numerical bifurcation analysis of maps - universiteit utrechtkouzn101/nmb_course.pdf · review of...

44
Numerical Bifurcation Analysis of Maps H.G.E. Meijer AAMP (EEMCS) February 16/18 2010 Meijer (University of Twente) Analysis of maps February 16/18 2010 1 / 44

Upload: trinhngoc

Post on 26-Aug-2019

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Numerical Bifurcation Analysis of Maps

H.G.E. Meijer

AAMP (EEMCS)

February 16/18 2010

Meijer (University of Twente) Analysis of maps February 16/18 2010 1 / 44

Page 2: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Introduction

Aim of the course

codim 2 bifurcations are organizing centers in bifurcation diagrams

Part 1 Analysis of codim 2 bifurcations:Normal forms, Center Manifolds, Unfoldings→ Get a feeling of dynamical behaviour.

Part 2 Bifurcations of invariant tori:KAM Resonance tongues, Bubble analysis, homoclinic bifurcations.→ Get a feeling of fine details near torus bifurcations

Infinite sequences of bifurcations

Meijer (University of Twente) Analysis of maps February 16/18 2010 2 / 44

Page 3: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Introduction

Setting

Consider a map

F : x 7→ F (x, α) ∈ Rn, x ∈ Rn, α ∈ Rm.

Study dynamics near a fixed point of the k-th iterate of the map.Fixed points satisfy F (x0, α0)k − x0 = 0 and have multipliers

{µ1, µ2, . . . , µn} = σ(A),

where A = Fx(x0, α0).k is the period of the fixed point.W.l.o.g. k = 1, x0 = 0, α0 = 0.

Meijer (University of Twente) Analysis of maps February 16/18 2010 3 / 44

Page 4: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Introduction

Notation

I variables x ∈ R and z ∈ CI multi-index For a multi-index ν we have ν = (ν1, ν2, . . . , νn), νi ∈ Z≥0ν! = ν1!ν2! . . . νn!,|ν| = ν1 + ν2 + . . .+ νn andν ≤ ν if νi ≤ νi for all i = 1, . . . , n.

I 〈u, v〉 = uT v is the standard scalar product in Cn (or Rn).

Meijer (University of Twente) Analysis of maps February 16/18 2010 4 / 44

Page 5: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Center Manifold and Normal Forms

Center Manifold: 1

Decompose phase space(W ) near steady solution:

W = Wu ⊕Ws ⊕Wc

Manifolds Wi invariant under the mapping F .

Wcritical

Wstable

Meijer (University of Twente) Analysis of maps February 16/18 2010 5 / 44

Page 6: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Center Manifold and Normal Forms

Center Manifold: 2

Center Manifold Wc ( mod (µ) = 1)

Bifurcations occur on Wc.Normal form determines locally properties of the solutions.

Check:

1. Nondegenerate : Coefficients nonzero?

Predict the presence of heteroclinic/homoclinic structures and invariantcircles.

2. Transversal : Depends on parameters

Transversality allows to switch to new branches.

Meijer (University of Twente) Analysis of maps February 16/18 2010 6 / 44

Page 7: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Center Manifold and Normal Forms

Center Manifold: Invariance

u ∈ RnH

G

Rn0 3 w

u

H

w

F

HOMOLOGICAL EQUATION:

F (H(w)) = H(G(w))

where F Critical Map, G Normal FormCenter Manifold x = H(w)

Meijer (University of Twente) Analysis of maps February 16/18 2010 7 / 44

Page 8: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Center Manifold and Normal Forms

Center Manifold Reduction: Ansatz

Let

F (x) = Ax+1

2B(x, x) +

1

6C(x, x, x)

+1

24D(x, x, x, x) +

1

120E(x, x, x, x, x) + · · ·

and expand the functions G,H into Taylor series with unknown coefficients,

G(w) =∑|ν|≥1

1

ν!gνw

ν , H(w) =∑|ν|≥1

1

ν!hνw

ν ,

Meijer (University of Twente) Analysis of maps February 16/18 2010 8 / 44

Page 9: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Center Manifold and Normal Forms

Center Manifold Reduction:Equations

Insert this into the homological equation and collect the coefficients of thewν-terms in the homological equation. This gives a linear system for hν :

Lνhν = Rν .

where Lν = (A− µνI) with the multipliers µ.Singular if µν = 1. Interpretation: These terms are needed in the normal form.

I Iterative solutions for higher order terms.

I Critical coefficients come from singular systems.

I If necessary singular systems are solved by bordered systems.

I Parameters can be included in this reduction process

I Method by Elphick et.al.(1987)

Meijer (University of Twente) Analysis of maps February 16/18 2010 9 / 44

Page 10: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s

Center Manifold Reduction: ODE’s

u ∈ RnH

G

Rn0 3 w

u

H

w

F

Center Manifold Wc (<(λ) = 0)Homological equation:

F (H(w)) = (DwH)G(w)

Lν = (A− 〈ν, λ〉I)

Meijer (University of Twente) Analysis of maps February 16/18 2010 10 / 44

Page 11: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s

Vectorfield Approximation

Observation: composition A ◦ F is close to the identity.Theorem (Takens,Neimark): Suppose Φ : Rn → Rn is a diffeomorphism andDΦ(0) has all eigenvalues on the unit circle. Denote by S the semi-simple part ofDΦ(0). Then there exists a diffeomorphism Ψ and a vectorfield X such that

Ψ ◦ Φ ◦Ψ−1 = φX(t = 1) ◦ S

in the sense of Taylor series.Proof: Global Analysis of Dynamical Systems: Festschrift dedicated to FlorisTakens for his 60th birthday. Eds. H.W Broer, B. Krauskopf G. Vegter, see Thm4.6 p20.Remark:

I Φ is the time-1 map of the flow of the vectorfield X.

I parameters can be included.

Meijer (University of Twente) Analysis of maps February 16/18 2010 11 / 44

Page 12: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s

Reduced ODEs for codim 2 bifurcations

I Cusp x = β1 + β2x+ x3

I Bautin x = x(β1 + β2x2 + x4)

I Bogdanov-Takens

(x1x2

)(x2β1 + β2x1 + x21 − x1x2

)I Zero-Hopf

(x1x2

)(β1 + x21 + sx22)x2(β2 + θx1 + x22

)I Double Hopf

(x1x2

)(x1(β1 − x21 − θx22)x2(β2 − δx21 ± x22)

)

Meijer (University of Twente) Analysis of maps February 16/18 2010 12 / 44

Page 13: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s Fold-Hopf

Fold-Hopf: Normal form

(xz

)(β1 + x2 + s|z|2)(β2 + iω)z + (θ + iϑ)xz + x2z

)Introduce cylindrical coordinates (x, z) = (x1, x2e

iφ), scalings then give amplitude

system

(x1x2

)(β1 + x21 + sx22)x2(β2 + θx1 + x22

)Bifurcation curves:

I fold β1 = 0

I Hopf β1 = −(β2

θ

)2I Torus If sθ < 0, β2 = 0, θβ1 < 0.

I Heteroclinic If s < 0 < θ, β2 = θ3θ−2β1, β1 < 0.

Meijer (University of Twente) Analysis of maps February 16/18 2010 13 / 44

Page 14: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s Fold-Hopf

Fold-Hopf Unfolding s = 1, θ > 0

3 3

1

2

1

4

4

2

β1

β2

S+

S−

S+

S−

0

H

Meijer (University of Twente) Analysis of maps February 16/18 2010 14 / 44

Page 15: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s Fold-Hopf

Fold-Hopf Unfolding s = −1, θ < 0

2

2

1

4

4

1

33

β1

β2

0

S−

S+H

S+0

S−, H

Meijer (University of Twente) Analysis of maps February 16/18 2010 15 / 44

Page 16: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s Fold-Hopf

Fold-Hopf Unfolding s = −1, θ > 0

65

4

3

2

2

3

4

56

1

1

0

β1

β2

0

H+

H

S+

S+

PPS−

S−

T

Meijer (University of Twente) Analysis of maps February 16/18 2010 16 / 44

Page 17: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s Fold-Hopf

Fold-Hopf Unfolding s = 1, θ < 0

3

0

2

4

3

2

1

6

54

6

1

5

β10

β2S+

S−

H+

H−

S+

S−

, H

J

T

Meijer (University of Twente) Analysis of maps February 16/18 2010 17 / 44

Page 18: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s Double Hopf

Double Hopf:Normal form

(w1

w2

)=

((iω1(β) + β1)w1 + f2100w1|w1|2 + f1011w1|w2|2(iω2(β) + β2)w2 + g1110w2|w1|2 + g0021w2|w2|2

)+O(‖(w1, w2)‖4),

(1)There are always two curves of Neimark-Sacker bifurcations.

Meijer (University of Twente) Analysis of maps February 16/18 2010 18 / 44

Page 19: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s Double Hopf

Simple case:parameter diagrams

II

IIIIV

I

V

θ0

δ

1

1 1

1

I II

III IV

V

12

114

311

2

125

2

3

13

6

115

2

15 1014

9

87

6

11

2

13

5

µ1

µ1

µ1

µ1

µ1

µ2 µ2

µ2µ2

µ2T1

T1

T1

T1 T1

T2

T2

T2

H2 H2

H2H2

H2

H1H1

T2

H1H1

H1

T2

Meijer (University of Twente) Analysis of maps February 16/18 2010 19 / 44

Page 20: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s Double Hopf

Simple case:phase portraits

1

4

7

10

13

2 3

6

8 9

12

14

5

15

11

Meijer (University of Twente) Analysis of maps February 16/18 2010 20 / 44

Page 21: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s Double Hopf

Difficult case:parameter diagrams

II

I

VI

V

III

IV

θ

δ

0

16

I II

III IV

7

1

14

7

1

6

2

5

65

20

2319

4

3

13 14 13

12 1215

11 1010 11

15

11 1110

16 1214

15

10

9

1221

17

18

VIV

8

µ1µ1

µ1 µ1

µ1 µ1

T1

T1

T1

T1

T1T2

T2

T2T2 H1

H2

H2

H2

H1 H1

H1

H2 H2

H1

H1

C

T2

H2

C

J

Y

T2

T1

C

J

µ2 µ2

µ2 µ2

µ2 µ2

Meijer (University of Twente) Analysis of maps February 16/18 2010 21 / 44

Page 22: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Intermezzo: ODE’s Double Hopf

Difficult case:phase portraits

21

12

321

17

13

9

5

18

14

10

6

19

15

11

7

20

16

4

8

Meijer (University of Twente) Analysis of maps February 16/18 2010 22 / 44

Page 23: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Review of codim 1 bifurcations Fold and Period-doubling

Fold and Period-doubling

1. Fold: The fixed point has a simple eigenvalue λ1 = 1 and no othereigenvalues on the unit circle, while the restriction of F to a one-dimensionalcenter manifold at the critical parameter value has the form

ξ 7→ ξ +1

2aξ2 +O(ξ3), (2)

where a 6= 0. When the parameter crosses the critical value, two fixed pointscoalesce and disappear. If Av = Fxv and B(u, v) = Fxx[u, v] are evaluatedat the critical fixed point, then

a = 〈q∗, B(q, q)〉, (3)

where Aq = q, AT q∗ = q∗, and 〈q∗, q〉 = 1.2. Flip: The fixed point has a simple eigenvalue λ1 = −1 and no other

eigenvalues on the unit circle, while the restriction of (??) to aone-dimensional center manifold at the critical parameter value can betransformed to the normal form

ξ 7→ −ξ +1

6bξ3 +O(ξ4), (4)

where b 6= 0. When the parameter crosses the critical value, a cycle of period2 bifurcates from the fixed point. This phenomenon is often called theperiod-doubling bifurcation. If C(u, v, w) = Fxxx[u, v, w] is evaluated at thecritical fixed point, then

b = 〈p∗, C(p, p, p) + 3B(p, (In −A)−1B(p, p))〉, (5)

where In is the unit n× n matrix, Ap = −p, AT p∗ = −p∗, and 〈p∗, p〉 = 1.

Meijer (University of Twente) Analysis of maps February 16/18 2010 23 / 44

Page 24: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Review of codim 1 bifurcations Fold and Period-doubling

Neimark-Sacker

The fixed point has simple critical eigenvalues λ1,2 = e±iθ0 and no othereigenvalues on the unit circle. Assume that

eiqθ0 − 1 6= 0, q = 1, 2, 3, 4 (no strong resonances).

Then, the restriction of (??) to a two-dimensional center manifold at the criticalparameter value can be transformed to the normal form

η 7→ ηeiθ0(

1 +1

2d|η|2

)+O(|η|4), (6)

where η is a complex variable and d is a complex number. Further assume that

c = Re d 6= 0.

Under the above assumptions, a unique closed invariant curve around the fixedpoint appears when the parameter crosses the critical value. One has the followingexpression for d:

d =1

2e−iθ0〈v∗, C(v, v, v)+2B(v, (In−A)−1B(v, v))+B(v, (e2iθ0In−A)−1B(v, v))〉,

(7)where Av = eiθ0v, AT v∗ = e−iθ0v∗, and 〈v∗, v〉 = 1.

Meijer (University of Twente) Analysis of maps February 16/18 2010 24 / 44

Page 25: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps

List of local codim 2 bifurcations for maps

(1) µ1 = 1, b = 0 (cusp)

(2) µ1 = −1, c = 0 (generalized flip)

(3) µ1,2 = e±iθ0 ,Re [e−iθ0c1] = 0 (Chenciner bifurcation)

(4) µ1 = µ2 = 1 (1:1 resonance)

(5) µ1 = µ2 = −1 (1:2 resonance)

(6) µ1,2 = e±iθ0 , θ0 = 2π3 (1:3 resonance)

(7) µ1,2 = e±iθ0 , θ0 = π2 (1:4 resonance)

(8) µ1 = 1, µ2 = −1 (fold-flip)

(9) µ1 = 1, µ2,3 = e±iθ0 (“fold-Hopf for maps”)

(10) µ1 = −1, µ2,3 = e±iθ0 (“flip-Hopf for maps”)

(11) µ1,2 = e±iθ1 , µ3,4 = e±iθ2 (“Hopf-Hopf for maps”)

Meijer (University of Twente) Analysis of maps February 16/18 2010 25 / 44

Page 26: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps Cusp

Cusp

The critical normal form is

w 7→ G(w) = w +

(1

2bw2

)+

1

6cw3 + · · ·

on the center manifold

H(w) = wh1 +w2

2h2 +

w3

6h3 + · · ·

The first three terms of the expansion are given by

w : (A− I)h1 = 0w2 : (A− I)h2 = bh1 −B(h1, h1)w3 : (A− I)h3 = ch1 − C(h1, h1, h1)− 3B(h1, h2)

Meijer (University of Twente) Analysis of maps February 16/18 2010 26 / 44

Page 27: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps Cusp

Cusp

So we first obtain the eigenvectors such that

Aq = q, AT p = p, 〈p, q〉 = 1,

Then higher order terms give

b = 〈p,B(q, q)〉 = 0,h2 = −(A− In)INVB(q, q),

and finally the critical normal form coefficient

c = 〈p, C(q, q, q) + 3B(q, h2)〉

Meijer (University of Twente) Analysis of maps February 16/18 2010 27 / 44

Page 28: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps Cusp

Cusp:Unfolding

1

21

2

0

T2

T1 0

T2T1

β2

β1

Γ

M

T1

T2

0

β2

β1

η

Meijer (University of Twente) Analysis of maps February 16/18 2010 28 / 44

Page 29: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps Degenerate Period-Doubling

Degenerate Period-Doubling

Aq = −q, AT p = −p, 〈p, q〉 = 1, c = 0

The critical normal form

w 7→ G(w) = −w +

(1

6cw3

)+

1

120gw5 + · · ·

H(w) = wq +w2

2h2 +

w3

6h3 +

w4

24h4 +

w5

120h5 + · · ·

whereh2 = −(A− In)−1 B(q, q)h3 = −(A+ In)INV [C(q, q, q) + 3B(q, h2)]h4 = −(A− In)−1 [4B(q, h3) + 3B(h2, h2)+

6C(q, q, h2) +D(q, q, q, q)]

g = 〈p, 5B(q, h4) + 10B(h2, h3)+

10C(q, q, h3) + 15C(q, h2, h2)+

10D(q, q, q, h2) + E(q, q, q, q, q)〉

Meijer (University of Twente) Analysis of maps February 16/18 2010 29 / 44

Page 30: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps Degenerate Period-Doubling

Degenerate Period-Doubling:Unfolding

1

1

233

2

LP 2

PD1

β2

β1

Meijer (University of Twente) Analysis of maps February 16/18 2010 30 / 44

Page 31: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps 1:2 Resonance

1:2 Resonance: normalization

The normal form G (including parameters) is:(xy

)7→(

−x+ yβ1 + (−1 + β2)y + c1x

3 + d1x2y

)+ · · ·

If c1 < 0 a codim 1 branch of Neimark-Sacker bifurcation ofdouble period emanates.

Asymptotic expression of the new branch

H2 :(x2, y, β1, β2

)=

(− 1

c1, 0, 1,

(2 +

d1c2

))ε

Meijer (University of Twente) Analysis of maps February 16/18 2010 31 / 44

Page 32: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps 1:2 Resonance

Unfolding c1 > 0

No new local branches

2

4 1

3

2

3

4

1C

β2

β1

E2E0E1

C

0

F(1)−

F(1)+

Meijer (University of Twente) Analysis of maps February 16/18 2010 32 / 44

Page 33: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps 1:2 Resonance

Unfolding c1 < 0:

New codim 1 branch H2 (local bifurcation)

6

4

5

6

1

2

1

23 4

5

3

K

P

F(1)+

F(1)−

0H(1)

H(2)

H(1)

β1

β2 H(2)

E2E1

K

P

E0

Meijer (University of Twente) Analysis of maps February 16/18 2010 33 / 44

Page 34: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps 1:2 Resonance

1:2 Resonance: normalization

Introduce (generalized) eigenvectors:

Aq0 = −q0, Aq1 = −q1 + q0,AT p0 = −p0, AT p1 = −p1 + p0,

〈p0, q1〉 = 〈p1, q0〉 = 1, 〈p0, q0〉 = 〈p1, q1〉 = 0.

Collecting the quadratic terms we get

(A− In)h20 = −B(q0, q0)(A− In)h11 = −B(q0, q1)− h20(A− In)h02 = −B(q1, q1)− 2h11 + h20

These are all solvable, since λ = 1 is not an eigenvalue of A.

Meijer (University of Twente) Analysis of maps February 16/18 2010 34 / 44

Page 35: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps 1:2 Resonance

1:2 Resonance: Cubic normalization

We only need cubic terms to find the coefficients.

c1 = 〈p0, C(q0, q0, q0) + 3B(q0, h20)〉,d1 = 〈p0, C(q0, q0, q1) +B(q1, h20) + 2B(q0, h11)〉

+〈p1, C(q0, q0, q0) + 3B(q0, h20)〉

Non-degenerate if c1 6= 0 and d1 + c1 6= 0.

Meijer (University of Twente) Analysis of maps February 16/18 2010 35 / 44

Page 36: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps 1:2 Resonance

Example I: GHM

{xy

)=

{y

a− b ∗ x− y ∗ y + r ∗ x ∗ y

)

-3

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3

FF

het1

f (2)

R2(2) f (1)

n(2)

R2(1)

f (4)

hom2

t(4)

R1(1)

β

α

f (3)

n(1)

t(1)

hom1

het2

t(3)n(2)

R2(2)

r = −.5

Meijer (University of Twente) Analysis of maps February 16/18 2010 36 / 44

Page 37: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps 1:2 Resonance

Example II: Adaptive control

Golden&Ydstie(1988): xyz

7→ y

bx+ k + yz

z − kyc+y2 (bx+ k + yz − 1)

Unique fixed point

x = y = 1, z = 1− b− k.Loses stability by Period-Doubling or Neimark-Sacker bifurcation.

Meijer (University of Twente) Analysis of maps February 16/18 2010 37 / 44

Page 38: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps 1:2 Resonance

Example II: Bifurcation Diagram

0 0.5 1 1.5 2 2.5 3−1

−0.5

0

0.5

1

R2

k

b

R2 R2 R2

DNS R3 R4

c=.5

Meijer (University of Twente) Analysis of maps February 16/18 2010 38 / 44

Page 39: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps Fold-flip

Fold-flip

The hypernormal form is:(xy

)7→(x+

1

2a0x

2 +1

2b0y

2 +1

6c0x

3 +1

2d0xy

2

−y + xy

)+ · · ·

Nondegeneracy conditions:a0 6= 0, b0 6= 0

andb0c0 − a20b0 − 3a0b0 − a0d0 6= 0.

Approximating vectorfield

X(x, µ) =

µ1 +

(−1

2a0µ1 + µ2

)x1 +

1

2a0x

21 +

1

2b0x

22 + d1x

31 + d2x1x

22

1

2µ1x2 − x1x2 + d3x1x

22 + d4x

32

(8)

with

d1 =1

6

(c0 −

3

2a20

), d2 =

1

2

(d0 +

1

2b0(2− a0)

), d3 =

1

4(a0 − 2), d4 =

1

4b0.

Meijer (University of Twente) Analysis of maps February 16/18 2010 39 / 44

Page 40: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps Fold-flip

Fold-Flip: Critical Phase portraits

b0 > 0

b0 < 0

a0 < −2 −2 < a0 < 0 a0 > 0

a0 > 0−2 < a0 < 0a0 < −2

Meijer (University of Twente) Analysis of maps February 16/18 2010 40 / 44

Page 41: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps Fold-flip

Fold-Flip: Case a0, b0 > 0

4- 4+ 5

6

1

3

2

F−P−

F+ P+

Meijer (University of Twente) Analysis of maps February 16/18 2010 41 / 44

Page 42: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps Fold-flip

Fold-Flip: Case a0 < 0 < b0, 0

1 2

3 5

6

4+4-

P+P+

F−P−

Meijer (University of Twente) Analysis of maps February 16/18 2010 42 / 44

Page 43: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps Fold-flip

Fold-Flip: Case a0 > 0 > b0

1 2

43

F+ P+

F−P−

Meijer (University of Twente) Analysis of maps February 16/18 2010 43 / 44

Page 44: Numerical Bifurcation Analysis of Maps - Universiteit Utrechtkouzn101/NMB_course.pdf · Review of codim 1 bifurcations Fold and Period-doubling Fold and Period-doubling 1. Fold: The

Codim 2 bifurcations of maps Fold-flip

Fold-Flip: Case a0, b0 < 0

1 2

43

P+ F+

P−F−

Meijer (University of Twente) Analysis of maps February 16/18 2010 44 / 44