio of the material components.

• The method presented here turns out to be a useful approach for the developmentof optical materials. The result confirms that highly transparent PU can be producedfrom aliphatic isocyanates and polyester polyol with optimized mixing ratios.

Summary:

Thermogravimetry (TGA) curve of thepolyurethane. Temperature program: Heatfrom 20 °C to 600 °C with heating rate of10 °C/min, in nitrogen atmosphere with apurge rate of 10 mL/minute. Marked are the5 % weight loss temperatures.

Differential scanning calorimetry (DSC)measurements at temperatures from -150 to500 °C. The points indicate the glass transitiontemperatures Tg and the degradationtemperatures Td of the PU. Secondaryreactions of the isocyanates are shown in therange from 150 to 220 °C.

AbstractAn optical high-performance plastic based on polyurethane elastomer (PU) was developed,which combines excellent UV transparency with high thermal stability, good hardness, highsurface tension and a long pot life. The material is well suitable for microlens applications forChip-on-Board (CoB) LED technology.

GoalLighting optics with micro lenses and LEDs must be manufactured in a particularly cost-effective and flexible manner. The major challenge is to achieve excellent transparency,high temperature stability, good mechanical strength and long-term stability of thepolymers.

Fabrication results dome-type package of InGaN-CoB-LED with resPUR-OT at different surfacetension and corresponding light distributions at = 525 nm.

Optical properties of PU, refractive index n and extinction coefficient ka determined byreflection and transmission measurement and Tauc-Lorentz [1, 2] and Lorentz exciton[3 - 5] oscillator model fit of thin films and thick plane-parallel plates of PU. Therelatively high ka in the long wavelength region of resPur-OT-T24000 is caused by theexciton absorption and scattering effect.

Packaging and lens forming

Thermal properties

Optical properties

Transmittance of optical polymers [6] at afilm of 3.174 mm compared to resPUR-OT .thickness

sdfgsfgsdfg

References:[1] G. E. Jellison and F. A. Modine, Parameterization of the optical functions of amorphous materials in the interband region, Appl. Phys. Lett., 69 (3), 371-373 (1996).[2] Erratum, G. E. Jellison and F. A. Modine, Appl. Phys. Lett., 69(14), 2137 (1996).[3] M. Cardona, Modulation Spectroscopy, Suppl. vol. 11 of Solid State Physics, edited by F. Seitz, D. Turnbull, and H. Ehrenreich, Academic, New York (1969).[4] P. Lautenschlager, M. Garriga, S. Logothetidis and M. Cardona, Interband critical points of GaAs and their temperature dependence, Phys. Rev. B 35, 9174 (1987).[5] D.E. Aspnes: Modulation spectroscopy/electric field effects on the dielectric function of semiconductors, In Handbook of Semiconductors, Vol. 2, ed. by M. Balkanski(North-Holland, Amsterdam, 1980) pp. 109–154.[6] W. S. Beich, N. Turnera, Polymer optics design, fabrication, and materials, Proc. of SPIE Vol. 7788, 778805 (2010), edited by David H. Krevor, William S. Beich, GS Plastic Optics, 408 St. Paul Street, Rochester, NY 14605 (2010). [7] J. Bauer, M. Gutke, M. Edling, S. Schrader, and C. Gerhard, Verfahren zur Herstellung asymmetrischer oder asphärischer Linsen sowie Leuchteinheit mit einer derart hergestellten Linse, Patent EP19196944, filed on 09/12/2019.[8] M. Burghardt, A. Kaltenbach, D. Krüger, J. Bauer, M. Gutke, S. Schrader, Polyurethan Gießharz mit hoher UV Transparenz und hoher Temperaturstabilitat, Patent DE 10 2019 133 078.5, filed on 12/04/2019.[9] J. Bauer, M. Gutke, F. Heinrich, M. Edling, V. Stoycheva, A. Kaltenbach, M. Burkhardt, M. Gruenefeld, M. Gamp, C. Gerhard, P. Steglich, S. Steffen, M. Herzog, C.

Dreyer and S. Schrader, Novel UV-transparent 2-component polyurethane resin for chip-on-board LED microlenses, Vol. 10, No. 9 / 1 September 2020 / Optical Materials

Express 2085

PU material and component specification

*Aliphatic isocyanate hexamethylene diisocyanate oligomer (HDI)**Aromatic methylenediphenyl diisocyanate polymers (P-MDI)

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

-150 -50 50 150 250 350 450

DSC

(m

W/m

g)

Temperature (°C)

Tg

Td-42.6 °C -12.5 °C

3.0 °C

358.2 °C 372.8 °C

355.7 °C

resPUR-OT-T24000 resPUR-OT-3000resPUR-OT

-10

10

30

50

70

90

0 100 200 300 400 500 600

Wei

ght

(%)

Temperature (°C)

Td

362 °C349 °C

402 °C

1,45

1,5

1,55

1,6

1,65

1,7

1,75

200 300 400 500 600 700 800 900

Ind

ex o

f re

frac

tio

n, n

Wavelength (nm)

resPUR-OT-T24000 resPUR-OT-3000resPUR-OT

1,E-08

1,E-07

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

1,E-01

1,E+00

200 300 400 500 600 700 800 900

Exti

nct

ion

co

effi

cien

t, k

a

Wavelength (nm)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

200 300 400 500 600 700 800 900

Tran

smit

tan

ce

Wavelength (nm)

ResPUR-OT

Acrylic

COP/COC

PMMA

Polystyren

Polycarbonat

Polyurethane resPUR OT-3000 OT-T24000 OT

A-component Polyester polyol

Polyol OH contend [mg KOH/g] > 130 > 50 > 130

B-component P-MDI** HDI* HDI*

resPUR-OT-T24000 resPUR-OT-3000resPUR-OT

resPUR-OT-T24000 resPUR-OT-3000resPUR-OT

resPUR-OT

0,05

0,06

0,07

0,08

0,09

Ref

lect

ance

resPUR-OT-T24000

0,05

0,06

0,07

0,08

0,09

Ref

lect

ance

0,05

0,06

0,07

0,08

0,09

200 300 400 500 600 700 800 900

Ref

lect

ance

Wavelength (nm)

resPUR-OT

resPUR-OT-3000

www.th-wildau.de/photonikArbeitsgruppe: Photonik, Laser- und PlasmatechnologienProjektleiter / Professor: Prof. Dr. rer. nat. habil. Sigurd SchraderTelefon: +49 (0) 3375 / 293 E-Mail: [email protected]

Laser scattering properties: a) resPUR-OT-3000 material, shows fluorescence and has a scattering coefficient of ks = 5.1E-6, b) resPUR-OT-T24000, ks = 7.5E-6

c) resPUR-OT, ks = 3.9E-7

The scattering coefficient ks was determinded by using Lambert-Beer’s law.

Simulated (red) and experimental (black) transmission and reflection spectra of PU thinfilms, measured with the low resolution ( = 200 – 890 nm) and superimposed withhigh-resolution reflection ( = 400 – 600 nm) spectrometer. The thin film interferencesare used to determine the film thickness.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

200 300 400 500 600 700 800 900

Tran

smit

tan

ce

Wavelength (nm)

resPUR-OT-T24000 resPUR-OT-3000resPUR-OT

a) b) c)