nugzar makhaldianitheor.jinr.ru/sqs15/talks/makhaldiani.pdfthe goldberger-treiman relation (gtr)...

293
Renormdynamics, Discrete Dynamics and Quanputers Nugzar Makhaldiani JINR Dubna, [email protected] Talk at the International Workshop Supersymmetries and Quantum Symmetries - SQS’2015 JINR Dubna Russia, August 3 - August 8 Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 1 / 247

Upload: others

Post on 24-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Renormdynamics, Discrete Dynamics and Quanputers

Nugzar Makhaldiani

JINR Dubna, [email protected]

Talk at the International Workshop Supersymmetries and Quantum Symmetries - SQS’2015JINR Dubna Russia, August 3 - August 8

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 1 / 247

Page 2: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

New Physics

We say that we find New Physics when either we find a phenomenon whichis forbidden by SM in principal - this is the qualitative level of New physics- or we find significant deviation between precision calculations in SM of anobservable quantity and corresponding experimental value.In 1900, the British physicist Lord Kelvin is said to have pronounced:”There is nothing new to be discovered in physics now. All that remains ismore and more precise measurement.” Within three decades, quantummechanics and Einstein’s theory of relativity had revolutionized the field.Today, no physicist would dare assert that our physical knowledge of theuniverse is near completion. To the contrary, each new discovery seems tounlock a Pandora’s box of even bigger, even deeper physics questions.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 2 / 247

Page 3: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

New Physics

In the Universe, matter has manly two geometric structures, homogeneous,[Weinberg,1972] and hierarchical, [Okun, 1982] .The homogeneous structures are naturally described by real numbers withan infinite number of digits in the fractional part and usual archimedeanmetrics. The hierarchical structures are described with p-adic numbers withan infinite number of digits in the integer part and non-archimedeanmetrics, [Koblitz, 1977].

A discrete, finite, regularized, version of the homogenous structures arehomogeneous lattices with constant steps and distance rising as arithmeticprogression. The discrete version of the hierarchical structures ishierarchical lattice-tree with scale rising in geometric progression.

There is an opinion that present day theoretical physics needs (almost) allmathematics, and the progress of modern mathematics is stimulated byfundamental problems of theoretical physics.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 3 / 247

Page 4: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Quantum field theory and Fractal calculus -Universal language of fundamental physics

In QFT existence of a given theory means, that we can control its behaviorat some scales (short or large distances) by renormalization theory[Collins, 1984].If the theory exists, than we want to solve it, which means to determinewhat happens on other (large or short) scales. This is the problem (andcontent) of Renormdynamics.The result of the Renormdynamics, the solution of its discrete or continualmotion equations, is the effective QFT on a given scale (different from theinitial one).We can invent scale variable λ and consider QFT on D + 1+ 1 dimensionalspace-time-scale. For the scale variable λ ∈ (0, 1] it is natural to considerq-discretization, 0 < q < 1, λn = qn, n = 0, 1, 2, ... and p - adic,nonarchimedian metric, with q−1 = p - prime integer number.The field variable ϕ(x, t, λ) is complex function of the real, x, t, and p -adic, λ, variables. The solution of the UV renormdynamic problem means,to find evolution from finite to small scales with respect to the scale timeτ = lnλ/λ0 ∈ (0,−∞). Solution of the IR renormdynamic problem meansto find evolution from finite to the large scales, τ = lnλ/λ0 ∈ (0,∞).

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 4 / 247

Page 5: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

This evolution is determined by Renormdynamic motion equations withrespect to the scale-time.As a concrete model, we take a relativistic scalar field model withlagrangian (see e.g. [Makhaldiani, 1980])

L =1

2∂µϕ∂

µϕ− m2

2ϕ2 − g

nϕn, µ = 0, 1, ...,D − 1 (1)

The mass dimension of the coupling constant is

[g] = dg = D − nD − 2

2= D + n− nD

2. (2)

In the case

n =2D

D − 2= 2 +

4

D − 2= 2 + ǫ(D)

D =2n

n− 2= 2 +

4

n− 2= 2 + ǫ(n) (3)

the coupling constant g is dimensionless, and the model is renormalizable.We take the euklidean form of the QFT which unifies quantum andstatistical physics problems. In the case of the QFT, we can return (in)tominkowsky space by transformation: pD = ip0, xD = −ix0.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 5 / 247

Page 6: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The main objects of the theory are Green functions - correlation functions - correlators,

Gm(x1, x2, ..., xm) =< ϕ(x1)ϕ(x2)...ϕ(xm) >

= Z−10

∫dϕ(x)ϕ(x1)ϕ(x2)...ϕ(xm)e−S(ϕ) (4)

where dϕ is an invariant measure,

d(ϕ + a) = dϕ. (5)

For gaussian actions,

S = S2 =1

2

∫dxdyϕ(x)A(x, y)ϕ(y) = ϕ ·A · ϕ (6)

the QFT is solvable,

Gm(x1, ..., xm) =δm

δJ(x1)...J(xm)lnZJ |J=0,

ZJ =

∫dϕe−S2+J·ϕ = exp(

1

2

∫dxdyJ(x)A−1(x, y)J(y))

= exp(1

2J · A−1 · J) (7)

This solution is based on the solution of the linear motion equations with sources

A(x, y)ϕ(y) = j(x) (8)

Nontrivial problem is to calculate correlators for non gaussian QFT.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 6 / 247

Page 7: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Effective action

Generating functional for connected correlators is

F (J) = lnZJ ,δF (J)

δJ(x)=

1

ZJ

δZJ

δJ(x)≡< ϕ(x) >J≡ φ(x)− (9)

is observable value of the field, generated by source J. We have

δ

δJ(F (J)− J · φ)|φ=const = 0, (10)

so

J · φ− F (J) = Sq(φ) = S(φ) +R(φ)

=∑n≥1

1

n!

∫dx1dx2...dxnΓn(x1, x2, ..., xn)φ(x1)φ(x2)...φ(xn),

δSq

δφ(x)= J(x);

δ2Sq

δφ(x1)δφ(x2)=δJ(x2)

δφ(x1)=δJ(x1)

δφ(x2)= Γ2(x1, x2) (11)

R(φ) - is quantum corrections to the classical action.The connected part of the two point correlator - propagator, is

< ϕ(x1)ϕ(x2) >c=< ϕ(x1)ϕ(x2) > − < ϕ(x1) >< ϕ(x2) >

=1

Z(J)

δ2Z(J)

δJ(x1)δJ(x2)− 1

Z(J)

δZ(J)

δJ(x1)

1

Z(J)

δZ(J)

δJ(x2)= Γ2(x1, x2) (12)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 7 / 247

Page 8: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

p-adic convergence of perturbative series

Perturbative series have the following qualitative form

f(g) = f0 + f1g + ...+ fngn + ..., fn = n!P (n)

f(x) =∑

n≥0P (n)n!xn = P (δ)Γ(1 + δ)

1

1 − x, δ = x

d

dx(13)

In usual sense these series are divergent, but with proper nomalization ofthe expansion parametre g, the coefficients of the series are rationalnumbers and if experimental dates indicates for some rational value for g,e.g. in QED

g =e2

4π=

1

137.0...(14)

then we can take corresponding prime number and consider p-adicconvergence of the series. In the case of QED, we have

f(g) =∑

fnp−n, fn = n!P (n), p = 137,

|f |p ≤∑

|fn|ppn (15)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 8 / 247

Page 9: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Youkava theory of strong interections

In the Youkava theory of strong interections (see e.g. [Bogoliubov,1959]),we take g = 13,

f(g) =∑

fnpn, fn = n!P (n), p = 13,

|f |p ≤∑

|fn|pp−n <1

1− p−1(16)

So, the series is convergent. If the limit is rational number, we consider itas an observable value of the corresponding physical quantity. Note also,that the inverse coupling expansions, e.g. in lattice(gauge) theories,

f(β) =∑

rnβn, (17)

are also p-adically convergent for β = pk. We can take the followingscenery. We fix coupling constants and masses, e.g in QED or QCD, in loworder perturbative expansions. Than put the models on lattice andcalculate observable quantities as inverse coupling expansions, e.g.

f(α) =∑

rnα−n,

αQED(0) = 1/137; αQCD(mZ) = 0.11... = 1/32 (18)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 9 / 247

Page 10: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Minimal Supersymmetric Standard Model (MSSM)

In MSSM (see [M.Muehlleitner, CALC 2012], [D.I.Kazakov, 2004])coupling constants of the SM unifies at α−1u = 26.3 ± 1.9± 1.So,

23.4 < α−1u < 29.2 (19)

Question: how many primes are in this interval?

24, 25, 26, 27, 28, 29 (20)

Only one!Proposal: take the value α−1u = 29.0... which will be two orders ofmagnitude more precise prediction and find the consequences for the SMscale observables.Remind that for low energy limit of the fine structure constantα, α−1 = 137.036...

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 10 / 247

Page 11: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

An example of the summation of the factorial series

Let us consider the formal representation of (13)

f(x) =∑

n≥0P (n)n!xn = P (δ)Γ(1 + δ)

1

1− x,

= P (δ)

∫ ∞

0dte−ttδ

1

1− x= P (δ)

∫ ∞

0dt

e−t

1 + (−x)t , δ = xd

dx(21)

This integral is well defined for negative values of x. The Mathematicaanswer for the corresponding integral is

I(x) =

∫ ∞

0dt

e−t

1 + xt= e1/xΓ(0, 1/x)/x, Im(x) 6= 0, Re(x) ≥ 0,

I(0) = 1 (22)

For x = 0.001, I(x) = 0.999, Γ(a, z) is the incomplete gamma function

Γ(a, z) =

∫ ∞

zdtta−1e−t (23)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 11 / 247

Page 12: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Goldberger-Treiman relation and the pion nucleon coupling constant

The Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958]plays an important role in theoretical hadronic and nuclear physics. GTRrelates the Meson-Nucleon coupling constants to the axial-vector couplingconstant in β-decay:

mNgA(0) = fπgπN (24)

where mN is the nucleon mass, gA(0) is the axial-vector coupling constantin nucleon β-decay at vanishing momentum transfer, fπ is the π decayconstant and gπN is the π −N coupling constant.If we take

απN =g2πN4π

= 13, gπN = 12.78 (25)

experimental value for fπ from pion decay

fπ =130√2= 91.9MeV, (26)

Neutron mass,

mN = 940MeV, (27)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 12 / 247

Page 13: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Goldberger-Treiman relation and the pion nucleon coupling constant

from (24), we find

gA(0) =fπgπNmN

=91.9×

√52π

940= 1.2496 ≃ 1.25, (28)

which coincides with the experimental value from β-decay

gA(0) = 1.25 (29)

So, we can say that using GTR we measured the pion-nucleon fine structureconstant and find the value

απN =g2πN4π

= 13 (30)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 13 / 247

Page 14: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Goldberger-Treiman relation and the pion nucleon coupling constant

Note that, determination of gπN from NN,NN and πN data by theNijmegen group [Rentmeester et al, 1999] gave the following value

gπN = 13.05 ± .08, ∆ = 1− gAmN

gπNfπ= .014 ± .009,

13.39 < απN < 13.72 (31)

This value is consistent with assumption gπN = 13.Due to the smallness of the u and d quark masses, ∆ is necessarily verysmall, and its determination requires a very precise knowledge of the gπNcoupling (gA and fπ are already known to enough precision, leaving most ofthe uncertainty in the determination of ∆ to the uncertainty in gπN ).

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 14 / 247

Page 15: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The pion nucleon coupling constant in an old unified field theory

Note that in an old version of the unified theory [Heisenberg 1966], for theαπN the following value were found

απN = 4π(1− m2π

3m2p

) = 12.5 (32)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 15 / 247

Page 16: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Vector meson dominance

Following the pion, the rho is the most prominent meson. Vector mesonsplay an important role when considering the interaction of hadrons withelectromagnetic fields. In the vector meson dominance model the hadronscouple to photons exclusively through intermediate vector mesons. Theequality of the ρ meson self-coupling g and the coupling to nucleons gρNand pions gρπ, the universality of the ρ meson coupling, plays an importantrole in vector meson dominance [Sakurai, 1969] and is a consequence of theexistence of a consistent EFT with ρ mesons, pions, and nucleons. Indeed,one can rewrite the Lagrangian of [Weinberg, 1968] in terms ofrenormalized fields and couplings, thereby introducing the basic Lagrangian

LR = N(iγ∂ −M)N − 1

2π(∂2 +m2)π − 1

4(∂µρ

aν − ∂νρ

aµ)

2 +1

2M2ρρ

2

+gNγµtaNρaµ + gπρǫ

abcπa∂µπbρcµ − g(ρµ × ρν) · ∂µρν

−g2

4(ρµ × ρν)

2 (33)

Requiring that the results are UV finite introduces relations between thecouplings of the theory [Djukanovic et al, 2004], gπρ = g. The coupling g isdirectly related to the width of the ρ meson.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 16 / 247

Page 17: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Pion-ρ-meson-nucleon coupling constant

In the previous πρN model of pion-nucleon interaction[Di Giacomo, Paffuti, Rossi, 1992]

LπN = g(NγµtaN + ǫabcπb∂µπc)ρaµ, (34)

pion interacts with nucleon through the exchange of the vector mesonρ(mρ = 750 MeV, T = 1), the amplitude of ρ0 → π+π− decay is

M = gεµ(kπ− − kπ+)µ, (35)

the decay width is

Γ =1

2mρ|M |2(1− 4m2

π

m2ρ

)121

8π=

g2

48πmρ(1−

4m2π

m2ρ

)32 (36)

and for fine structure coupling constant we have

απρN =g2

4π=

Γ

12

(1− 4m2π

m2ρ)32

=12.

5(1 − 4×142752

)32

= 3.006 = 3.0.. (37)

for Γ = Γρππ = 150MeV,mπ = 140MeV,mρ = 750MeV. So, in thisstrong coupling model the expansion parameter is a prime number, αg = 3.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 17 / 247

Page 18: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Neutral Pion to two Photon decay

After integrating out all heavy and trapped particles, we would expect theeffective Lagrangian for

π0 → 2γ (38)

to be given by the unique gauge and Lorentz-invariant term with no morethan two derivatives:

Lπγγ = gπ0εµνρσFµνFρσ (39)

where g is an unknown constant with the mass dimension m−1.

The rate for π0 → 2γ is

Γ(π0 → 2γ) =g2m3

π

π(40)

One might naively expect g to be of order

g =a2

Fπ, a =

e

4π, (41)

where Fπ = 190MeV is used as a typical strong interaction mass scale.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 18 / 247

Page 19: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Neutral Pion to two Photon decay

In 1949, using the pre-QCD theory of pions and nuclons with interactionlagrangian

LπNN = iGπNπaN2taγ5N, (42)

Steinberger calculated the contribution to g from triangle graphs with asingle proton loop

g =e2GπN32π2mN

= a2GπN2mN

, a =e

4π. (43)

From Goldberger-Treiman relation we have

GπN2mN

=gAFπ, (44)

so,

g =a2

FπgA, gA = 1.257, Fπ = 184MeV (45)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 19 / 247

Page 20: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Neutral Pion to two Photon decay

Using

g =a2

Fπ, a =

e

4π, (46)

Γ(π0 → 2γ) =g2m3

π

π=a4m3

π

πF 2π

=α2m3

π

16π3F 2π

= 1.1 × 1016s−1 (47)

The observed rate is

Γ(π0 → 2γ)exp = (1.19 ± 0.08) × 1016s−1, (48)

which is in good agreement with the (naive rough) estimation.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 20 / 247

Page 21: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Real, p - adic and q - uantum fractal calculus

Every (good) school boy/girl knows what is

dn

dxn= ∂n = (∂)n, (49)

but what is its following extension

dxα= ∂α , α ∈ ℜ ? (50)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 21 / 247

Page 22: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Euler, ... Liouville, ... Holmgren, ...

Let us consider the integer derivatives of the monomials

dn

dxnxm = m(m− 1)...(m− (n− 1))xm−n, n ≤ m,

=Γ(m+ 1)

Γ(m+ 1− n)xm−n. (51)

L.Euler (1707 - 1783) invented the following definition of the fractalderivatives,

dxαxβ =

Γ(β + 1)

Γ(β + 1− α)xβ−α. (52)

J.Liouville (1809-1882) takes exponents as a base functions,

dxαeax = aαeax. (53)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 22 / 247

Page 23: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The following Cauchy formula

In0,xf =

∫ x

0dxn

∫ xn−1

0dxn−2...

∫ x2

0dx1f(x1) =

1

Γ(n)

∫ x

0dy(x− y)n−1f(y)(54)

permits analytic extension from integer n to complex α,

Iα0,xf =1

Γ(α)

∫ x

0dy(x− y)α−1f(y) (55)

J.H. Holmgren invented (in 1863) the following integral transformation,

D−αc,x f =1

Γ(α)

x∫

c

|x− t|α−1f(t)dt. (56)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 23 / 247

Page 24: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

It is easy to show that

D−αc,x xm =

Γ(m+ 1)

Γ(m+ 1 + α)(xm+α − cm+α),

D−αc,x eax = a−α(eax − eac), (57)

so, c = 0, when m+ α ≥ 0, in Holmgren’s definition of the fractal calculus,corresponds to the Euler’s definition, and c = −∞, when a > 0,corresponds to the Liouville’s definition.Holmgren’s definition of the fractal calculus reduce to the Euler’s definitionfor finite c, and to the Liouvill’s definition for c = ∞,

D−αc,x f = D−α0,xf −D−α0,c f,

D−α∞,xf = D−α−∞,xf −D−α−∞,∞f. (58)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 24 / 247

Page 25: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

We considered the following modification of the c = 0 case [Makhaldiani, 2003],

D−α0,x f =

|x|αΓ(α)

1∫

0

|1− t|α−1f(xt)dt, =|x|αΓ(α)

B(α, ∂x)f(x)

= |x|α Γ(∂x)

Γ(α+ ∂x)f(x), f(xt) = tx

ddx f(x). (59)

As an example, consider Euler B-function,

B(α, β) =

∫ 1

0dx|1− x|α−1|x|β−1 = Γ(α)Γ(β)D−α

01 D1−β0x 1 =

Γ(α)Γ(β)

Γ(α + β)(60)

We can define also FC as

Dαf = (D−α)−1f =Γ(∂x+ α)

Γ(∂x)(|x|−αf), ∂x = δ + 1, δ = x∂ (61)

For the Liouville’s case,

Dα−∞,xf = (D−∞,x)

αf = (∂x)αf, (62)

∂−αx f =

1

Γ(α)

∫ ∞

0dttα−1e−t∂xf(x) =

1

Γ(α)

∫ ∞

0dttα−1f(x− t)

=1

Γ(α)

∫ x

−∞

dt(x− t)α−1f(t) = D−α−∞,xf. (63)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 25 / 247

Page 26: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The integrals can be calculated as

D−nf = (D−1)nf, (64)

where

D−1f = xΓ(∂x)

Γ(1 + ∂x)f = x

1

∂xf = x(∂x)−1f = (∂)−1f =

∫ x

0dtf(t). (65)

Let us consider Weierstrass C.T.W. (1815 - 1897) fractal function

f(t) =∑n≥0

anei(bnt+ϕn), a < 1, ab > 1. (66)

For fractals we have no integer derivatives,

f(1)(t) = i∑

(ab)nei(bnt+ϕn) =∞, (67)

but the fractal derivative,

f(α)(t) =∑

(abα)nei(bnt+πα/2+ϕn), (68)

when abα = a′ < 1, is another fractal (66).Question: what if ab = p is prime number? Can we define integer derivatives in this case?

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 26 / 247

Page 27: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

p - adic fractal calculus

p-adic analog of the fractal calculus (56) ,

D−αx f =1

Γp(α)

Qp

|x− t|α−1p f(t)dt, (69)

where f(x) is a complex function of the p-adic variable x, with p-adicΓ–function

Γp(α) =

Qp

dt|t|α−1p χ(t) =1− pα−1

1− p−α, (70)

was considered by V.S. Vladimirov [Vladimirov,1988].The following modification of p-adic FC is given in [Makhaldiani, 2003]

D−αx f =|x|αpΓp(α)

Qp

|1− t|α−1p f(xt)dt

= |x|αpΓp(∂|x|)

Γp(α+ ∂|x|)f(x). (71)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 27 / 247

Page 28: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

p - adic fractal calculus

Last expression is applicable for functions of the type f(x) = f(|x|).For a functions of the form

f(x) =∑

an|x|np , (72)

we have

D−αx f =∑

anΓp(n+ 1)

Γp(n + 1 + α)|x|n+αp . (73)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 28 / 247

Page 29: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Fractal qalculus

The basic object of q-calculus [Gasper, Rahman, 1990] is q-derivative

Dqf(x) =f(x) − f(qx)

(1 − q)x=

1− qx∂(1− q)x

f(x), (74)

where either 0 < q < 1 or 1 < q <∞. In the limit q → 1, Dq → ∂x.Now we define the fractal q-calculus,

Dαq f(x) = (Dq)

αf(x)

= ((1 − q)x)−α(f(x) +∑n≥1

(−1)n α(α− 1)...(α− n+ 1)

n!f(qnx)). (75)

For the case α = −1, we obtain the integral

D−1q f(x) = (1− q)x(1− qx∂)−1f(x) = (1− q)x

∑n≥0

f(qnx). (76)

In the case of 1 < q <∞, we can give a good analytic sense to these expressions for primenumbers q = p = 2, 3, 5, ..., 29, ...,137, ... This is an algebra-analytic quantization of theq-calculus and corresponding physical models. Note also, that p-adic calculus is the natural toolfor the physical models defined on the fractal( space)s like Bete lattice ( or Brua-Tits trees, inmathematical literature).Note also a symmetric definition of the calculus

Dqsf(x) =f(q−1x)− f(qx)

(q−1 − q)xf(x). (77)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 29 / 247

Page 30: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Fractal finite - difference calculus

Usual finite difference calculus is based on the following (left) derivativeoperator

D−f(x) =f(x)− f(x− h)

h= (

1− e−h∂

h)f(x). (78)

We define corresponding fractal calculus as

Dα−f(x) = (D−)

αf(x). (79)

In the case of α = −1, we have usual finite difference sum as regularizationof the Riemann integral

D−1− f(x) = h(f(x) + f(x− h) + f(x− 2h) + ...). (80)

(I believe that) the fractal calculus (and geometry) are the proper languagefor the quantume (field) theories, and discrete versions of the fractalcalculus are proper regularizations of the fractal calculus and field theories.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 30 / 247

Page 31: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Hypergeometric functions

A hypergeometric series, in the most general sense, is a power series inwhich the ratio of successive coefficients indexed by n is a rational functionof n,

f(x) =∑

n≥0anx

n, an+1 = R(n)an, R(n) =P (α, n)

Q(β, n)(81)

so

P (α, δ)f(x) = Q(β, δ)(f(x) − f(0))/x,f(x)− f(0) = xR(δ)f(x), f(x) = (1− xR(δ))−1f(0), δ = x∂x(82)

Hypergeometric functions have many particular special functions as specialcases, including many elementary functions, the Bessel functions, theincomplete gamma function, the error function, the elliptic integrals and theclassical orthogonal polynomials, because the hypergeometric functions aresolutions to the hypergeometric differential equation, which is a fairlygeneral second-order ordinary differential equation.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 31 / 247

Page 32: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

In a generalization given by Eduard Heine ( 1821 - 1881 ) in the late nineteenth century, the ratioof successive terms, instead of being a rational function of n, are considered to be a rationalfunction of qn

f(x) =∑n≥0

anxn, an+1 = R(qn)an, R(n) =

P (α, qn)

Q(β, qn),

P (α, qδ)f(x) = Q(β, qδ)(f(x) − f(0))/x,f(x)− f(0) = xR(qδ)f(x), f(x) = (1 − xR(qδ))−1f(0), δ = x∂x (83)

Another generalization, the elliptic hypergeometric series, are those series where the ratio ofterms is an elliptic function (a doubly periodic meromorphic function) of n.There are a number of new definitions of hypergeometric series, by Aomoto, Gelfand and others;and applications for example to the combinatorics of arranging a number of hyperplanes incomplex N-space.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 32 / 247

Page 33: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Hypergeometric field theory (HFT)

Formal solutions for the the hypergeometric functions (82,83), we put inthe fieldtheoretic form,

f(x) = G(x)f(0),

G(x) =< ψ(x)φ(0) >=δ2 lnZ

δJ(x)δI(0)= (1− xR)−1,

Z =

dψdφe−S+Iφ+Jψ = eI(1−xR)−1J ,

S =

ψ(1 − xR)φ =

ψ(Q− xP )ϕ, φ = Qϕ. (84)

When we invent interaction terms, we obtain nontrivial HFT. In terms ofthe fundamental fields, ψ,ϕ, we have local field model.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 33 / 247

Page 34: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Lauricella Hypergeometric functions (LFs)

For LFs (see, e.g. [Miller,1977]), we find the following formulas [Makhaldiani, 2011]

FA(a; b1, ..., bn; c1, ..., cn; z1, ..., zn) =(a)δ1+...+δn(b1)δ1 ...(bn)δn

(c1)δ1 ...(cn)δnez1+...+zn

=(a)δ1+...+δn

(a1)δ1 ...(an)δnF (a1, b1; c1; z1)...F (an, bn; cn; zn)

= T−1(a)Fn = Σm≥0(a)m1+...+mn(b1)m1

...(bn)mn

(c1)m1...(cn)mn

zm1

1

m1!...zmnn

mn!, |z1|+ ...+ |zn| < 1;

FB(a1, ..., an; b1, ..., bn; c; z1, ..., zn) =(a1)δ1 ...(an)δn (b1)δ1 ...(bn)δn

(c)δ1+...+δn

ez1+...+zn

=(c1)δ1 ...(cn)δn(c)δ1+...+δn

F (a1, b1; c1; z1)...F (an, bn; cn; zn) = T (c)Fn

= Σm≥0(a1)m1

...(an)mn (b1)m1...(bn)mn

(c)m1+...+mn

zm1

1

m1!...zmnn

mn!, |z1| < 1, ..., |zn| < 1; (85)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 34 / 247

Page 35: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

FC(a; b; c1, ..., cn; z1, ..., zn) =(a)δ1+...+δn(b)δ1+...+δn

(c1)δ1 ...(cn)δnez1+...+zn

=(a)δ1+...+δn(b)δ1+...+δn

(a1)δ1 ...(an)δn (b1)δ1 ...(bn)δnF (a1, b1; c1; z1)...F (an, bn; cn; zn)

= T−1(a)T−1(b)Fn = T−1(b)FA

= Σm≥0(a)m1+...+mn (b)m1+...+mn

(c1)m1...(cn)mn

zm1

1

m1!...zmnn

mn!, |z1|1/2 + ...+ |zn|1/2 < 1;

FD(a; b1, ..., bn; c; z1, ..., zn) =(a)δ1+...+δn(b1)δ1 ...(bn)δn

(c)δ1+...δn

ez1+...+zn

=(a)δ1+...+δn(c1)δ1 ...(cn)δn(a1)δ1 ...(an)δn (c)δ1+...δn

F (a1, b1; c1; z1)...F (an, bn; cn; zn)

= T−1(a)T (c)Fn = T (c)FA = T−1(a)FB

= Σm≥0(a)m1+...+mn (b1)m1

...(bn)mn

(c1)m1...(cn)mn

zm1

1

m1!...zmnn

mn!, |z1| < 1, ..., |zn| < 1. (86)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 35 / 247

Page 36: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Lomidze Bn function (LBn)

In the paper ([Lomidze, 1994]) the following formula were proposed

det[xi−1j

∫ 1

xj−1/xj

ui−1(1− u)rj−1n∏

k=0,k 6=j

(xju− xkxj − xk

)rk−1du]/det[xi−1j ]

=Γ(r0)Γ(r1)...Γ(rn)

Γ(ro + r1 + ...+ rn), 0 = x0 < x1 < x2 < ... < xn, n ≥ 1. (87)

Let us put the formula in the following factorized form

LBn(x, r) ≡ det[xi−1j

∫ 1

xj−1/xj

duui+r0−2(1− u)rj−1n∏

k=1,k 6=j

(xju− xkxj − xk

)rk−1]

= detVn(x)Bn(r), Vn(x) = [xi−1j ], Bn(r) =

Γ(r0)Γ(r1)...Γ(rn)

Γ(r0 + r1 + ...+ rn)(88)

Now, it is enough to proof this formula for general values of xi and particular values of ri, e.g.,ri = 1, and for general values of ri and particular values of xi, e.g. xi = pi, 1 ≤ i ≤ n. In thecase of ri = 1, right hand side of the formula is equal to the Vandermonde determinant dividedby n! The left hand side is the determinant of the matrix with elementsAij = xi−1

j (1− (xj−1/xj)i)/i

When we calculate determinant of this matrix, from the row i, we factorize 1/i, 2 ≤ i ≤ n whichgives the 1/n! the rest matrix we calculate transforming the matrix to the form of theVandermonde matrix.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 36 / 247

Page 37: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

This is the half way of the proof. Let us take the concrete values of xi = pi, 1 ≤ i ≤ n, where pis positive integer and general complex values for ri, 0 ≤ i ≤ n, and calculate both sides of theequality. For Vandermonde determinant we find for high values of p the following asymptotic

detV = pN , N =n∑

k=2

k(k − 1) =n(n2 − 1)

3(89)

The matrix elements are

Bij = xi−1j

∫ 1

xj−1/xj

ui+r0−2(1− u)rj−1n∏

k=1,k 6=j

(xju− xkxj − xk

)rk−1du]

= xi−1j (

∏1≤k<j

(xj

xj − xk)rk−1

∏j<k≤n

(xk

xk − xj)rk−1

∫ 1

xj−1/xj

ui+r0−2(1 − u)rj−1

·∏

1≤k<j

(u− xk/xj)rk−1∏

j<k≤n

(1− xj/xku)rk−1du

= p(i−1)j(

∫ 1

0ui+r0−2+

∑j−1

k=1(rk−1)(1− u)rj−1du

= p(i−1)jB(i+

j−1∑k=0

(rk − 1), rj) (90)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 37 / 247

Page 38: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

For n = 2 we have

B11 =

∫ 1

0ur0−1(1 − u)r1−1du =

Γ(r0)Γ(r1)

Γ(r0 + r1),

B22 = p2∫ 1

0ur0+r1−1(1− u)r2−1du =

Γ(r0 + r1)Γ(r2)

Γ(r0 + r1 + r2),

LB2/V2 = B11B22/p2 =

Γ(r0)Γ(r1)Γ(r2)

Γ(r0 + r1 + r2)(91)

For n = 3,

B11 =

∫ 1

0ur0−1(1 − u)r1−1 =

Γ(r0)Γ(r1)

Γ(r0 + r1)= B(r0, r1),

B22 = p2∫ 1

0ur0+r1−1(1− u)r2−1 = p2

Γ(r0 + r1)Γ(r2)

Γ(r0 + r1 + r2),

B33 = p6∫ 1

0ur0+r1+r2−1(1− u)r3−1 = p6

Γ(r0 + r1 + r2)Γ(r3)

Γ(r0 + r1 + r2 + r3)

LB3/V3 = B11B22B33/p8 =

Γ(r0)Γ(r1)Γ(r2)Γ(r3)

Γ(r0 + r1 + r2 + r3)(92)

Now it is obvious the last step of the proof [Makhaldiani, 2011]

LBn(x, r) = detVn(x)B(r0, r1)...B(r0 + r1 + ...+ rn−1, rn)= detVn(x)Bn(r)

Vn(x) = [xi−1j ], Bn(r) =

Γ(r0)Γ(r1)..Γ(rn)

Γ(r0 + r1 + ...+ rn)(93)

Note that this proof is based on the factorization assumption (88). The proof without thisassumption given by I.R.Lomidze is given in [Lomidze, Makhaldiani, 2012].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 38 / 247

Page 39: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Field theory applications of FC

Let us consider the following action

S =1

2

Qv

dxΦ(x)DαxΦ, v = 1, 2, 3, 5, ..., 29, ..., 137, ... (94)

Q1 is real number field, Qp, p - prime, are p-adic number fields. In themomentum representation

S =1

2

Qv

duΦ(−u)|u|αv Φ(u), Φ(x) =∫

Qv

duχv(ux)Φ(u),

D−αχv(ux) = |u|−αv χv(ux). (95)

The statistical sum of the corresponding quantum theory is

Zv =

dΦe− 1

2

∫ΦDαΦ

= det−1/2Dα = (∏

u

|u|v)−α/2. (96)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 39 / 247

Page 40: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

String theory applications

For (symmetrized, 4-tachyon) Veneziano amplitude we have (see, e.g.[Kaku, 2000])

Bs(α, β) = B(α, β) +B(β, γ) +B(γ, α) =

∫ ∞

−∞dx|1− x|α−1|x|β−1,

α+ β + γ = 1 (97)

For the p-adic Veneziano amplitude we take

Bp(α, β) =

Qp

dx|1 − x|α−1p |x|β−1p =Γp(α)Γp(β)

Γp(α+ β)(98)

Now we obtain the N-tachyon amplitude using fractal calculus. We considerthe dynamics of particle given by multicomponent generalization of theaction (110), Φ → xµ.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 40 / 247

Page 41: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

For the closed trajectory of the particle passing through N points, we have

A(x1, x2, ..., xN ) =

∫dt

∫dt1...

∫dtN δ(t − Σtn)

v(x1, t1; x2, t2)v(x2, t2;x3, t3)...v(xN , tN ; x1, t1)

=

∫dx(t)Π(

∫dtnδ(x

µ(tn)− xµn))exp(−S[x(t)])

=

∫Π(dkµnχ(knxn))A(k), (99)

where

A(k) =

∫dxV (k1)V (k2)...V (kN )exp(−S),

V (kn) =

∫dtχ(−knx(t)) (100)

is vertex function.Motion equation

Dαxµ − iΣkµnδ(t − tn) = 0, (101)

in the momentum representation

|u|αxµ(u)− iΣnkµnχ(−utn) = 0 (102)

have the solution

xµ(u) = iΣkµnχ(−utn)|u|α , u 6= 0, (103)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 41 / 247

Page 42: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

the constraint

Σnkn = 0, (104)

and the zero mod xµn(0), which is arbitrary. Integration in (99) with respectto this zero mod gives the constraint (104). On the solution of theequation (101)

xµ(t) = iD−αt Σnkµnδ(t− tn) =

i

Γ(α)Σnk

µn|t− tn|α−1, (105)

the action (110) takes value

S = − 1

Γ(α)Σn<mknkm|tn − tm|α−1,

A(k) =

ΠNn=1dtnexp(−S) (106)

In the limit, α→ 1, for p-adic case we obtain

xµ(t) = −ip− 1

p lnpΣnk

µnln|t− tn|,

S[x(t)] =p− 1

p lnpΣn<mknkm ln|tn − tm|,

A(k) =

ΠNn=1dtnΠn<m|tn − tm|p−1p lnp

knkm . (107)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 42 / 247

Page 43: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Now in the limit p = q−1 → 1 we obtain the proper expressions of the realcase

xµ(t) = −iΣnkµnln|t− tn|,S[x(t)] = Σn<mknkm ln|tn − tm|,A(k) =

ΠNn=1dtnΠn<m|tn − tm|knkm . (108)

By fractal calculus and vector generalization of the model (110),fundamental string amplitudes were obtained in [Makhaldiani, 1988].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 43 / 247

Page 44: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Adeles and Cosmological constant

The ring of (rational) adeles can be defined as the restricted product

AQ = R

′∏

p

Qp (109)

of all the real numbers and the p-adic completions Qp, or in other words asthe restricted product of all completions of the rationals. In this case therestricted product means that for an adele a = (a1, a2, a3, a5, ) all but afinite number of the ap are p-adic integers.The group of invertible elements of the adele ring is the idele group. As alocally compact abelian group, the adeles have a nontrivial translationinvariant measure. Similarly, the group of ideles has a nontrivial translationinvariant measure.Let us consider the following action

S =1

2

Qv

dxΦ(x)DαxΦ, v = 1, 2, 3, 5, ... (110)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 44 / 247

Page 45: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Adeles and Cosmological constant

In the momentum representation

S =1

2

Qv

duΦ(−u)|u|αv Φ(u), (111)

where

Φ(x) =

Qv

duχv(ux)Φ(u),

D−αχv(ux) = |u|−αv χv(ux). (112)

The statistical sum of the corresponding quantum theory is

Zv =

dΦe− 1

2

∫ΦDαΦ

= det−1/2Dα = (∏

u

|u|v)−α/2. (113)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 45 / 247

Page 46: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Adeles and Cosmological constant

Adels a ∈ A are constructed by real a1 ∈ Q1 and p-adic ap ∈ Qp numbers(see e.g. [Gelfand et al, 1966])

a = (a1, a2, a3, a5, ..., ap, ...), (114)

with restriction that ap ∈ Zp = x ∈ Qp, |x|p ≤ 1 for all but a finite set Fof primes p.A is a ring with respect to the componentwise addition and multiplication.A prinsipal adel is a sequence r = (r, r, ..., r, ...), r ∈ Q-rational number.Norm on adels is defined as

|a| =∏

p≥1|ap|p. (115)

Note that the norm on principal adels is trivial.In the adelic generalization of the model (110),

Φ(x) =∏

p≥1Φp(xp), dx =

p≥1dxp, Dα

x =∑

p≥1Dαxp , (116)

where by Dαx1 we denote fractal derivative (257), x1 is real and | |1 is real

norm.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 46 / 247

Page 47: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Adeles and Cosmological constant

If∫

dxp|Φ(xp)|2 = 1, (117)

then∫

dx|Φ(x)|2 = 1, S =∑

p≥1Sp, (118)

so

Z =∏

p≥1Zp =

p≥1(∏

u

|u|p)−α/2 = (∏

u

p≥1|u|p)−α/2 = 1,

λ ∼ lnZ = 0, (119)

if u ∈ Q.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 47 / 247

Page 48: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Renormdynamics of QCD

QCD is the theory of the strong interactions with, as only inputs, one massparameter for each quark species and the value of the QCD couplingconstant at some energy or momentum scale in some renormalizationscheme. This last free parameter of the theory can be fixed by ΛQCD, theenergy scale used as the typical boundary condition for the integration ofthe Renormdynamic equation for the strong coupling constant. This is theparameter which expresses the scale of strong interactions, the onlyparameter in the limit of massless quarks. While the evolution of thecoupling with the momentum scale is determined by the quantumcorrections induced by the renormalization of the bare coupling and can becomputed in perturbation theory, the strength itself of the interaction, givenat any scale by the value of the renormalized coupling at this scale, orequivalently by ΛQCD, is one of the above mentioned parameters of thetheory and has to be taken from experiment.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 48 / 247

Page 49: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Renormdynamics of QCD

The RD equations play an important role in our understanding of QuantumChromodynamics and the strong interactions. The beta function and thequarks mass anomalous dimension are among the most prominent objectsfor QCD RD equations. The calculation of the one-loop β-function in QCDhas lead to the discovery of asymptotic freedom in this model and to theestablishment of QCD as the theory of strong interactions[Gross,Wilczek,1973, Politzer,1973, ’t Hooft, 1972].The MS-scheme [’t Hooft, 1972 2] belongs to the class of massless schemeswhere the β-function does not depend on masses of the theory and the firsttwo coefficients of the β-function are scheme-independent.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 49 / 247

Page 50: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Lagrangian of QCD with massive quarks in the covariant gauge

L = −1

4F aµνF

aµν + qn(iγD −mn)qn

− 1

2ξ(∂A)2 + ∂µca(∂µc

a + gfabcAbµcc)

F aµν = ∂µAaν − ∂νA

aµ + gfabcAbµA

(Dµ)kl = δkl∂µ − igtaklAaµ, (120)

Aaµ, a = 1, ..., N2c − 1 are gluon; qn, n = 1, ..., nf are quark; ca are ghost

fields; ξ is gauge parameter; ta are generators of fundamentalrepresentation and fabc are structure constants of the Lie algebra

[ta, tb] = ifabctc, (121)

we will consider an arbitrary compact semi-simple Lie group G. For QCD,G = SU(Nc), Nc = 3.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 50 / 247

Page 51: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The RD equation for the coupling constant is

a = β(a) = β2a2 + β3a

3 + β4a4 + β5a

5 +O(a6),

a =αs4π

= (g

4π)2,

∫ a

a0

da

β(a)= t− t0 = ln

µ

µ0, (122)

µ is the ’t Hooft unit of mass, the renormalization point in the MS-scheme.To calculate the β-function we need to calculate the renormalizationconstant Z of the coupling constant, ab = Za, where ab is the bare(unrenormalized) charge.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 51 / 247

Page 52: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The expression of the β-function can be obtained in the following way

0 = d(abµ2ε)/dt = µ2ε(εZa+

∂(Za)

∂a

da

dt)

⇒ da

dt= β(a, ε) =

−εZa∂(Za)∂a

= −εa+ β(a),

β(a) = ad

da(aZ1) (123)

where

β(a, ε) =D − 4

2a+ β(a), D = 4− 2ε (124)

is D−dimensional β−function and Z1 is the residue of the first pole in εexpansion

Z(a, ε) = 1 + Z1ε−1 + ...+ Znε

−n + ... (125)

Since Z does not depend explicitly on µ, the β-function is the same in allMS-like schemes, i.e. within the class of renormalization schemes whichdiffer by the shift of the parameter µ.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 52 / 247

Page 53: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

For quark anomalous dimension, RD equation is

b = γ(a) = γ1a+ γ2a2 + γ3a

3 + γ4a4 +O(a5),

b = lnmq,

b(t) = b0 +

∫ t

t0

dtγ(a(t)) = b0 +

∫ a

a0

daγ(a)/β(a). (126)

To calculate the quark mass anomalous dimension γ(g) we need tocalculate the renormalization constant Zm of the quark massmb = Zmm, mb is the bare (unrenormalized) quark mass. Than we findthe function γ(g) in the following way

0 = mb = Zmm+ Zmm = Zmm((lnZm)· + (lnm)·)

⇒ γ(a) = −d lnZmdt

= −d lnZmda

da

dt= −d lnZm

da(−εa+ β(a)) = a

dZm1

da, (127)

where RD equation in D−dimension is

a = −εa+ β(a) = β1a+ β2a2 + ... (128)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 53 / 247

Page 54: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

and Zm1 is the coefficient of the first pole in the ε−expantion of the Zm inMS-scheme

Zm(ε, g) = 1 + Zm1(g)ε−1 + Zm2(g)ε

−2 + ... (129)

Since Zm does not depend explicitly on µ and m, the γm-function is thesame in all MS-like schemes, i.e. within the class of renormalizationschemes which differ by the shift of the parameter µ.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 54 / 247

Page 55: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Reparametrization and general method of solution of the RD equation

RD equation,

a = β1a+ β2a2 + ... (130)

can be reparametrized,

a(t) = f(A(t)) = A+ f2A2 + ...+ fnA

n + ... =∑n≥1

fnAn,

A = b1A+ b2A2 + ... =

∑n≥1

bnAn, (131)

a = Af ′(A) = (b1A+ b2A2 + ...)(1 + 2f2A+ ...+ nfnA

n−1 + ...)= β1(A+ f2A

2 + ...+ fnAn + ...) + β2(A

2 + 2f2A3 + ...) + ...

+βn(An + nf2A

n+1 + ...) + ...= β1A+ (β2 + β1f2)A

2 + (β3 + 2β2f2 + β1f3)A3+

...+ (βn + (n− 1)βn−1f2 + ...+ β1fn)An + ...

=∑

n,n1,n2≥1

Anbn1n2fn2

δn,n1+n2−1

=∑

n,m≥1;m1 ,...,mk≥0

Anβmfm1

1 ...fmkk f(n,m,m1, ...,mk),

f(n,m,m1, ...,mk) =m!

m1!...mk!δn,m1+2m2+...+kmk

δm,m1+m2+...+mk, (132)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 55 / 247

Page 56: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1 = β3 + 2(f22 − f3)β1,b4 = β4 + 3f2β3 + f22β2 + 2f3β2 − 3f4b1 − 3f3b2 − 2f2b3, ...bn = βn + ...+ β1fn − 2f2bn−1 − ...− nfnb1, ... (133)

so, by reparametrization, beyond the critical dimension (β1 6= 0) we can change any coefficientbut β1.We can fix any higher coefficient with zero value, if we take

f2 =β2

β1, f3 =

β3

2β1+ f22 , ... , fn =

βn + ...

(n− 1)β1, ... (134)

In this case we have exact classical dynamics in the (external) space-time and simple scaledynamics,

g = (µ/µ0)−2εg0 = e−2ετg0;

ϕ(τ, t, x) = e−(D−2)/2τϕ0(t, x),

ψ(τ, t, x) = e−(D−1)/2τψ0(t, x) (135)

We will consider in applications the case when only one of higher coefficient is nonzero.In the critical dimension of space-time, β1 = 0, and we can change by reparametrization anycoefficient but β2 and β3.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 56 / 247

Page 57: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

From the relations (133), in the critical dimenshion (β1 = 0), we find that, we can define theminimal form of the RD equation

A = β2A2 + β3A

3, (136)

e.g. b4 = 0 when

f3 =β4

β2+β3

β2f2 + f22 , (137)

f2 remains arbitrary and we can make choice f2 = 0. We can solve (136) as implicit function,

uβ3/β2e−u = ceβ2t, u =1

A+β3

β2(138)

than, as in the noncritical case, explicit solution will be given by reparametrization representation.If we know somehow the coefficients βn, e.g. for first several exact and for others asymptoticvalues (see e.g. [Kazakov,Shirkov,1980]) than we can construct reparametrization function (131)and find the dynamics of the running coupling constant. This is similar to the action-angularcanonical transformation of the analytic mechanics (see e.g. [Faddeev, Takhtajan, 1990]).Statement: The series for a is p-adically convergent, when βn and A are rational numbers.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 57 / 247

Page 58: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Reparametrization of the anomalous dimensions

Let us take the the anomalous dimension of some quantity

γ(a) = γ1a+ γ2a2 + γ3a

3 + ... (139)

and make reparametrization

a = f(A) = A+ f2A2 + f3A

3 + ... (140)

γ(a) = γ1(A+ f2A2 + f3A

3 + ...) + γ2(A2 + 2f2A

3 + ...) + γ3(A3 + ...)

= Γ1A+ Γ2A2 + Γ3A

3 + ...Γ1 = γ1, Γ2 = γ2 + γ1f2, Γ3 = γ3 + 2γ2f2 + γ1f3, ... (141)

When γ1 6= 0, we can take Γn = 0, n ≥ 2, if we define fn as

f2 = −γ2γ1, f3 = −γ3 + 2γ2f2

γ1= −γ3 − 2γ22/γ1

γ1, ... (142)

So, we get the exact value for the anomalous dimension

γ(A) = γ1A = γ1f−1(a) = γ1(a+ γ2/γ1a

2 + γ3/γ1a3 + ...) (143)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 58 / 247

Page 59: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Renormdynamic functions (RDF)

We will call RDF functions gn = fn(t), which are solutions of the RDmotion equations

gn = βn(g), 1 ≤ n ≤ N. (144)

In the simplest case of one coupling constant, the function g = f(t), isconstant g = gc when β(gc) = 0, or is invertible (monotone). Indeed,

g = f ′(t) = f ′(f−1(g)) = β(g). (145)

Each monotone interval ends by UV and IR fixed points and describescorresponding phase of the system.Note that, the simplest case of the classical dynamics, the hamiltoniansystem with one degree of freedom, is already two dimensional, so we havenot an analog of one charge renormdynamics. Than the regular hamiltoniansystems of the classical mechanics are defined on the even dimensionalphase space, so there is not an analog of the three dimensionalrenormdynamics for the coupling constants of the SM.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 59 / 247

Page 60: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nonperturbative Renormdynamic Functions (RDF)

Based on real experiments and computer simulations, quantum gaugetheory in four dimensions is believed to have a mass gap. This is one of themost fundamental facts that makes the Universe the way it is.In the lattice (gauge) theory approach to the renormdynamics (see, e.g.[Makhaldiani, 1986]), recently running coupling constant dynamics werecalculated for SU(3) Yang-Mills model [Bogolubsky et al,2009]. The resultis in agreement with perturbative calculations at small scales; at anintermediate scale the coupling constant reaches its maximum(≃ 1.); thandecrease. So, at the maximum, we may have nontrivial zero of theβ−function, which corresponds to the conformal invariance of thegluodynamics at this point. Beyond this point we have another phase,strong coupling phase with decreasing coupling constant similar(identical?!) to the abelian (monopole?) theory.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 60 / 247

Page 61: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Note that, in the case of the two coupling constants,

g1 = β1(g1, g2),g2 = β2(g1, g2), (146)

we can reformulate RD as

g1 ≡ g; g2 = f2(t) ≡ τ,dg1dg2

=dg

dτ≡ g = β(g, τ) =

β1(g, τ)

β2(g, τ)(147)

and RDF must fulfil corresponding restrictions. E.g. if

g1 = f1(t) = g = f(τ) = f(f2(t)), g2 = f2(t) = τ (148)

So, if we approximate the form of the curve near maximum as

a(t) = ac − b|t− tc|n, (149)

for the β−function we obtain

a = β(a, t) = sign(tc − t)bn(ac − a

b)n−1n . (150)

Of course this is not usual β−function, function of a only. It depends alsoon t. For t > tc we have perturbative phase. For n > 1, β(ac, t) = 0.Explicit dependence on time variable in one coupling case indicates onimplicit two coupling case.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 61 / 247

Page 62: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Dynamics and Renormdynamics

We have seen that the quantitative values and qualitative content of thegiven field theory depends on the scale (parameter, e.g. µ−renormalizationpoint, g = g(µ), A = A(µ)). In QCD e.g. the effective action have thefollowing form

S(µ) =1

g2(µ)

dDxL(A(µ)), (151)

so variation with respect the change of scale gives

δS = −2β(g)

g3δgS +

1

g2

dDxδLδA

δA (152)

and the following two statements are equivalent,

δS = 0, β(g) = 0 ⇔ δS = 0,δLδA

= 0 (153)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 62 / 247

Page 63: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Dynamics and Renormdynamics

So, from renorminvariance of the effective action, δS = 0, follows that atthe conformal symmetric points, fixed points of RD, (β(g) = 0), the motionequations for fields are satisfied. Generalization for the several couplingconstants and other models is obvious. The solutions of the motionequations are selfsimilar, their are generally fractals. In string theory, theconnection between conformal invariance of the effective theory on theparametric world sheet and the motion equations of the fields on theembedding space is well known [Green, Schwarz, Witten,1987]. Morerecent topic in this direction is AdS/CFT Duality [Maldacena, 1998].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 63 / 247

Page 64: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nonperturbative Renormdynamics, AdS/CFT duality

Based on real experiments and computer simulations, quantum gaugetheory in four dimensions is believed to have a mass gap. This is one of themost fundamental facts that makes the Universe the way it is.The AdS/CFT duality provides a gravity description in a (d +1)-dimensional AdS space-time in terms of a flat d-dimensionalconformally-invariant quantum field theory defined at the AdS asymptoticboundary [Maldacena, 1998],[Gubser,Klebanov,Polyakov, 1998],[Witten, 1998]. Thus, in principle, onecan compute physical observables in a strongly coupled gauge theory interms of a classical gravity theory. The β-function for the nonperturbativeeffective coupling obtained from the LF holographic mapping in a positivedilaton modified AdS background is [Brodsky, de Teramond, Deur, 2010]

β(αAdS) =dαAdSlnQ2

= − Q2

4k2αAdS(Q

2)

= αAdS(Q2) ln

αAdS(Q2)

α(0)≤ 0 (154)

where the physical QCD running coupling in its nonperturbative domain is

αAdS(Q2) = α(0)e−Q

2/4k2 (155)

So, this renormdynamics of QCD interpolates between IR fixed point α(0),Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 64 / 247

Page 65: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nonperturbative renormdynamics with massive gluons

For the QCD running coupling [Diakonov, 2003]

α(q2) =4π

9 ln(q2+m2

g

Λ2 )(156)

where mg = 0.88GeV, Λ = 0.28GeV, the β−function of renormdynamics is

β(α) = −α2

k(1− c exp(− k

α)) = −α

2

k+cα2

kexp(− k

α),

k =4π

9= 1.40, c =

m2g

Λ2= (3.143)2 = 9.88 (157)

for nontrivial (IR) fixed point we have

αIR =k

ln c= 0.61 (158)

For α(0) = 2, we predict the gluon mass as

mg = Λek

2α(0) = 1.42Λ = mN/3, Λ = 220MeV. (159)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 65 / 247

Page 66: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nonperturbative renormdynamics with massive gluons

The ghost-gluon interaction in Landau gauge has been determined eitherfrom DSEs [Zwanziger, 2002],[Lerche,von Smekal, 2002], or the ExactRenormalization Group Equations (ERGEs)[Pawlowski et al, 2004],[Fischer,Gies, 2004] and yield an IR fixed point

α(0) =2π

3Nc

Γ(3− 2k)Γ(3 + k)Γ(1 + k)

Γ(2− k)2Γ(2k)=

8.9115

Nc= 2.970,

Nc = 3, k = (93 −√1201)/98 = 0.5954 (160)

Note that, from this formula for k = 0.6036 we have α(0) = 3 and fork = 0.36 we have α(0) = 2.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 66 / 247

Page 67: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

QCD, parton model, valence quarks and αs = 2

While it has been well established in the perturbative regime at highenergies, QCD still lacks a comprehensive solution at low and intermediateenergies, even 40 years after its invention. In order to deal with the wealthof non-perturbative phenomena, various approaches are followed withlimited validity and applicability. This is especially also true for latticeQCD, various functional methods, or chiral perturbation theory, to nameonly a few. In neither one of these approaches the full dynamical content ofQCD can yet be included. Basically, the difficulties are associated with arelativistically covariant treatment of confinement and the spontaneousbreaking of chiral symmetry, the latter being a well-established property ofQCD at low and intermediate energies. As a result, most hadron reactions,like resonance excitations, strong and electroweak decays etc., are nowadaysonly amenable to models of QCD. Most famous is the constituent-quarkmodel (CQM), which essentially relies on a limited number of effectivedegrees of freedom with the aim of encoding the essential features of low-and intermediate-energy QCD.The CQM has a long history, and it has made important contributions tothe understanding of many hadron properties, think only of the fact thatthe systematization of hadrons in the standard particle-data base followsthe valence-quark picture.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 67 / 247

Page 68: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

QCD, parton model, valence quarks and αs = 2

It was noted [Voloshin, Ter-Martyrosian,1984]that parton densities given bythe following solution

M2(Q2) =

3

25+

2

3ω−32/81 +

16

75ω−50/81,

M2(Q2) =M s

2 (Q2) =

3

25− 1

3ω−32/81 +

16

75ω−50/81,

MG2 (Q2) =

16

25(1− ω−50/81),

ω =αs(m

2)

αs(Q2), Q2 ∈ (5, 20)GeV 2, b = 9, αs(Q

2) ≃ 0.2 (161)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 68 / 247

Page 69: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

QCD, parton model, valence quarks and αs = 2

of the Altarelli-Parisi equation

M = AM, M = Q2 dM

dQ2, a = (

g

4π)2,

MT = (M2, M2,Ms2 ,M

G2 ),

M2 =

∫ 1

0dxx(u(x) + d(x)), M2 =

∫ 1

0dxx(u(x) + d(x)),

M s2 =

∫ 1

0dxx(s(x) + s(x)), MG

2 =

∫ 1

0dxxG(x),

A = −a(Q2)

32/9 0 0 −2/30 32/9 0 −2/30 0 32/9 −2/3

−32/9 −32/9 −32/9 2

, (162)

with the following ”valence quark” initial condition at a scale m

M2(m2) = 1, M2(m

2) =M s2 (m

2) =MG2 (m2) = 0, αs(m

2) = 2, (163)

gives the experimental values

M2 = 0.44, M2 =M s2 = 0.04, MG

2 = 0.48 (164)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 69 / 247

Page 70: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

QCD, parton model, valence quarks and αs = 2

So, for valence quark VQCD, αs(m2) = 2. We have seen, that for πρN

model απρN = 3, and for πN model απN = 13. It is nice thatα2s + α2

πρN = απN . This relation can be seen, e.g., by considering pionpropagator in the low energy πN model and in superposition of higherenergy VQCD and πρN models.Note that g2 = 25, g = 5, corresponds to the

αg =g2

4π= 1.989 ≃ 2 (165)

To αs = 2 corresponds

g =√4παs =

√8π = 5.013 = 5+ (166)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 70 / 247

Page 71: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

String-field duality

In the relativistic string-gauge field duality [Maldacena, 1998] (see review[Aharony et al, 2000]), the string coupling constant gs and the gauge fieldfine structure constant αs are related: gs = αs. The statement that thelater is (prime) integer means (prime) integer quantization of the stringcoupling constant.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 71 / 247

Page 72: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Higgs Particles

There are many motivations to think that the SM is not the ultimate andcomplete theory of Nature, among which the naturalness argument plays apredominant role. The instability of the Higgs mass with respect toradiative corrections requires in fact an incredible high level of fine tuning inthe precision of their cancellation in the SM in order to have an Higgs massat the EW scale. Beside the supersymmetric solution to this problem,another possibility is to postulate the Higgs boson as a composite statearising as a bound state from a strongly interacting sector at the TeV scale[Kaplan, Georgi 1984]. Being composite the Higgs will be insensitive toradiative corrections above the composite scale.With the discovery of the Higgs particle with mass 125 GeV, a nice numbermW/mH ≃ 2/3 appear, which, at least for me, indicates for composednature of W and H, with a same mass of about 40 GeV two and threevalence constituents correspondingly. The fermion constituents ψan of Wand scalar constituents ϕan of H compose scalar super multiplet (ϕan, ψ

an)

with a flavor index n and color index a.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 72 / 247

Page 73: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Quarkonia, potential and space dimension renormdynamics

Phenomenological approach to the nonrelativistic potential-model study ofΥ and ψ spectra leads to a static Coulombic Power-law potential of theform

V (r) = a(r)r2−d(r) ∼ 1/r, r ∼ 0.1fmr, r ∼ 1.fm

(167)

E.g. in the case of the Υ and small r

V (r) =4

3

αsr, αs =

b ln rΛ, b = 9. (168)

This behavior corresponds not only to the running fine structure constantbut also to the running space dimension. Confinement-the point-likehadrons on the scales higher than hadronic, corresponds to the zerodimensional space for hadron constituents.RD equations of QCD beyond the critical dimention has explicitdependence on the space dimension. When the dimension becomes runningwe should consider two dimensional renormdinamics

a1 = β1(a1, a2), a1 = a,a2 = β2(a1, a2), a2 = d (169)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 73 / 247

Page 74: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Stability of the states of dynamical systems

If we have a solution xn = x0n (a state) of the following system of motionequations (of the corresponding dynamical system)

xn = fn(x), 1 ≤ n ≤ N, (170)

we can consider the question of stability of the solution, the existence ofthe solutions of the type xn = x0n + gn, for small values of gn. If there aresolutions with rising gn, of the corresponding motion equations

gn = βn(g),βn(g) = fn(x0 + g)− fn(x0) = β1nmgm + β2nmkgmgk + ...,

βkn...m = f (n...m)(x0) (171)

we say that the solution x0n is not stable.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 74 / 247

Page 75: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Stability of the states of dynamical systems

The linear approximation, we transform into diagonal form,

gn = β1nmgm, hn = Anmgm,hn = λnhn, λnδnm = (Aβ1A

−1)nm, (172)

if all of the λn are purely imaginary λn = iωn, we have stable solution (inthe linear approximation): small deviations remain small. If real parts of allλn are negative, we have asymptotic stability: deviations decrease. If someλn are zero, we have undefined case. In regular case, when the matrix β1has inverse, by reparametrization trick we can construct the formal solutionof the nonlinear equation for gn, and try to investigate its convergenceproperties.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 75 / 247

Page 76: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nambu - Poisson formulation of Renormdynamics

In the case of several integrals of motion, Hn, 1 ≤ n ≤ N, we canformulate Renormdynamics as Nambu - Poisson dynamics (see e.g.[Makhaldiani, 2007])

ϕ(x) = [ϕ(x),H1,H2, ...,HN ], (173)

where ϕ is an observable as a function of the coupling constantsxm, 1 ≤ m ≤M.In the case of Standard model [Weinberg,1995], we have three couplingconstants, M = 3.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 76 / 247

Page 77: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Hamiltonian extension of the Renormdynamics

The renormdynamic motion equations

gn = βn(g), 1 ≤ n ≤ N (174)

can be presented as nonlinear part of a hamiltonian system with linear part

Ψn = −∂βm∂gn

Ψm, (175)

hamiltonian and canonical Poisson bracket as

H =

N∑

n=1

β(g)nΨn, gn,Ψm = δnm (176)

In this extended version, we can define optimal control theory approach[Pontryagin, 1983] to the unified field theories. We can start from theunified value of the coupling constant, e.g. α−1(M) = 29.0... at the scaleof unification M, put the aim to reach the SM scale with values of thecoupling constants measured in experiments, and find optimal thresholdcorrections to the RD coefficients [Makhaldiani, 2010].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 77 / 247

Page 78: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Renormdynamic equation for effective action

For connected vertex functions Γn, (11)

Γn(x1, x2, ..., xn; g,m, µ) = Zn/2(µ)Γ0n(x1, x2, ..., xn; g0,m0),

(D − n

2γ)Γn(x; g,m, µ) = 0; (177)

For effective action Sq,

(D − 1

dxφ(x)δ

δφ(x))Sq(φ) = 0,

(D − 1

2γφ

∂φ)V (φ) = 0, V (φ) = Sq(φ(x))|φ(x)=φ=const, (178)

where V (φ) is effective potential.For the effective potential in the RD (conformal) fixed point,γ(g) = γ(gc) ≡ γc we have the following wave equation and corresponding(auto model) solution

(∂t −γc2∂z)V = 0,

V (φ, µ) = f(z + vt) = F (φ

µv), t = ln

µ

µ0, z = ln

φ

φ0, v =

γc2(179)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 78 / 247

Page 79: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Finite temperature and density QCD

The fundamental quark and gluon degrees of freedom are the relevant onesat high temperatures and/or densities. Since these degrees of freedom areconfined in the low temperature and density regime there must be a quarkand/or gluon (de)confinement phase transition.It is difficult to describe the phase transition because there is not known alocal parameter which can be linked to confinement. We consider thefractal dimension of the hadronic/quark-gluon space as order parameter of(de)confinement phase transition. It has value less than 3 in the abelian,hadronic, phase, and more than 3, in nonabelian, quark-gluon, phase.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 79 / 247

Page 80: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Ultraviolet (Infrared) fixed point for QCD (QED)

Perturbation theory results for QCD (QED) give negative (positive)β−function, in one loop approximation

a = β2a2,

QCD : β2 = (nf6

− 11

4),

QED : β2 =1

3(180)

So, running coupling constant vanishes at higher (low) energy. For QCDthis property named as asymptotic freedom gives the scaling behavior ofobservable quantities in good agreement with experimental data. Smallvalue of the coupling constant may describe small deviation from thescaling. Infrared zero value of the QED coupling constant contradicts withexperiments. Small value of the coupling constant equal to the observablevalue of the fine structure constant α−1 = 137.036, in the infrared (lowenergy) limit, will be good solution of the zero-charge problem. For this, wewill consider the QCD (QED) beyond the critical dimension of thespace-time.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 80 / 247

Page 81: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Corresponding β−function

β(a, ε) = −εa+ β(a), (181)

has stable ultraviolet (infrared) fixed point for negative (positive) value of ε,

ε = β(a)/a. (182)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 81 / 247

Page 82: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Two TeV scale unification of the standard model coupling constants

According to the LEP and Tevatron data, the standard model couplingconstants at the Z-boson mass scale take the values (see, e.g.[D.I.Kazakov, 2004])

α1(mZ) = 0.017, α1(mZ)−1 = 58.8

α2(mZ) = 0.034, α2(mZ)−1 = 29.4

α3(mZ) = 0.118, α3(mZ)−1 = 8.47 (183)

Our aim is to consider RD equation in critical dimension for weakinteraction part of the SM (ε2 = 0); RD equations for the electromagneticand strong interaction parts beyond critical dimension (ε1, ε3 6= 0); reachunification (equality) of the three couplings at the TeV scale in the pointα−1u = 31.0

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 82 / 247

Page 83: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The solution of the one loop RD equation beyond critical dimension

a = −εa+ ka2,

a =α

4π= (

g

4π)2, t = ln

Q2

m2Z

, (184)

is

an(t)−1 =

knε

+ cneεnt, n = 1, 3

cn = an(mZ)−1 − kn

εn,

kn = (41

10,−7). (185)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 83 / 247

Page 84: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The solution of the RD equation in critical dimension

a2 = k2a22, k2 = −19

6(186)

is

a−12 (t) = a−12 (mZ) + k2t (187)

From the last expression, having unification value, α−12 (tu) = α−1u = 31.0we define the unification scale

tu = (a−12 (tu)− a−12 (mZ))/k2

= 4π × 1.6× 6

19= 6.35,

Qu = 23.9mZ = 2182GeV,mZ = 91.2GeV (188)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 84 / 247

Page 85: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Solution of the RD equation beyond the critical dimension forelectrodynamic constant,

a = −εa+ ba2, b =41

10, (189)

is

a−1(t) =b

ε+ (a−1(mZ)−

b

ε)eεt (190)

The condition of the unification

(bε−1 − a−1(tu)) = (bε−1 − a−1(mZ))eεtu (191)

defines the value ε1 = −0.093 Unification takes place in dimensiond = 4− 2ε1 = 4.186

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 85 / 247

Page 86: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

For the strong coupling constant beyond the critical dimension,

a = −εa− ba2, b = 7, (192)

the solution is

a−1(t) = − bε+ (

b

ε+ a−1(mZ))e

tε, (193)

the unification condition

(bε−1 + a−1(tu)) = (bε−1 + a−1(mZ))eεtu (194)

defines ε = 0.168 Unification takes place in the dimensiond = 4− 2ε = 3.66

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 86 / 247

Page 87: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Let us consider unification at the point α−1(tu) = 29.0, the low energyunification,

tul = (α−12 (tul)− a−12 (mZ))/k2

= −4π × 0.4 × 6

19= −1.59,

Qul = 0.45mZ = 41.2GeV (195)

For electrodynamic case unification condition

41

10− 4π29ε = (

41

10− 4π58.8ε)e−1.59ε, (196)

gives the values ε1 = 0.453, del = 3.09 = 2.09 + 1 dimensional space-time.For strong coupling constant unification condition

7 + 4πε× 29 = (7 + 4πε× 8.47)e−1.59ε (197)

gives ε3 = −0.8121, dsl = 5.624

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 87 / 247

Page 88: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

At what scale α−1 = 137?

The low energy value of the QED α−1 = 137.036...Let us find the scale at which α−1 = 137 if

α−1(mZ) =5

3 cos2 θWα−11 (mZ) = 128.978 ± 0.027 ≃ 129,

sin2 θW = 0.23146 ± 0.00017 ≃ 0.2315,α−11 (mZ) = 58.8,

α−1(mZ) =5

3× 0.7685× 58.8 = 127.52 ≃ 128 (198)

Now take one loop RD evolution to the 137,

tl = (a−11 (tl)− a−11 (mZ))/k1

= −4π × 8.× 10

41= −24.5,

Ql ≃ 5× 10−6mZ ≃ 5× 10−4mp ≃ me (199)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 88 / 247

Page 89: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Theory Space (TS) and Fundamental Constants

Theoretical equations describing the physical world deal with dimensionlessquantities and their solutions depend on dimensionless fundamentalparameters, like α−1 ≃ 137. But experiments, from which these theories areextracted and by which they could be tested, involve measurements, i.e.comparisons with standard dimensionful scales. Without standarddimensionful units and hence without certain conventions physics isunthinkable.According to the high school physics, there are three basic quantities inNature: Length, Mass and Time. All other quantities, such as electriccharge or temperature, occupied a lesser status since they could all bere-expressed in terms of these basic three. As a result, there are three basicunits: centimeter (cm), gram (g) and second (s), reflected in thethree-letter name ”CGS” system (or perhaps meter, kilogram and second inthe alternative, but still three-letter, ”MKS” system).

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 89 / 247

Page 90: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Theory Space (TS) and Fundamental Constants

In quantum mechanics, there is a minimum quantum of action given byPlanck’s constant ~; in special relativity there is a maximum velocity givenby the velocity of light c; in classical gravity the strength of the forcebetween two objects is determined by Newton’s constant of gravitation G.In terms of length, time and mass their dimensions are

[c] = LT−1,

[~] = L2T−1M

[G] = L3T−2M−1 (200)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 90 / 247

Page 91: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Theory Space (TS) and Fundamental Constants

Max Planck identified a century ago three basic units, the Planck length lp,the Planck time tp and Planck mass mp:

lp =

G~

c3= 1.616 × 10−35m

tp =

G~

c5= 5.390 × 10−44s

mp =

c~

G= 2.177 × 10−8kg (201)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 91 / 247

Page 92: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Theory Space (TS) and Fundamental Constants

Note that, unlike ~ and c, the dimension of G depends on dimension ofspace-time D:

F = GmM

rD−2= ma,⇓

[GD] = LD−1T−2M−1 (202)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 92 / 247

Page 93: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Theory Space (TS) and Fundamental Constants

so,

~GD = lD+1pD t−3pD,

c = lpDt−1pD,⇓

lD−2pD =~GDc3

,

tD−2pD =~GDcD+1

,

mD−2pD =

c5−D~D−3

GD(203)

After compactification to four dimensions,

GD = vG4 (204)

where v - the volume of the compactifying manifold has thefour-dimensional interpretation as the vacuum expectation value of scalarmodulus fields coming from the internal components of the metric tensor, itdepends on the choice of vacuum but does not introduce any morefundamental constants into the lagrangian.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 93 / 247

Page 94: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Theory Space (TS) and Fundamental Constants

Note that in the gravity coupling constant and corresponding unites (203),the dimention D can takes also non integer-fractal values.In the 1870’s G.J. Stoney [Stoney, 1881], the physicist who coined the term”electron” and measured the value of elementary charge e, introduced asuniversal units of Nature for L, T,M :

lS =e

c2

√G,

tS =e

c3

√G

=lSc,

mS =e√G,

lSmS =e2

c2(205)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 94 / 247

Page 95: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Theory Space (TS) and Fundamental Constants

The expression for mS has been derived by equating the Coulomb andNewton forces,

e2 = Gm2 ⇒ mS =e√G

(206)

The expressions for lS and tS has been derived from mS , c and e ondimensional grounds,

[e2

r2] = [ma] =MLT−2 ⇒ e2 = mSL

3T−2 = mSlSc2

⇒ lS =e2

c2mS=e√G

c2(207)

Note that, we can define the units of Nature from fundamental length-l,charge-e and speed of light-c

t = l/c, m = (e

c)2/l, G = (

lc2

e)2 (208)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 95 / 247

Page 96: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

When M. Planck discovered in 1899 h he introduced [Planck, 1899] asuniversal units of Nature for L, T, M:

mP =

hc

G=mS√α,

lP =h

cmP=

lS√α

= 11.7lS ,

tP =lPc

=tS√α,

(209)

Max Planck invented the system of fundamental unites c, h,G and k.G. Gamov, D. Ivanenko and L. Landau [Gamov, Ivanenko, Landau, 1928]considered the system without the parameter k, as fundamental one.Bronshtein [Bronshtein, 1933] and Zelmanov [Zelmanov, 1967], developedthe idea of the cube of theories. The cube is located along three orthogonalaxes marked by c (actually by 1/c), ~, G. The vertex (000) corresponds tononrelativistic mechanics, (c00) - to special relativity, (0~0) - tonon-relativistic quantum mechanics, (c~0) - to quantum field theory, (c0G)- to general relativity, (c~G ) - to futuristic quantum gravity and

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 95 / 247

Page 97: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

the Theory of Everything, TOE, modern version of which is M-theory.There is a hope that in the framework of TOE the values of dimensionlessfundamental parameters will be ultimately calculated. Note that3-dimensional TS-c~G where invented for 3-dimensional space models,d-dimensional theory may need d-dimensional TS, but, as we have seen,when extra dimensions are compactified the TS remain 3-dimensional;Stoney’s fundamental constants are more fundamental just because theyare less than Planck’s constants :)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 96 / 247

Page 98: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Practical Meaning of Units

The meter was defined in 1791 as a 1/40 000 000 part of Parismeridian.The gram is the mass of one cubic cm of water. The cm and secare connected with the size and rotation of the earth. An important stepforward was made in the middle of XX century, when the standards of cmand sec were defined in terms of of wave-length and frequency of a certainatomic line.Enormously more universal and fundamental are c and ~ given to us byNature herself as units of velocity [v] = [L/T ] and angular momentum[J ] = [MvL] = [ML2/T ] or action [S] = [ET ] = [Mv2T ] = [ML2/T ].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 96 / 247

Page 99: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

It is important that c is not only the speed of light in vacuum. What ismuch more significant is the fact that it is the maximal velocity of anyobject in Nature, the photon being only one of such objects. Thefundamental character of c would not be diminished in a world withoutphotons. The fact that c is the maximal v leads to new phenomena,unknown in newtonian physics and described by relativity. Therefore Natureherself suggests c as fundamental unit of velocity.c is more fundamental than α because it is the basis of relativity theorywhich unifies space and time, as well as energy, momentum and mass.The quantity ~ is also fundamental: it is the quantum of the angularmomentum J and a natural unit of the action S. When J or S are close to~, the whole realm of quantum mechanical phenomena appears. Particleswith integer J (bosons) tend to be in the same state (i.e. photons in alaser, or Rubidium atoms in a drop of Bose-Einstein condensate). Particleswith half-integer J (fermions) obey the Pauli exclusion principle which is sobasic for the structure of atoms, atomic nuclei and neutron stars.Symmetry between fermions and bosons, dubbed supersymmetry or SUSY,is badly broken at low energies, but many theorists believe that it isrestored near the Planck mass in particular in superstrings and M-theories.It is natural when dealing with quantum mechanical problems to use ~ asthe unit of J and S.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 96 / 247

Page 100: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The status of G and its derivatives, m , l , t , is at present different fromthat of c and ~, because the quantum theory of gravity is still underconstruction. The majority of experts connect their hopes with extra spatialdimensions and superstrings. The characteristic length of a superstring

ls(M2GUT ) = lP /

α(M2GUT ). Possible modifications of Newton’s potential

at sub-millimetre distances demonstrates that the position of G is not asfirm as that of c and ~. If the theory of gravity reduce to more fundamentalstructures, like old theory of weak interections with its coupling constant Greduce to SM, than gravitation coupling constant become calculable interms of the fundamental theory.The Newtonian potential around the sun is for non-vanishing Λ modified to[Axenides, Floratos, Perivolaropoulos, 2000], [Gibbons, Hawking, 1977]

V (r) =GM

r+

Λc2

6r2 (210)

where M is the mass of the sun and r the distance from the sun.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 96 / 247

Page 101: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Mathematically temperature T is defined as a derivative of internal energyE of a system over its entropy S:

Z(β) =∑

n

e−βEn =∑

En

N(En)e−βEn =

En

e−βFn = e−βF ,

F = E − TS = E − tSB , T = β−1 = kt, SB = kS,

(∂F

∂S)T = 0 ⇒ T =

dE

dS,

k = 8.69× 10−5eV/K = 1.38 × 10−23J/K. (211)

As temperature is an average energy of an ensemble of particles, it isnatural to measure it in units of energy. So, the Boltzmann’s constant kconnects microscopic phenomena to macroscopic one but it is not necessaryto have different unit for measuring temperature and correspondingdimensional coefficient k, T = kt. We can put k = 1 and measuring thetemperature in energy unites. In this sense, the Boltzmann’s Constant khas not the fundamental meaning.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 96 / 247

Page 102: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

There are different opinions about the number of fundamental constants[Duff, Okun, Veneziano, 2001]. According to Okun there are threefundamental dimensionful constants in Nature: Planck’s constant, ~; thevelocity of light, c; and Newton’s constant, G. According to Veneziano,there are only two: the string length ls and c. According to Duff, there arenot fundamental constants at all.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 96 / 247

Page 103: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

5-dimensional Einstein-Hilbert action

S = (12π2G5)−1

d5x√−g5R5 (212)

Decomposing 5-dimensional metric as

g5 =

(

gµν + φ2AµAν/M2 φAµ/M

φAν/M φ2

)

, (213)

we obtain

S = (16πG4)−1

d4x√−g4φ(R4 −

φ2

4M2F 2) (214)

where the 4-dimensional gravitational constant G4 is

G4 = G53π

4/

dx5 (215)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 96 / 247

Page 104: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The scalar field couples explicitly to the kinetic term of the vector field andcannot be eliminated by a redefinition of the metric. Such dependencies ofthe masses and couplings are generic for higher-dimensional theories and inparticular string theory. It is actually one of the definitive predictions forstring theory that there exists a dilaton, that couples directly to matter[Taylor, Veneziano, 1988] and whose vacuum expectation value determinesthe string coupling constants [Witten, 1984,2]. In the Nambu-Goto stringmodel

S

~=

1

s

d(Area), s = l2s (216)

where ls is the characteristic size of strings. The characteristic length of asuperstring

ls(M2GUT ) =

lp√

α(M2GUT )

(217)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 96 / 247

Page 105: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

We have seen, that α−1GUT in MSSM is equal to 29, so, in String MinimalSM (SMSM)

s =l2p

αGUT=

l2sαGUTα(me)

= 29× 137e2G/c4 (218)

where ls is Stony’s fundamental length,

ls =lp

α(me), α(me)

−1 = 137. (219)

the parameter s is the one which replace the gravitational constant in oldtriumvirate of fundamental units G, c, ~ ⇒ s, c, ~. Important consequenceof this statement is that a string theory phenomenon we observe ineveryday live as gravitation force.String theory only needs two fundamental dimensionful constants c and s,i.e. one fundamental unit of speed and one of area. The role of Planckconstant plays s.There is, in relativity, a fundamental unit of speed c; there is, in QM, afundamental unit of action ~; there is, in string theory, a fundamental unitof action - area, s.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 96 / 247

Page 106: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

In string theory we would like to freeze the moduli at values that providethe correct values of the coupling constant and unification scale of grandunified theories (GUTs). For instance, the dilaton and compactificationvolume V6 should be frozen at values such that

αGUT ∼ eφ ∼ m2s

m2P

∼ gs, m2GUT ∼ α

4/3GUT g

−1/3s m2

P , gs = V6M6eφ (220)

where mGUT ,ms,mP are GUT, string and the Planck scales, gs is thestring coupling.The tree-level low-energy effective action of string theory reads:

S =1

2

d4x√−ge−φ(λ−2s (R+ ∂µφ∂

µφ+HµνρHµνρ) + FµνF

µν) (221)

where Hµνρ is Kalb-Ramond antisymmetric tensor field strength.Couplings are VEVs which, hopefully, become dynamically determined. Inparticular, a scalar field, the so-called dilaton φ, controls all sorts ofcouplings, gravitational and gauge alike,

αgauge ∼ eφ ∼l2pl2s

= GNT, T =~

l2s(222)

where ls is string length, T is string tension.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 97 / 247

Page 107: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Mathematical Foundation for Fundamental Constants

In mathematics we have two kind of structures, discrete and continuousone. If a physical quantity has discrete values, it might not have dimension.If the values are continuous - the quantity might have dimension, unit ofmeasure. These structures may depend on scale, e.g. on macroscopic scalecondensed state of matter (and time) is well described as continuousmedium, so we use dimensional units of length (and time). On the scale ofatoms, the matter has discrete structure, so we may count lattice sites andmay not use unit of length. If at small (e.g. at Plank) scale space (and/ortime) is discrete then we not need an unit of length (time) for measuring,there is the fundamental length and we can just count.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 97 / 247

Page 108: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Renormdynamics of observable quantities in high energy physics

Let us consider l−particle semi-inclusive distribution

Fl(n, q) =dlσn

dq1...dql=

1

n!

∫ n∏

i=1

dq′iδ(p1 + p2 − Σli=1qi −Σni=1q′i)

·|Mn+l+2(p1, p2, q1, ..., ql, q′1, ..., q

′n; g(µ),m(µ)), µ)|2 ,

dp ≡ d3p

E(p), E(p) =

p2 +m2. (223)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 98 / 247

Page 109: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Renormdynamics of observable quantities in high energy physics

From the renormdynamic equation

DMn+l+2 =γ

2(n+ l + 2)Mn+l+2, (224)

we obtain

DFl(n, q) = γ(n+ l + 2)Fl(n, q),DFl(q) = γ(< n > +l + 2)Fl(q),

D < nk(q) >= γ(< nk+1(q) > − < nk(q) >< n(q) >),DCk = γ < n(q) > (Ck+1 − Ck(1 + k(C2 − 1)))

Fl(q) ≡dlσ

dq1...dql=

n

dlσndq1...dql

, < nk(q) >=

n nkdlσn/dq

l

n dlσn/dql

Ck =< nk(q) >

< n(q) >k(225)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 99 / 247

Page 110: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Scaling relations for multi particle cross sections

From dimensional considerations, the following combination of crosssections [Koba et al, 1972] must be universal function

< n >σnσ

= Ψ(n

< n >). (226)

Corresponding relation for the inclusive cross sections is[Matveev et al, 1976].

< n(p) >dσndp

/dσ

dp= Ψ(

n

< n(p) >). (227)

Indeed, let us define n−dimension of observables [Makhaldiani, 1980]

[n] = 1, [σn] = −1, σ = Σnσn, [σ] = 0, [< n >] = 1. (228)

The following expression does not depend on any dimensional quantitiesand must have a corresponding universal form

Pn =< n >σnσ

= Ψ(n

< n >). (229)

Let us find an explicit form of the universal functions using renormdynamicequations.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 100 / 247

Page 111: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

From the definition of the moments we have

Ck =

∫ ∞

0dxxkΨ(x), (230)

so they are universal parameters,

DCk = 0 ⇒ Ck+1 = (1 + k(C2 − 1))Ck ⇒Ck = (1 + (k − 1)(C2 − 1))...(1 + 2(C2 − 1))C2. (231)

Now we can invert momentum transform and find (see [Makhaldiani, 1980]and appendix ) universal functions [Ernst, Schmit, 1976],[Darbaidze et al, 1978].

Ψ(z) =1

2πi

∫ +i∞

−i∞dnz−n−1Cn =

cc

Γ(c)zc−1e−cz,

C2 = 1 +1

c(232)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 101 / 247

Page 112: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

1 2 3 4

0.2

0.4

0.6

0.8

Figure: KNO distribution (232), Ψ(z), with c = 2.8

The value of the parameter c can be measured from the dispersion low,

D =√

< n2 > − < n >2 =√

C2 − 1 < n >= A < n >,

A =1√c≃ 0.6, c = 2.8;

(c = 3, A = 0.58) (233)

which is in accordance with n−dimension counting.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 102 / 247

Page 113: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

1/ < n > correction to the scaling function

We can calculate also 1/ < n > correction to the scaling function (seeappendix)

< n >σnσ

= Ψ = Ψ0(n

< n >) +

1

< n >Ψ1(

n

< n >),

Ck = C0k +

1

< n >C1k ,

C0k =

∫ ∞

0dxxkΨ0(x), C

1k =

∫ ∞

0dxxkΨ1(x),

Ψ1(z) =1

2πi

∫ +i∞

−i∞dnz−n−1C1

n =C12c

2

2(z − 2 +

c− 1

cz)Ψ0 (234)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 103 / 247

Page 114: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Characteristic function for KNO

The characteristic function we define as

Φ(t) =

∫ ∞

0dxetxΨ(x) = (1− t/c)−c, Re(t) < c (235)

For the moments of the distribution, we have

Φ(k)(0) = Ck = (−c)(−c − 1)...(−c − k + 1)(−1/c)k =Γ(c+ k)

Γ(c)ck(236)

Note that it is an infinitely divisible characteristic function, i.e.

Φ(t) = (Φn(t))n, Φn(t) = (1− t/c)−c/n (237)

If we calculate observable(mean) value of x, we find

< x >= Φ′(0) = nΦ(0)n′ = n < x >n,

< x >n=< x >

n(238)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 104 / 247

Page 115: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

For the second moment and dispersion, we have

< x2 >= Φ(2)(0) = n < x2 >n +n(n− 1) < x >2n,

D2 =< x2 > − < x >2= n(< x2 >n − < x >2n) = nD2

n

D2n =

D2

n=

D2

< x >< x >n (239)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 105 / 247

Page 116: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Physical distributions

In a sense, any Hamiltonian quantum (and classical) system can bedescribed by infinitely divisible distributions, because in the functionalintegral formulation, we use the following step

U(t) = e−itH = (e−itNH)N (240)

In the case of our scalar field theory (1),

L(ϕ) =1

2∂µϕ∂

µϕ− m2

2ϕ2 − g

nϕn

= g2

2−n (1

2∂µφ∂

µφ− m2

2φ2 − 1

nφn) (241)

so, to the constituent field φN corresponds higher value of the couplingconstant,

gN = gNn−22 (242)

For weak nonlinearity, n = 2 + 2ε, d = 2/ε+ 2, gN = g(1 + ε lnN +O(ε2))

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 106 / 247

Page 117: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Closed equation of renormdynamics for the generating function of theobservables

Let us consider a generating function of the topological crossections

F (h, g,m, µ) = Σn≥2hnσn,

σn =1

n!

dn

dhnF |h=0,

σ = F |h=1, < n >=d

dhlnF |h=1, ... (243)

It is natural that for the generating function we have closed renormdynamicequation [Makhaldiani, 1980]

(D− γ(h∂

∂h+ 2))F = 0,

F (h(µ), g(µ),m(µ), µ) = F (h(µ), g(µ),m(µ), µ) exp(2

∫ µ

µ

ργ(g(ρ))),

h = h(µ) = h(µ) exp(

∫ µ

µ

ργ(g(ρ))),

m = m(µ) = m(µ) exp(

∫ µ

µ

ρη(g(ρ))),

∫ g

g

dg

β(g)= ln

µ

µ(244)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 107 / 247

Page 118: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Explicit form of Generating function in the case of KNO scaling

Let us find generating function in the case of KNO scaling. From thedefinition of Generating function and using topological cross section fromKNO, we find

F (h) =∑

n

hnσ

< n >Ψ(

n

< n >) =

σ

< n >

Ψ(n

< n >)hn

< n >Ψ(

δ

< n >)h2

1− h, δ ≡ h

d

dh, qδf(h) = f(qh), (245)

Now we can find more concrete form of the generating function, with theexplicit form of KNO function,

< n >)c−1 exp(−c δ

< n >)h2

1− h= (

δ

< n >)c−1

q2h2

1− qh

=1

< n >c−11

Γ(1− c)

∫ ∞

0

dt

tcq2h2e−2t

1− qhe−t, (246)

so

F (h)KNO =cc

Γ(c)

σ

< n >c1

Γ(1− c)

∫ ∞

0

dt

tcq2h2e−2t

1− qhe−t,

q = exp(− c

< n >) (247)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 108 / 247

Page 119: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Indeed, if we expend and than integrate under this formula, we hind

F (h) =cc

Γ(c)

σ

< n >c

n≥2hnnc−1 exp(− c

< n >n) (248)

which corresponds to the considered explicit form of the KNO function.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 109 / 247

Page 120: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Negative binomial distribution

Negative binomial distribution (NBD) is defined as

P (n) =Γ(n+ r)

n!Γ(r)pn(1− p)r,

n≥0P (n) = 1, (249)

5 10 15 20 25 30

0.02

0.04

0.06

0.08

0.10

Figure: P (n), (249), r = 2.8, p = 0.3, < n >= 6

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 110 / 247

Page 121: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

NBD provides a very good parametrization for multiplicity distributions ine+e− annihilation; in deep inelastic lepton scattering; in proton-protoncollisions; in proton-nucleus scattering.

Hadronic collisions at high energies (LHC) lead to charged multiplicitydistributions whose shapes are well fitted by a single NBD in fixed intervalsof central (pseudo)rapidity η [ALICE,2010].

It is interesting to understand how NBD fits such a different reactions?

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 111 / 247

Page 122: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

NBD and KNO scaling

Let us consider NBD for normed topological cross sections

σnσ

= P (n) =Γ(n+ k)

Γ(n+ 1)Γ(k)(

k

< n >)k(1 +

k

< n >)−(n+k)

=Γ(n+ k)

Γ(n+ 1)Γ(k)(1 +

k

< n >)−n(1 +

< n >

k)−k

=Γ(n+ k)

Γ(n+ 1)Γ(k)(

< n >

< n > +k)n(

k

k+ < n >)k,

=Γ(n+ k)

Γ(n+ 1)Γ(k)

( k<n>)

k

(1 + k<n>)

k+n,

r = k > 0, p =< n >

< n > +k. (250)

The generating function for NBD is

F (h) = (1 +< n >

k(1− h))−k = (1 +

< n >

k)−k(1− ah))−k,

a = p =< n >

< n > +k. (251)

Indeed,Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 112 / 247

Page 123: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

(1− ah))−k =1

Γ(k)

∫ ∞

0dttk−1e−t(1−ah)

=1

Γ(k)

∫ ∞

0dttk−1e−t

∞∑

0

(tah)n

n!

=∞∑

0

Γ(n+ k)an

Γ(k)n!hn,

P (n) = (1 +< n >

k)−k

Γ(n+ k)

Γ(k)n!(< n >

< n > +k)n

=kkΓ(n+ k)

Γ(k)Γ(n+ 1)(< n > +k)−(n+k) < n >n

=Γ(n+ k)

Γ(n+ 1)Γ(k)(

k

< n >)k(1 +

k

< n >)−(n+k) (252)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 113 / 247

Page 124: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Note that KNO characteristic function (235) coincides with the NBDgenerating function (251) when t =< n > (h− 1), c = k.The Bose-Einstein distribution is a special case of NBD with k = 1.

If k is negative, the NBD becomes a positive binomial distribution, narrowerthan Poisson (corresponding to negative correlations).For negative (integer) values of k = −N, we have Binomial GF

Fbd = (1 +< n >

N(h− 1))N = (a+ bh)N , a = 1− < n >

N, b =

< n >

N,

Pbd(n) = CnN (< n >

N)n(1− < n >

N)N−n (253)

(In a sense) we have a (quantum) spectrum for the parameter k, whichcontains any (positive) real values and (with finite number of states) thenegative integer values, (0 ≤ n ≤ N)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 114 / 247

Page 125: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Dispersion low for NBD

From the generating function we have

< n2 >= (hd

dh)2F (h)|h=1 =

k + 1

k< n >2 + < n >, (254)

for dispersion we obtain

D =√

< n2 > − < n >2 =1√k< n > (1 +

k

< n >)1/2

=1√k< n > +

√k

2+O(1/ < n >), (255)

so the dispersion low for KNO and NBD distributions are the same, withc = k, for high values of the mean multiplicity.The factorial moments of NBD,

Fm = (d

dh)mF (h)|h=1 =

< n(n− 1)...(n −m+ 1) >

< n >m=

Γ(m+ k)

Γ(m)km, (256)

and usual normalized moments of KNO (236) coincides.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 115 / 247

Page 126: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Fractal factorial and cumulant moments

Using fractal calculus (see e.g. [Makhaldiani, 2003]),

D−α0,xf =|x|αΓ(α)

1∫

0

|1− t|α−1f(xt)dt, = |x|αΓ(α)

B(α, ∂x)f(x)

= |x|α Γ(∂x)

Γ(α+ ∂x)f(x), f(xt) = tx

ddx f(x). (257)

we can define factorial and cumulant moments for not only negative integervalues of q, but for any complex indexes,

F−q =< n >q D−q0,xGNBD(x)|x=0 =kqΓ(k − q)

Γ(k),

K−q =< n >q D−q0,x lnGNBD(x)|x=0 = kq+1Γ(−q),

H−q =Γ(k + 1)Γ(−q)

Γ(k − q)(258)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 116 / 247

Page 127: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The KNO as asymptotic NBD

Let us show that NBD is a discrete distribution corresponding to the KNOscaling,

lim<n>→∞

< n > Pn| n<n>

=z = Ψ(z) (259)

Indeed, using the following asymptotic formula

Γ(x+ 1) = xxe−x√2πx(1 +

1

12x+O(x−2)), (260)

we find

< n > Pn =< n >(n + k − 1)n+k−1e−(n+k−1)

Γ(k)nne−nkk

nk< n > zke−k

n+k<n>

=kk

Γ(k)zk−1e−kz +O(1/ < n >) (261)

We can calculate also 1/ < n > correction term to the KNO from theNBD. The answer is

Ψ =kk

Γ(k)zk−1e−kz(1 +

k2

2(z − 2 +

k − 1

kz)

1

< n >) (262)

This form coincides with the corrected KNO (234) for c = k and C12 = 1.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 117 / 247

Page 128: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

We have seen that KNO characteristic function (235) and NBD GF (251)have almost same form. This relation become in coincidence if

c = k, t = (h− 1)< n >

k(263)

Now the definition of the characteristic function (235) can be read as∫ ∞

0e−<n>z(1−h)Ψ(z)dz = (1 +

< n >

k(1− h))−k (264)

which means that Poisson GF weighted by KNO distribution gives NBD GF.Because of this, the NBD is the gamma-Poisson (mixture) distribution.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 118 / 247

Page 129: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

NBD, Poisson and Gauss distributions

Fore high values of x2 = k the NBD distribution reduces to the Poissondistribution

F (x1, x2, h) = (1 +x1x2

(1− h))−x2 ⇒ e−x1(1−h) = e−<n>eh<n>

=∑

P (n)hn,

P (n) = e−<n>< n >n

n!(265)

For the Poisson distribution

d2F (h)

dh2|h=1 =< n(n− 1) >=< n >2,

D2 =< n2 > − < n >2=< n > . (266)

In the case of NBD, we had the following dispersion low

D2 =1

k< n >2 + < n >, (267)

which coincides withe previous expression for high values of k.Poisson GF belongs to the class of the infinitely divisible distributions,

F (h,< n >) = (F (h,< n > /k))k (268)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 119 / 247

Page 130: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

For high values of < n >, the Poisson distribution reduces to the Gaussdistribution

P (n) = e−<n>< n >n

n!⇒ 1√

2π < n >exp(−(n− < n >)2

2 < n >) (269)

For high values of k in the integral relation (264), in the KNO functiondominates the value zc = 1 and both sides of the relation reduce to thePoisson GF.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 120 / 247

Page 131: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Multiplicative properties of KNO and NBD and corresponding motionequations

An useful property of the negative binomial distribution with parameters

< n >, k

is that it is (also) the distribution of a sum of k independent randomvariables drawn from a Bose-Einstein distribution1 with mean < n > /k,

Pn =1

< n > +1(< n >

< n > +1)n

= (eβ~ω/2 − e−β~ω/2)e−β~ω(n+1/2), T =~ω

ln <n>+1<n>

n≥0Pn = 1,

nPn =< n >=1

eβ~ω−1, T ≃ ~ω < n >, < n >≫ 1,

P (x) =∑

n

xnPn = (1+ < n > (1− x))−1. (270)

1A Bose-Einstein, or geometrical, distribution is a thermal distribution for single state systems.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 121 / 247

Page 132: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

This is easily seen from the generating function in (251), remembering thatthe generating function of a sum of independent random variables is theproduct of their generating functions.Indeed, for

n = n1 + n2 + ...+ nk, (271)

with ni independent of each other, the probability distribution of n is

Pn =∑

n1,...,nk

δ(n −∑

ni)pn1 ...pnk,

P (x) =∑

n

xnPn = p(x)k (272)

This has a consequence that an incoherent superposition of N emitters thathave a negative binomial distribution with parameters k,< n > produces anegative binomial distribution with parameters Nk,N < n >.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 122 / 247

Page 133: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

So, for the GF of NBD we have (N=2)

F (k,< n >)F (k,< n >) = F (2k, 2 < n >) (273)

And more general formula (N=m) is

F (k,< n >)m = F (mk,m < n >) (274)

We can put this equation in the closed nonlocal form

QqF = F q, (275)

where

Qq = qD, D =kd

dk+< n > d

d < n >=x1d

dx1+x2d

dx2(276)

Note that temperature defined in (270) gives an estimation of the Glukvartemperature when it radiates hadrons. If we take ~ω = 100MeV, toT ≃ Tc ≃ 200MeV corresponds < n >≃ 1.5 If we take ~ω = 10MeV, toT ≃ Tc ≃ 200MeV corresponds < n >≃ 20.We see that universality of NBD in hadron-production is similar to theuniversality of black body radiation.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 123 / 247

Page 134: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

p-adic string theory

p-adic string amplitudes can be obtained as tree amplitudes of the fieldtheory with the following lagrangian and motion equation (see e.g.[Brekke, Freund, 1993])

L =1

2ΦQpΦ− 1

p+ 1Φp+1,

QpΦ = Φp, Qp = pD (277)

D = −1

2, = −∂2x0 + ∂2x1 + ...+ ∂2xn−1

, (278)

Φ - is real scalar field on D-dimensional space-time with coordinatesx = (x0, x1, ..., xD−1). We have trivial, Φ = 0 and Φ = 1, and followingnontrivial solutions of the equation (277)

Φ(x0, x1, ..., xD−1) = pD

2(p−1) e1−p−1

2 lnp(x20−x21−x22−...−x2D−1) (279)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 124 / 247

Page 135: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The equation (277) permits factorization of its solutionsΦ(x) = Φ(x0)Φ(x1)...Φ(xD−1), every factor of which fulfils onedimensional equation

pε∂2xΦ(x) = Φ(x)p, ε = ±1

2(280)

The trivial solution of the equations are Φ = 0 and Φ = 1. For nontrivialsolution of (280), we have

pε∂2xΦ(x) = ea∂

2Φ(x) =

1√4πa

∫ ∞

−∞dye−

14ay2+y∂Φ(x)

=1√4πa

∫ ∞

−∞dye−

14ay2Φ(x+ y) = Φ(x)p, a = ε ln p (281)

If we (de quantize) put, p = q, and take (classical) limit, q → 1, the motionequation reduce to

ε∂2xΦ = Φ lnΦ, (282)

with solution

Φ(x) = e12 e

x2

4ε . (283)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 125 / 247

Page 136: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

It is obvious that the anzac

Φ = Aebx2, (284)

can pass the equation (281). Indeed, the solution is

Φ(x) = p1

2(p−1) e1−p−1

4ε ln px2 ,

Φ(x0, x1, ..., xD−1) = pD

2(p−1) e1−p−1

2 lnp(x20−x21−x22−...−x2D−1) (285)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 126 / 247

Page 137: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Corresponding class of the motion equations

Now, we can define the following class of motion equations

QqF = F q, (286)

where

Qq = qD, D = D1(x1) + ...+Dl(xl), (287)

Dk(x) is some (differential) operator depending on x. In the case of theNBD GF,

Dk(x) =xd

dx. (288)

For this (Qlike) class of equations, we have factorization property

F = F (x1, ..., xl) = F1(x1)...Fl(xl),

qDk(x)Fk(x) = ckFk(x)q, 1 ≤ k ≤ l, c1c2...cl = 1. (289)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 127 / 247

Page 138: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

NBD motivated equations

For NBD distribution we have correspondingmultiplication(convolution)formulas

(P ⋆ P )n ≡n∑

m=0

Pm(k,< n >)Pn−m(k,< n >)

= Pn(2k, 2 < n >) = Q2Pn(k,< n >), ... (290)

So, we can say, that star-product on the distributions of NBD correspondsordinary product for GF.It will be nice to have similar things for string field theory(SFT)[Kaku, 2000].SFT motion equation is

QΦ = Φ ⋆ Φ (291)

For stringfield GF F we may have

QF = F 2. (292)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 128 / 247

Page 139: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

By construction we know the solution of the nice equation (275) as GF ofNBD, F. We obtain corresponding differential equations, if we considerq = 1 + ε, for small ε,

(D(D − 1)...(D −m+ 1)− (lnF )m)Ψ = 0,

(Γ(D + 1)

Γ(D + 1−m)− (lnF )m)Ψ = 0,

(Dm − Φm)Ψ = 0,m = 1, 2, 3, ...

Dm =Γ(D + 1)

Γ(D + 1−m),Φ = lnF, (293)

with the solution Ψ = F = exp(Φ). In the case of the NBD and p-adicstring, we have correspondingly

D =x1d

dx1+x2d

dx2;

D = −1

2, = −∂2x0 + ∂2x1 + ...+ ∂2xn−1

. (294)

These equations have meaning not only for integer m.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 129 / 247

Page 140: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

For high mean multiplicities we have corresponding equations for KNO

Q2Ψ(z) = Ψ ⋆Ψ ≡∫ z

0Ψ(t)Ψ(z − t)dt

= z

∫ 1

0dttδ1(1− t)δ2Ψ(z1)Ψ(z2)|z1=z2=z

= zΓ(δ1 + 1)Γ(δ2 + 1)

Γ(δ1 + δ2 + 2)Ψ(z1)Ψ(z2)|z1=z2=z (295)

Due to the explicit form of the operator D, these equations andcorresponding solutions have the symmetry under the change of thevariables

k → ak, < n >→ b < n > . (296)

When

a =< n >

k, b =

k

< n >, (297)

we obtain the symmetry with respect to the transformationsk ↔< n >, x1 ↔ x2.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 130 / 247

Page 141: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Zeros of the Riemann zeta function

The Riemann zeta function ζ(s) is defined for complex s = σ + it andσ > 1 by the expansion

ζ(s) =∑

n≥1n−s, Re s > 1,

= δ−sxx

1− x|x1 =

1

Γ(s)

∫ ∞

0ts−1e−δxt

x

1− x|x1

=1

Γ(s)

∫ ∞

0ts−1et∂τ

1

eτ − 1|τ0

=1

Γ(s)

∫ ∞

0

ts−1dtet − 1

, x = e−τ . (298)

All complex zeros, s = α+ iβ, of ζ(σ + it) function lie in the critical stripe0 < σ < 1, symmetrically with respect to the real axe and critical lineσ = 1/2. So it is enough to investigate zeros with α ≤ 1/2 and β > 0.These zeros are of three type, with small, intermediate and big ordinates.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 131 / 247

Page 142: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Riemann hypothesis

The Riemann hypothesis [Titchmarsh,1986] states that the (non-trivial)complex zeros of ζ(s) lie on the critical line σ = 1/2.At the beginning of the XX century Polya and Hilbert made a conjecturethat the imaginary part of the Riemann zeros could be the oscillationfrequencies of a physical system (ζ - (mem)brane).After the advent of Quantum Mechanics, the Polya-Hilbert conjecture wasformulated as the existence of a self-adjoint operator whose spectrumcontains the imaginary part of the Riemann zeros.The Riemann hypothesis (RH) is a central problem in Pure Mathematicsdue to its connection with Number theory and other branches ofMathematics and Physics.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 132 / 247

Page 143: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The functional equation for zeta function

The functional equation is (see e.g. [Titchmarsh,1986])

ζ(1− s) =2Γ(s)

(2π)scos(

πs

2)ζ(s) (299)

From this equation we see the real (trivial) zeros of zeta function:

ζ(−2n) = 0, n = 1, 2, ... (300)

Also, at s=1, zeta has pole with reside 1.From Field theory and statistical physics point of view, the functionalequation (299) is duality relation, with self dual (or critical) line in thecomplex plane, at s = 1/2 + iβ,

ζ(1

2− iβ) =

2Γ(s)

(2π)scos(

πs

2)ζ(

1

2+ iβ), (301)

we see that complex zeros lie symmetrically with respect to the real axe.On the critical line, (nontrivial) zeros of zeta corresponds to the infinitevalue of the free energy,

F = −T ln ζ. (302)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 133 / 247

Page 144: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

At the point with β = 14.134725... is located the first zero. In the interval10 < β < 100, zeta has 29 zeros. The first few million zeros have beencomputed and all lie on the critical line. It has been proved thatuncountably many zeros lie on critical line.The first relation of zeta function with prime numbers is given by thefollowing formula,

ζ(s) =∏

p

(1− p−s)−1, Res > 1. (303)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 134 / 247

Page 145: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Another formula, which can be used on critical line, is

ζ(s) = (1− 21−s)−1∑

n≥1(−1)n+1n−s, Re s > 0

=eiπ(δx+1)

(1− 21−s)δsx

x

1− x|x1

=1

1− 21−s1

Γ(s)

∫ ∞

0dtts−1eiπe(iπ−t)δx

1

x−1 − 1|x1

=1

1− 21−s1

Γ(s)

∫ ∞

0dtts−1e(t−iπ)∂τ

eiπ

eτ − 1|τ0

=1

1− 21−s1

Γ(s)

∫ ∞

0

ts−1dtet + 1

,∫ ∞

0

ts−1dtet + 1

=

∫ ∞

0dtts−1e−t

n≥0(−1)ne−nt

= Γ(s)∑

n≥1(−1)n+1n−s (304)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 135 / 247

Page 146: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

From Qlike to zeta equations

Let us consider the values q = n, n = 1, 2, 3, ... and take sum of thecorresponding equations (286), we find

ζ(−D)F =F

1− F(305)

In the case of the NBD we know the solutions of this equation.Now we invent a Hamiltonian H with spectrum corresponding to the set ofnontrivial zeros of the zeta function, in correspondence with Riemannhypothesis,

−Dn =n

2+ iHn, Hn = i(

n

2+Dn),

Dn = x1∂1 + x2∂2 + ...+ xn∂n, H+n = Hn =

n∑

m=1

H1(xm),

H1 = i(1

2+ x∂x) = −1

2(xp+ px), p = −i∂x (306)

The Hamiltonian H = Hn is hermitian, its spectrum is real. The casen = 1 corresponds to the Riemann hypothesis.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 136 / 247

Page 147: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The case n = 2, corresponds to NBD,

ζ(1 + iH2)F =F

1− F, ζ(1 + iH2)|F =

1

1− F,

F (x1, x2;h) = (1 +x1x2

(1− h))−x2 (307)

Let us scale x2 → λx2 and take λ→ ∞ in (307), we obtain

ζ(1

2+ iH1(x))e

−(1−h)x =1

e(1−h)x − 1,

1

ζ(12 + iH(x))

1

eεx − 1= e−εx,

H(x) = i(1

2+ x∂x) = −1

2(xp+ px), H+ = H, ε = 1− h. (308)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 137 / 247

Page 148: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Now we scale x→ xy, multiply the equation by ys−1 and integrate

1

ζ(12 + iH(x))

∫ ∞

0dy

ys−1

eεxy − 1=

∫ ∞

0dye−εxyys−1 =

1

(εx)sΓ(s),

1

ζ(12 + iH(x))

∫ ∞

0dy

ys−1

eεxy − 1

=1

ζ(12 + iH(x))x−sε−sΓ(s)ζ(s), (309)

so

ζ(1

2+ iH(x))x−s = ζ(s)x−s ⇒ H(x)ψE = EψE ,

ψE = cx−s, s =1

2+ iE, (310)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 138 / 247

Page 149: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

we have correct way and can return to the previous step (308) and take thefollowing transformation

1

eεxy − 1=

1

∫ ∞+ic

−∞+icdEx−iE−1/2ϕ(E, εy),

ϕ(E, εy) =

∫ ∞

0dx

xiE−12

eεxy − 1=

Γ(12 + iE)

(εy)iE+1/2ζ(

1

2+ iE),

1

∫ ∞+ic

−∞+icdEx−iE−1/2ϕ(E, εy)

1

ζ(1/2 + iE)= e−εxy (311)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 139 / 247

Page 150: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

If we take the following formula

ζ(s) =1

Γ(s)

∫ ∞

0

ts−1dtet − 1

, (312)

which says that ζ function is the Mellin transformation, we can find

Γ(1 + iH2)F

1− F=

∫ ∞

0

dt/t

et − 1F 1/t, (313)

or

Γ(1 + iH2)Φ =

∫ ∞

0

dt/t

et − 1(

Φ

1 + Φ)1/t,

Φ =F

1− F=

1

(1 + x1x2(1− h))x2 − 1

(314)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 140 / 247

Page 151: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

We can obtain also the following equation with argument of ζN on criticalaxis

ζN (1

2+ iH1(x2))F (x1, x2, h) =

N∑

n=1

1

(1 + x1nx2

(1− h))nx2

=

N∑

n=1

F (x1, nx2, h),

ζN (1

2+ iH1(x2))F (λx1, x2, h) =

N∑

n=1

1

(1 + λx1nx2

(1− h))nx2

=

N∑

n=1

F (λx1, nx2, h) ≃ Ne−λ(1−h)x1 , N ≫ 1. (315)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 141 / 247

Page 152: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Let us calculate next therm in the 1/λ expansion in the (307)

F (x1, λx2, h) = (1 +εx1λx2

)−λx2 = e−λx2 ln(1+ε x1

λx2)

= e−εx1e(εx1)

2

2λx2+O(λ−2)

= e−εx1(1 +(εx1)

2

2λx2+O(λ−2)),

(F−1 − 1)−1 = (eλx2 ln(1+ε

x1λx2

) − 1)−1

=1

eεx1 − 1(1 +

eεx1

eεx1 − 1

(εx1)2

2λx2+O(λ−2)) (316)

The zero order term, λ0 we already considered. The next, λ−1 order termgives the following relations

ζ(−δ1 − δ2)x21x2e−εx1 =

1

x2ζ(1− δ1)x

21e−εx1 =

x21eεx1

x2(eεx1 − 1)2,

ζ(1− δ)x2e−εx =x2eεx

(eεx − 1)2= x2e−εx +O(e−2εx)

ζ(1− δ)Ψ = EΨ +O(e−2εx),Ψ = x2e−εx, E = 1. (317)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 142 / 247

Page 153: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

There have been a number of approaches to understanding the Riemannhypothesis based on physics (for a comprehensive list see [Watkins])According to the idea of Berry and Keating, [Berry,Keating,1997] the realsolutions En of

ζ(1

2+ iEn) = 0, (318)

are energy levels, eigenvalues of a quantum Hermitian operator (theRiemann operator) associated with the one-dimensional classical hyperbolicHamiltonian

Hc = xp, (319)

where x and p are the conjugate coordinate and momentum.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 143 / 247

Page 154: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

They suggest a quantization condition generating Riemann zeros. ThisHamiltonian breaks time-reversal invariance since(x, p) → (x,−p) ⇒ H → −H. The classical Hamiltonian H = xp of lineardilation, i.e. multiplication in x and contraction in p, gives the Hamiltonianequations:

x = x,p = −p, (320)

with the solution

x(t) = x0et,

p(t) = p0e−t (321)

for any nonzero E = x0p0 = x(t)p(t) is hyperbola in phase space.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 144 / 247

Page 155: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The system is quantized by considering the dilation operator in the x space

H =1

2(xp+ px) = −i~(1

2+ x∂x), (322)

which is the simplest formally Hermitian operator corresponding to theclassical Hamiltonian. The eigenvalue equation

HψE = EψE , (323)

is satisfied by the eigenfunctions

ψE(x) = cx−12+ i

~E , (324)

where the complex constant c is arbitrary, since the solutions are notsquare-integrable. To the normalization

∫ ∞

0dxψE(x)

∗ψE′(x) = δ(E − E′), (325)

corresponds c = 1/√2π.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 145 / 247

Page 156: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

We have seen that

ζ(1

2+ iH)e−εx =

1

eεx − 1,

H = −i(12+ x∂x) = x1/2px1/2, p = −i∂x, (326)

than

e−εx =∫

dEx−1/2+iEϕ(E, ε), ϕ(E, ε) =1

∫ ∞

0dxx−1/2−iEe−εx

=ε−1/2+iE

2πΓ(1/2 + iE);

ζ(1

2+ iE)ϕ(E, ε) =

1

∫ ∞

0dxx−1/2−iE

eεx − 1

=ε−1/2+iE

2πΓ(1/2 + iE)ζ(

1

2+ iE). (327)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 146 / 247

Page 157: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Some calculations with zeta function values

From the equation (308) we have

ζ(1

2+ iH1(x))e

−εx =1

eεx − 1, H1 = i(

1

2+ x∂x),

ζ(−x∂x)(1− εx+(εx)2

2+ ...) =

1

εx(1− (

εx

2+

(εx)2

6+ ...)+

+(εx

2+ ...)2 + ...), (328)

so

ζ(0) = −1

2, ζ(−1) = − 1

12, ... (329)

Note that, a little calculation shows that, the (εx)2 terms cancels on ther.h.s, in accordance with ζ(−2) = 0.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 147 / 247

Page 158: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

More curious question concerns with the term 1/εx on the r.h.s. To itcorresponds the term with actual infinitesimal coefficient on the l.h.s.

1

ζ(1)

1

εx, (330)

in the spirit of the nonstandard analysis (see, e.g. [Davis,1977]), we canimagine that such a terms always present but on the r.h.s we may not notethem.For other values of zeta function we will use the following expansion

1

ex − 1=

1

x+ x2

2 + x3

3! + ...=

1

x− 1

2+

k≥1

B2kx2k−1

(2k)!,

B2 =1

6, B4 = − 1

30, B6 =

1

42, ... (331)

and obtain

ζ(1− 2n) = −B2n

2n, n ≥ 1. (332)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 148 / 247

Page 159: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Multiparticle production stochastic dynamics

Let us imagine space-time development of the the multiparticle process andtry to describe it by some (phenomenological) dynamical equation. Westart to find the equation for the Poisson distribution and than naturallyextend them for the NBD case.Let us define an integer valued variable n(t) as a number of events(produced particles) at the time t, n(0) = 0. The probability of eventn(t), P (t, n), is defined from the following motion equation

Pt ≡∂P (t, n)

∂t= r(P (t, n− 1)− P (t, n)), n ≥ 1

Pt(t, 0)) = −rP (t, 0),P (t, n) = 0, n < 0, (333)

so

P (t, 0) ≡ P0(t) = e−rt,P (t, n) = Q(t, n)P0(t),Qt(t, n) = rQ(t, n− 1), Q(t, 0) = 1. (334)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 149 / 247

Page 160: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

To solve the equation for Q, we invent its generating function

F (t, h) =∑

n≥0hnQ(t, n), (335)

and solve corresponding equation

Ft = rhF, F (t, h) = erth =∑

hn(rt)n

n!, Q(t, n) =

(rt)n

n!, (336)

so

P (t, n) = e−rt(rt)n

n!(337)

is the Poisson distribution.If we compare this distribution with (269), we identify < n >= rt, as if wehave a free particle motion with velocity r and the distance is the meanmultiplicity. This way we have a connection between n-dimension of themultiplicity and the usual dimension of trajectory.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 150 / 247

Page 161: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

As the equation gives right solution, its generalization may give moregeneral distribution, so we will generalize the equation (333). For this, weput the equation in the closed form

Pt(t, n) = r(e−∂n − 1)P (t, n)

=∑

k≥1Dk∂

kP (t, n), Dk = (−1)kr

k!, (338)

where the Dk, k ≥ 1, are generalized diffusion coefficients.For other values of the coefficients, we will have other distributions.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 151 / 247

Page 162: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Fractal dimension of the multiparticle production trajectories

For mean square deviation of the trajectory we have

< (x− x)2 >=< x2 > − < x >2≡ D(x)2 ∼ t2/df , (339)

where df is fractal dimension. For smooth classical trajectory of particleswe have df = 1; for free stochastic, Brownian, trajectory, all diffusioncoefficients are zero but D2, we have df = 2. In the case of Poisson processwe have,

D(n)2 =< n2 > − < n >2∼ t, df = 2. (340)

In the case of the NBD and KNO distributions

D(n)2 ∼ t2, df = 1. (341)

As we have seen, rasing k, KNO reduce to the Poisson, so we have adimensional (phase) transition from the phase with dimension 1 to thephase with dimension 2. It is interesting, if somehow this phase transition isconnected to the other phase transitions in strong interaction processes.For the Poisson distribution GF is solution of the following equation,

F = −r(1− h)F, (342)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 152 / 247

Page 163: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

For the NBD corresponding equation is

F =−r(1− h)

1 + rtk (1− h)

F = −R(t)F, R(t) = r(1− h)

1 + rtk (1− h)

. (343)

If we change the time variable as t = T df , we reduce the dispersion lowfrom general fractal to the NBD like case. Corresponding transformation forthe evolution equation is

FT = −dfT df−1R(T dF )F, (344)

we ask that this equation coincides with NBD motion equation, and definerate function R(T )

dfTdf−1R(T dF ) =

r(1− h)

1 + rTk (1− h)

, (345)

now the following equation defines a production processes with fractaldimension dF

Ft = −R(t)F, R(t) = r(1− h)

dF tdF−1

dF (1 + rt1/dFk (1− h))

(346)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 153 / 247

Page 164: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Spherical model of the multiparticle production

Now we would like to consider a model of multiparticle production based onthe d-dimensional sphere, and (try to) motivate the values of the NBDparameter k. The volum of the d-dimensional sphere with radius r, in unitsof hadron size rh is

v(d, r) =πd/2

Γ(d/2 + 1)(r

rh)d (347)

Note that,

v(0, r) = 1, v(1, r) = 2r

rh,

v(−1, r) =1

π

rhr

(348)

If we identify this dimensionless quantity with corresponding coulombenergy formula,

1

π=e2

4π, (349)

we find e = ±2.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 154 / 247

Page 165: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

For less then -1 even integer values of d, and r 6= 0, v = 0. For negativeodd integer d = −2n+ 1

v(−2n + 1, r) =π−n+1/2

Γ(−n+ 3/2)(rhr)2n−1, n ≥ 1, (350)

v(−3, r) = − 1

2π2(rhr)3, v(−5, r) =

3

4π3(rhr)5 (351)

Note that,

v(2, r)v(3, r)v(−5, r) =1

π, v(1, r)v(2, r)v(−3, r) = − 1

π(352)

We postulate that after collision,it appear intermediate state with almostspherical form and constant energy density. Than the radius of the sphererise, dimension decrease, volume remains constant. At the last moment ofthe expansion, when the crossection of the one dimensional sphere - stringbecome of order of hadron size, hadronic string divide in k independentsectors which start to radiate hadrons with geometric (Boze-Einstein)distribution, so all of the string final state radiate according to the NBDdistribution.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 155 / 247

Page 166: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

So, from the volume of the hadronic string,

v = π(r

rh)2l

rh= πk, (353)

we find the NBD parameter k,

k =πd/2−1

Γ(d/2 + 1)(r

rh)d (354)

Knowing, from experimental date, the parameter k, we can restrict theregion of the values of the parameters d and r of the primordial sphere (PS),

r(d) = (Γ(d/2 + 1)

πd/2−1k)1/drh,

r(3) = (3

4k)1/3rh, r(2) = k1/2rh, r(1) =

π

2krh (355)

If the value of r(d) will be a few rh, the matter in the PS will be in thehadronic phase. If the value of r will be of order 10rh, we can speak aboutdeconfined, quark-gluon, Glukvar, phase. From the formula (355), we see,that to have for the r, the value of order 10rh, in d = 3 dimension, we needthe value for k of order 1000, which is not realistic.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 156 / 247

Page 167: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

So in our model, we need to consider the lower than one, fractal,dimensions. It is consistent with the following intuitive picture. Confinedmatter have point-like geometry, withe dimension zero. Primordial sphereof Glukvar have nonzero fractal dimension, which is less than one,

k = 3, r(0.7395)/rh = 10.00,k = 4, r(0.8384)/rh = 10.00 (356)

From the experimental data we find the parameter k of the NBD as afunction of energy, k = k(s). Then, by our spherical model, we constructfractal dimension of the Glukvar as a function of k(s).If we suppose that radius of the primordial sphere r is of order (or less) ofrh. Than we will have higher dimensional PS, e.g.

d r/rh k3 1.3104 3.00024 1.1756 3.00036 1.1053 2.99948 1.1517 3.9990

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 157 / 247

Page 168: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Extra dimension effects at high energy and large scale Universe

With extra dimensions gravitation interactions may become strong at theLHC energies,

V (r) =m1m2

m2+d

1

r1+d(357)

If the extra dimensions are compactified with(in) size R, at r >> R,

V (r) ≃ m1m2

m2(mR)d1

r=m1m2

M2P l

1

r, (358)

where (4-dimensional) Planck mass is given by

M2P l = m2+dRd, (359)

so the scale of extra dimensions is given as

R =1

m(MP l

m)2d (360)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 158 / 247

Page 169: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

If we take m = 1TeV, (GeV −1 = 0.2fm)

R(d) = 2 · 10−17 · ( MP l

1TeV)2d · cm,

R(1) = 2 · 1015cm,R(2) = 0.2 cm !R(3) = 10−7cm !R(4) = 2 · 10−9cm,R(6) ∼ 10−11cm (361)

Note that lab measurements of GN (= 1/M2P l,MP l = 1.2 · 1019GeV ) have

been made only on scales of about 1 cm to 1 m; 1 astronomical unit(AU)(mean distance between Sun and Earth) is 1.5 · 1013cm; the scale of theperiodic structure of the Universe, L = 128Mps ≃ 4 · 1026cm. It is curiouswhich (small) value of the extra dimension corresponds to L?

d = 2ln MPl

m

ln(mL)= 0.74, m = 1TeV,

= 0.81, m = 100GeV,= 0.07, m = 1017GeV. (362)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 159 / 247

Page 170: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Dynamical formulation of z - Scaling

Motion equations of physics (applied mathematics in general) connectdifferent observable quantities and reduce the number of independentlymeasurable quantities. More fundamental equation contains less number ofindependent quantities. When (before) we solve the equations, we inventdimensionless invariant variables, than one solution can describe all of theclass of phenomena.In the z - Scaling (zS) approach to the inclusive multiparticle distributions(MPD) (see, e.g. [Tokarev, Zborovsky, 2007a]), different inclusivedistributions depending on the variables x1, ...xn, are described by universalfunction Ψ(z) of fractal variable z,

z = x−α11 ...x−αn

n . (363)

It is interesting to find a dynamical system which generates thisdistributions and describes corresponding MPD.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 160 / 247

Page 171: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

We can find a good function if we know its derivative. Let us consider thefollowing RD like equation

zd

dzΨ = V (Ψ),

∫ Ψ(z)

Ψ(z0)

dx

V (x)= ln

z

z0(364)

In x−representation,

ln z = −n∑

k=1

αk lnxk, δz = zd

dz= −

k

δknhαk

,

n∑

k=1

xknhαk

∂xkΨ(x1, ..., xn) + V (Ψ) = 0, (365)

e.g.

z = δzz = −n∑

k=1

xknhαk

∂xkx−α11 ...x−αn

n = z, nh = n. (366)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 161 / 247

Page 172: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

In the case of NBD GF (275), we have

n = 2, x1 = k, x2 =< n >, α1 = α2 = 1, nh = 1,Ψ = F, V (Ψ) = −Ψ lnΨ. (367)

In the case of the z−scaling, [Tokarev, Zborovsky, 2007a],

n = 4, x3 = ya, x4 = yb,α1 = δ1, α2 = δ2, α3 = εa, α4 = εb, nh = 4, (368)

for infinite resolution, αn = 1, n = 1, 2, 3, 4. In z variable the equation forΨ has universal form. In the case of n = 2, α1 = α2 = 1, nh = 1, we findthat V (Ψ) = −Ψ lnΨ,

zd

dzΨ(z) = −Ψ lnΨ,

Ψ(z) = ec/z = (Ψ(z0)z0)

1z = Ψ(z0)

z0z ,

c = z0 lnΨ(z0) < 0, z ∈ (0,∞), Ψ(z) ∈ (0, 1). (369)

Note that the fundamental equation is invariant with respect to the scaletransformation z → λz, but the solution is not, the scale transformationtransforms one solution into another solution. This is an example of thespontaneous breaking of the (scale) symmetry by the states of the system.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 162 / 247

Page 173: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Formal motivation (foundation) of the RD motion equation for Ψ

As a dimensionless physical quantity Ψ(z) may depend only on the runningcoupling constant g(τ), τ = ln z/z0

zd

dzΨ = Ψ =

dgβ(g) = U(g) = U(f−1(Ψ)) = V (Ψ),

Ψ(τ) = f(g(τ)), g = f−1(Ψ(τ)) (370)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 163 / 247

Page 174: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Realistic solution for Ψ

According to the paper [Tokarev, Zborovsky, 2007a], for high values ofz, Ψ(z) ∼ z−β ; for small z, Ψ(z) ∼ const.So, for high z,

zd

dzΨ = V (Ψ(z)) = −βΨ(z); (371)

for smaller values of z, Ψ(z) rise and we expect nonlinear terms in V (Ψ),

V (Ψ) = −βΨ+ γΨ2. (372)

With this function, we can solve the equation for Ψ(see appendix) and find

Ψ(z) =1

γβ + czβ

. (373)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 164 / 247

Page 175: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Reparametrization of the RD equation

RD equation of the z-Scaling,

zd

dzΨ(z) = V (Ψ), V (Ψ) = V1Ψ+ V2Ψ

2 + ...+ VnΨn + ... (374)

can be reparametrized,

Ψ(z) = f(ψ(z)) = ψ(z) + f2ψ2 + ...+ fnψ

n + ...

zd

dzψ(z) = v(z) = v1ψ(z) + v2ψ

2 + ...+ vnψn + ...

(v1ψ(z) + v2ψ2 + ...+ vnψ

n + ...)(1 + 2f2ψ + ...+ nfnψn−1 + ...)

= V1(ψ + f2ψ2 + ...+ fnψ

n + ...)+V2(ψ

2 + 2f2ψ3 + ...) + ...+ Vn(ψ

n + nf2ψn+1 + ...) + ...

= V1ψ + (V2 + V1f2)ψ2 + (V3 + 2V2f2 + V1f3)ψ

3+...+ (Vn + (n− 1)Vn−1f2 + ...+ V1fn)ψ

n + ...v1 = V1,v2 = V2 − f2V1,v3 = V3 + 2V2f2 + V1f3 − 2f2v2 − 3f3v1 = V3 + 2(f22 − f3)V1, ...vn = Vn + (n− 1)Vn−1f2 + ...+ V1fn − 2f2vn−1 − ...− nfnv1,(375)

so, by reparametrization, we can change any coefficient of potential V butV1.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 165 / 247

Page 176: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

We can fix any higher coefficient with zero value, if we take

f2 =V2V1, f3 =

V32V1

+ f22 =V32V1

+ (V2V1

2

), ...

fn =Vn + (n− 1)Vn−1f2 + ...+ 2V2fn−1

(n− 1)V1, ... (376)

We will consider the case when only one of higher coefficient is nonzero andgive explicit form of the solution Ψ.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 166 / 247

Page 177: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

More general solution for Ψ

Let us consider more general potential V

zd

dzΨ = V (Ψ) = −βΨ(z) + γΨ(z)1+n (377)

Corresponding solution for Ψ is

Ψ(z) =1

(γβ + cznβ)1n

(378)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 167 / 247

Page 178: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

More general solution contains three parameters and may better describethe data of inclusive distributions.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure: z-scaling distribution (378), Ψ(z, 9, 9, 1, 1)

In the case of n = 1 we reproduce the previous solution.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 168 / 247

Page 179: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Another ”natural” case is n = 1/β,

Ψ(z) =1

(γβ + cz)β(379)

In this case, we can absorb (interpret) the combined parameter by shift andscaling

z → 1

c(z − γ

β) (380)

Another interesting point of view is to predict the value of β

β =1

n= 0.5; 0.33; 0.25; 0.2; ..., n = 2, 3, 4, 5, ... (381)

For experimentally suggested value β ≃ 9, n = 0.11

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 169 / 247

Page 180: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

In the case of n = −ε, β = γ = 1/ε, c = εk, we will have

V (Ψ) = −Ψ lnΨ, Ψ(z) = ekz (382)

This form of Ψ−function interpolates between asymptotic values of Ψ andpredicts its behavior in the intermediate region.The three parameter function is restricted by the normalization condition

∫ ∞

0Ψ(z)dz = 1,

B(β − 1

βn,1

βn) = (

β

γ)β−1βn

βn

cβn, (383)

so remains only two free parameter. When βn = 1, we have

c = (β − 1)(β

γ)β−1 (384)

If βn = 1 and β = γ, than c = β − 1.In general

cβn = (β

γ)β−1βn

βn

B(β−1βn ,1βn)

(385)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 170 / 247

Page 181: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Scaling properties of scaling functions and they equations

RD equation of the z-scaling (377), after substitution,

Ψ(z) = (ϕ(z))1n , (386)

reduce to the n = 1 case with scaled parameters,

ϕ = −βnϕ+ γnϕ2, (387)

this substitution could be motivated also by the structure of the solution(378),

Ψ(z, β, γ, n, c) = Ψ(z, βn, γn, 1, c)1n = Ψ(z, β, γ, βn, c)β . (388)

General RD equation takes form

ϕ = nv1ϕ+ nv2ϕ1+ 1

n + nv3ϕ1+ 2

n + ...+ nvnϕ2 + nvn+1ϕ

2+ 1n + ... (389)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 171 / 247

Page 182: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Space-time dimension inside hadrons and nuclei

The dimension of the space(-time) is the model dependent concept. E.g.for the fundamental bosonic string model (in flat space-time) the dimensionis 26; for superstring model the dimension is 10 [Kaku, 2000].Let us imagine that we have some action-functional formulation with thefundamental motion equation

zd

dzΨ = V (Ψ(z)) = V (Ψ) = −βΨ+ γΨ1+n. (390)

Than, the corresponding Lagrangian contains the following mass andinteraction parts

−β2Ψ2 +

γ

2 + nΨ2+n (391)

The action gives renormalizable (effective quantum field theory) modelwhen

d+ 2 =2N

N − 2=

2(2 + n)

n= 2 +

4

n= 2 + 4β, (392)

so, measuring the parameter β inside hadronic and nuclear matters, we findcorresponding (fractal) dimension.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 172 / 247

Page 183: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Another action formulation of the Fundamental equation

From fundamental equation we obtain

(zd

dz)2Ψ ≡ Ψ = V ′(Ψ)V (Ψ) =

1

2(V 2)′

= β2Ψ− βγ(n+ 2)Ψn+1 + γ2(n + 1)Ψ2n+1 (393)

Corresponding action Lagrangian is

L =1

2Ψ2 + U(Ψ), U =

1

2V 2 =

1

2Ψ2(β − γΨn)2

=β2

2Ψ2 − βγΨ2+n +

γ2

2Ψ2+2n (394)

This potential, −U, has two maximums, when V = 0, and minimum, whenV ′ = 0, at Ψ = 0 and Ψ = (β/γ)1/n, and Ψ = (β/(n + 1)γ)1/n,correspondingly.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 173 / 247

Page 184: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

We define time-space-scale field Ψ(t, x, η), where η = ln z− is scalecoordinate variable, with corresponding action functional

A =

dtddxdη(1

2gab∂aΨ∂bΨ+ U(Ψ)) (395)

The renormalization constraint for this action is

N = 2 + 2n =2(2 + d)

2 + d− 2= 2 +

4

d, dn = 2, d = 2/n = 2β. (396)

So we have two models for spase-time dimension, (392) and (396),

d1 = 4β; d2 = 2β (397)

The coordinate η characterise (multiparticle production) physical process atthe (external) space-time point (x,t). The dimension of the space-timeinside hadrons and nuclei, where multiparticle production takes place is

d+ 1 = 1 + 2β (398)

Note that this formula reminds the dimension of the spin s state,ds = 2s+ 1. If we take β(= s) = 0; 1/2; 1; 3/2; 2; ... We will haved+ 1 = 1; 2; 3; 4; 5; ...

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 174 / 247

Page 185: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Note that as we invent Ψ as a real field, we ought to take anothernormalization

ddx|Ψ|2 = 1 (399)

for the solutions of the motion equation. This case extra values of theparameter β is possible, β > d/2.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 175 / 247

Page 186: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Measurement of the space-time dimension inside hadrons

We can take a renormdynamic scheme were Ψ(g) is running couplingconstant. The variable z is a formation length and has dimension -1, RDequation for Ψ in ϕ3

D model is

zd

dzΨ =

6−D

2Ψ + γΨ2 (400)

β =D − 6

2(401)

For high values of z, β = 9, so D = 24. This value of D corresponds to thephysical (transverse) degrees of freedom of the relativistic string, to thedimension of the external space in which this relativistic string lives. This isalso the number of the quark - lepton matter degrees of freedom, 3 · 6 + 6.So, in these high energy reactions we measured the dimension of thespace-time and matter and find the values predicted by relativistic stringand SM. For lower energies, in this model, D monotonically decrees untilD = 6, than the model (may) change form on the ϕ4

D, β = D − 4. So wehave two scenarios of behavior. In one of them the dimension of thespace-time inside hadrons has value 6 and higher. In another the dimensionis 4 and higher.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 176 / 247

Page 187: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Perturbative QCD indicates that we have a fixed point of RD in dimensionslightly higher than 4, and ordinary to hadron phase transition correspondsto the dimensional phase transition from slightly lower than 4, in QED, toslightly higher than 4 dimension in QCD. In general scalar field model ϕnD,

β = −dg =nD

2− n−D. (402)

For ϕ3 model, β = 9 corresponds to D = 24. In tha case of theO(N)−sigma model

β = D − 2, (403)

For the experimental value of β = 9, we have the dimension of theM−theory, D = 11!

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 177 / 247

Page 188: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Quantum and information statistics

One of the characteristic features in every high energy collision experimentis the production of large numbers of secondaries (mostly pions). From thevery beginning of the history of the multiparticle production processes, itwas realized that a possible way to treat them was to employ some sort ofstatistical approach [Heisenberg, 1949],[Fermi, 1936],[Pomeranchuk, 1951].In the statistical bootstrap model proposed by Hagedorn [Hagedorn, 1965],the exponential growth of the number of hadronic resonances with mass isone of the most fundamental issues

d3σ

dp3= N

dmρ(m)e−β√p2l+p

2t+m

2, (404)

where ρ(m) denotes the density of resonances given by

ρ(m) =eβHm

(m2 +m20)

54

, βH =1

kBTH, (405)

TH , the Hagedorns temperature, is a parameter to be deduced from dataon resonance production. The other parameter is β = 1/(kBT ), with Texplicitly governing the observed energy distribution and therefore identifiedwith the temperature of the hadronizing system. In the followings we putkB = 1.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 178 / 247

Page 189: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Transverse momentum distributions and Hagedorns temperature

One of the aims in the study of multiparticle production processes istherefore the best possible estimation of this quantity. To this end wewould like to investigate the measured transverse momentum (pt)distributions integrated over longitudinal degrees of freedom,

2πptdpt= N

dmρ(m)mtK1(βmt), (406)

where∫ ∞

0dxe−

√x2+a2 = aK1(a) (407)

and for modified Bessel functions,

Ka(x) =

∫ ∞

0dt cosh(at)e−x cosh t (408)

This simple formula can explain the RHIC data only in the limited range oftransverse momenta, namely for pt < 6 GeV/c, [Biyajima et al, 2005]. Forlarger values of pt data exhibit a power-like tail.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 179 / 247

Page 190: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Main thermodynamic relation (MTR) and the von Neumann-Shannonentropy

We call MTR the following relation

F = E − TS. (409)

Let us obtain MTR. From statistical sum we have

Z =∑

n

e−βEn = e−βF , β =1

T

E =

nEne−βEn

n e−βEn

= −∂ lnZ∂β

=∂(βF )

∂β= F − T

∂F

∂T,

F = E + T∂F

∂T. (410)

The von Neumann-Shannon entropy is defined as

S = −∑

n

pn ln pn,

n

pn = 1, 0 ≤ pn ≤ 1. (411)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 180 / 247

Page 191: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

For Gibbs weights-probabilities,

pn =e−βEn

m e−βEm

= e−β(En−F ), β =1

T

S = −∑

n

pnβ(F − En) = β(E − F ),

F = E − TS, E =∑

n

Enpn, (412)

so, we obtain MTR (409) and using (410), we have

S = −∂F∂T

. (413)

The von Neumann-Shannon entropy has the following additive property

S(A+B) = S(A) + S(B), (414)

when the subsystems A and B of the system A+B are independent, i.e.p(A+B) = p(A)p(B) = p1p2.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 181 / 247

Page 192: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Indeed,

S(A+B) = −∑

n,m

p1np2m(ln p1n + ln p2m) = S(A) + S(B),

n

p1n =∑

n

p2n = 1. (415)

Let us find minimum and maximum values of the entropy andcorresponding distributions. The entropy is nonnegative. For the finitenumber of the levels, En, n = 1, 2, ..., N, to the minimum valuescorresponds all of the values pn = ǫ→ 0, but one, which isp1 = 1− (N − 1)ǫ → 1, by constraint. For that values, S = 0.To the maximum of the entropy S = lnN corresponds equal partitionpn = 1

N . Indeed, let us find maximum of the following function

f = −∑

n

pn ln pn + λϕ(pn), ϕ(pn) =∑

n

pn − 1,

∂f

∂pn= − ln pn − 1 + λ = 0 ⇒ pn = eλ−1 = p,

∂f

∂λ=

n

pn − 1 = 0 ⇒ pn = p =1

N, λ = 1− lnN,

S = lnN. (416)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 182 / 247

Page 193: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

For the simplest composed system, N = 2 and maximum S = ln 2. Now wecan define pn as a monotone function of energypn = pn(βEn), pn(0) =

1N ; p1(∞) = 1, pn(∞) = 0, n = 2, 3, ..., N. The

Gibbs weights-probabilities fulfils these conditions. If a system A withenergy EA reduce to two independent subsystems (B,EB) and(C,EC) : p(EA) = p(EB)p(EC), EA = EB + EC , than definitelyp(E) = βe−βE− the Gibbs distribution.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 183 / 247

Page 194: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Renyis entropies

The Renyi entropies are defined for an arbitrary real parameter q as[Renyi, 1970]

Srq =ln

n pqn

1− q,

n

pn = 1, 0 ≤ pn ≤ 1,

Sr1 = limq→1

ln∑

n pqn

1− q= −

n

pn ln pn = S (417)

The Renyi entropies are additive. Indeed,

Srq (A) + Srq (B) =ln

n pq1n + ln

m pq2m

1− q=

ln∑

nm(p1np2m)q

1− q= Srq (A+B) (418)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 184 / 247

Page 195: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The Tsallis entropies

The Tsallis entropy [Tsallis,1988-2004] is the following one parameterdeformation

Stq =1−∑

n pqn

1− q,

n

pn = 1, 0 ≤ pn ≤ 1, (419)

of the the von Neumann-Shannon entropy

St1 = limq→1

1−∑

n pqn

1− q= −

n

pn ln pn = S (420)

The Tsallis entropy is not additive. We have

Stq(A+B) = Stq(A) + Stq(B)− (1− q)Stq(A)Stq(B) (421)

The Tsallis distribution p(a) of some variable a is defined as

pq(a) = (2− q)(1 + (q − 1)a)1

1−q ,

∫ ∞

0dapq(a) = 1. (422)

In the limit q → 1 and a = βE, the Tsallis distribution becomes the usualexponential (Boltzmann-Gibbs) distribution,Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 185 / 247

Page 196: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

p(E) = βe−βE ,∫ ∞

0dEp(E) = 1. (423)

Note that, when q − 1 = 1/k and a =< n > (1− h) the Tsallis distributionreduce to the generating function of the NBD

pq(a) = (1− 1

k)(1 +

< n >

k(1− h))−k, q = 1 + 1/k, a =< n > (1− h), k >

In our interpretation of the parameter k as the number of the independentradiating sources, it is positive integer equal to the number of sources. In arecent description of the multiparticle production spectrum at LHC,[Wong, Wilk, 2012], the value q = 1.172 were identified. It corresponds tothe value k = 5.814We assume that k = 6 and propose to find q from the fit to the data.Corresponding value from the Tsallis distribution is q = 1.1667.The obvious question is: to what physics corresponds the value k = 6. Andagain, obvious answer is: the value is the number of constituent valencequarks of the two protons in the initial state of the multiparticle productionprocesses.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 186 / 247

Page 197: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Superstatistics

Let us calculate the Tsallis entropy of the following distribution

pn = N(1 +EnkT

)−k, k =1

1− q, β =

1

T,∑

n

pn = 1, (425)

Stq =1−

n pqn

1− q=

1−∑

pnNq−1(1 + (1− q)βEn)

1− q

=1−N q−1 +N q−1(1− q)βE

1− q= βN (E − F ),

F = E − TNS, βN = βN q−1, F =N q−1 − 1

(q − 1)βN,

N−1 = Z =∑

n

(1 +βEnk

)−k =1

Γ(k)

∫ ∞

0dttk−1e−t

n

e−tβEn/k

=

∫ ∞

0dbf(b)

n

e−bEn = (1 + (1− q)βNF )1

q−1 ,

f(b) =(kT )k

Γ(k)bk−1e−kTb (426)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 187 / 247

Page 198: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Superstatistics

So, we have a state with a mixture of the systems with differenttemperatures with Gamma distribution named as superstatistics[Beck, Cohen, 2003].For the Renyis entropies of the same distribution,

Srq =ln

n pnNq−1(1 + (1− q)βEn)

1− q=

ln[N q−1(1 + (1− q)βE)]

1− q

= − lnN +ln(1 + (1− q)βE)

1− q= β(Er − F ),

F = Er − TSrq , N = eβF , Er =ln(1 + (1− q)βE)

(1− q)β, T = β−1 (427)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 188 / 247

Page 199: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Higher and low temperature phases

From the definition of βN and F,

βN = N q−1β =β

1 + (1− q)βNF, N = (1 + (1− q)βNF )

− 1q−1 (428)

we find

F =β − βNβ2N (1− q)

, βN =−1±

1 + 4(1− q)βF

2(1 − q)F(429)

To the positive values of βN , β and F corresponds two states with

βN =1±

1− 4(q − 1)βF

2(q − 1)F, 1 < q = 1 +

1

k< 1 +

1

4βF, k > 4βF (430)

and one state

βN =

1 + 4(1− q)βF − 1

2(1 − q)F, q < 1 (431)

The higher temperature phase for q > 1, in the classical limit q → 1, reduceto the classical temperature,

βN = β(1 + (q − 1)βF + ...) (432)Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 189 / 247

Page 200: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Higher and low temperature phases

For the low-temperature phase,

TN =2(q − 1)F

2− 2(q − 1)βF + ...= (q − 1)F (1 + (q − 1)βF + ...)

= (q − 1)F + (q − 1)2βF 2 + ... (433)

For pp−multiparticle productions, we have seen that q − 1 = 1/k, k = 6,so in that processes

TN =F

6(1 +

F

6β + ...) (434)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 190 / 247

Page 201: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Fermi and bose statistics

Let us calculate the von Neumann-Shannon entropy

S = −∑

n

pn ln pn,

n

pn = 1, 0 ≤ pn ≤ 1, (435)

for fermi and bose oscillators.The energy spectrum of the bose-oscillator is

En = ~ω(n+1

2), n = 0, 1, 2, ... (436)

Corresponding statistical sum is

ZB =∑

n≥0e−a(n+

12) =

e−a2

1− e−a=

1

2 sinh a2

, a =~ω

kT(437)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 191 / 247

Page 202: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Fermi and bose statistics

For fermi-oscillator we have

En = ~ω(n− 1

2), n = 0, 1

ZF =

1∑

n=0

e−a(n−12) = e

a2 + e−

a2 = 2cosh

a

2(438)

For super-oscillator system composed from one fermi- and onebose-oscillators,

Z = ZBZF = e−βF = cotha

2= 1 + 2e−

a2 + ..., a =

kT≫ 1 (439)

For fermi oscillator

p0 =e

a2

ea2 + e−

a2

=1

1 + e−a, p1 =

e−a2

ea2 + e−

a2

=1

ea + 1, p0 + p1 = 1

SF (a) =ln(1 + e−a)1 + e−a

+ln(1 + ea)

1 + ea=

ln(1 + q)

1 + q+

ln(1 + q−1)1 + q−1

,

0 ≤ SF ≤ ln 2 (440)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 192 / 247

Page 203: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Fermi and bose statistics

SF is symmetric under the dual transformation:a↔ −a, q ↔ q−1; SF (0) = ln 2, SF (∞) = 0

-

1 0-

5 5 1 00 . 10 . 20 . 30 . 40 . 50 . 60 . 7

Figure: SF (a)-entropy distribution, SF (0) = ln 2 = 0.693147

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 193 / 247

Page 204: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Fermi and bose statistics

0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 20 . 30 . 40 . 50 . 60 . 7

Figure: SF (q)-entropy distribution, SF (1) = ln 2 = 0.693147

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 194 / 247

Page 205: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Fermi and bose statistics

Now, let us calculate the entropy for bose oscillator,

pn = (1− q)qn, q = e−a

SB = −∞∑

n=0

pn ln pn = ln1

1− q+ ln

1

q< n >,

< n >=

∞∑

n=0

npn =

∞∑

n=0

(1− q)qd

dqqn

= q(1− q)d

dq

1

1− q=

q

1− q=

1

ea − 1,

SB(q) = ln1

1− q+

q

1− qln

1

q, 0 ≤ q ≤ 1,

SB(0) = 0, SB(1− ǫ) = ln1

ǫ+ 1 +O(ǫ) (441)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 195 / 247

Page 206: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Fermi and bose statistics

0 . 2 0 . 4 0 . 6 0 . 8 1 . 012345

Figure: SB(q)-entropy distribution,

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 196 / 247

Page 207: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Super-oscillator system

For super-oscillator system composed from one fermi-oscillator and onebose-oscillator,

pnm = pnpm = tana

2e−a(n+m), n = 0, 1; m = 0, 1, 2, ...

SFB = SF + SB =ln(1 + q)

1 + q+

ln(1 + q−1)1 + q−1

+ ln1

1− q+

q

1− qln

1

q(442)

The figure of the supersymmetric oscillator entropy is similar with the figureof the bose oscilator entropy.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 197 / 247

Page 208: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Renormdynamic motivation (foundation) of the interpolating distributions

Let us consider the following distribution

Ψ(z) = N(1 + az)−k, k > 1,

∫ ∞

0Ψ(z)dz = 1 ⇒ N = (k − 1)a. (443)

The RD equation which define Ψ(z) as a solution is

zdΨ

dz= −kΨ+ rΨq, r =

k

N1k

, q = 1 +1

k(444)

In the case of the Tsallis distribution we will have

Ψ(E) = p(E) = N(1 + aE)−k,

N = (2− q)β, a = (q − 1)β, k =1

q − 1. (445)

Having right equation, we see that the parameter a is an integrationconstant. If we want to have a transition from power-like to exponentialform, we need to correlate the constant a and the parameter k as in thecase of Tsallis distribution.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 198 / 247

Page 209: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Renormdynamic motivation (foundation) of the interpolating distributions

For negative values of k = −m and a = −b we have binomial distribution

Ψ(z) = N(1− bz)m,

∫ zb

0Ψ(z)dz = 1 ⇒ N = (m+ 1)b, zb =

1

b, (446)

zdΨ

dz= mΨ− rΨq, r = mN

1m , 0 < q = 1− 1

m< 1 (447)

To the classical exponential distribution corresponds

b = (1− q)β, m =1

1− q, limq1

Ψ(z) = e−βz (448)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 199 / 247

Page 210: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Interpolating distributions, NBD and inclusive-KNO

We have seen, that the generating function of NBD is

F (h) = (1 + (1− h)< n >

k)−k (449)

Where the parameter k has clear physical sense, it is the number ofidentical independent sources radiating as black body withmean-multiplicity < n > /k.Interpolating distribution for inclusive crossection is

dp= F (p) = N(1 + (1− q)βp)−k = N(1 + βp)−k(1− a)−k,

a =qβp

1 + βp(450)

The semiinclusive crossection we define expending the inclusive crossectionas generating function

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 200 / 247

Page 211: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Interpolating distributions, NBD and inclusive-KNO

F (p) =∑

n

Fn(p) = N(1 + βp)−k(1 + ka+k(k + 1)

1 · 2 a2 + ...),

dσndp

= Fn(p) = N(1 + βp)−kΓ(k + n)an

Γ(k)n!,

< n(p) >=

n nFn∑

n Fn= a

d

dalnF =

ka

1− a,

a =< n(p) >

< n(p) > +k(451)

So, for semiinclusive crossection we have NBD

pn =dσn/dp

dσ/dp=

Γ(k + n)

Γ(k)n!

(k/ < n(p) >)k

(1 + k/ < n(p) >)n+k(452)

and for inclusive-KNO distribution [Matveev et al, 1976] we obtain

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 201 / 247

Page 212: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Interpolating distributions, NBD and inclusive-KNO

< n(p) >dσn/dp

dσ/dp=

Γ(k + n)

Γ(k)n!

k(k/ < n(p) >)k−1

(1 + k/ < n(p) >)n+k

=kk

Γ(k)zk−1e−kz(1 +

k2

2(z − 2 +

k − 1

kz)

1

< n(p) >+O(

1

< n >2)),

z = z(p) =n

< n(p) >(453)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 202 / 247

Page 213: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Social profit of big collaborations

Nowadays there are several big collaborations in science, e.g. LHC.Scientific value of LHC depends on three components, the highest qualityof accelerator, highest quality of detectors and distributed data processing.The first two components need good mathematical and physical modeling.Third component and the collaboration as a social structure are not under(anther) the control by scientific methods and corresponding modeling.By definition, scientific collaborations (SC) have a main scientific aim: toobtain answer on the important scientific question(s) and maybe gain extrascientific bonus: new important questions and discoveries.SC is more open information system than e.g. finance or military systems.So, it is possible to describe and optimize SC by scientific methods. Profitfrom scientific modeling of SC maybe also for other information systemsand social structures.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 203 / 247

Page 214: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Hamiltonization of the general dynamical systems

Let us consider a general dynamical system described by the followingsystem of the ordinary differential equations [Arnold, 1978]

xn = vn(x), 1 ≤ n ≤ N, (454)

xn stands for the total derivative with respect to the parameter t.When the number of the degrees of freedom is even, and

vn(x) = εnm∂H0

∂xm, 1 ≤ n,m ≤ 2M, (455)

the system (549) is Hamiltonian one and can be put in the form

xn = xn,H00, (456)

where the Poisson bracket is defined as

A,B0 = εnm∂A

∂xn

∂B

∂xm= A

←∂

∂xnεnm

→∂

∂xmB, (457)

and summation rule under repeated indices has been used.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 204 / 247

Page 215: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Hamiltonization of the general dynamical systems

Let us consider the following Lagrangian

L = (xn − vn(x))ψn (458)

and the corresponding equations of motion

xn = vn(x), ψn = −∂vm∂xn

ψm. (459)

The system (551) extends the general system (549) by linear equation forthe variables ψ. The extended system can be put in the Hamiltonian form[Makhaldiani, Voskresenskaya, 1997]

xn = xn,H11, ψn = ψn,H11, (460)

where first level (order) Hamiltonian is

H1 = vn(x)ψn (461)

and (first level) bracket is defined as

A,B1 = A(

←∂

∂xn

→∂

∂ψn−

←∂

∂ψn

→∂

∂xn)B. (462)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 205 / 247

Page 216: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Hamiltonization of the general dynamical systems

Note that when the Grassmann grading [Berezin, 1987] of the conjugatedvariables xn and ψn are different, the bracket (462) is known as Buttinbracket[Buttin, 1996].In the Faddeev-Jackiw formalism [Faddeev, Jackiw, 1988] for theHamiltonian treatment of systems defined by first-order Lagrangians, i.e. bya Lagrangian of the form

L = fn(x)xn −H(x), (463)

motion equations

fmnxn =∂H

∂xm, (464)

for the regular structure function fmn, can be put in the explicithamiltonian (Poisson; Dirac) form

xn = f−1nm∂H

∂xm= xn, xm

∂H

∂xm= xn,H, (465)

where the fundamental Poisson (Dirac) bracket is

xn, xm = f−1nm, fmn = ∂mfn − ∂nfm. (466)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 206 / 247

Page 217: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Hamiltonization of the general dynamical systems

The system (551) is an important example of the first order regularhamiltonian systems. Indeed, in the new variables,

y1n = xn, y2n = ψn, (467)

lagrangian (550) takes the following first order form

L = (xn − vn(x))ψn ⇒ 1

2(xnψn − ψnxn)− vn(x)ψn

=1

2yanε

abybn −H(y) = fan(y)yan −H(y), fan =

1

2ybnε

ba,H = vn(y1)y2n,

fabnm =∂f bm∂yan

− ∂fan∂ybm

= εabδnm; (468)

corresponding motion equations and the fundamental Poisson bracket are

yan = εabδnm∂H

∂ybm= yan,H, yan, ybm = εabδnm. (469)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 207 / 247

Page 218: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Canonical Quantization of the general dynamical systems

To the canonical quantization of this system corresponds

[yan, ybm] = i~εabδnm, y

1n = y1n, y

2n = −i~ ∂

∂y1n(470)

In this quantum theory, classical part, motion equations for y1n, remainclassical.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 208 / 247

Page 219: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Modified Bochner-Killing-Yano (MBKY) structures

Now we return to our extended system (551) and formulate conditions forthe integrals of motion H(x, ψ)

H = H0(x) +H1 + ...+HN , (471)

whereHn = Ak1k2...kn(x)ψk1ψk2 ...ψkN , 1 ≤ n ≤ N, (472)

we are assuming Grassmann valued ψn and the tensor Ak1k2...kn isskew-symmetric. For integrals (471) we have

H = N∑

n=0

Hn,H1 =N∑

n=0

Hn,H1 =N∑

n=0

Hn = 0. (473)

Now we see, that each term in the sum (471) must be conserved separately.In particular for Hamiltonian systems (455), zeroth, H0 and first level H1,(461), Hamiltonians are integrals of motion. For n = 0

H0 = H0,kvk = 0, (474)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 209 / 247

Page 220: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Modified Bochner-Killing-Yano (MBKY) structures

for 1 ≤ n ≤ N we have

Hn = Ak1k2...knψk1ψk2 ...ψkN +Ak1k2...knψk1ψk2 ...ψkN + ...

+Ak1k2...knψk1ψk2 ...ψkN= (Ak1k2...kn,kvk −Akk2...knvk1,k − ...−Ak1...kn−1kvkn,k)ψk1ψk2 ...ψkN = 0, (475)

and there is one-to-one correspondence between the existence of theintegrals (472) and the existence of the nontrivial solutions of the followingequations

D

DtAk1k2...kn = Ak1k2...kn,kvk −Akk2...knvk1,k − ...−Ak1...kn−1kvkn,k = 0.(476)

For n = 1 the system (476) gives

Ak1,kvk −Akvk1,k = 0 (477)

and this equation has at list one solution, Ak = vk.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 210 / 247

Page 221: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Modified Bochner-Killing-Yano (MBKY) structures

If we have two (or more) independent first order integrals

H(1)1 = A1

kΨk; H(2)1 = A2

kΨk, ... (478)

we can construct corresponding (reducible) second (or higher)order MBKYtensor(s)

H2 = H(1)1 H

(2)1 = A1

kA2lΨkΨl = AklΨkΨl;

HM = H(1)1 ...H

(M)M = Ak1...kMΨk1 ...ΨkM ,

Ak1...kM = A(1)k1...A

(M)kM

, 2 ≤M ≤ N (479)

where under the bracket operation, Bk1,...,kN = B we understandcomplete anti-symmetrization. The system (476) defines a Generalizationof the Bochner-Killing-Yano structures of the geodesic motion of the pointparticle, for the case of the general (549) (and extended (551)) dynamicalsystems.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 211 / 247

Page 222: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Modified Bochner-Killing-Yano (MBKY) structures

Having AM , 2 ≤M ≤ N independent MBKY structures, we can constructcorresponding second order Killing tensors and Nambu-Poisson dynamics.In the superintegrable case, we have maximal number of the motionintegrals, N-1.The structures defined by the system (476) we call the ModifiedBochner-Killing-Yano structures or MBKY structures for short,[Makhaldiani, 1999].The dynamics of spinning point-particles in a D-dimensional curvedspace-time is described by the one-dimensional supersymmetric σ-model[Berezin, Marinov, 1977].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 212 / 247

Page 223: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Point vortex dynamics (PVD)

PVD can dy defined (see e.g. [Aref, 1983, Meleshko, Konstantinov, 1993] )as the following first order system

zn = iN∑

m6=n

γmz∗n − z∗m

, zn = xn + iyn, 1 ≤ n ≤ N. (480)

Corresponding first order lagrangian, hamiltonian, momenta, Poissonbrackets and commutators are

L =∑

n

i

2γn(znz

∗n − znz

∗n)−

n 6=mγnγmln|zn − zm|

H =∑

n 6=mγnγm ln |zn − zm|

=1

2

n 6=mγnγm(ln(zn − zm) + ln(pn − pm)),

pn =∂L

∂zn= − i

2γnz∗n, p

∗n =

∂L

∂z∗n=i

2γnzn, (481)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 213 / 247

Page 224: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Point vortex dynamics (PVD)

pn, zm = δnm, p∗n, z∗m = δnm, xn, ym = δnm,

[pn, zm] = −i~δnm ⇒ [xn, ym] = −i ~γnδnm (482)

So, quantum vortex dynamics corresponds to the noncommutative space. Itis natural to assume that vortex parameters are quantized as

γn =~

a2n, n = ±1,±2, ... (483)

and a is a characteristic (fundamental) length.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 214 / 247

Page 225: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nambu dynamics

Nabu – Babylonian Godof Wisdom and Writing.

The Hamiltonian mechanics (HM) is in the fundamentals of mathematicaldescription of the physical theories [Faddeev, Takhtajan, 1990]. But HM isin a sense blind; e.g., it does not make a difference between two opposites:the ergodic Hamiltonian systems (with just one integral of motion)[Sinai, 1993] and (super)integrable Hamiltonian systems (with maximalnumber of the integrals of motion).Nabu mechanics (NM) [Nambu, 1973, Whittaker, 1927] is a propergeneralization of the HM, which makes the difference between dynamicalsystems with different numbers of integrals of motion explicit (see,e.g.[Makhaldiani, 2007] ).

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 215 / 247

Page 226: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nambu dynamics

In the canonical formulation, the equations of motion of a physical systemare defined via a Poisson bracket and a Hamiltonian, [Arnold, 1978]. InNambu’s formulation, the Poisson bracket is replaced by the Nambubracket with n+ 1, n ≥ 1, slots. For n = 1, we have the canonicalformalism with one Hamiltonian. For n ≥ 2, we have Nambu-Poissonformalism, with n Hamiltonians, [Nambu, 1973], [Whittaker, 1927].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 216 / 247

Page 227: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

System of three vortexes

The system of N vortexes (480) for N = 3, and

u1 = ln|z2 − z3|2,u2 = ln|z3 − z1|2,u3 = ln|z1 − z2|2 (484)

reduce to the following system

u1 = γ1(eu2 − eu3),

u2 = γ2(eu3 − eu1),

u3 = γ3(eu1 − eu2), (485)

The system (485) has two integrals of motion

H1 =

3∑

i=1

eui

γi,H2 =

3∑

i=1

uiγi

and can be presented in the Nambu–Poisson form, [Makhaldiani, 1997,2]

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 217 / 247

Page 228: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

System of three vortexes

ui = ωijk∂H1

∂uj

∂H2

∂uk= xi,H1,H2 = ωijk

euj

γj

1

γk,

where

ωijk = ǫijkρ, ρ = γ1γ2γ3

and the Nambu–Poisson bracket of the functions A,B,C on thethree-dimensional phase space is

A,B,C = ωijk∂A

∂ui

∂B

∂uj

∂C

∂uk. (486)

This system is superintegrable: for N = 3 degrees of freedom, we havemaximal number of the integrals of motion N − 1 = 2.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 218 / 247

Page 229: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Extended quantum mechanics

As an example of the infinite dimensional Nambu-Poisson dynamics, let meconside the following extension of Schrodinger quantum mechanics[Makhaldiani, 2000]

iVt = ∆V − V 2

2, (487)

iψt = −∆ψ + V ψ. (488)

An interesting solution to the equation for the potential (487) is

V =4(4 − d)

r2, (489)

where d is the dimension of the spase. In the case of d = 1, we have thepotential of conformal quantum mechanics.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 219 / 247

Page 230: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Extended quantum mechanics

The variational formulation of the extended quantum theory, is given by thefollowing Lagrangian

L = (iVt −∆V +1

2V 2)ψ. (490)

The momentum variables are

Pv =∂L

∂Vt= iψ, Pψ = 0. (491)

As Hamiltonians of the Nambu-theoretic formulation, we take the followingintegrals of motion

H1 =

ddx(∆V − 1

2V 2)ψ,

H2 =

ddx(Pv − iψ),

H3 =

ddxPψ. (492)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 220 / 247

Page 231: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Extended quantum mechanics

We invent unifying vector notation, φ = (φ1, φ2, φ3, φ4) = (ψ,Pψ , V, Pv).Then it may be verified that the equations of the extended quantum theorycan be put in the following Nambu-theoretic form

φt(x) = φ(x),H1,H2,H3, (493)

where the bracket is defined as

A1, A2, A3, A4 = iεijkl

δA1

δφi(y)

δA2

δφj(y)

δA3

δφk(y)

δA4

δφl(y)dy

= i

δ(A1, A2, A3, A4)

δ(φ1(y), φ2(y), φ3(y), φ4(y))dy = idet(

δAkδφl

). (494)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 221 / 247

Page 232: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

M theory

The basic building blocks of M theory are membranes and M5−branes.Membranes are fundamental objects carrying electric charges with respectto the 3-form C-field, and M5-branes are magnetic solitons. TheNambu-Poisson 3-algebras appear as gauge symmetries of superconformalChern-Simons nonabelian theories in 2 + 1 dimensions with the maximumallowed number of N = 8 linear supersymmetries.The Bagger and Lambert [Bagger, Lambert, 2007] and, Gustavsson[Gustavsson, 2007] (BLG) model is based on a 3-algebra,

[T a, T b, T c] = fabcd T d (495)

where T a, are generators and fabcd is a fully anti-symmetric tensor. Giventhis algebra, a maximally supersymmetric Chern-Simons lagrangian is:

L = LCS + Lmatter ,

LCS =1

2εµνλ(fabcdA

abµ ∂νA

cdλ +

2

3fcdagf

gefbA

abµ A

cdν A

efλ ), (496)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 222 / 247

Page 233: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

M theory

Lmatter =1

2BIaµ B

µIa −BIa

µ DµXI

a

+i

2ψaΓµDµψa +

i

4ψbΓIJx

IcxJdψaf

abcd

− 1

12tr([XI ,XJ ,XK ][XI ,XJ ,XK ]), I = 1, 2, ..., 8, (497)

where Aabµ is gauge boson, ψa and XI = XIaT

a matter fields. Ifa = 1, 2, 3, 4, then we can obtain an SO(4) gauge symmetry by choosingfabcd = fεabcd, f being a constant. It turns out to be the only case thatgives a gauge theory with manifest unitarity and N = 8 supersymmetry.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 223 / 247

Page 234: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

M theory

The action has the first order form so we can use the formalism of the firstsection. The motion equations for the gauge fields

fnmabcdAcdm(t, x) =

δH

δAabn (t, x), fnmabcd = εnmfabcd (498)

take canonical form

Aabn = fabcdnmδH

δAcdm= Aabn , Acdm δH

δAcdm= Aabn ,H,

Aabn (t, x), Acdm(t, y) = εnmfabcdδ(2)(x− y) (499)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 224 / 247

Page 235: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nambu-Poisson dynamics of an extended particle with spin in anaccelerator

The quasi-classical description of the motion of a relativistic (nonradiating)point particle with spin in accelerators and storage rings includes theequations of orbit motion

xn = fn(x), fn(x) = εnm∂mH, n,m = 1, 2, ..., 6;xn = qn, xn+3 = pn, εn,n+3 = 1, n = 1, 2, 3;

H = eΦ+ c√

℘2 +m2c2, ℘n = pn −e

cAn (500)

and Thomas-BMT equations[Tomas, 1927, Bargmann, Michel,Telegdi, 1959 ] of classical spin motion

sn = εnmkΩmsk = H1,H2, sn, H1 = Ω · s, H2 = s2,A,B,C = εnmk∂nA∂mB∂kC, (501)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 225 / 247

Page 236: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nambu-Poisson dynamics of an extended particle with spin in anaccelerator

Ωn =−emγc

((1 + kγ)Bn − k(B · ℘)℘nm2c2(1 + γ)

+1 + k(1 + γ)

mc(1 + γ)εnmkEm℘k) (502)

where, parameters e and m are the charge and the rest mass of the particle,c is the velocity of light, k = (g − 2)/2 quantifies the anomalous spin gfactor, γ is the Lorentz factor, pn are components of the kinetic momentumvector, En and Bn are the electric and magnetic fields, and An and Φ arethe vector and scalar potentials;

Bn = εnmk∂mAk, En = −∂nΦ− 1

cAn,

γ =H − eΦ

mc2=

1 +℘2

m2c2(503)

The spin motion equations we put in the Nambu-Poisson form.Hamiltonization of this dynamical system according to the general approachof the previous sections we will put in the ground of the optimal controltheory of the accelerator.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 226 / 247

Page 237: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Hamiltonian extension of the spinning particle dynamics

The general method of Hamiltonization of the dynamical systems we canuse also in the spinning particle case. Let us invent unified configurationspace q = (x, p, s), xn = qn, pn = qn+3, sn = qn+6, n = 1, 2, 3; extendedphase space, (qn, ψn) and hamiltonian

H = H(q, ψ) = vnψn, n = 1, 2, ...9; (504)

motion equations

qn = vn(q),

ψn = −∂vm∂qn

ψm (505)

where the velocities vn depends on external fields as in previous section ascontrol parameters which can be determined according to the optimalcontrol criterium.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 227 / 247

Page 238: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nambu-Poisson extension of the spinning particle dynamics

We already have Nambu-Poisson formulation of the spinning part of thedynamics. Let us define the extended Hamiltonian as

H1 = H(x, p) +H1(s) = H1(q), H2 = H(x, p) +H2(s) = H2(q),

H1(s) = Ω · s, H2(s) =1

2s2 (506)

Than the Nambu-Poisson form of the dynamics will be

A(q) = A(q),H1,H2, (507)

where

A,B,C = fNMK∂A

∂qN

∂B

∂qM

∂C

∂qK, N,M,K = 1, 2, ..., 9, (508)

and the structure function fNMK is defined from the comparison with themotion equations for qN .

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 228 / 247

Page 239: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nambu-Poisson extension of the spinning particle dynamics

The structure function is antisymmetric; when A = qn, we obtain themotion equation for qn,

qn = fn,m+6,k+3∂H1(s)

∂sm

∂H(x, p)

∂pk= δnk

∂H(x, p)

∂pk,

fn,m+6,k+3Ωm = δnk, (509)

for A = pn,

pn = fn+3,m+6,k∂H1(s)

∂sm

∂H(x, p)

∂qk= −δnk

∂H(x, p)

∂qk, (510)

for A = sn,

sn = fn+6,m+6,k+6∂H1(s)

∂sm

∂H2(s)

∂sk= εnmkΩmsk,

fn+6,m+6,k+6 = εnmk. (511)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 229 / 247

Page 240: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nambu-Poisson extension of the spinning particle dynamics

With the Nambu-Poisson formulation, we have, as usual, two Hamiltonianreductions,

A = A,H1(q)1 = A,H2(q)2 (512)

Note that, if we take collective coordinates and Hamiltonian H1(q), theHamiltonian motion equations will contain extra terms beyond originalmotion equations [Balandin, Golubeva, 1999].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 230 / 247

Page 241: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Fractal Dynamical Systems

Note that the procedure of reduction of the higher order dynamical system,e.g. second order Euler-Lagrange motion equations, to the first orderdynamical systems, in the case to the Hamiltonian motion equations, canbe continued using fractal calculus. E.g. first order system can be reducedto the half order one,

D1/2q = ψ,

D1/2ψ = p⇔ q = p. (513)

We define the following dynamical system [Makhaldiani, Postnov, WIP],

D1/2q = f(q), D1/2 = ∂θ + θ∂t, q(t, θ) = q0(t) + θq1(t),f(q) = f0(q) + θf1(q) = f0(q0) + θ(f ′0(q0)q1 + f1(q0)) (514)

which is equivalent to the following dynamical system in component form

q1(t) = f0(q0),q0 = f ′0(q0)q1 + f1(q0) (515)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 231 / 247

Page 242: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Discrete dynamical systems and Quanputers

It always bothers methat according to the laws

as we understand them today,it takes a computing machine

an infinite number of logical operationsto figure out what goes on in no matter how tiny

a region of space and no matter how tiny a region of time.R. Feynman, The Character of Physical Law (1985).

To request an answer on Feynman’s paradox we may assume that Physicsat a very small scale is discrete. Quantum Fields on continuous spacetime isthen replaced by a lattice of quantum systems that evolve in discrete timesteps.Quantum cellular automaton (QCA) is a quantum version of the cellularautomaton of von Neumann which describes a dynamics on a discretelattice in discrete time-steps.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 232 / 247

Page 243: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Discrete dynamical systems and Quanputers

Computers are physical devices and their behavior is determined by physicallaws. The Quantum Computations[Benenti, Casati, Strini, 2004 , Nielsen, Chuang, 2000 ], QuantumComputing, Quanputing [Makhaldiani, 2007.2], is a new interdisciplinaryfield of research, which benefits from the contributions of physicists,computer scientists, mathematicians, chemists and engineers.Contemporary digital computer and its logical elements can be consideredas a spatial type of discrete dynamical systems [Makhaldiani, 2001]

Sn(k + 1) = Φn(S(k)), (516)

where

Sn(k), 1 ≤ n ≤ N(k), (517)

is the state vector of the system at the discrete time step k. Vector S maydescribe the state and Φ transition rule of some Cellular Automata[Toffoli, Margolus, 1987].The systems of the type (516) appears in appliedmathematics as an explicit finite difference scheme approximation of theequations of the physics [Samarskii, Gulin, 1989 ].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 233 / 247

Page 244: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Discrete dynamical systems and Quanputers

Definition: We assume that the system (516) is time-reversible if we candefine the reverse dynamical system

Sn(k) = Φ−1n (S(k + 1)). (518)

In this case the following matrix

Mnm =∂Φn(S(k))

∂Sm(k), (519)

is regular, i.e. has an inverse. If the matrix is not regular, this is the case,for example, when N(k + 1) 6= N(k), we have an irreversible dynamicalsystem (usual digital computers and/or corresponding irreversible gates).

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 234 / 247

Page 245: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Discrete dynamical systems and Quanputers

Let us consider an extension of the dynamical system (516) given by thefollowing action function

A =∑

kn

ln(k)(Sn(k + 1)− Φn(S(k))) (520)

and corresponding motion equations

Sn(k + 1) = Φn(S(k)) =∂H

∂ln(k),

ln(k − 1) = lm(k)∂Φm(S(k))

∂Sn(k)= lm(k)Mmn(S(k)) =

∂H

∂Sn(k),(521)

where

H =∑

kn

ln(k)Φn(S(k)), (522)

is discrete Hamiltonian. In the regular case, we put the system (521) in anexplicit form

Sn(k + 1) = Φn(S(k)),ln(k + 1) = lm(k)M

−1mn(S(k + 1)). (523)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 235 / 247

Page 246: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Discrete dynamical systems and Quanputers

From this system it is obvious that, when the initial value ln(k0) is given,the evolution of the vector l(k) is defined by evolution of the state vectorS(k). The equation of motion for ln(k) - Elenka is linear and has animportant property that a linear superpositions of the solutions are alsosolutions.Statement: Any time-reversible dynamical system (e.g. a time-reversiblecomputer) can be extended by corresponding linear dynamical system(quantum - like processor) which is controlled by the dynamical system andhas a huge computational power, [Makhaldiani, 2001, Makhaldiani, 2002,Makhaldiani, 2007.2, Makhaldiani, 2011.2].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 236 / 247

Page 247: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

(de)Coherence criterion

For motion equations (521) in the continual approximation, we have

Sn(k + 1) = xn(tk + τ) = xn(tk) + xn(tk)τ +O(τ2),xn(tk) = vn(x(tk)) +O(τ), tk = kτ,vn(x(tk)) = (Φn(x(tk))− xn(tk))/τ ;

Mmn(x(tk)) = δmn + τ∂vm(x(tk))

∂xn(tk). (524)

(de)Coherence criterion: the system is reversible, the linear (quantum,coherent, soul) subsystem exists, when the matrix M is regular,

detM = 1 + τ∑

n

∂vn∂xn

+O(τ2) 6= 0. (525)

For the Nambu - Poisson dynamical systems (see e.g. [Makhaldiani, 2007])

vn(x) = εnm1m2...mp

∂H1

∂xm1

∂H2

∂xm2

...∂Hp

∂xmp

, p = 1, 2, 3, ..., N − 1,

n

∂vn∂xn

≡ divv = 0. (526)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 237 / 247

Page 248: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Construction of the reversible discrete dynamical systems

Let me motivate an idea of construction of the reversible dynamical systemsby simple example from field theory. There are renormalizable models ofscalar field theory of the form (see, e.g. [Makhaldiani, 1980])

L =1

2(∂µϕ∂

µϕ−m2ϕ2)− gϕn, (527)

with the constraint

n =2d

d− 2, (528)

where d is dimension of the space-time and n is degree of nonlinearity. It isinteresting that if we define d as a function of n, we find

d =2n

n− 2(529)

the same function !Thing is that, the constraint can be put in the symmetric implicit form[Makhaldiani, 1980]

1

n+

1

d=

1

2(530)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 238 / 247

Page 249: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Generalization of the idea

Now it is natural to consider the following symmetric function

f(y) + f(x) = c (531)

and define its solution

y = f−1(c− f(x)). (532)

This is the general method, that we will use in the following construction ofthe reversible dynamical systems. In the simplest case,

f(x) = x, (533)

we take

y = S(k + 1), x = S(k − 1), c = Φ(S(k)) (534)

and define our reversible dynamical system from the following symmetric,implicit form (see also [Toffoli, Margolus, 1987])

S(k + 1) + S(k − 1) = Φ(S(k)), (535)

explicit form of which is

S(k + 1) = Φ(S(k), S(k − 1))

= Φ(S(k))− S(k − 1). (536)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 239 / 247

Page 250: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Generalization of the idea

This dynamical system defines given state vector by previous two statevectors. We have reversible dynamical system on the time lattice with timesteps of two units,

S(k + 2, 2) = Φ(S(k, 2)),S(k + 2, 2) ≡ (S(k + 2), S(k + 1)),S(k, 2) ≡ (S(k), S(k − 1))). (537)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 240 / 247

Page 251: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Internal, spin, degrees of freedom

Starting from a general discrete dynamical system, we obtained reversibledynamical system with internal(spin,bit) degrees of freedom

Sns(k + 2) ≡(

Sn(k + 2)Sn(k + 1)

)

=

(

Φn(Φ(S(k))− S(k − 1))− S(k))Φn(S(k)) − Sn(k − 1)

)

≡ Φns(S(k)), s = 1, 2 (538)

where

S(k) ≡ (Sns(k)), Sn1(k) ≡ Sn(k), Sn2(k) ≡ Sn(k − 1) (539)

For the extended system we have the following action

A =∑

kns

lns(k)(Sns(k + 2)− Φns(S(k))) (540)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 241 / 247

Page 252: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Internal, spin, degrees of freedom

and corresponding motion equations

Sns(k + 2) = Φns(S(k)) =∂H

∂lns(k),

lns(k − 2) = lmt(k)∂Φmt(S(k))

∂Sns(k)

= lmt(k)Mmtns(S(k)) =∂H

∂Sns(k), (541)

By construction, we have the following reversible dynamical system

Sns(k + 2) = Φns(S(k)),lns(k + 2) = lmt(k)M

−1mtns(S(k + 2)), (542)

with classical Sns and quantum lns(in the external, background S) stringbit dynamics.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 242 / 247

Page 253: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

p-point cluster and higher spin states reversible dynamics, or pit stringdynamics

We can also consider p-point generalization of the previous structure,

fp(S(k + p)) + fp−1(S(k + p− 1)) + ...+ f1(S(k + 1))

+f1(S(k − 1)) + ...+ fp(S(k − p)) = Φ(S(k)),S(k + p) = Φ(S(k), S(k + p− 1), ..., S(k − p))

≡ f−1p (Φ(S(k)) − fp−1(S(k + p− 1))− ...− fp(S(k − p))) (543)

and corresponding reversible p-oint cluster dynamical system

S(k + p, p) ≡ Φ(S(k, p)),S(k + p, p) ≡ (S(k + p), S(k + p− 1), ..., S(k + 1)),S(k, p) ≡ (S(k), S(k − 1), ..., S(k − p+ 1)), S(k, 1) = S(k).(544)

So we have general method of construction of the reversible dynamicalsystems on the time (tame) scale p. The method of linear extension of thereversible dynamical systems (see [Makhaldiani, 2001] and previous section)defines corresponding Quanputers,

Sns(k + p) = Φns(S(k)),lns(k + p) = lmt(k)M

−1mtns(S(k + p)), (545)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 243 / 247

Page 254: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

p-point cluster and higher spin states reversible dynamics, or pit stringdynamics

This case the quantum state function lns, s = 1, 2, ...p will describes thestate with spin (p − 1)/2.Note that, in this formalism for reversible dynamics minimal value of thespin is 1/2. There is not a place for a scalar dynamics, or the scalardynamics is not reversible. In the Standard model (SM) of particle physics,[Beringer et al, 2012], all of the fundamental particles, leptons, quarks andgauge bosons have spin. Only scalar particles of the SM are the Higgsbosons. Perhaps the scalar particles are composed systems or quasiparticleslike phonon, or Higgs dynamics is not reversible (a mechanism for ’timearrow’).

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 244 / 247

Page 255: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

A way to the Solution of the Traveling salesman problem (TSP) withQuanputing

The NP ?− P problem will be solved if for some NP− complete problem,

e.g. TSP, a polynomial algorithm find; or show that there is not such analgorithm; or show that it is impossible to find definite answer to thatquestion.TSP means to find minimal length path between N fixed points on asurface, which attends any point ones. We consider a system where Npoints with quenched positions x1, x2, ..., xN are independently distributedon a finite domain D with a probability density function p(x). In general,the domain D is multidimensional and the points xn are vectors in thecorresponding Euclidean space. Inside the domain D we consider a polymerchain composed of N monomers whose positions are denoted byy1, y2, ..., yN . Each monomer yn is attached to one of the quenched sitesxm and only one monomer can be attached to each site. The state of thepolymer is described by a permutation σ ∈ ΣN where ΣN is the group ofpermutations of N objecs.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 245 / 247

Page 256: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

A way to the Solution of the Traveling salesman problem (TSP) withQuanputing

The Hamiltonian for the system is given by

H =

N∑

n=1

V (|yn − yn−1|) (546)

Here V is the interaction between neighboring monomers on the polymerchain. For convenience the chain is taken to be closed, thus we take theperiodic boundary condition x0 = xN . A physical realization of this systemis one where the xn are impurities where the monomers of a polymer loopare pinned. In combinatorial optimization, if one takes V (x) to be thenorm, or distance, of the vector x then H(σ) is the total distance coveredby a path which visits each site xn exactly once. The problem of finding σ0which minimizes H(σ) is known as the traveling salesman problem (TSP)[Gutin, Pannen, 2002].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 246 / 247

Page 257: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

A way to the Solution of the Traveling salesman problem (TSP) withQuanputing

In field theory language to the TSP we correspond the calculation of thefollowing correlator

G2N (x1, x2, ..., xN ) = Z−10

dϕ(x)ϕ2(x1)ϕ2(x2)...ϕ

2(xN )e−S(ϕ)

=δ2NF (J)

δJ(x1)2...δJ(xN )2, F (J) = lnZ(J),

Z(J) =

dϕe−12ϕ·A·ϕ+J ·ϕ = e

12J ·A−1·J , A−1(x, y;m) = e−m|x−y|,

Lmin(x1, ..., xN ) = − d

dmlnG2Ns +O(e−am)

< A−1 >≡ 1

Γ(s)

∫ ∞

0dmms−1A−1(x, y;m) =

1

|x− y|s= LsA

−1(x− y; s)

k(d)∆dLsA−1(x; s) = δd(x) ⇒ A(x; s) = k(d)∆dLs,

s = d− 2;ϕ = ϕ(x,m). (547)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 247 / 247

Page 258: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

A way to the Solution of the Traveling salesman problem (TSP) withQuanputing

If we take relativistic massive scalar field, then A = ∆d +m2,

A−1(x) ∼ |x|2−de−m|x|, (548)

and for d = 2, we also have the needed behaviour. Note that G2N issymmetric with respect to its arguments and contains any paths includingminimal length one.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 259: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Hamiltonization of dynamical systems. Let us consider the followingsystem of the ordinary differential equations [Arnold, 1978].

xn = vn(x) + jn(t), 1 ≤ n ≤ N, (549)

Lagrangian,L = (xn − vn(x)− jn(t))ψn (550)

and the corresponding motion equations

xn = vn(x) + jn(t), ψn = −∂vm∂xn

ψm. (551)

The system (551) extends the system (549) by linear equation for the ψ.The extended system can be put in the Hamiltonian form[Makhaldiani, Voskresenskaya, 1997].Quanputing. The idea of computations on quanputers is in finding of theneeded (value of the) state (wave function ψ(t, x)) from the initial, easyconstructible, state (ψ(0, x),) which is superposition of different states,including interesting one, with the same weight. During the computationthe weight of the interesting state is growing till the value when we canguess the solution of the problem and then test it, which is much moreeasier then to find it [Kitaev, Shen, Vyalyi, 2002 ],[Benenti, Casati, Strini, 2004 ], [Giorgadze, 2013].Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 260: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Let us consider the following nonlinear evolution equation

iVt = ∆V − 1

2V 2 + J, (552)

extended Lagrangian and Hamiltonian

L =

dxD(iVt −∆V +1

2V 2 − J)ψ, H =

dxD(∆V − 1

2V 2 + J)ψ(553)

and corresponding Hamiltonian motion equations [Makhaldiani, 2000].

iVt = ∆V − 1

2V 2 + J = V,H,

iψt = −∆ψ + V ψ = ψ,H,V (t, x), ψ(t, y) = δD(x− y) (554)

The solution of the problem is given in the form

|T ) = U(T )|0), ψ(t, x) =< x|t), U(T ) = Texp(−i∫ T

0H(t)) (555)

Under the programming of the quanputer we understand construction ofthe potential V, or the corresponding Hamiltonian. For the given potential,we calculate corresponding source J.Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 261: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

The discrete version of the system can be put in the form[Makhaldiani, 2007.2].

Sm(n+ 1) = Φn(S(n)) + Jm(n),

Ψm(n− 1) = Amk(S(n))Ψk(n), Amk(S(n)) =∂Φk(S(n))

∂Sm(n)(556)

when the matrix A is regular, we obtain explicit form of the correspondingdiscrete dynamics

Sm(n+ 1) = Φn(S(n)) + Jm(n),Ψm(n) = A−1mk(S(n + 1))Ψk(n), (557)

Now the state vector S(n) and wave vector Ψm(n) may correspond notonly to the discrete values of the potential V (n,m) = Sm(n), and wavefunction ψ(n,m) = Ψm(n) but also any representation of the computingprocess from theoretical to experimental realization on a quanputer,including algorithm of solution, higher level programm realization of thealgorithm [Makhaldiani, 2011.2].Complex Polynomial Equations and Nambu-poisson DynamicsWe consider the following polynomial equation

PN (z)− tzN+1 = 0, z ∈ C, t ∈ (0,∞) (558)Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 262: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

For small times t all zeros but one of this polynomial are near the zeros ofthe polynomial PN (z). The extra zero zN+1 is far from other zeros, forsmall t,

zN+1 =aNt

+ ... (559)

In regular case main zeros are linear functions of t, for small t.For large times all n+ 1 zeros are near the zeros of the equation

a0 − tzN+1 = 0, zn = N+1√

a0/t exp(2πin

N + 1), n = 0, 1, ..., N (560)

At a root xc of multiplicity k we have

P(k)N (xc)

n!(x− xc)

k + ... = txN+1c ,

xn(t) = xc + cn,kt1/k, cn,k = (

xN+1c n!

P(k)N (xc)

)1k exp(2πi

n

k), 0 ≤ n ≤ k − 1(561)

So we can define the multiplicity of the root k from the time dependence ofthe roots. It is interesting to know how extra zero approach with time tothe other zeros and then all of them organized as sites of symmetricpolygon on the circle with decreasing radius. Note that coefficientsMakhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 263: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

an, 1 ≤ n ≤ N are known functions of zeros but do not depend on t - areinvariants - integrals of motion. Having N integrals of motionHn, 1 ≤ n ≤ N we construct Nambu-Poisson dynamics for the roots[Nambu, 1973], [Makhaldiani, 2007], [Makhaldiani, 1988, ?].

xn = xn,H1,H2, ...,HN, 1 ≤ n ≤ N (562)

As an example we consider quadratic deformation of the linear equation

a0 + a1z − tz2 = −t(z − z1)(z − z2) = 0,a0 = −tz1z2, a1 = t(z1 + z2) (563)

As a ’time independent’ Hamiltonian we take

H = −a0/a1 =z1z2z1 + z2

(564)

the motion equations we find from the time independence of a0 and a1

a0 = −z1z2 − t(z1z2 + z1z2) = 0,a1 = z1 + z2 + t(z1 + z2) = 0,

z1 =z31z2

a0(z1 − z2)= z1,H = f12

∂H

∂z2,

z2 =z32z1

a0(z2 − z1)= z2,H = f21

∂H

∂z1,

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 264: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

f12 =z1z2(z1 + z2)

2

a0(z1 − z2)=

a21t3(z2 − z1)

(565)

In the cubic deformation of the quadratic equation

a0 + a1z + a2z2 − tz3 = −t(z − z1)(z − z2)(z − z3) = 0 (566)

we have

a0 = tz1z2z3, a1 = −t(z1z2 + z2z3 + z3z1), a2 = t(z1 + z2 + z3),

z1 =z41z2z3

a0(z2 − z1)(z1 − z3)= z1,H1,H2 = f1nm

∂H1

∂zn

∂H2

∂zm,

f123 =z1z2z3(z1z2 + z2z3 + z3z1)(z1 + z2 + z3)

a0(z2 − z1)(z3 − z2)(z1 − z3)

=a1a2

t3(z1 − z2)(z1 − z3)(z3 − z2),

H1 =z1z2z3

z1z2 + z2z3 + z3z1, H2 =

z1z2 + z2z3 + z3z1z1 + z2 + z3

(567)

Introducing new time variable τ = a1a2t−2/2 we put the equation in the

form

dz1dτ

= z1,H1,H2 = f1nm∂H1

∂zn

∂H2

∂zm,

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 265: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

f123 =1

(z1 − z2)(z1 − z3)(z2 − z3)(568)

For the following generalization of the Weierstrass function Vn(z)∫ ∞

Vn(z)

dV√

Pn(V )= z,

Pn(V ) =4

(n− 2)2V n + Cn−2V

n−2 + ...+ C0, (569)

we have the following series (re)presentation

Vn(z) = ℘n(z, Cn−2, ..., C0) =1

z2/(n−2)− (n− 2)2

4(n+ 2)Cn−2z

2/(n−2) + ...(570)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 266: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

K. Aamodt et al. [ALICE collaboration] Eur. Phys. J. C65, 111 (2010); arXiv:1004.3034; arXiv:1004.3514.

O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys.

Rept. 323 (2000) 183, hep-th/9905111.

H. Aref, Ann. Rev. Fluid Mech. 15 (1983) 345.

V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York 1978.

Aad, G. et al. , 2011, Phys Lett, B 701, 398

G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012)

Abrikosov, A. A. (1957) On the Magnetic properties of superconductors of the second group, Sov.Phys.JETP 5:1174-1182

and Zh.Eksp.Teor.Fiz.32:1442-1452.

Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D. et al.

(2013-02-15). Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science (AmericanAssociation for the Advancement of Science) 339 (6424): 807-811.

A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 98, 162301 (2007).

S. L. Adler, Phys. Rev. 140 (1965) B736.

S.L. Adler, R. Dashen, Current Algebra and Applications to Particle Physics, Benjamin, New York 1965.

K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B719, 165 (2005)

http://arxiv.org/pdf/hep-ph/0412089.pdf

O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys.

Rept. 323 (2000) 183, hep-th/9905111.

J. Alexandre, Int. J. Mod. Phys. A 26, 4523 (2011) [arXiv:1109.5629 [hep-ph]].

K. Aamodt et al. [ALICE collaboration] Eur. Phys. J. C65 (2010) 111 [arXiv:1004.3034], [arXiv:1004.3514].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 267: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Al Khawaja, Usama; Stoof, Henk (2001). ”Skyrmions in a ferromagnetic BoseEinstein condensate”. Nature 411 (6840):

91820.

M. Anselmino, B.L. Ioffe and E. Leader, Sov. J. Nucl. 49, 136, (1989)

Aprile E. et al , 2012, Phys Rev Lett, 109, 181301

H. Aref, Ann. Rev. Fluid Mech. 15 (1983) 345.

V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York 1978.

M.Axenides,E.G.Floratos,L.Perivolaropoulos, Dynamical Effects of the Cosmological Constant (astro-ph/0004080) Modern

Physics Letters A 15, 1541-1550

J. Bagger, N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020; [arXiv:hep-th/0611108].

V.V. Balandin, N.I. Golubeva, Hamiltonian Methods for the Study of Polarized Proton Beam Dynamics in Accelerators and

Storage Rings, [arXiv://arxiv.org/abs/physics/9903032v1].

V. Bargmann, L. Michel, V.L. Telegdi, Precession of the polarization of particles moving in a homogeneous electromagnetic

field, Phys. Rev. Lett., 2(10) (1959) 435.

C. Beck, E.G.D. Cohen,Superstatistics, Physica A 322 (2003) 267-275

G. Benenti, G. Casati, G. Strini, Principles of quantum computation and information, Vol. I: Basic concepts, World

Scientific, Singapore 2004; Vol. II: Basic tools and special topics World Scientific, Singapore 2007.

J. Beringer et al. (Particle Data Group) Review of Particle Physics, Phys. Rev. D 86 (2012) 010001 [1528 pages]

F.A. Berezin, Introduction to Superanalysis, Reidel, Dordrecht 1987.

F.A. Berezin, M.S. Marinov, Ann. Phys. (N.Y.) 104 (1977) 336.

M. Berry, Speculations on the Riemann operator, Symposium on Supersymmetry and Trace formulae, Cambridge, 1997.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 268: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

C. Buttin, C.R. Acad. Sci. Paris. 269 (1969) 87.

M. Biyajima, M. Kaneyama, T. Mizoguchi and G. Wilk, Eur. Phys. J. C 40 (2005) 243.

N.N.Bogoliubov and D.V.Shirkov, Introduction to the Theory of Quantized Fields, New York, 1959.

I.L.Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, Phys.Lett.B 676 69 (2009).

L.Brekke, P.G.O.Freund, Phys. Rep. 233 1 (1993).

W. Buchmuller and S. H. H. Tye, Phys. Rev. D 24, 132 (1981).

D. Lopez-Val and J. Sola, Phys. Lett. B 702, 246 (2011) [arXiv:1106.3226 [hep-ph]]; P. Niezurawski, A. F. Zarnecki and M.

Krawczyk, eConf C 050318, 0112 (2005) [hep-ph/0507006]; M. M. Muhlleitner et al., Phys. Lett. B 508, 311 (2001)[hep-ph/0101083]. S. Bae, B. Chung and P. Ko, Eur. Phys. J. C 54, 601 (2008) [hep-ph/0205212]; S. Y. Choi and J. S.Lee, Phys. Rev. D 62, 036005 (2000) [hep-ph/9912330].

I. Bakas, D. Orlando and P.M. Petropoulos, Ricci flows and expansion in axiondilaton cosmology, JHEP 0701 (2007) 040

[arXiv:hep-th/0610281].

A. P. Balachandran, S. Kurkcuoglu and E. Rojas, The Star Product on the Fuzzy Supersphere, JHEP 0207, 056 (2002)

[arXiv:hep-th/0204170];

V.V. Balandin, N.I. Golubeva, Hamiltonian Methods for the Study of Polarized Proton Beam Dynamics in Accelerators and

Storage Rings, [arXiv://arxiv.org/abs/physics/9903032v1].

V. Bargmann, L. Michel, V.L. Telegdi, Precession of the polarization of particles moving in a homogeneous electromagnetic

field, Phys. Rev. Lett., 2(10) (1959) 435.

John D. Barrow, Douglas J. Shaw, The Value of the Cosmological Constant, General Relativity and Gravitation 43,

2555-2560 (2011), arXiv:1105.3105.

Baskaran, G. (2011). ”Possibility of Skyrmion Superconductivity in Doped Antiferromagnet K2Fe4Se5”. arXiv:1108.3562

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 269: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

G. Benenti, G. Casati, G. Strini, Principles of quantum computation and information, Vol. I: Basic concepts, World

Scientific, Singapore 2004; Vol. II: Basic tools and special topics World Scientific, Singapore 2007.

J. Beringer et al. (Particle Data Group) Review of Particle Physics, Phys. Rev. D 86 (2012) 010001 [1528 pages]

M. Berry, Speculations on the Riemann operator, in proceedings of Symposium on Supersymmetry and Trace formulae,

Cambridge 1997.

J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

J. D. Bjorken, S. J. Brodsky and A. Scharff Goldhaber, Phys. Lett. B 726, 344 (2013) [arXiv:1308.1435 [hep-ph]].

F.A. Berezin, Introduction to Superanalysis, Reidel, Dordrecht 1987.

F.A. Berezin, M.S. Marinov, Ann. Phys. (N.Y.) 104 (1977) 336.

J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012)

A. Blondel et al., arXiv:1302.3318 [physics.acc-ph]; R. Belusevic and T. Higo, arXiv:1208.4956 [physics.acc-ph].

A. Bodmer ”Collapsed Nuclei” Phys. Rev. D4, 1601 (1971)

W. Broer et al, Europ. Phys. Lett. 95 (2011) 30001.

N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields, New York 1959.

I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, Phys.Lett.B 676 (2009) 69.

R. H. Brandenberger, Lect. Notes Phys. 646:127-167 (2004), arXiv:hep-th/0306071.

L. Brekke, P.G.O. Freund, Phys. Rep. 233 (1993) 1.

S. Brodsky, G. Farrar, Phys. Rev. Lett. 31 1153 (1973).

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 270: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Stanley J. Brodsky, Guy F. de Teramond, Alexandre Deur, Nonperturbative QCD Coupling and its β function from

Light-Front Holography, PRD 81,096010 (2010), arXiv:1002.3948

S. J. Brodsky, M. Mojaza and X. G. Wu, Phys. Rev. D 89, 014027 (2014) [arXiv:1304.4631 [hep-ph]].

S. J. Brodsky and L. Di Giustino, Phys. Rev. D 86, 085026 (2012) [arXiv:1107.0338 [hep-ph]].

M. Bronshtein, K voprosu o vozmozhnoy teorii mira kak tselogo (On a possible theory of the world as a whole), in Uspekhi

Astronomicheskikh Nauk, vypusk III (1933) pp. 3-30

G. E. Brown and M. Rho, Phys. Rept. 269 (1996) 333 [hep-ph/9504250].

V. D. Burkert, Phys. Rev. D 63, 097904 (2001).

C. Buttin, C.R. Acad. Sci. Paris. 269 (1969) 87.

P.Carruthers, C.C.Shih, Int. J. Mod. Phys. A4 5587 (1989).

G. Calcagni, Fractal universe and quantum gravity, Phys. Rev. Lett. 104 (2010) 251301 [arXiv:0912.3142].

S. Carlip, Spontaneous dimensional reduction in short-distance quantum gravity?, AIP Conf. Proc. 1196 (2009) 72

[arXiv:0909.3329].

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, The electronic properties of graphene,

Rev. Mod. Phys. 81 , 109-162 (2009).

W. E. Caswell, Phys. Rev. Lett. 33 (1974) 244.

S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012).

J.C. Collins, Renormalization, Cambrige Univ. Press, London 1984.

David Cox, John Little, Donal O’Shea, Ideals, Varieties, and Algorithms,

An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer 1998.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 271: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Ya.Z.Darbaidze, N.V.Makhaldiani, A.N.Sisakian, L.A.Slepchenko, TMF 34 303 (1978).

M.Davis, Applied nonstandard analysis, New York, 1977.

Ya.Z. Darbaidze, N.V. Makhaldiani, A.N. Sisakian, L.A. Slepchenko, TMF 34 (1978) 303.

M. Davis, Applied nonstandard analysis, New York 1977.

D. Diakonov, Prog. Par. Nucl. Phys. 51 (2003) 173.

A. Di Giacomo, G. Paffuti, P. Rossi, Selected Problems in Theoretical Physics [With Solutions], World Scientific 1992.

P.A.M. Dirac, Proc. Roy, Soc. A167 (1938) 148.

P.A.M. Dirac. Generalized Hamiltonian dynamics. Can. J. Math., 2:129, 148, 1950.

P.A.M. Dirac. Generalized Hamiltonian dynamics. Proc. Roy. Soc. A, 246:326-332, 1958P.A.M. Dirac. Lectures on Quantum Mechanics. Belfer Graduate School Monograph Series 3. Yeshiva University, New York,1964.

P.A.M. Dirac, Proc. Roy, Soc. A167 (1938) 148.

D. P. DiVincenzo and A. Peres, Quantum Codewords Contradict Local Realism, Physical Review A 55, pp. 4089-4092

(1997).

D. Djukanovic, M. R. Schindler, J. Gegelia, G. Japaridze, S. Scherer, Phys. Rev. Lett. 93 (2004) 122002.

S. D. Drell, A. C. Hearn, Exact Sum Rule For Nucleon Magnetic Moments, Phys. Rev. Lett. 16 (1966) 908.

M. Duff, L. Okun and G. Veneziano, Trialogue on the number of fundamental constants, arXiv:physics/0110060.

M. J. Duff, String triality, black hole entropy and Cayleys hyperdeterminant, Phys. Rev. D76 (2007) 025017.

R. Kallosh and A. Linde, Strings, black holes, and quantum information, Phys. Rev. D73 (2006) 104033.P. Levay, Stringy black holes and the geometry of entanglement, Phys. Rev. D 74 (2006) 024030.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 272: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

G. Dufour, R. Guerout, A. Lambrecht, V.V. Nesvizhevsky, S. Reynaud, A.Yu. Voronin, Quantum Reflection of

Antihydrogen from Nanoporous Media, Physical Review A 87 (2013) 022506

Lisa Dyson, Matthew Kleban, Leonard Susskind, Disturbing Implications of a Cosmological Constant, JHEP 0210:011,

2002, arXiv:hep-th/0208013

E. Egorian and O. V. Tarasov, Theor. Math. Phys. 41 (1979) 863 [Teor. Mat. Fiz. 41 (1979) 26]

A. Einstein Sittzungsber.preuss. Akad. Wiss. 1 (1917) 142.

A. Einstein, B. Podolsky, and N. Rosen, Can Quantum Mechanical Description of Physical Reality Be Considered

Complete?, Physical Review 47, pp. 777-800 (1935).

V. Elias, J. Phys. G. 27, 217 (2001).

M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96, 110405

(2006) [arXiv:cond-mat/0510613];A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006) [arXiv:hep-th/0510092];A. Hamma, R. Ionicioiu and P. Zanardi, Ground state entanglement and geometric entropy in the Kitaev’s model, Phys.Lett. A 337, 22 (2005) [arXiv:quant-ph/0406202].

P. Calabrese and J. L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406, P002 (2004)

[arXiv:hep-th/0405152];P. Calabrese and J. L. Cardy, Entanglement entropy and quantum field theory: A non-technical introduction, Int. J. Quant.Inf. 4, 429 (2006) [arXiv:quant-ph/0505193];P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013[cond-mat.stat-mech]].

W. Ernst, I. Schmitt, Nuovo Cim. A33 (1976) 195.

L.D. Faddeev, R. Jackiw, Phys.Rev.Lett. 60 (1988) 1692.

L.D. Faddeev and L.A. Takhtajan, Hamiltonian methods in the theory of solitons, Springer, Berlin 1990.

E. Farhi and R. Jaffe, ”Strange Matter”, Phys. Rev. D30, 2379 (1984)

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 273: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

E. Fermi, Ricerca Scientifica 7 (1936) 13

E. Fermi, W.H. Zinn, Phys. Rev. 70 (1946) 103

E. Fermi, L. Marshall, Phys. Rev. 71 (1947) 666

E. Fermi, Prog.Theor. Phys. 5 (1951) 570.

S. Ferrara, M. Porrati, V.L. Telegdi, Phys. Rev. D, g = 2 as the natural value of the tree level gyromagnetic ratio of

elementary particles, 46 (1992) 3529.

Feynman, R. P. (1955). Application of quantum mechanics to liquid helium. Progress in Low Temperature Physics 1: 1753.

I. V. Fialkovsky, D. V. Vassilevich , Quantum Field Theory in Graphene, arXiv:1111.3017

C. S. Fischer and H. Gies, JHEP 0410 (2004) 048.

V. Flambaum, I. Khriplovich and O. Sushkov, Nucl.Phys. A449, p. 750 (1986).

D.H. Friedan, Nonlinear models in two + epsilon dimensions, Phys. Rev. Lett. 45 (1980) 1057; Nonlinear models in two +

epsilon dimensions, Ann. Phys. 163 (1985) 318.

Fukuda, J.-I.; Zumer, S. (2011). ”Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal”. Nature

Communications 2: 246.

G. Gamov, D. Ivanenko, L. Landau, Mirovye postoyannye i predel’ny perekhod [World constants and limiting transition],

Zhurnal Russkogo Fiz.-Chim. Obschestva, chast’ Fiz. 60 (1928) 13-17 (in Russian). Reprinted in Yad. Fiz. 65 (2002) No.7[Physics of Atom. Nucl. 65 (2002) No.7].

G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge 1990.

I.M. Gel’fand, M.I. Graev and I.I. Piatetskii-Shapiro, Representation Theory and Automorphic Functions, Saunders, London

1966.

I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Funck. Anal. i Priloz. 23 (1989) 94;

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 274: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Adv. Math. 84 (1990) 255;

I.M. Gelfand, M.I. Graev, V.S. Retakh, Russian Math. Surveys 47 (1992) 1.

S.B. Gerasimov, A Sum Rule for Magnetic Moments and Damping of the Nucleon Magnetic Moment in Nuclei,

J.Nucl.Phys.(USSR) 2 (1965) 598.

Giorgadze G. Geometry of Quantum Computation,

Nova Publishers, (N.Y.), 2013.

M.L. Goldberger and S.B. Treiman, Phys. Rev. 110 (1958) 1178.

D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343;

V. L. Ginzburg, Theoretical Physics and Astrophysics, Pergamon, New York 1979.

A. Gustavsson, Algebraic structures on parallel M2-branes,

Nucl. Phys. B.811 (2009) 66; [arXiv:0709.1260 [hep-th]].

G. Gutin, A.P. Punnen (Eds), The Traveling Salesman Problem and Its Variations, Combinatorial Optimization Series,

Kluwer, Boston 2002.

Gibbons, G.W. and Hawking, S.W. (1977) ’Cosmological event horizons, thermodynamics, and particle creation’ Physical

Review D 15, 2738-2751

V. L. Ginzburg, Theoretical Physics and Astrophysics, Pergamon, New York 1979.

M.L. Goldberger, S.B. Treiman, Phys. Rev. 110 1178 (1958).

Y.A. Gol’fand and E.P. Likhtman, JETP Lett., 13, 323, 1971.

R. Golub, W. Mampe, J. M. Pendelbury and P. Ageron, Scientific American, June 1979

Vasco Gonsalves, Joao Penedones, Emilio Trevisani, Factorization of Mellin amplitudes, arXiv:1410.4185v1 [hep-th] 15 Oct

2014.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 275: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

M.B. Green, J.H. Schwarz and E. Witten. Super String Theory. Vols 1,2. Cambridge University Press 1987.

D. M. Greenberger, M. Horne, and A. Zeilinger, Going beyond Bell’s Theorem in Bell’s Theorem, Quantum Theory, and

Conceptions of the Universe, edited by M. Kafatos, pp. 73-76 (Kluwer, Dordrecht, 1989).

Griffiths and Harris, Principles of Algebraic Geometry, [Wiley Classics Library Edition Published 1994]

D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30 1343 (1973).

H. Grosse, C. Klimcik, P. Presnajder, Field Theory on a Supersymmetric Lattice, Commun.Math. Phys., 185 (1997)

155-175 and hep-th/9507074;H. Grosse, C. Klimcik, P. Presnajder, N=2 Superalgebra and Non-CommutativeGeometry,hep-th/9603071;H. Grosse, G. Reiter, The Fuzzy Supersphere, J. Geom. and Phys., 28 (1998) 349-383 andmath-ph/9804013.

S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109];

A. Gustavsson, Algebraic structures on parallel M2-branes,

Nucl. Phys. B.811 (2009) 66; [arXiv:0709.1260 [hep-th]].

G. Gutin, A.P. Punnen (Eds), The Traveling Salesman Problem and Its Variations, Combinatorial Optimization Series,

Kluwer, Boston 2002.

Hagedorn, Nuovo Cim. Suppl. 3, (1965) 147 and Nuovo Cim. A 52, 64 (1967), R. Hagedorn, CERN 71-12, 1971, and

CERN-TH.7190/94, 1994, and references therein; K. Huang and S.Weinberg, Phys. Rev. Lett. 25, 895 (1970); W. Nahm,Nucl. Phys. B 45, 525 (1972). For the most recent analysis see W. Broniowski, W. Florkowski and L. Ya. Glozman, Phys.Rev. 70, 117503 (2004).

R. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982) 255.

Heinze, Stefan; Von Bergmann, Kirsten; Menzel, Matthias; Brede, Jens; Kubetzka, Andre; Wiesendanger, Roland;

Bihlmayer, Gustav; Blugel, Stefan (2011). ”Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions”.Nature Physics 7 (9): 713718.

W. Heisenberg, Z. Phys. 126 (1949) 569.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 276: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

W. Heisenberg, Introduction to the Unified field Theory of Elementary particles, Interscience Publishers, London 1966.

G. ’t Hooft, Nucl. Phys. B 33 (1971) 173; Nucl. Phys. B 35 (1971) 167.

G. ’t Hooft, Nucl.Phys. B 61 (1973) 455.

G. ’t Hooft, Erice Lectures 1977 (unpublished).

G. ’t Hooft, Dimensional reduction in quantum gravity, in Salamfestschrift, A. Ali, J. Ellis, and S. Randjbar-Daemi (eds.),

World Scientific, Singapore (1993) [gr-qc/9310026].

G. ’t Hooft, report at the Marseille Conference on Yang-Mills Fields, 1972.

G. ’t Hooft, Nucl.Phys. B 61 (1973) 455.

P. Horava, Phys. Lett. B 694,172 (2010) [arXiv:0811.2217 [hep-th]].

P. Horava, Phys. Rev. D79, 084008 (2009) [arXiv:0901.3775]; JHEP 03, 020 (2009) [arXiv:0812.4287];P. Horava, Phys. Lett. B 694, 172 (2010) [arXiv:0811.2217]; Phys. Rev. Lett. 102, 161301 (2009) [arXiv:0902.3657].

R. M. Hornreich, M. Luban and S. Shtrikman, Phys. Rev. Lett. 35, 1678 (1975).

G. Grinstein, Phys. Rev. B23, 4615 (1981) .E. Ardonne, P. Fendley and E. Fradkin, Annals Phys. 310, 493 (2004) [cond-mat/0311466].E. Fradkin, J. of Phys. A42, 504011 (2009).

P. Howe, K. Stelle and P. Townsend, Nucl. Phys. B214, 519 (1983).

P. Howe, K.S. Stelle and P. West, Phys. Lett. 124B, 55 (1983).

Ernst-Michael Ilgenfritz, Axel Maas, Topological aspects of G2 Yang-Mills theory, arXiv:1210.5963.

A. Izergin and V. Korepin, Letter in Mathematical Physics vol 6, page 283, 1982.

I. Jack, D.R.T. Jones and C.G. North, Nucl. Phys. B486, 479(1997).

I. Jack. D.R.T. Jones and A. Pickering, Phys. Lett. B435, 61 (1998).

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 277: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

J.D. Jackson, Classical Electrodynamics, 3rd ed. JohnWiley & Sons, Inc. New York 1999.

Jackson, J.D. (1957). ”Catalysis of Nuclear Reactions between hydrogen isotopes by –Mesons”. Physical Review 106 (2):

330.

X. Ji, J.Osborne, J.Phys. G27 127 (2001).

D. R. T. Jones, Nucl. Phys. B 75 (1974) 531;

D.R.T. Jones, Phys. Lett. 123B, 45 (1983).

M. Kaku, Strings, Conformal Fields, and M-Theory, Springer, New York 2000.

D. B. Kaplan and H. Georgi, Phys. Lett. B 136 (1984) 183

A. L. Kataev, S. A. Larin, Analytical five-loop expressions for the renormalization group QED β-function in different

renormalization schemes, Pisma v ZhETF, vol.96, iss. 1, (2012), pp.64-67

K. Kawarabayashi, M. Suzuki, Phys. Rev. Lett. 16 (1966) 255

D.I.Kazakov, L.R.Lomidze, N.V.Makhaldiani, A.A.Vladimirov, Ultraviolet Asymptotics in Renormalizable Scalar Theories,

Communications of JINR, E2-8085, Dubna, 1974.

D.I.Kazakov, Supersymmetric Generalization of the Standard Model of Fundamental Interactions, Textbook, (Dubna, JINR,

2004).

D.I.Kazakov, D.V.Shirkov, Fortschr. d. Phys. 28 447 (1980).

D.I. Kazakov, L.R. Lomidze, N.V. Makhaldiani, A.A. Vladimirov, Ultraviolet Asymptotics in Renormalizable Scalar

Theories, JINR Communications, E2-8085, Dubna 1974.

V. Khachatryan et al. [CMS Collaboration], JHEP 1009, 091 (2010) [arXiv:1009.4122 [hep-ex]].

Valentin V. Khoze, Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant Standard Model,

arXiv:1308.6338v1 [hep-ph] 29 Aug 2013,

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 278: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

I. B. Khriplovich, Yad. Fiz. 10 (1969) 409 [Sov. J. Nucl. Phys. 10 (1970) 235]

Kiselev, N. S.; Bogdanov, A. N.; Schafer, R.; Roßler, U. K. (2011). ”Chiral skyrmions in thin magnetic films: New objects

for magnetic storage technologies?”. Journal of Physics D: Applied Physics 44 (39): 392001. arXiv:1102.2726

A.Yu. Kitaev, A. Shen, M.N. Vyalyi, Classical and Quantum Computation, American Mathematical Society, 2002.

Takuya Kitamoto, On the Computation of the Determinant of a Generalized Vandermonde Matrix, in Computer Algebra, in

Proceedings of ”Scientific Computing, 16th International Workshop, CASC 2014” Warsaw, Poland, September 8-12, 2014,Vladimir P. Gerdt Wolfram Koepf Werner M. Seiler Evgenii V. Vorozhtsov (Eds.), Lecture Notes in Computer Science8660, p.p. 242-255.

Z. Koba, H.B. Nielsen, P. Olesen, Nucl. Phys. B40 (1972) 317.

Neal Koblitz, p-adic numbers, p-adic analysis, and Zeta-functions, Springer-Verlag, New York Heidelberg Berlin, 1977.

I.G. Koh and S. Rajpoot, Phys. Lett. 135B, 397 (1983).

P. Kovtun, D. T. Son and A. O. Starinets, Phys. Rev. Lett. 94 (2005) 111606 [arXiv:hep-th/0405231]

Kulish, P.P. and Reshetikhin, N.Yu., Zap. Sem. LOMI 101 (1981) 101 [J. Soviet. Math. 23 (1983) 2435].

Sklyanin, E.K., Funkt. Anal. Pril. 16 (1982) 27 [Funct. Anal. Appl. 16 (1982) 262].Drinfel’d, V.G., DAN SSSR 283 (1985) 1060 [Soviet Math. Dokl. 32 (1985) 254] ; in Proc. Int. Congr. of Mathematics, ed.A.M. Gleason, AMS : Providence (1986).Jimbo, M., Lett. Math. Phys. 10 (1985) 63 ; 11 (1986) 247 ; Commun. Math. Phys. 102 (1986) 537.Woronowicz, S.L., Publ. RIMS-Kyoto 23 (1987) 117 ; Commun. Math. Phys. 111 (1987) 613.

M. Kuster, G. Raffelt and B. Beltran (eds), Lecture Notes in Physics 741 (2008).

A.Yu. Kitaev, A. Shen, M.N. Vyalyi, Classical and Quantum Computation, American Mathematical Society, 2002.

Laughlin, R. (1981). ”Quantized Hall conductivity in two dimensions”. Physical Review B 23 (10): 56325633.

S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 303 (1993) 334.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 279: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

C. Lerche and L. von Smekal, Phys. Rev. D 65 (2002) 125006.

I. Lomidze, On Some Generalizations of the Vandermonde Matrix and their Relations with the Eiler Beta-function, Georgian

Math. Journal 1 (1994) 405.

I. R. Lomidze and N. V. Makhaldiani, SOME PROPERTIES OF THE GENERALIZED EULER BETA FUNCTION,

Memoirs on Differential Equations and Mathematical Physics 56 (2012)

C. Lucchesi, O. Piguet and K. Sibold, Helv. Phys. Acta 61 (1988) 321

C. Lucchesi and G. Zoupanos, Fortschr. Phys. 45 (1997) 129, hep-ph/9604216

V.I. Lushikov et al., Sov. Phys. JETP Lett. 9 (1969) 23

S. Moch, QCD studies and Higgs searches at the LHC, Lectures at the International Achool-Workshop ”Calculations for

Modern and Future Colliders”, July23-August 2, 2012, Dubna, Russian Federation.

N.V. Makhaldiani, Approximate methods of the field theory and their applications in physics of high energy, condensed

matter, plasma and hydrodynamics, Dubna 1980.

N.M. Makhaldiani, Computational Quantum Field Theory, JINR Communication, P2-86-849, Dubna 1986.

N.V. Makhaldiani, Number Fields Dynamics and the

Compactification of Space Problem in the Unified Theories of Fields and Strings,JINR Communications, P2-88-916, Dubna 1988.

N. Makhaldiani, O. Voskresenskaya, On the correspondence between the dynamics with odd and even brackets and

generalized Numbu’s mechanics,JINR Communications, E2-97-418, Dubna 1997.

N. Makhaldiani, The System of Three Vortexes of Two-Dimensional Ideal Hydrodynamics as a New Example of the

(Integrable) Nambu-Poisson Mechanics,JINR Communications E2-97-407, Dubna 1997; [arXiv:solv-int/9804002].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 280: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

N. Makhaldiani, The Algebras of the Integrals of Motion and Modified Bochner-Killing-Yano Structures of the Point

particle Dynamics,JINR Communications E2-99-337, Dubna 1999.

N. Makhaldiani, New Hamiltonization of the Schrodinger Equation by Corresponding Nonlinear Equation for the Potential,

JINR Communications, E2-2000-179, Dubna 2000.

N. Makhaldiani, How to Solve the Classical Problems on Quantum Computers,

JINR Communications, E2-2001-137, Dubna 2001.

N. Makhaldiani, Classical and Quantum Problems for Quanputers, [arXiv:quant-ph/0210184].

N. Makhaldiani, Adelic Universe and Cosmological Constant,

JINR Communications, E2-2003-215 Dubna 2003, [arXiv:hep-th/0312291].

N. Makhaldiani, Nambu-Poisson dynamics of superintegrable systems, Atomic Nuclei, 70 (2007) 564.

N. Makhaldiani, Theory of Quanputers, Sovremennaia Matematica i ee Prilozhenia, 44 (2007) 113; Journal of

Mathematical Sciences, 153 (2008) 159.

N.V. Makhaldiani, Renormdynamics and Scaling Functions, in Proc. of the XIX International Baldin Seminar on High

Energy Physics Problems eds. A.N.Sissakian, V.V.Burov, A.I.Malakhov, S.G.Bondartenko, E.B.Plekhanov, Vol.II, p. 175,Dubna 2008.

N.V. Makhaldiani, Renormdynamics, multiparticle production, negative binomial distribution and Riemann zeta function,

[arXiv:1012.5939v1 [math-ph]] 24 Dec 2010.

N. Makhaldiani, Fractal Calculus (H) and some Applications, Physics of Particles and Nuclei Letters, 8 (2011) 325.

N. Makhaldiani, Regular method of construction of the reversible dynamical systems and their linear extensions -

Quanputers, Atomic Nuclei, 74 (2011) 1040.

Nugzar Makhaldiani, Nambu-Poisson Dynamics with Some Applications,

Physics of Particles and Nuclei, 43 (2012) 703.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 281: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Nugzar Makhaldiani, Renormdynamics, coupling constant unification and universal properties of the multiparticle

production, XXI International Baldin Seminar on High Energy Physics Problems, September 10-15, 2012, PoS(BaldinISHEPP XXI)068.

J. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231, http://arxiv.org/abs/hep-th/9711200

V.A.Matveev, A.N.Sisakian, L.A.Slepchenko, Nucl. Phys. 23 432 (1976).

A.V. Meleshko, N.N. Konstantinov, Dynamics of vortex systems,

Naukova Dumka, Kiev 1993.

W.Miller, Jr. Symmetry and Separation of Variables, Addison-Wesley PC, London, 1977.

M.Muehlleitner, Composite Higgs and SUSY Physics at the LHC, Lectures at the International Achool-Workshop

”Calculations for Modern and Future Colliders”, July23-August 2, 2012, Dubna, Russian Federation.

Y. Nambu, Phys.Rev. D 7 (1973) 2405.

M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge 2000.

L.B.Okun, Leptons and Quarks, North Holland, 1982.

I. Pomeranchuk, Dokl. Akad. Nauk SSSR 78 (1951) 889.

H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346;

L.S.Pontriagin et al., Mathematical Theory of Optimal Processes, Nauka, Moscow, 1983.

M.C.M. Rentmeester, R.G.E. Timmermans, J.L. Friar and J.J. de Swart, Phys. Rev. Lett. 82 (1999) 4992.

A. Renyi, Introduction to information theory, North-Holland, Amsterdam, 1970.

J.J. Sakurai, Currents and mesons, The University of Chicago Press, Chicago 1969.

T. Schaefer and D. Teaney, Rep. Prog. Phys. 72 (2009) 126001.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 282: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

V.Smirnov, Evaluating five-loop Konishi in N=4 SYM, Talk at the International Achool-Workshop ”Calculations for

Modern and Future Colliders”, July23-August 2, 2012, Dubna, Russian Federation.

A. Samarskii, A. Gulin, Numerical Methods, Nauka, Moscow 1989.

Ya.G. Sinai, Topics in Ergodic Theory, Princeton University Press, Princeton NJ 1993.

G. ’t Hooft, report at the Marseille Conference on Yang-Mills Fields, 1972.

G. ’t Hooft, Nucl.Phys. B 61 (1973) 455.

E.C. Titchmarsh, The Theory of the Riemann zeta-function (Clarendon Press, Oxford, 1986).

M.V.Tokarev, I.Zborovsky, Z-Scaling in the Proton-Proton Collisions at RHIC, in Investigations of Properties of Nuclear

Matter at High Temperature and Densities, Editid by A.N. Sisakian, F.A. Soifer, Dubna, 2007.

M.V.Tokarev, I.Zborovsky, T.G.Dedovich, Z-Scaling at RHIC and Tevatron, hep-ph, 0708.246, 2007.

C. Tsallis, J. Stat. Phys. 52 (1988) 479;

C. Tsallis, Brazillian Journal of Physics 29(1) (1999);Murray Gell-Mann and Constantino Tsallis eds., Nonextensive Entropy: Interdisciplinary Applications, Oxford (2004).

Norman Margolus, Tommaso Toffoli, Cellular Automaton Machines,

MIT Press, Cambridge 1987.

L.H. Thomas, Philos. Mag. 3 (1927) 1.

V.S. Vladimirov, Russian Math. Surveys 43 19 (1988).

M.B.Voloshin, K.A.Ter-Martyrosian, Gauge Theory of Elementary Particles, Atomizdat, Moscow 1984.

M.Watkins at http://secamlocal.ex.ac.uk/∼ mwatkins/zeta/physics.htm.

S. Weinberg, Phys. Rev. 166 (1968) 1568

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 283: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

S. Weinberg, Gravitation and Cosmology, New York, 1972.

S.Weinberg, The Quantum Theory of Fields, Volum I - Foundations, Cambridge Univ. Press, 1995.

S.Weinberg, The Quantum Theory of Fields, Volum II - Modern Applications, Cambridge Univ. Press, 1996.

S.Weinberg, The Quantum Theory of Fields, Volum III - Supersymmetry, Cambridge Univ. Press, 2000.

Cheuk-Yin Wong, Grzegorz Wilk, Tsallis Fits to pT Spectra for pp Collisions at LHC, Acta Physica Polonica B42 (2012)

2047, arXiv:1210.3661.

K.G.Wilson and J.Kogut, Phys. Rep. 12C 75 (1974).

E.T. Whittaker, A Treatise on the Analytical Dynamics, Cambridge 1927.

M. E. Machacek and M. T. Vaughn, Nucl. Phys. B 222, 83 (1983).

N.V. Makhaldiani, Approximate methods of the field theory and their applications in physics of high energy, condensed

matter, plasma and hydrodynamics, Dubna 1980.

N.M. Makhaldiani, Computational Quantum Field Theory, JINR Communication, P2-86-849, Dubna 1986.

N.V. Makhaldiani, A New Approach to the Problem of Space Compactification,

JINR Communications, P2-87-306, Dubna 1987.

N.V. Makhaldiani, Number Fields Dynamics and the

Compactification of Space Problem in the Unified Theories of Fields and Strings,JINR Communications, P2-88-916, Dubna 1988.

N. Makhaldiani, The System of Three Vortexes of Two-Dimensional Ideal Hydrodynamics as a New Example of the

(Integrable) Nambu-Poisson Mechanics,JINR Communications E2-97-407, Dubna 1997; [arXiv:solv-int/9804002].

N. Makhaldiani, The Algebras of the Integrals of Motion and Modified Bochner-Killing-Yano Structures of the Point

particle Dynamics,

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 284: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

JINR Communications E2-99-337, Dubna 1999.

N. Makhaldiani, New Hamiltonization of the Schrodinger Equation by Corresponding Nonlinear Equation for the Potential,

JINR Communications, E2-2000-179, Dubna 2000.

N. Makhaldiani, How to Solve the Classical Problems on Quantum Computers,

JINR Communications, E2-2001-137, Dubna 2001.

N. Makhaldiani, Classical and Quantum Problems for Quanputers, [arXiv:quant-ph/0210184].

N. Makhaldiani, Adelic Universe and Cosmological Constant,

JINR Communications, E2-2003-215 Dubna 2003, [arXiv:hep-th/0312291].

N. Makhaldiani, Nambu-Poisson dynamics of superintegrable systems, Atomic Nuclei, 70 (2007) 564.

N. Makhaldiani, Theory of Quanputers, Sovremennaia Matematica i ee Prilozhenia, 44 (2007) 113; Journal of

Mathematical Sciences, 153 (2008) 159.

N.V. Makhaldiani, Renormdynamics and Scaling Functions, in Proc. of the XIX International Baldin Seminar on High

Energy Physics Problems eds. A.N.Sissakian, V.V.Burov, A.I.Malakhov, S.G.Bondartenko, E.B.Plekhanov, Vol.II, p. 175,Dubna 2008.

N.V. Makhaldiani, Renormdynamics, multiparticle production, negative binomial distribution and Riemann zeta function,

[arXiv:1012.5939v1 [math-ph]] 24 Dec 2010.

N. Makhaldiani, Fractal Calculus (H) and some Applications, Physics of Particles and Nuclei Letters, 8 325 (2011).

N. Makhaldiani, Regular method of construction of the reversible dynamical systems and their linear extensions -

Quanputers, Atomic Nuclei, 74 (2011) 1040.

Nugzar Makhaldiani, Nambu-Poisson Dynamics with Some Applications,

Physics of Particles and Nuclei, 43 (2012) 703.

Nugzar Makhaldiani, Renormdynamics, coupling constant unification and universal properties of the multiparticle

production, XXI International Baldin Seminar on High Energy Physics Problems, September 10-15, 2012, PoS(BaldinISHEPP XXI)068.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 285: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

N. V. Makhaldiani, Renormdynamics, Multiparticle Production, Negative Binomial Distribution, and Riemann Zeta

Function, Physics of Atomic Nuclei, 76 1169 (2013).

N.V.Makhaldiani, S.S.Postnov, work in progress

N. Makhaldiani, O. Voskresenskaya, On the correspondence between the dynamics with odd and even brackets and

generalized Numbu’s mechanics,JINR Communications, E2-97-418, Dubna 1997.

J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].

S. Mandelstam, Nucl. Phys. B213, 149 (1983).

V. Matveev, R. Muradyan, A. Tavkhelidze, Lett. Nuovo Cimento 7 719 (1973).

V.A. Matveev, A.N. Sisakian, L.A. Slepchenko, Nucl. Phys. 23 (1976) 432.

A.V. Meleshko, N.N. Konstantinov, Dynamics of vortex systems,

Naukova Dumka, Kiev 1993.

W. Miller, Jr. Symmetry and Separation of Variables, Addison-Wesley PC, London 1977.

C.W. Misner, K.S. Thorne, J.A. Wheeler. Gravitation. W.H.Freeman and Company, twenty third printing 2000.

J.W. Morgan and G. Tian, Ricci Flow and the Poincar Conjecture, Clay Mathematics Monographs, Amer. Math. Soc.,

Cambridge, 2007 [math.DG/0607607].

J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. 262B (1991) 477; R. Barbieri and M. Frigeni, Phys. Lett. 258B (1991) 395;

A. Brignole et al., Phys. Lett. 271B (1991) 123; M. Carena, K. Sasaki and C.E.M. Wagner, Nucl. Phys. 381B (1992) 66;H.E. Haber, R. Hempfling, Phys. Rev. D48 (1993) 4280; P.H. Chankowski, S. Pokorski and J. Rosiek, Phys. Lett. 281B(1992) 100

D. Mumford, Tata Lectures on Theta, Birkhauser 1983.

Y. Nambu, Phys.Rev. D 7 (1973) 2405.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 286: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

A. Neveu and J.H. Schwarz, Nucl. Phys., B31, 86, 1971.

M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge 2000.

H.P. Nilles, Phys. Rept. 110 (1984) 1; H.E. Haber and G.L. Kane, Phys. Rept. 117 (1985) 75; R. Barbieri, Riv. Nuovo Cim.

11 (1988) 1.

V. Novikov, V. Shifman, A. Vainshtein and V. Zakharov, Nucl. Phys. B229, 381 (1983).

S. P. Novikov, S. V.Manakov, L. B. Pitaevskii, and V. E. Zakharov, Theory of solitons. The inverse scattering method,

Plenum Press, New York, 1984.

R. Oehme and W. Zimmermann, Commun. Math. Phys. 97 (1985) 569.

L. Okun, The fundamental constants of physics, Sov. Phys. Usp. 34 (1991) 818.

W. Pauli, Z. Physik 31 765 (1925).

W. Pauli, Phys. Rev. 58 716 (1940).

J. C. Pati and A. Salam, Physical Review D10, 275 (1974).

J. M. Pawlowski, D. F. Litim, S. Nedelko and L. von Smekal, Phys. Rev. Lett. 93 (2004) 152002.

G. Perelman, The entropy formula for the Ricci flow and its geometric applications [math.DG/0211159]; Ricci flow with

surgery on three-manifolds [math.DG/0303109]; Finite extinction time for the solutions to the Ricci flow on certainthree-manifolds [math.DG/0307245].

S. Perlmutter et al., Ap.J. 517, 565 (1999).

M. E. Peskin, arXiv:1207.2516 [hep-ph].

O. Piguet and K. Sibold, Int. J. Mod. Phys. A1 (1986) 913;

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 287: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

M. Planck, Uber irrevesible Strahlungsvorgange, S.-B. Preuss Akad. Wiss. (1899) 440-480; Ann. d. Phys. 1 (1900) 69

reprinted in Max Planck, Physikalische Abhandlungen und Vortrage, Band I. Friedr. Vieweg. 1958, pp. 560-600, pp.614-667.

H.D. Politzer, Phys. Rev. Lett. 30 1346 (1973).

L.S. Pontriagin et al., Mathematical Theory of Optimal Processes, Nauka, Moscow 1983.

P. Ramond, Phys. Rev., D3, 2415, 1971.

M.C.M. Rentmeester, R.G.E. Timmermans, J.L. Friar, J.J. de Swart, Phys. Rev. Lett. 82 4992 (1999).

Riazuddin, Fayyazuddin, Phys. Rev. 147 (1966) 1071.

A.G. Riess et al., Ap.J. 116, 1009 (1998);

B. L. Roberts and W. J. Marciano (eds.), Lepton Dipole Moments, Advanced Series on Directions in High Energy Physics,

Vol. 20 (World Scientific, 2010).

Romming, N.; Hanneken, C.; Menzel, M.; Bickel, J. E.; Wolter, B.; Von Bergmann, K.; Kubetzka, A.; Wiesendanger, R.

(2013). ”Writing and Deleting Single Magnetic Skyrmions”. Science 341 (6146): 6369

A. Sakharov, Pisma Zh.Eksp.Teor.Fiz. 5, 32 (1967), Reprinted in Sov. Phys. Usp. 34 (1991) 392-393 [Usp. Fiz. Nauk 161

(1991) No. 5 61-64].

J.J. Sakurai, Currents and mesons, The University of Chicago Press, Chicago 1969.

A. Samarskii, A. Gulin, Numerical Methods, Nauka, Moscow 1989.

C. Schmidhuber and A.A. Tseytlin, On string cosmology and the RG flow in 2-d field theory, Nucl. Phys. B426 (1994) 187

[arXiv:hep-th/9404180].

J. Schlienz and G. Mahler, Description of Entanglement, Physical Review A 52, pp. 4396-4404 (1995).

J. Schlienz and G. Mahler, The maximal entangled threeparticle state is unique, Physics Letters A 224, pp. 39-44 (1996).

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 288: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

J. Schwinger, Magnetic Charge and Quantum Field Theory, Phys. Rev. 144 (1966) 1087.

Schwinger, J. Electromagnetic mass revisited. Found. Phys. 13, 373 (1983).

Werner M. Seiler, Robin W. Tucker, Involution and Constrained Dynamics I: The Dirac Approach, in Proceedings of

”Scientific Computing, 16th International Workshop, CASC 2014” Warsaw, Poland, September 8-12, 2014, Vladimir P.Gerdt Wolfram Koepf Werner M. Seiler Evgenii V. Vorozhtsov (Eds.), Lecture Notes in Computer Science 8660, p.p.242-255.

Ya.G. Sinai, Topics in Ergodic Theory, Princeton University Press, Princeton NJ 1993.

A. Steyerl, Phys. Lett. B29 (1969) 33

G.J. Stoney, The philosophical magazine and journal of science, 11 (1881) 381.

K. Oura, V.G. Lifshits, A.A. Saranin, Surface science: An introduction. Bergin-Verlag, Berlin-Heidelberg : s.n., 2003.

K.W. Kolasinski, Surface science: foundations of catalysis and nanoscience. Chichester, West Sussex : John Wiley andSons, 2008.G.Antczak, G. Ehrlich, Surf. Sci. Rep. 62 (2003) 39.E.Shustorovich, Metal-surface reaction energetics: theory and applications to heterogeneous analysis, chemisorption, andsurface diffusion. s.l. : VCN Publishers, Inc., 1991

Y. A. Golfand and E. P. Likhtman, JETP Letters 13 (1971) 452; D. V. Volkov and V. P. Akulov, JETP Letters 16 (1972)

621; J. Wess and B. Zumino, Phys. Lett. B49 (1974) 52.P. Fayet and S. Ferrara, Phys. Rep. 32 (1977) 249; M. F. Sohnius, Phys. Rep. 128 (1985) 41; H. P. Nilles, Phys. Rep. 110(1984) 1; H. E. Haber and G. L. Kane, Phys. Rep. 117 (1985) 75; A. B. Lahanas and D. V. Nanopoulos, Phys. Rep. 145(1987) 1.J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Univ. Press, 1983.A. Salam, J. Strathdee, Nucl. Phys. B76 (1974) 477; S. Ferrara, J. Wess, B. Zumino, Phys. Lett. BS1 (1974) 239.S. J. Gates, M. Grisaru, M. Rocek and W. Siegel, Superspace or One Thousand and One Lessons in Supersymmetry,Benjamin Cummings, 1983; P. West, Introduction to supersymmetry and supergravity, World Scientific, 1990; S.Weinberg,The quantum theory of fields, Vol. 3, Cambridge, UK: Univ. Press, 2000.

O. V. Tarasov, A. A. Vladimirov and A. Y. Zharkov, Phys. Lett. B 93 (1980) 429.

T.R. Taylor, and G. Veneziano, Dilaton Couplings at Large Distance, Phys. Lett. B 213, 450 (1988).

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 289: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Tegmark, Max; et al. (2004). Cosmological parameters from SDSS and WMAP. Physical Review D 69 (103501): 103501.

arXiv:astro-ph/0310723.

E.C. Titchmarsh, The Theory of the Riemann zeta-function, Clarendon Press, Oxford 1986.

Norman Margolus, Tommaso Toffoli, Cellular Automaton Machines,

MIT Press, Cambridge 1987.

M.V. Tokarev, I. Zborovsky, Z-Scaling in the Proton-Proton Collisions at RHIC, in Investigations of Properties of Nuclear

Matter at High Temperature and Densities, Editid by A.N. Sisakian, F.A. Soifer, Dubna 2007

L.H. Thomas, Philos. Mag. 3 (1927) 1.

S. B. Treiman, E. Witten, R. Jackiw, B. Zumino, Current Algebra and Anomalies, World Scientific, Singapore 1985).

Alexander Tzalenchuk et al, Quantum Resistance Standard Based on Epitaxial Graphene, Nature Nanotechnology 5, 186 -

189 (2010).

V. S. Vanyashin and M. T. Terentyev, Sov. Phys. JETP 21 (1965) 375.

T. van Ritbergen, J. A. M. Vermaseren and S. A. Larin, Phys. Lett. B 400 (1997)379.

P.G. van Zwol et al, Phys. Rev. B. 80 (2009) 235401.

B.V. Vasilishin et al., JINR Preprint 9-86-512 (Dubna, 1986).

G. Veneziano, A stringy nature needs just two constants, Europhys. Lett. 2 (1986) 199.

G. Veneziano, A Simple/Short Introduction to Pre-Big-Bang Physics/Cosmology, arXiv:hep-th/9802057

A. Vilenkin, Phys. Rev. Lett. 74, 864 (1995).

V.S. Vladimirov, Russian Math. Surveys 43 (1988) 19.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 290: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

M.B. Voloshin, K.A. Ter-Martyrosian, Gauge Theory of Elementary Particles, Atomizdat, Moscow 1984.

J. von Neumann, Theory of self-reproducing automata (University of Illinois Press, Urbana and London, 1966).

M. Watkins at http://secamlocal.ex.ac.uk/∼ mwatkins/zeta/physics.htm.

S. Weinberg, Phys. Rev. 166 (1968) 1568

S. Weinberg, Gravitation and Cosmology, New York 1972.

S. Weinberg (1987). ”Anthropic Bound on the Cosmological Constant”. Phys. Rev. Lett. 59 (22): 2607-2610

S. Weinberg, Rev. Mod. Phys. 49 (1989) 1.

S. Weinberg, The Quantum Theory of Fields, Volum I - Foundations, Cambridge Univ. Press 1995.

S. Weinberg, The Quantum Theory of Fields, Volum II - Modern Applications, Cambridge Univ. Press 1996.

S. Weinberg, The Quantum Theory of Fields, Volum III - Supersymmetry, Cambridge Univ. Press 2000.

S. Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley and

Sons, Inc. 1 edition, 1972;

S. Weinberg, AIP Conf.Proc. 272, 346 (1993).

W. I. Weisberger, Phys. Rev. 143 (1966) 1302.

J. Wess and B. Zumino, Nucl. Phys., B70, 39, 1974

E.T. Whittaker, A Treatise on the Analytical Dynamics, Cambridge 1927.

C. M. Will, The Confrontation between General Relativity and Experiment, Living Rev. Relativity 9, (2006),

http://www.livingreviews.org/lrr-2006-3.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 291: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150].

E. Witten, ”Cosmic Separation Of Phases” Phys. Rev. D30, 272 (1984)

E. Witten, Some Properties of O(32) Superstrings, Phys. Lett. B 149, 351 (1984).

Ya.B. Zeldovich, Sov. Phys. JETP-9 (1959) 1389

Zelikin, Mikhail I. (2000), Homogeneous Spaces and the Riccati Equation in the Calculus of Variations, Berlin:

Springer-Verlag

A. Zelmanov, Kosmologia (Cosmology), in: Razvitie astronomii v SSSR [Development of astronomy in USSR], Nauka,

Moscow, 1967, pp. 320-390, in particular p. 323 (in Russian).

W. Zimmermann, The Renormalization Group of the Model of A4-Coupling in the Abstract Approach of Quantum Field

Theory, Commun. Math. Phys. 76 (1980) 3964.

W. Zimmermann, Commun. Math. Phys. 97 (1985) 211

D. Zwanziger, Phys. Rev. D 65 (2002) 094039.

Sinai Ya. G. Topics in Ergodic Theory. Princeton, NJ: Princeton University Press, 1993.

Nambu Y.// Phys.Rev. D. 1973. V. 7. P. 2405.

Whittaker E.T. A Treatise on the Analytical Dynamics. Cambridge, 1927.

Makhaldiani N. Nambu-Poisson dynamics of superintegrable systems.// Atomic Nuclei. 2007. V. 70. P. 564.

Arnold V.I. Mathematical Methods of Classical Mechanics. New York: Springer, 1978.

Makhaldiani N., Voskresenskaya O. On the correspondence between the dynamics with odd and even brackets and

generalized Nambu’s mechanics. JINR Commun. E2-97-418. Dubna, 1997.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 292: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Berezin F.A. Introduction to Superanalysis. Dordrecht: Reidel, 1987.

Buttin C.// C.R. Acad. Sci. Paris. 1969. V. 269. P. 87.

L.D.Faddeev, Jackiw R.// Phys.Rev.Lett. 1988. V.60. P. 1692.

Makhaldiani N. The Algebras of the Integrals of Motion and Modified Bochner-Killing-Yano Structures of the Point particle

Dynamics. JINR Commun. E2-99-337. Dubna, 1999.

Aref H.// Ann.Rev.Fluid Mech. 1983. V. 15. P. 345.

Meleshko A.V., Konstantinov N.N. Dynamics of vortex systems. Kiev: Naukova Dumka, 1993.

Makhaldiani N. The System of Three Vortexes of Two-Dimensional Ideal Hydrodynamics as a New Example of the

(Integrable) Nambu-Poisson Mechanics. JINR Commun. E2-97-407. Dubna, 1997; solv-int/9804002.

Makhaldiani N. New Hamiltonization of the Schrodinger Equation by Corresponding Nonlinear Equation for the Potential.

JINR Commun. E2-2000-179. Dubna, 2000.

Bagger J. and Lambert N. Modeling multiple M2’s// Phys. Rev. D. 2007. V. 75. P. 045020. [arXiv:hep-th/0611108].

Gustavsson A. Algebraic structures on parallel M2-branes// Nucl. Phys. B. 2009. V. 811. P. 66. arXiv:0709.1260 [hep-th].

Benenti G., Casati G., Strini G. Principles of quantum computation and information, Vol. I: Basic concepts. Singapore:

World Scientific, 2004;Vol. II: Basic tools and special topics. Singapore:World Scientific, 2007.

Nielsen M.A. and Chuang I.L. Quantum computation and quantum information. Cambridge: Cambridge University Press,

2000.

Makhaldiani N. Theory of Quanputers // Sovremennaia Matematica i ee Prilozhenia. 2007. V. 44. P.113; Journal of

Mathematical Sciences. 2008. V. 153. P. 159.

Makhaldiani N. How to Solve the Classical Problems on Quantum Computers. JINR Commun. E2-2001-137. Dubna, 2001.

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247

Page 293: Nugzar Makhaldianitheor.jinr.ru/sqs15/Talks/Makhaldiani.pdfThe Goldberger-Treiman relation (GTR) [Goldberger and Treiman,1958] plays an important role in theoretical hadronic and nuclear

Toffoli T., Margolus N. Cellular Automata. Machines: MIT Press, 1987.

Samarskii A., Gulin A. Numerical Methods. M.: Nauka 1989.

Makhaldiani N. Classical and Quantum Problems for Quanputers, quant-ph/0210184, 2002.

Makhaldiani N. Regular method of construction of the reversible dynamical systems and their linear extensions -

Quanputers // Atomic Nuclei. 2011. V. 74. P. 1040.

P. M. Ho and Y. Matsuo, M5 from M2, JHEP 0806, 105 (2008) [arXiv:0804.3629 [hep-th]]. P. M. Ho, Y. Imamura, Y.

Matsuo and S. Shiba, M5-brane in three-form flux and multiple M2-branes, JHEP 0808, 014 (2008) [arXiv:0805.2898[hep-th]]. For a short review, see P. -M. Ho, A Concise Review on M5-brane in Large C-Field Background, Chin. J. Phys.48, 1 (2010) [arXiv:0912.0445 [hep-th]].

P. K. Townsend, The eleven-dimensional supermembrane revisited, Phys. Lett. B 350, 184 (1995) [arXiv:9501068 [hep-th]].

Makhaldiani N.V. ( JINR Dubna, [email protected] ) August 7 248 / 247