numerical study on load distribution in hc floors

20
Aix-en-Provence, May 29 - June 1 NUMERICAL STUDY ON LOAD NUMERICAL STUDY ON LOAD DISTRIBUTION IN HC FLOORS DISTRIBUTION IN HC FLOORS P. Bernardi, R. Cerioni, N. Garutti & E. Michelini DISTRIBUTION IN HC FLOORS DISTRIBUTION IN HC FLOORS Dept. of Civil and Environmental Engineering and Architecture, University of Parma, Parma, Italy

Upload: others

Post on 05-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Aix-en-Provence, May 29 - June 1

NUMERICAL STUDY ON LOAD NUMERICAL STUDY ON LOAD DISTRIBUTION IN HC FLOORSDISTRIBUTION IN HC FLOORS

P. Bernardi, R. Cerioni, N. Garutti & E. Michelini

DISTRIBUTION IN HC FLOORSDISTRIBUTION IN HC FLOORS

Dept. of Civil and Environmental Engineering and Architecture, University of Parma, Parma, Italy

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

LOAD DISTRIBUTION IN HC FLOORSLOAD DISTRIBUTION IN HC FLOORS

REQUIREMENTS OF

HC FLOORS• Vertical load bearing capacity

• Transverse load distribution � longitudinal joints

Load

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

MAIN EFFECTS DUE TO CONCENTRATED LOADS:

• additional shear stresses due to torsion

• transverse bending moments � two-way slab behavior of the floor

Load

1/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

• transverse bending moments � two-way slab behavior of the floor

Transverse distribution of shear forces and of bending and torsional moments:

- SIMPLIFIED CURVES (DESIGN STANDARDS)

- NUMERICAL APPROACHES

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

SIMPLIFIED CURVES (UNI EN 1168)SIMPLIFIED CURVES (UNI EN 1168)

Main simplified assumptions:

• Theory of elasticity

• Simply supported floor

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

� Not clear if they are referred to:

• bending moment distribution at midspan

• Simply supported floor

• Five 1200mm wide units

• Line or point loads applied in the

centre or along the edge of the floor

MAY BE VERY

2/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

• bending moment distribution at midspan

• shear force distribution at supports

MAY BE VERY

DIFFERENT FROM

EACH OTHERS

� Not dependent on the ratio EI/GJt of the HC cross section

NUMERICAL APPROACHES required

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

SIMPLIFIED LINEAR ELASTIC FE MODELSSIMPLIFIED LINEAR ELASTIC FE MODELS

• Simply supported floor

• Five units, 1200mm wide and 300mm thick

• Variable net spans (4 - 14m)

Definition of the case studies and adopted FE mesh

INTRODUCTION NLFE ANALYSES (1) NUMERICAL RESULTS CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in • Variable net spans (4 - 14m)

• Floor FE mesh, with four-node, one-layered shell elements:

3/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

• Floor FE mesh, with four-node, one-layered shell elements:

- presence of webs neglected

- same bending stiffness as the real units in the main direction

- overestimation of torsional stiffness

EI/GJt = 0.73 (effective value 1.06)

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

SIMPLIFIED LINEAR ELASTIC FE MODELSSIMPLIFIED LINEAR ELASTIC FE MODELS

Joint modelling

Two adopted approaches:

1

2

INTRODUCTION NLFE ANALYSES (1) NUMERICAL RESULTS CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

“Model S1”: spring elements

connected to shell elements

modelling the units

Spring stiffness/Shell thickness evaluated

so to simulate an hinge behaviour

1

2

3

4/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

“Model S2”: horizontal shell

elements with variable thickness,

connected to shell elements

modelling the units

1

2

3

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

SIMPLIFIED FE MODELS: NUMERICAL RESULTSSIMPLIFIED FE MODELS: NUMERICAL RESULTS

Bending moment,

slab j: βj·qL2/8

Load on slab j:

αj·qL

-]

theoretical [9]

EI/GJt = 0.73line load on panel 3

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS (1) CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

0.00

0.10

0.20

0.30

0.40

0.50

lenght [m]

ββββ1 ≡ ββββ5

ββββ2 ≡ ββββ4

ββββ3

fra

ctio

n o

f b

end

ing

mo

men

t [

-

UNI EN 1168theoretical [9]numerical, S1 model

numerical, S2 model

0.00

0.10

0.20

0.30

0.40

0.50

lenght [m]

αααα1 ≡ αααα5

αααα2 ≡ αααα4

αααα3

fra

ctio

n o

f to

tal lo

ad

[ -

]

theoretical [9]numerical, S1 modelnumerical, S2 model

([9] Lindström 2010) ([9] Lindström 2010)

5/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

0.00

2 4 6 8 10 12 14

0.00

2 4 6 8 10 12 14a) b)

• Shear at support less distributed with respect to bending effects.

• Similar numerical curves (S1, S2).

Better agreement with theoretical provisions in terms of bending effects.

bending moment at midspan total load at support

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

Bending moment,

slab j: βj·qL2/8

Load on slab j:

αj·qL

0.50

0.60

0.70

ββββ1

fract

ion

of

ben

din

g m

om

ent

[ -

]

theoretical [9]numerical, S1 modelnumerical, S2 model

0.50

0.60

0.70

αααα1

fract

ion

of

tota

l lo

ad

[ -

]

theoretical [9]numerical, S1 modelnumerical, S2 model line load on panel 1

SIMPLIFIED FE MODELS: NUMERICAL RESULTSSIMPLIFIED FE MODELS: NUMERICAL RESULTS

EI/GJt = 0.73

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS (1) CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

Bending moment,

slab j: βj·PL/4

Load on slab j:

αj·P

0.70

ββββ

fract

ion

of

ben

din

g m

om

ent

[ -

]

theoretical [9]

0.70

]

theoretical [9]numerical, S1 model

0.00

0.10

0.20

0.30

0.40

2 4 6 8 10 12 14

lenght [m]

fract

ion

of

ben

din

g m

om

ent

[

ββββ2

ββββ3

ββββ4 ββββ5

0.00

0.10

0.20

0.30

0.40

2 4 6 8 10 12 14

lenght [m]

fract

ion

of

tota

l lo

ad

[

αααα2

αααα3

αααα4 αααα5

a) b)

point load on panel 1

Shear effects less distributed than

bending ones.

6/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

0.00

0.10

0.20

0.30

0.40

0.50

0.60

2 4 6 8 10 12 14

lenght [m]

ββββ1

fract

ion

of

ben

din

g m

om

ent

[

theoretical [9]numerical, S1 modelnumerical, S2 model

ββββ2

ββββ3

ββββ4 ββββ5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

2 4 6 8 10 12 14

lenght [m]

αααα1

fract

ion

of

tota

l lo

ad

[ -

] numerical, S1 modelnumerical, S2 model

αααα2

αααα3

αααα4 αααα5

a) b)

point load on panel 1

Bending effects

less distributed than shear ones.

([9] Lindström 2010)bending moment at midspan total load at support

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

Bending moment,

slab j: βj·qL2/8

Load on slab j:

αj·qL

0.50

0.60

0.70

ββββ1

fract

ion

of

ben

din

g m

om

ent

[ -

]

theoretical [9]numerical, S1 modelnumerical, S2 model

0.50

0.60

0.70

αααα1

fract

ion

of

tota

l lo

ad

[ -

]

theoretical [9]numerical, S1 modelnumerical, S2 model line load on panel 1

SIMPLIFIED FE MODELS: NUMERICAL RESULTSSIMPLIFIED FE MODELS: NUMERICAL RESULTS

EI/GJt = 0.73

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS (1) CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

Bending moment,

slab j: βj·PL/4

Load on slab j:

αj·P

0.70

ββββ

fract

ion

of

ben

din

g m

om

ent

[ -

]

theoretical [9]

0.70

]

theoretical [9]numerical, S1 model

0.00

0.10

0.20

0.30

0.40

2 4 6 8 10 12 14

lenght [m]

fract

ion

of

ben

din

g m

om

ent

[

ββββ2

ββββ3

ββββ4 ββββ5

0.00

0.10

0.20

0.30

0.40

2 4 6 8 10 12 14

lenght [m]

fract

ion

of

tota

l lo

ad

[

αααα2

αααα3

αααα4 αααα5

a) b)

point load on panel 1

Shear effects less distributed than

bending ones.

6/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

0.00

0.10

0.20

0.30

0.40

0.50

0.60

2 4 6 8 10 12 14

lenght [m]

ββββ1

fract

ion

of

ben

din

g m

om

ent

[

theoretical [9]numerical, S1 modelnumerical, S2 model

ββββ2

ββββ3

ββββ4 ββββ5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

2 4 6 8 10 12 14

lenght [m]

αααα1

fract

ion

of

tota

l lo

ad

[ -

] numerical, S1 modelnumerical, S2 model

αααα2

αααα3

αααα4 αααα5

a) b)

point load on panel 1

Bending effects

less distributed than shear ones.

([9] Lindström 2010)bending moment at midspan total load at support

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

MORE COMPLEX FE MODELSMORE COMPLEX FE MODELS

Simplified models not able to represent the effective behaviour of HC floors

For a correct description of shear and torsion transferring mechanisms it is

necessary to model each web with solid or shell elements

INTRODUCTION NLFE ANALYSES (2) NUMERICAL RESULTS CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in necessary to model each web with solid or shell elements

7/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

FE mesh, with four-node, one-layered shell elements representing the middle

plane of the webs and of the bottom and top slabs for HC units

EI/GJt = 1.06 (effective value)

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

MORE COMPLEX FE MODELSMORE COMPLEX FE MODELS

Joint modelling1

2

INTRODUCTION NLFE ANALYSES (2) NUMERICAL RESULTS CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

“Model C1”: spring elements

connected to shell elements

nodes, in the external webs of

the units

“Model C2”: horizontal shell

elements connected to shell

element nodes, in the external

same as

“Model S1”

same as

“Model S2”

8/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

element nodes, in the external

webs of the units

“Model C3”: vertical shell

elements connected to shell

element nodes, in the external

webs of the units

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

COMPARISONS BETWEEN SIMPLIFIED AND COMPARISONS BETWEEN SIMPLIFIED AND COMPLEX MODELSCOMPLEX MODELS

• Same modelling technique for joints but different schematization for units

e.g.:

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS (2) CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

Bending moment,

slab j: βj·qL2/8

Load on slab j:

αj·qL

0.70

0.80

0.90

ββββ

fra

ctio

n o

f b

end

ing m

om

ent

[ -

]

numerical, C2 modelnumerical, S2 model

0.70

0.80

0.90

αααα1

numerical, C2 modelnumerical, S2 model

fra

ctio

n o

f to

tal lo

ad

[ -

]

e.g.:

S2

When considering the real floor

geometry

C2

line load on panel 1

9/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

0.00

0.10

0.20

0.30

0.40

0.50

0.60

2 4 6 8 10 12 14

lenght [m]

ββββ1

fra

ctio

n o

f b

end

ing m

om

ent

[

ββββ2

ββββ3

ββββ4 ββββ5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

2 4 6 8 10 12 14

lenght [m]

fra

ctio

n o

f to

tal lo

ad

[

αααα3

αααα2

αααα4 αααα5

a) b)

greater concentration

of loading

effects

bending moment at midspan total load at support

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

COMPARISONS AMONG COMPLEX MODELSCOMPARISONS AMONG COMPLEX MODELS• Same modelling technique for units but different schematization for joints

Bending moment,

slab j: βj·qL2/8

Load on slab j:

αj·qL

EI/GJt = 1.06line load on panel 3

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS (2) CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in j

j

0.00

0.10

0.20

0.30

0.40

0.50

0.60

lenght [m]

ββββ1 ≡ ββββ5

ββββ2 ≡ ββββ4

ββββ3

fract

ion

of

ben

din

g m

om

ent

[ -

]

theoretical [9]numerical, C1 modelnumerical, C2 model

numerical, C3 model

0.00

0.10

0.20

0.30

0.40

0.50

0.60

lenght [m]αααα1 ≡ αααα5

αααα2 ≡ αααα4

αααα3

theoretical [9]numerical, C1 modelnumerical, C2 model

numerical, C3 model

fra

ctio

n o

f to

tal lo

ad

[ -

]

10/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

0.00

2 4 6 8 10 12 14

lenght [m]

0.00

2 4 6 8 10 12 14

lenght [m]

a) b)

� Models C1, C2, C3 predict the different behaviour in shear and bending

� Overestimation of load effects with respect to theoretical solutions

bending moment at midspan total load at support([9] Lindström 2010)

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

� Different

Bending moment,

slab j: βj·qL2/8

Load on slab j:

αj·qL

0.80

0.90

fra

ctio

n o

f b

end

ing

mom

ent

[ -

]

theoretical [9]numerical, C1 modelnumerical, C2 model

0.80

0.90

αααα1

theoretical [9]numerical, C1 model

-]

COMPARISONS AMONG COMPLEX MODELSCOMPARISONS AMONG COMPLEX MODELSline load on panel 1

EI/GJt = 1.06

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS (2) CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

Different behaviour in shear and bending

� Overestimation of load effects with respect to theoretical

solutions

especially for shear

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

2 4 6 8 10 12 14

lenght [m]

ββββ1

fra

ctio

n o

f b

end

ing

mom

ent

[

numerical, C2 model

ββββ2

ββββ3

ββββ4 ββββ5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

2 4 6 8 10 12 14

lenght [m]

αααα1

numerical, C2 model

fra

ctio

n o

f to

tal lo

ad

[ -

αααα2

αααα3

αααα4

αααα5

0.75

0.85

0.95

fra

ctio

n o

f b

end

ing

mom

ent

[ -

]

theoretical [9]numerical, C3 model

0.75

0.85

0.95

αααα1

theoretical [9]numerical, C3 model

fract

ion

of

tota

l lo

ad

[ -

]

a) b)

11/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

especially for shear distribution

-0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

2 4 6 8 10 12 14

lenght [m]

ββββ1

fra

ctio

n o

f b

end

ing

mom

ent

[

ββββ2

ββββ3

ββββ4 ββββ5

-0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

2 4 6 8 10 12 14

lenght [m]

1

fract

ion

of

tota

l lo

ad

[

αααα2

αααα3

αααα4

αααα5

a) b)

bending moment at midspan total load at support ([9] Lindström 2010)

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

� Different

Bending moment,

slab j: βj·PL/4

Load on slab j:

αj·P

0.60

0.70 ββββ1

fract

ion

of

ben

din

g m

om

ent

[ -

]

theoretical [9]numerical, C1 modelnumerical, C2 model 0.60

0.70

αααα1

theoretical [9]numerical, C1 model

-]

COMPARISONS AMONG COMPLEX MODELSCOMPARISONS AMONG COMPLEX MODELSpoint load on panel 1

EI/GJt = 1.06

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS (2) CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

� Different behaviour in shear and bending

� Overestimation of total load with respect to theoretical

solutions

� Greater load effects redistribution

0.00

0.10

0.20

0.30

0.40

0.50

0.60

2 4 6 8 10 12 14

lenght [m]

fract

ion

of

ben

din

g m

om

ent

[

numerical, C2 model

ββββ2

ββββ3

ββββ4 ββββ5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

2 4 6 8 10 12 14

lenght [m]

1

numerical, C2 model

fract

ion

of

tota

l lo

ad

[ -

αααα2

αααα4 αααα5

αααα3

0.65

0.75

0.85

ββββ1

fract

ion

of

ben

din

g m

om

ent

[ -

]

theoretical [9]numerical, C3 model

0.65

0.75

0.85

αααα1

theoretical [9]numerical, C3 model

fract

ion

of

tota

l lo

ad

[ -

]

c) d)

12/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

effects redistribution

in bending with respect to shear, differently from

theoretical solutions

-0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

2 4 6 8 10 12 14

lenght [m]

fract

ion

of

ben

din

g m

om

ent

[

ββββ2

ββββ3

ββββ4 ββββ5

-0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

2 4 6 8 10 12 14

lenght [m]

1

fract

ion

of

tota

l lo

ad

[

αααα2

αααα3

αααα4

αααα5

c) d)

bending moment at midspan total load at support ([9] Lindström 2010)

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

FE MODEL VALIDATION FE MODEL VALIDATION –– COMPARISONS COMPARISONS WITH EXPERIMENTAL RESULTSWITH EXPERIMENTAL RESULTS

Simulation of a full-scale test on a HC floor (Suikka et al., VTT, 1991)

through the complex models

Geometry of the specimen:

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS (2) CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in Geometry of the specimen:

• Six 400 mm thick panels

• Simply supported floor (net span = 12.1 m)

Loading arrangement:

Point load positions:

• P1

• P2

• P3

floor edge, L/6 from one support

floor edge, midspan

centre of panel 3, L/6 from one support

4 loading cases

(service

13/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

• P3

• P4

centre of panel 3, L/6 from one support

centre of panel 3, midspan

(service

loads)

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

Flexural behaviour

Numerical values of

midspan deflections are:

FE MODEL VALIDATION FE MODEL VALIDATION –– COMPARISONS COMPARISONS WITH EXPERIMENTAL RESULTSWITH EXPERIMENTAL RESULTS

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS (2) CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

Torsional behaviour

midspan deflections are:

• similar to experimental

ones • not influenced by joint

modelling technique

Theoretical provisions (for

5 units) suggest a lower redistribution

0

5

10

15

20

25

30

35

40

45

0 1.2 2.4 3.6 4.8 6 7.2

x [m]

numerical, C2 model

numerical, C3 model

experimental

theoretical [9]

1 2 3 4 5 6panel n°

mid

spa

n d

efle

ctio

n d

istr

ibu

tion

[%

]

0

5

10

15

20

25

30

35

40

0 1.2 2.4 3.6 4.8 6 7.2

x [m]

numerical, C2 model

numerical, C3 model

experimental

theoretical [9]

1 2 3 4 5 6panel n°

mid

spa

n d

efle

ctio

n d

istr

ibu

tion

[%

]

1 2 3 4 5 6panel n° 1 2 3 4 5 6panel n°

14/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

Torsional behaviour

Numerical values of

torsional moments are

affected by joint modelling

model C3 better fits experimental data

([9] Lindström 2010)

-2

0

2

4

6

8

10

12

0.0 1.2 2.4 3.6 4.8 6.0 7.2

x [m]

numerical, C2 model

numerical, C3 model

experimental

1 2 3 4 5 6panel n°

tors

ion

al m

om

ent

at

sup

po

rt [k

Nm

]

-10

-8

-6

-4

-2

0

2

4

6

8

10

0.0 1.2 2.4 3.6 4.8 6.0 7.2

x [m]

numerical, C2 model

numerical, C3 model

experimental

1 2 3 4 5 6panel n°

tors

ion

al m

om

ent

at

sup

po

rt [k

Nm

]

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

Flexural behaviour

Numerical values of

midspan deflections are:

FE MODEL VALIDATION FE MODEL VALIDATION –– COMPARISONS COMPARISONS WITH EXPERIMENTAL RESULTSWITH EXPERIMENTAL RESULTS

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS (2) CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

Torsional behaviour

midspan deflections are:

• similar to experimental

ones • not influenced by joint

modelling technique

Theoretical provisions (for

5 units) suggest a lower redistribution

0

5

10

15

20

25

30

35

40

45

0 1.2 2.4 3.6 4.8 6 7.2

x [m]

numerical, C2 model

numerical, C3 model

experimental

theoretical [9]

1 2 3 4 5 6panel n°

mid

spa

n d

efle

ctio

n d

istr

ibu

tion

[%

]

0

5

10

15

20

25

30

35

40

0 1.2 2.4 3.6 4.8 6 7.2

x [m]

numerical, C2 model

numerical, C3 model

experimental

theoretical [9]

1 2 3 4 5 6panel n°

mid

spa

n d

efle

ctio

n d

istr

ibu

tion

[%

]

1 2 3 4 5 6panel n° 1 2 3 4 5 6panel n°

14/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

Torsional behaviour

Numerical values of

torsional moments are

affected by joint modelling

model C3 better fits experimental data

([9] Lindström 2010)

-2

0

2

4

6

8

10

12

0.0 1.2 2.4 3.6 4.8 6.0 7.2

x [m]

numerical, C2 model

numerical, C3 model

experimental

1 2 3 4 5 6panel n°

tors

ion

al m

om

ent

at

sup

po

rt [k

Nm

]

-10

-8

-6

-4

-2

0

2

4

6

8

10

0.0 1.2 2.4 3.6 4.8 6.0 7.2

x [m]

numerical, C2 model

numerical, C3 model

experimental

1 2 3 4 5 6panel n°

tors

ion

al m

om

ent

at

sup

po

rt [k

Nm

]

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

Shear behaviour

Numerical values of

support reactions are

FE MODEL VALIDATION FE MODEL VALIDATION –– COMPARISONS COMPARISONS WITH EXPERIMENTAL RESULTSWITH EXPERIMENTAL RESULTS

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS (2) CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

support reactions are

affected by joint modelling

Theoretical provisions (for

5 units) suggest a greater

redistribution

([9] Lindström 2010)

-20

0

20

40

60

80

100

0.0 1.2 2.4 3.6 4.8 6.0 7.2

x [m]

numerical, C2 model

numerical, C3 model

experimental

theoretical [9]

1 2 3 4 5 6panel n°

sup

po

rt r

eact

ion

dis

trib

uti

on

[%

]

0

5

10

15

20

25

30

35

40

45

0.0 1.2 2.4 3.6 4.8 6.0 7.2

x [m]

numerical, C2 model

numerical, C3 model

experimental

theoretical [9]

1 2 3 4 5 6panel n°

sup

po

rt r

eact

ion

dis

trib

uti

on

[%

]

15/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

� Load case P2: similar response of models C2 and C3, close to experimental data in

the central part of the floor.

� Load case P4: trend of models C2 and C3 consistent with theoretical provisions

even if it seems not to be confirmed by experimental data.

Higher concentration of loading effects for model C2 with respect to model C3.

([9] Lindström 2010)

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

CONCLUSIONSCONCLUSIONS

• FE procedures represent a useful tool for analyzing the distribution of

loading effects in HC floors. Different modelling techniques have been

applied both for panels and for longitudinal joints, with an increasing

degree of complexity.

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in degree of complexity.

• When a simplified approach is used for panel discretization, the

global behaviour is very close to theoretical one both in flexure and in

shear, independently of joint modelling.

• When a schematization more close to effective panel geometry is

adopted, a larger gap between numerical and theoretical provisions can

be observed (especially for shear distribution), since FE models

suggest a minor redistribution of load effects among panels. This trend

16/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

suggest a minor redistribution of load effects among panels. This trend

seems to be confirmed also by experimental data, which are quite

correctly predicted by complex approaches.

• In this last case, joint modelling exerts a major influence on structural

response.

, E

. M

ich

eli

ni

inH

Cfl

oo

rs”

FURTHER DEVELOPMENTSFURTHER DEVELOPMENTS

Further developments will be relative to the extension of this model to

nonlinear FE analysis, able to describe global HC floor behaviour up

to failure

INTRODUCTION NLFE ANALYSES NUMERICAL RESULTS CONCLUSIONS

Be

rna

rdi,

R. C

eri

on

i, N

. G

aru

tti,

E. M

ich

eli

ni

“N

um

eri

ca

l s

tud

yo

nlo

ad

dis

trib

uti

on

in

ACKNOWLEDGEMENTSACKNOWLEDGEMENTS

This research work is part of a larger study funded by the ASSAP

Association (Prestressed HC floor Producers Association).

Authors gratefully acknowledge Dr Gösta Lindström at Strängbetong

(Sweden), for allowing the use of his load distribution curves and for

his valuable suggestions on FE modelling.

17/17

P. B

ern

ard

i“N

um

eri

ca

l s

tud

y

his valuable suggestions on FE modelling.

The Authors would also like to thank Dr Tony Crane at IPHA, as well

as Dr Olli Korander and Dr Erkki Kaivola at Consolis Technology Oy

(Finland), for having provided the technical reports containing the

experimental data.