nureg/ia-0135, 'post-test analysis of piper-one po-ic-2 ...po-ic-2 experiment by relap5/mod3...

212
NUREG/IA-0135 CAMP006 International Agreement Report Post-Test Analysis of PIPER-ONE PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, F. D'Auria, G. M. Galassi, M. Mazzini University of Pisa Via Diotisalvi, 2 1-56126 Pisa Italy Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commision Washington, DC 20555-0001 November 1996 Prepared as part of The Agreement on Research Participation and Technical Exchange under the International Thermal-Hydraulic Code Assessment and Maintenance Program (CAMP) Published by U.S. Nuclear Regulatory Commission

Upload: others

Post on 10-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

NUREG/IA-0135CAMP006

InternationalAgreement Report

Post-Test Analysis of PIPER-ONEPO-IC-2 Experiment byRELAP5/MOD3 Codes

Prepared byR. Bovalini, F. D'Auria, G. M. Galassi, M. Mazzini

University of PisaVia Diotisalvi, 21-56126 PisaItaly

Office of Nuclear Regulatory ResearchU.S. Nuclear Regulatory CommisionWashington, DC 20555-0001

November 1996

Prepared as part ofThe Agreement on Research Participation and Technical Exchangeunder the International Thermal-Hydraulic Code Assessmentand Maintenance Program (CAMP)

Published byU.S. Nuclear Regulatory Commission

Page 2: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

AVAILABIUTY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 2120 L Street. NW., Lower Level, Washington. DC 20555-0001

2. The Superintendent of Documents, U.S. Government Printing Office, P. 0. Box 37082, Washington. DC

20402-9328

3. The National Technical Information Service. Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications, It is not in-tended to be exhaustive.

Referenced documents available for Inspection and copying for a fee from the NRC Public Document RoomInclude NRC correspondence and Internal NRC memoranda; NRC bulletins, circulars, Information notices, In-spection and investigation notices; licensee event reports; vendor reports and correspondence; Commissionpapers: and applicant and licensee documents and correspondence.

The following documents In the NUREG series are available for purchase from the Government Printing Office:formal NRC staff and contractor reports. NRC-sponsored conference proceedings, international agreementreports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regula-tions In the Code of Federal Regulations. and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service Include NUREG-series reports and tech-nical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission,forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries Include all open literature Items, such as books,Journal articles, and transactions. Federal Register notices. Federal and State legislation, and congressionalreports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference pro-ceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free. to the extent of supply. upon written request to the Officeof Administration, Distribution and Mail Services Section. U.S. Nuclear Regulatory Commission, Washington,DC 20555-0001.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are main-tained at the NRC Library, Two White Flint North. 11545 Rockvllle Pike. Rockville. MD 20852-2738, for use bythe public. Codes and standards are usually copyrighted and may be purchased from the originating organiza-tion or. If they are American National Standards. from the American National Standards institute, 1430 Broad-way, New York, NY 10018-3308.

DISCLAIMER NOTICE

This report was prepared under an international cooperative agreement for the exchange of technical informa-tion. Neither the United States Government nor any agency thereof, nor any of their employees, makes anywarranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or theresults of such use, of any information, apparatus, product, or process disclosed in this report, or representsthat its use by such third party would not infringe privately owned rights.

Page 3: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

NUREG/IA-0135CAMP006

InternationalAgreement Report

Post-Test Analysis of PIPER-ONEPO-IC-2 Experiment byRELAP5/MOD3 Codes

Prepared byR. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini

University of PisaVia Diotisalvi, 21-56126 PisaItaly

Office of Nuclear Regulatory ResearchU.S. Nuclear Regulatory CommisionWashington, DC 20555-0001

November 1996

Prepared as part ofThe Agreement on Research Participation and Technical Exchangeunder the International Thermal-Hydraulic Code Assessmentand Maintenance Program (CAMP)

Published byU.S. Nuclear Regulatory Commission

Page 4: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 5: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

ABSTRACT

RELAP5/MOD3.1 was applied to the PO-IC-2 experiment performed in PIPER-ONE facility,which has been modified to reproduce typical isolation condenser thermal-hydraulic conditions.RELAP5 is a well known code widely used at the University of Pisa during the past seven years.

RELAP5IMOD3.1 was the latest version of the code made available by the Idaho National

Engineering Laboratory at the time of the reported study. PIPER-ONE is an experimental facility

simulating a General Electric BWR-6 with volume and height scaling ratios of 1/2200 and lI,

respectively. In the frame of the present activity a once-through heat exchanger immersed in a

pool of ambient temperature water, installed approximately 10 m above the core, was utilized to

reproduce qualitatively the phenomenologies expected for the Isolation Condenser in the

simplified BWR (SBWR). The PO-IC-2 experiment is the flood up of the PO-SD-8 and has beendesigned to solve some of the problems encountered in the analysis of the PO-SD-8 experiment.

A very wide analysis is presented hereafter including the use of different code versions.

mii

Page 6: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 7: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

CONTENTS

ABSTRACT ......................................................................................................................... iii

LIST OF FIGURES ................................................................................. vii

LIST OF TABLES .................................................................................. ix

ACKNOW LEDGM ENTS ................................................................................................... xi

1. INTRODUCTION .............................................................................................................. 1

2. DESCRIPTION OF THE EXPERIM ENT ...................................................................... 32.1 PIPER-ONE Facility ........................................................................................ 32.2 TEST PO-IC-2 ................................................................................................. 11

2.2.1 Planning of the test ............................................................................. 112.2.2 Test execution ................................................................................... 112.2.3 Test results ........................................................................................ 11

3. ADOPTED CODES A D NODALIZATION ............................................................... 27

3.1 The used codcs .............................................................................................. 27

3.2 Strategy of calculations and specific objectives ............................................ 27

3.3 Adopted nodalization ..................................................................................... 27

4. ANALYSIS OF POST-TEST CALCULATION RESULTS .......................................... 39

4.1 Steady state calculations (Phase I of the post-test analysis) ........................... 39

4.2 Reference calculation results (Phase 2 of the post-test analysis) .................... 44

4.2.1 Primary circuit behavior ................................................................... 45

4.2.2 IC behavior ........................................................................................ 46

4.2.3 Heat transfer coefficient across the IC tubes ................................... 48

4.3 Sensitivity Calculations (Phase 3, of the Post-test analysis) .............. 50

4.3.1 Significant results ............................................................................ 51

4.3.2 Results in Apps. 2 and 4 ................................................................... 68

4.3.3. Isolation of downcomer (App.3) ..................................................... 68

4.4 Scaling analysis .............................................................................................. 69

5. CONCLUSIONS ............................................................................................................... 71

REFERENCES ...................................................................................................................... 73

APPENDIX 1: Results of reference calculation (Post-Test IC31) .................................... Al

APPENDIX 2: IC36 results .............................................................................................. A2

APPENDIX 3: IC37 results .............................................................................................. A3

APPENDIX 4: ICA6 results ........................................................................................... A4

APPENDIX 5: Listing of RELAP5/M od3.1 input .......................................................... A5

APPENDIX 6: Overview of the scaling analysis ............................................................ A6

v

Page 8: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 9: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

LIST OF FIGURES

Figure 1: Sketch of PIPER-ONE facility ........................................................................ 4

Figure 2: Comparison between main regions in PIPER-ONE and in BWR-6 ................. 5

Figure 3: Details of the heating rod of PIPER-ONE ....................................................... 5

Figure 4: Connection between isolation condenser loop and PIPER-ONE loop ............ 6

Figure 5: Sketch of isolation condenser pool with temperature measurementlocations (part A) .............................................................................................. 8

Figure 6: Sketch of isolation condenser pool with temperature measurementlocations (part B) .............................................................................................. 9

Figure 7: Core power and lower plenum pressure ......................................................... 16

Figure 8: Core power and fluid temperature in lower plenum ...................................... 16

Figure 9: Core power and downcomer level ................................................................. 17

Figure 10: Core power and core level ............................................................................. 17

Figure 11: Pressure drop and flowrate across IC ............................................................ 18

Figure 12: Tube "A" axial temperature distribution (external TC) .................................. 18

Figure 13: Tube "A" internal and external TC (upper elevation) ..................................... 19

Figure 14: Tube "A" fluid temperature and external TC (middle elevation) ................... 19

Figure 15: Tubes "A" and "B" fluid temperature (middle elevation) ............................. 20

Figure 16: Tubes "A," "B" and "C" external TC (middle elevation) ............................... 20

Figure 17: IC fluid temperatures (inlet center and outlet) ................................................ 21

Figure 18: Pool internal axial fluid temperatures ............................................................ 21

Figure 19: Pool internal temperatures in different azimutal positions ............................. 22

Figure 20: Pool internal and external (upper elevation) .................................................. 22

Figure 21: Pool internal and external (middle elevation) ................................................ 23

Figure 22: Pool internal and external (lower elevation) .................................................. 23

Figure 23: Pool internal and external different positions ................................................ 24

Figure 24: Temperature at IC inlet comparison with saturation temperature ................... 24

Figure 25: Rod power and thermal power across IC ....................................................... 25

Figure 26: Temperature jump across the wall ................................................................. 25

Figure 27: Fluid temperature disuniformity across tubes ................................................ 26

Figure 28: Surface temperature disuniformities ............................................................... 26

Figure 29: Nodalization of PIPER-ONE loop ................................................................. 37

Figure 30: Measured and calculated trends of lower plenum pressure ............................ 42

Figure 31: Measured and calculated trends of lower plenum temperature ..................... 42

Figure 32: Measured and calculated trends of core level ................................................ 43

Figure 33: Measured and calculated trends of downcomer level .................................... 43

Figure 34: Lower plenum pressure .................................................................................. 52

Figure 35: IC tubes wall surface temperature (external side level 3) ............................... 53

vii

Page 10: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

Figure 36:Figure 37:Figure 38:Figure 39:Figure 40:Figure 41:Figure 42:Figure 43:Figure 44:Figure 45:Figure 46:Figure 47:Figure 48:Figure 49:Figure 50:Figure 51:Figure 52:Figure 53:Figure 54:Figure 55:Figure 56:Figure 57:Figure 58:Figure 59:Figure 60:Figure 61:Figure 62:

Figure 63:

IC tubes fluid temperature (middle level 3) .................................................. 53IC outlet fluid temperature .............................................................................. 54Heat transfer coefficient at the inside of IC tubes wall (level 3) .................... 54

Heat transfer coefficient at the outside of IC tubes wall (level 3) .................. 55Lower plenum pressure .................................................................................. 55IC tubes wall surface temperatures (external side level 3) ............................ 57IC tubes fluid temperature (middle elevation) ................................................ 57IC outlet fluid temperature .................................................................................. 58Heat transfer coefficient at the inside of IC tubes wall (level 3) .................... 58Heat transfer coefficient at the outside of IC tubes wall (level 3) .................. 59Lower plenum pressure ................................................................................. 59IC tubes wall surface temperature (external side level 3) ............................... 60IC tubes fluid temperature (middle elevation) ................................................ 60IC outlet fluid temperature ............................................................................. 61Heat transfer coefficient at the inside of IC tubes wall (level 3) .................... 61Heat transfer coefficient at the outside of IC tubes wall (level 3) .................. 62Lower plenum pressure .................................................................................. 62IC tubes wall surface temperature (external side level 3) ............................... 63IC tubes fluid temperature (middle elevation) ................................................ 63IC outlet fluid temperature .............................................................................. 64Heat transfer coefficient at the inside of IC tubes wall (level 3) .................... 64Heat transfer coefficient at the outside of IC tubes wall (level 3) .................. 65Lower plenum pressure ...................................................................................... 65IC tubes wall surface temperature (external side level 3) ............................... 66IC tubes fluid temperature (middle elevation) ................................................ 66IC outlet fluid temperature .................................. 67Heat transfer coefficient at the inside of IC tubes wall (level 3) .................... 67Heat transfer coefficient at the outside of IC tubes wall (level 3) ................. 68

viii

Page 11: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

LIST OF TABLES

Table I: Comparison between isolation condenser related data in PIPER-ONEand in SBW R ................................................................................................ 10

Table II: PIPER-ONE test PO-IC-2: initial conditions ................................................ 12

Table EIl: PIPER-ONE test PO-IC-2: boundary conditions ........................................... 12

Table IV: PIPER-ONE test PO-IC-2: power history ..................................................... 12

Table V: Details of nodes geometry in the RELAP5 nodalization .............................. 29

Table VI: Details of relevant junction related parameters of RELAP5 nodalization ......... 36

Table VII: Comparison between measured and calculated initial conditions ................. 41

Table VIII: Comparison between measured and calculated boundary conditions ............ 41

Table IXa: Evaluation of the heat transfer c" efficient (Ph.w.2) ...................................... 49

Table IXb: Evaluation of the heat transfer c4 efficient (Ph.w.4) ........................................ 49

Table X: List of calculations and varied parameters ..................................................... 50

Table XI: Documented calculations ............................................................................... 51

ix

Page 12: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 13: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

ACKNOWLEDGMENTS

The authors acknowledge the contribution of the technical staff of the ScalbatraioLaboratory for performing the experiments and in particular F. Mariotti, F. Pistelli, R.

Centonze and F. Rosellini.

The University of Munchen student C. Rierter also contributed to the preparation ofthe facility for the experiment.

The authors gratefully acknowledge also D. Del Corso, for typing and editing thisdocument.

Thanks are finally due to Dr. P. Marsili of ANPA for collaborating in defining theobjectives of the activity and for revising the manuscript.

xi

Page 14: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 15: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

1. INTRODUCTION

Innovative reactors, (essentially AP-600 and SBWR) arc characterized bysimplification in the design and by the presence of passive systems. Experimental and

theoretical research arc needed to qualify the new components introduced in the design and

to charactcrizc the new thcrmalhydraulic scenarios cxpccted during accidents. Availablesystcm codes have to bc validated in order to be used for evaluating the thcrmalhydraulicperformances of the new systems, especially in case of long lasting transients evolving at

low pressure /I/.In the framc of the activities carried out at University of Pisa related to the analysis of

thermalhydraulic situations of interest to the mentioned reactors (e.g. refs. /2/, and /3/),threc series of experiments have been carried out utilizing the PIPER-ONE facility. Theywere aimed at the experimental investigation of the behaviour of systems simulating themain features of the Gravity Driven Cooling System (GDCS, first series of experiments,rcfs. /4/) and of the reactor pressure vessel Isolation Condenser (IC, second and third seriesof experiments, rcfs. /5/ to /7/ and ref. /8/, respectively). At the same time Rclap5/mod2 /9/,and mod/3 /10/ codes have been extensively applied as best estimate tools to predict thetransient scenarios of both SBWR and AP-600 reactors: (see also refs./ Il/and /12/).

PIPER-ONE is a General Electric BWR experimental simulator specifically designedin the early '80 to reproduce small break LOCAs transient scenarios (e.g. rcfs. / 3/ - 15/).The volume scaling ratio is 1/2200, the height scaling ratio is 1/1 and the available core

power is roughly 25% of the scaled full nominal power. The mentioned experiments wereessentially devoted to a qualitative investigation of the thermalhydraulic conditions typicalof the new components foreseen in the above reactors (essentially SBWR) and at setting upa data base suitable for code assessment. The distortions that characterize PIPER-ONEhardware in comparison with a scaled loop simulating SBWR. completely prevent apossible application of the measured data to reactor conditions: the core and downcomerheights, as well the distance between the Bottom of Active Fuel (BAF) and the Isolation

Condenser top are important parameters not considered in the model.The aforementioned applications to innovative reactors scenarios emphasized the

codes inadequacies in producing reliable results when system pressure attains values below0.5 MPa. Numerical deficiencies, limited ranges of validity of the utilized correlations andlack of user experience (i.e. difficulty to develop a suitable code use strategy) are retainedmostly responsible of this situation.

The purposes of the activity described in the present document, that is the direct

follow up of the post-test evaluation of the previous IC experiment PO-SD-8, ref. /7/, areessentially three:a) to give an outline of test results obtained during the high pressure part of the test PO-IC-

2 also related to the study of the Isolation Condenser performance;b) to evaluate the capabilities of the latest version of RelapS/mod3 code (i.e. version 3.1) in

reproducing the experimental scenario giving emphasis to the attempt of fixing the codelimitations and the criteria for the optimal use of the code.

c) to demonstrate possible improvement in the latest code version with respect to the

previous one especially in relation to condensation.In order to achieve these objectives the original Rclap5/mod2 nodalization of the

PIPER-ONE apparatus /16/, also modified to perform pre-tcst and post-test calculations of

the test PO-SD-8 (e.g. refs. /7/ and /17/), was completely revised. In particular, the numberof nodes was roughly doubled also considering the available computer code capabilities.This nodalization was qualified by the calculation of the test PO-SD-8 and was used

extensively for stability analysis in PIPER-ONE loop, ref. /I M

I

Page 16: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

Many sensitivity calculations were performed in the present context to identify someunknown boundary conditions (e.g. spatial distribution of heat losses to the environment)and to optimize the user choices like the countercurrent flow limiting option in the annularregion of steam separator to predict liquid deentrainmcnt from the mixture flowing outfrom the core.

2

Page 17: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

2. DESCRIPTION OF THE EXPERIMENT

2.1 PIPER-ONE Facility

The PIPER-ONE apparatus is an integral test facility designed for reproducing the

behaviour of BWRs in thermalhydraulic transient, dominated by gravity forces.The ENEL BWR plant installed at Caorso (I) was formerly taken as the reference

prototype in the design of the apparatus. The reactor is a General Electric BWR-4 plant,

equipped with a Mark II containment, but it has some features of the latest GE design (e.g.,8xg fuel rod assembly). The situation of nuclear energy in Italy, at the beginning of theexperimental phase, led to a revision of the original experimental programme. The BWR-6plant, equipped with 624 fuel bundles was assumed at reference for the first test carried-out

on the PIPER-ONE facility, chosen by OECD-CSNI as ISP 21 /191; then, the latter wasused as a reference plant for all the LOCA tests, which had already been performed.

The simplified sketch of the apparatus is shown in Fig. 1; it includes the main loop,

the ECCS simulators (LPCI/CS, HPCI/CS) and the systems simulating ADS, SRV andsteam line, as well as the blow-down line.

Nine zones can be identified in the main loop: lower plenum, core, core bypass

(outside the core), guide tube region, upper plenum, region of separators and dryers, steamdome, upper downcomer, lower downcomer and jet pump region. The correspondencebetween the circuit and the vessel of the actual plant is shown in Fig. 2.

The volume scaling factor is about 1/2200, while the core cell geometry and the

piezometric heads acting on the lower core support plate are the same in the model and inthe reference plant.

The heated bundle consists of 16 (4x4) indirectly heated electrical rods, whose height,pitch and diameter are the same as in the reference plant (Fig. 3). The maximum availablepower is 320 kW, corresponding to about 25% of scaled full of the reference BWR.

The one-dimensionality as well as the overall simplicity of the apparatus arehighlighted in Fig. 1; this is the direct outcome of the main objective of the research. In fact,the primary circuit was designed in such a way to have as far as possible:- one dimensional cylindrical volumes (nodes in codes calculations);- connections between adjacent nodes clearly defined (geometric discontinuities, Venturi

nozzles, orifices);- lack of items (such as pumps and control systems) which can originate confusing

situations in code calculations.The instrumentation system has features consistent with the fundamental philosophy

of the facility design:- direct measurements of integral or mean quantities (overall heat and mass entering or

exiting from the primary circuit, collapsed levels in the various zones, mean temperaturesin the volumes and interfacing structures, mean density in a section, etc.);

- measurement of the various quantities (such as fluid and structure temperatures) in themiddle of the volumes and at the junctions connecting the various zones.

Roughly 250 transducers are part of the instrumentation system: rod surface

temperatures, absolute pressures, differential pressures, flowrates, density and temperaturesof the fluid and of the structures are measured in different zones of the loop.

3

Page 18: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

SRV

Fig. I - Sketch of PIPER-ONE facility

4

Page 19: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

Fig. 2 - Comparison between main regions in PIPER-ONE and in BWR-6

U.

ewer I ---I----, -

I I -q-

, : ; ' l i II I I I I II a a I SI a , a I I S

1Scneon. too

S. los*J.J

I 130 I10 96 11390 A 2120 I 2650 5 3180 210 IlfI

Lml & 3 C . 0 z r

Fig. 3 - Details of the heating rod of PIPER-ONE

5

Page 20: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

The data acquisition system can record 128 signals, with a frequency of up to 10 Hzfor each signal. Particular care was taken to evaluate and maintain an adequate accuracy inmeasurements. The methodology developed (and adopted) includes:- periodic calibration of all the transducers, in such a way to avoid or at least to reduce the

systematic errors;- control of the instrumentation system and of the related data acquisition system, before,

during the preparation and at the end of each test. These checks reduce random errors andverify the correct operation of the measurement and data acquisition systems.

As already mentioned, the facility hardware was modified by inserting the loop, whichcan operate at the same pressure of the main circuit (Fig. 4).

The main component of Isolation Condenser loop is a heat exchanger consisting of acouple of flanges that support 12 pipes, 22 mm outer diameter and 0.4 m long; it isimmersed in a tank of I mivolume, containing stagnant water, located at 4th floor of thePIPER-ONE service structure. The heat exchanger is connected at the top and at thebottom respectively with the steam dome and the lower plenum of the main loop. In orderto enhance natural convection inside the pool, a sort of shroud has been installed thatdivides the pool into two parts; a hot one and a cold one, the former encompassing the ICas can be seen in Fig. 5.

The Isolation Condenser loop is instrumented with a turbine flow-meter (Fig. 4) and adifferential pressure transducer on the hot side (PD-IC-2 in Fig. 5) and a series of almost 30thermocouples in various position of the IC and of the pool as can be derived from Figs. 5and 6.

Fig. 4 - Connection between isolation condenser loop and PIPER-ONE loop

6

Page 21: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

In particular, 5 thermocouples measure the primary side fluid temperature at the inlet(TF-IC-0), and outlet of the tubes bundle (TF-IC-4) and inside three different tubes(TF-IC-l to 3); 7 thermocouples are installed on the outer surface of the tubes (TS-IC-1 toTS-IC-9, excluding the position 2 and 4); 2 thermocouples are installed on the inner surfaceof the tubes (TS-IC-2 and TS-IC-4); 14 thermocouples (TF-SC-l to TF-SC-14) give ameasure of the fluid temperature distribution in the pool. The distribution of thermocoupleshould give an idea of possible multidimensional phenomena in the pool and inside the IC.In addition, the instrumentation already available for measuring pressure, level andtemperature in the different zones of PIPER-ONE apparatus is used.

Hardware restrictions preclude the possibility to have a system correctly scaled withrespect to those provided for the new generation nuclear reactors, particularly the GESBWR. This is evident from Table I, where relevant hardware data characterizing theIsolation Condenser loop installed in PIPER-ONE facility are compared with SBWR relateddata. In particular, Table I demonstrates that the heat transfer area of Isolation Condenser inPIPER-ONE is roughly five times larger than the ideal value. The distance between bottomof the active fuel and the Isolation Condenser and the height of the core itself are two of themost important parameters differentiating PIPER-ONE from SBWR. These essentiallyprevent any possibility of extrapolating PIPER-ONE experimental data to SBWR.

7

Page 22: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

heat exchangertubes

water outlet I

Fig. 5 - Sketch of isolation condenser pool with temperature measurement locations (part A)

8

Page 23: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

V2l~lilIi7W/l~ !l~WAll/

•/////////J/.• •////•

cut A-ATS-IC 2-

TS-C 4 -

TF-IC 1 -

V ¥////////////.•

TS-IC I

TS-IC 3

TSIC 5

TS1C 6

TS-1C 7

tubeA

C

0 0o Ao 0

B

cut B-B

TF-IC 2or -TF-IC 3

TS-1C 8*or

TS-1C 9

,11

tubes BC

Fig. 6 - Sketch of isolation condenser pool with temperature measurement locations (part B)

9

Page 24: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

QUANTITY UNIT PIPER-ONE SBWR O RATIO (+) IDEAL (+) VALUE

PIPER-ONE/SBWR OF THE RATIO

PIPER-ONE/SBWR

I Primaryvolume

system 0.199 595. 1/2990 1/2990

23

4

5

6

7

8

9

10

11

12

Core height m 3.710 2.743 1.35/1 1/1Maximum MW 0.320 2000. 1/6200 1/2990nominal corepowerValue of 3% core MW 0.0410(T 60. 1/1463 1/2990power

Ratio (3% core MW/mr3 0.206 0.1 2.06/1 1/1power) /primarysystem volumeIsolation 0.301 184 1/610 1/2990condenser heattransfer area (++)Isolation 1.512 0.31 4.9/1 1/1condenser heattransfer area overprimary systemvolumeIsolation oodkns m3 0.0015 2.334 1/1556 1/2990

Isolation - 0.0075 0.0038 1.97/1 1/1condenser volumeover primarysystem volumeIsolation. m2 /kW 7.341 3.066 2.39/1 1/1condenser heat'transfer area over3% core powerHeight of m 8.64 24.75 1/2.86 1/1isolationcondenser toprelated to bottomof active fuelDiameterof a m 0.020 0.0508 1/2.54 1/1single tube I

13 1 Thldasscfasingfe m 0.0023 0.0023 1/1 1/1Ube

A. J

(+) non-dimensional(++) only tube bundles(0) IC data have been taken from reference /21/(-) related to BWR6

Tab. I - Comparison between isolation condenser related data in PIPER-ONE and in SBWR.

10

Page 25: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

2.2 TEST PO-IC-2

2.2.1 Planning of the test

As already mentioned, test PO-IC-2 was the follow-up of .the PIPER-ONEexperiment PO-SD-8. Essentially, some discrepancies were found in the comparisonmeasured-calculated trends in relation to variables representative of the IC behaviour; thelack of adequate local instrumentation in the IC prevented a complete characterization ofthe code-calculation adequacy. Furthermore, strong thermal stratification, as expected, tookplace in the cooling pool. The last two items led to the planning of the PO-IC-2 test asreported in ref. /8/.

Owing to the above, the instrumentation system was largely improved, now includingthe transducers discussed in the previous section A "shroud" was inserted into the pool tofacilitate natural convection motion.

The original design of the PO-IC-2 experiment foresaw the same boundary and initialconditions as PO-SD-8 test; similar features were also foreseen for general test conduction(e.g. different core power levels, timings, etc.). Considering the presence of new devicesinstalled in the PIPER-ONE facility (essentially active feedwater and steam line systems, ref./18/), the initial part of the test should be addressed to characterizing PO behaviour innatural circulation. Unfortunately, the electrical power supply system suffered of heavyproblems during the first attempt to carry out the experiment. Owing to this the maximumpower was limited to less than 100 kW (i.e. 1/4 of the nominal value for the facility,roughly).

So, only two power steps were included in the final test design, at about 40 and 80kW respectively, while primary circuit pressure was as specified, i.e. around 5. MPa (thesame as in the experiment PO-SD-8). Relevant boundary and initial conditions are discussedin the following section.

2.2.2 Test execution

The execution of the PO-IC-2 test was essentially the same as test PO-SD-8; the"dynamic steady state", utilizing the active feedwater and steam line systems, was notperformed and the usual "static steady steady" was achieved.

The primary circuit was pressurized at the specified value by single phase and two-phase natural circulation with heat sources consisting of the core simulator and thestructures heating system; before the test beginning, the liquid was drained to obtain therequired levels in the downcomer and core regions.

The "static steady state" was achieved at zero core power and with structureselectrical heating power switched on to compensate the heat losses (around 20 kW). Theisolation condenser line was closed and almost full of ambient temperature liquid (60 mmabove the top of IC heat exchanger).

At the beginning of the test, core heating power was switched on and almostsimultaneously (see below) the IC line was open. Two core power levels, as alreadymentioned, were considered.

2.2.3 Test results

The initial and boundary conditions for the PIPER-ONE experiment PO- IC-2 aregiven in Tabs. II to IV. The two parts of the test ("low" and "medium" power, respectively)were carried out subsequently and in this way are also considered in the code calculation;so, initial conditions are only related to the "low" power phase.

I1

Page 26: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

32 measurement points were recorded during the test; most of these, are related to theIC loop and the remaining ones to the primary circuit. The measurement error band is thattypical of all PO tests, because the established procedure of instrumentation check has beenfollowed for carrying at the test. As an example the temperature signals have an error band(2 a) of + 2K /19/.

PARAMETER SIGN UNIT VALUE

LP pressure PA-LP-1 MPa 5.1LP fluid temperature TF-LP-! 0C 262.5Core level LP-CC-1 m 11.9Downcomer level LP-LD-I m 10.7IC line fluid temperature TF-IC-I °C 17.5IC pool fluid temperature TF-SC-1 0 C 17.5

Tab. II - PIPER-ONE test PO-IC-2: initial conditions

PARAMETER OR EVENT TIME

(s)

Test initiation 0.0Power versus time as in Tab. IVIC top valve opens 4.0IC bottom valve opens 32.0IC top valve closes 508.0IC top valve opens again 602.0IC top and bottom valve close 1106.0End of test 1184.0

Tab. III - PIPER-ONE test PO-IC-2: boundary conditions

TIME (0) POWER

(s) (kW)

0.0 0.05.0 41.60

438.0 41.60440.7 0.0586.1 0.0588.0 70.47590.0 73.301086.0 73.301088.0 0.01184.0 0.0

(-) from test start

Tab. IV - PIPER-ONE test PO-IC-2: power history

12

Page 27: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

Primary circuit behaviourPrimary circuit pressure, lower plenum temperature, downcomer and core region

levels arc shown in Figs. 7 to 10, together with core power.The IC was expected to remove almost 80 kW, ref. /7/; so the primary system

pressure decrease until about 500 s (Fig. 7) is a foreseeable result considering that at thetransient initiation (Tab. Ill) the IC line was opened and about 40 kW were supplied to thecore simulator. In the second part of the transient, starting at about 600 s, the core powerwas very close to the IC removed power and primary circuit pressure was quite constant. aslight decrease of the pressure testifies that IC removed power is (slightly) larger than thepower supplied to core simulator (73. kW).

The thermocouple producing the signal in Fig. 8, is installed in the zone of the lowerplenum where the IC line is connected with the primary circuit: this explains theoscillations observable during the IC operation periods. In particular, oscillationsamplitudes as large as 80 K have been measured as a consequence of cold liquid (comingfrom IC) mixing with hot liquid in the primary circuit.

Average cooling of the primary loop in the first phase of the experiment can also bededuced from observing core and downcomcr regions levels in Figs. 9 and 10. In thesecond part of the experiment these levels remain quite constant. Unquantificd dynamiceffects arc included in the level signal during the periods of IC operation; these arc due tothe natural circulation flowratc (0.5 - 0.7 kg/s) between core and downcomcr.

IC system behaviourThe Isolation Condenser system behaviour has been characterized by the time trends

reported in figures from I I to 28.The mass flowratc and the pressure drops across the IC are shown in Fig. 11. The

mass flowratc signal, output of the turbine transducer, is not correct up to about 200 s. Thepressure drop signal gives an idea of the filling and emptying of the IC tubes: starting from

a situation with liquid level at the top of the component, a drop of the level up to about 2/3of the tubes height can be observed in both the phases of the experiment. During the periodof isolation of the line the internal side refills owing to abrupt steam condensation (thiscauses a shock wave that, among the other things, is the origin of problems in code

calculations).The axial tubes external surface temperatures (Fig. 12), show a large difference along

the pipe high (around 50 K).Other temperature differences can be observed in Figs. 13-17. A temperature jump of

about 60 K roughly (the tubes thickness is 3 mm) is measured across the thickness in theupper part of the tubes (Fig. 13, see also Fig. 26); a larger temperature jump exists betweenthe fluid and the external surface temperature (Fig. 14). Two-dimensional effects areindicated by Fig. 15, that shows the fluid temperature at the center of the two tubes:differences of the order of 20 K occur at the same elevation in two different tubes;moreover, the phenomenon repeats with the same characteristics in the two phases of the

experiment. Radial disuniformities seem less important in the external surface (Fig. 16, seealso Fig. 28): nevertheless, some additional analysis is needed to characterize theoccurrence of multidimensional effects. Finally, fluid temperature variations between theinlet and the outlet of the IC can be drawn from Fig. 17; this shows that all the steam is

condensed in the first half of IC, and the liquid outflowing from IC is highly subcooled(about 120 C).

Fluid temperatures inside the pool are shown in figures from 18 to 23. Essentially

three aspects should be noted:a) strong temperature stratification exists: the fluid temperature differences between top

and bottom is of the order of 70 K (Fig. 18);

13

Page 28: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

b) fluid temperatures arc almost the same in the internal and the external sides of theshroud (Figs. from 20 to 23): this means that the shroud is not effective in enhancingnatural circulation between the heated and the unheated part of the pool also duc to thegood heat conduction across the wall;

c) maximum fluid temperature in the pool is always below the saturation temperature, i.e.no bulk boiling condition was achieved during the test.

Elaborations of the discussed signals arc given in Figs. 24 to 28.It can be noted that saturated steam (or two-phase mixture) is present at the IC inlet

(Fig. 24).The IC removed power is larger than the core supplied power in the first phase of the

experiment and roughly the same in the second period. this is confirmed by the primarypressure that decreases in the first period and remains almost constant in the second one.The IC removed power is obtained from

GIC * (HGI - HFO)

where GIC is the IC flowratc, HGI is the steam saturation cnthalpy at IC inlet (so it isassumed that only steam arrives from the primary circuit) and HFO is the liquid cnthalpy atthe IC outlct. Obviously the inadequacy of GIC in the first 200 s (see above) also reflects inthe calculated IC power.

Temperature jumps arc reported in Figs. 26 to 28.

Significant outcomesTwo main aspects can be emphasized from the analysis of the experimental data.The former is connected with the constant value of the IC removed power, whatever

is the electrical power supplied to the core simulator. This situation was already found inthe previous experiment (test PO-SD-8, rcf. /7/) albeit with a different primary circuitgeometrical configuration and with different values (larger values) for core power. Thephenomenon is a consequence of the about constant value of the IC flowratc. This occursbecause the IC loop can be considered as one of the two parallel natural circulation flowpaths for the two-phase mixture in the core region, the other one being the main loop withthe downcomer. Actually, the overall flowrate across the core is the sum of flowratescrossing downcomer and IC. The driving heads are the pressure differentials betweendowncomer and core regions and between IC and core regions, respectively. Owing togeometry, the pressure drops across IC are higher than across the downcomcr (ideally, withthe same flowrate). As a consequence of this, increases of core power reflect as increases ofmass flow across the downcomcr.

The same conclusion can be reached considering that the pressure drop between thepoints connecting the IC to the primary loop are held nearly constant by the gravity headconstituted by the liquid level in the downcomcr that, at its time does not substantiallychange in the two periods of the experiment. As a final note, the overall gravity head in theIC line cannot change too much owing to the elevation of the IC component itself (the onlyzone where fluid density variations may occur assuming in any case completecondensation) that is less than 1110 of the total axial length. Second orider contributions todifferences between the high and the low power periods as far as the overall IC removedpower is concerned, come from:- the progressive heating of the pool that in the high power period, may be compensated

by the increase in the heat transfer coefficient on the outer part of the IC tubes-- pressure variations in the primary circuit.

14

Page 29: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

The latter aspect concerns the local behaviour of the heat transfer coefficient in the ICregion. First of all it should be noted that the liquid level in the IC is almost the sameduring the two periods of the experiment (Fig. 11). Secondly, as already mentioned,temperature increases in the pool (of almost 70 K in the upper part, Fig. 18) have no orlimited consequence upon the external surface tubes temperature (Fig. 12). Also thetemperature jump between primary fluid and tubes external surface, remains almostconstant as it results from Fig. 14. As a conclusion, notwithstanding variations of fluidconditions in the pool, the heat transfer phenomenon remains almost unchanged, when corepower is varied.

An experimental verification of the link between IC and DC flowrates has beenachieved recently, during the execution of another tests PO-IC-3, similar to PO-IC-2 but atlow pressure (- 0.5 MPa).

In the test PO-IC-3, after a period of quasi-steady conditions, a valve was opensimulating a small break in lower DC. This lead to the stop in natural circulation betweencore and DC, due to the DC level lowering.

In this time period the IC flowrate increased.It should be noted that both the above conclusions have been confirmed by code

calculation results (see below) and seem directly applicable to nuclear power plantconditions: infact the described phenomena are not affected by the scale distortions of thePIPER-ONE apparatus.

Experimental errorsAn extensive analysis for determining errors characterizing the experimental data

was carried out in the occasion of the use of PIPER-ONE for the OECD/CSNI ISP 21, refs./25/ to /27/. Details about methods for deriving measurement errors, can be found in ref./28/.

The error concerned (i.e., error bands corresponding to two standard deviations) forthe most relevant quantities, are as follows, ref. /28/:- absolute pressure: ± 0.05 MPa;- fluid temperature in primary loop: ± 2 K:- core level: ± 0.1 m:- downcomer level: + 0.1 m;- fluid temperature in the tank: ± 0.5 K;- IC flowrate: ± 0.01 kg/s;- core power: ± I KW (valid for the present test only);- timing error (mainly for valves opening/closure): ± 2 s.

15

Page 30: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

Y100.

80.

60.

40.

P IPE-N Tes I IC9 a 9 i

YYY EI2AWH-POWERXXX EI2APA-LP-1

030

0.

x5.750

5.500

5.250

5.000

4.750 .

454.5004.250 •_

4.000

3.750

3.500

3.2501200

20.

0.

-20.-200

I I * S I S I S S I I S S

0 200 400 600 Boo 1000

Time (s)

Fig. 7 - Core power and lower plenum pressure

y100.

so.

60.

40.3=0I.

x580.

560.

540.

520.

500.

480.

460.

440.

420.

400.

380.1200

E1!

20.

0.

-20. L.-

oo 0 200 400 600

Time (s)

Fig. 8 - Core power and fluid temperature in lower plenum

800 1000

16

Page 31: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

Y

F

100. .. . ,

PIPER-ONE Test PO-IC-2A

80.

60.

40.

20.

0. _

-20. a

-200 0 200 400

Time (s)

Fig. 9 - Core power and downcomer level

x12.000

11.500

11.000

10.500

10.000'i

fl. 9.500

9.000

8.500

- 8.0001200600 800 1000

y100.

80.

60.

C

00.

40.

PIPER-ONE Test PO-IC-2AI

YYY EI2AWH-POWERXXX E12AL.P-CC-1

x13.000

12.500

12.000

11.500?

11.000-J

10.500

10.000

9.5001200

20.

0.

-20.-200 0 200 400 600

Time (s)

800 1000

Fig. 10 - Core power and core level

17

Page 32: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

T X14.000 - , . .' . , , , , 0.400

* PIPER-ONE Test PO-IC-2A YYY EI2APO-IC-2DXXX E12AWW.IC- 3

13.000

0.300

4 12.000

0.250 *

11.000 00.200 .

10.000 :.150•= , o.100

S9.000SI

0.050

8.000X ......... 0.000

7.000 , " I0.050

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 11 - Pressure drop and flowrate adross IC

400. 1 1 a I 1 9 1 1

PIPER-ONE Test PO-tC-2A Xxx EIATS-IC-1YYY EIATS-IC-3ZZZ EIATS-IC-5

380. ##8 EIATS.IC-7

2 360.

C. 340.E

•: 320.

300. "

280.-200 0 200 400 600 B00 1000 1200

Time (s)

Fig. 12 - Tube "A" axial temperature distribution (external TC)

18

Page 33: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

460. * * . * g , I

PIPER-ONE Test PO.IC-2A XXX EIATS-AC-2440. YYY EATS-,C-1

420.

S400.

380.

360.

S 340.

320.

300.

280. I P P I ,

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 13 - Tube "A" Internal and external TC (upper elevation)

550. 1 1 . 1 ..PIPER-ONE Test PO-IC-2A XXX E1ATF-IC-1

YYY EIATS-IC-5

500.

450.

400.

350.

300.

250. , , , S I 5 , I I-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 14 - Tube "A" fluid temperature and external TC(middle elevation)

19

Page 34: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

5 5 0 . 1 1PIPER-ONE Test PO-IC-2A XXX ElATF-IC-1

YYY EIATF-IC-2

500.

450.

00S 400.

300.

250. 5 I 4 5 I S 5 5

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 15 - Tubes "A" and "B" fluid temperature (middle elevation)

400. 1 9 1 1 1 1 1 1PIPER-ONE Test PO-IC-2A XXX E1ATS-IC-5

YYY E1ATS-IC-8380. ZZZ EIATS-IC-9380.

2~360.

C 340.E

I-

• 320.

300.

280. '-200 0 200 400 600 Boo 1000 1200

Time (s)

Fig. 16 - Tubes "A" "B" and "C" external TC (middle elevation)

20

Page 35: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

650.PIPER-ONE Test PO-IC-2A

YYY EIATF-IC-1ZZZ ElATF-IC-4600.

550.

500.

450.

400.

350.

300.

250.-200 0 200 400 600

Time (s)

Fig. 17 - IC fluid temperatures (inlet, center and outlet)

800 1000 1200

E0

I..

380.0 -

370.0

360.0

350.0

340.0

330.0

320.0

310.0

300.0

290.0

280.0 --200

Fig

0 200 400

Time (s)

r. 18 -Pool Internal axial fluid temperatures

600 800 1000 1200

21

Page 36: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

6

60a.S0I-:2

300.0

298.0

296.0

294.0

292.0

290.0

288.0

286.0

284.0-2 zoo 0 200 400 600 800

Time (s)

Fig. 19 - Pool internal temperatures In different azimutal positions

1000 1200

0

3.

uC

380.0

370.0

360.0

350.0

340.0

330.0

320.0

310.0

300.0

290.0

280.0-200

PIPER-ONE Test PO-IC-2A MX EIATF-SG-1YYY EIATF-SC-10

I -

I a a a .a - . . - - . 2

0 200 400 600

Time (s)

800 1000 1200

Fig. 20 - Pool temperatures, Internal and external to shroud (upper elevation)

22

Page 37: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

2SS..

E

300.0

298.0

296.0

294.0

292.0

290.0

288.0

286.0

284.0-200

PIPER-ONE Test PO-IC-2A XXX EIATF-SG-4YYY EIATF-SC-12

I

0 200 400 600 goo 1000 1200

Time (s)

Fig. 21 - Pool temperatures, Internal and external to shroud (middle elevation)

U.

300.0

298.0

296.0

294.0

292.0

290.0

288.0

286.0

284.0-20

PIPER-ONE Test PO-IC-2A XXX EIATF-SC-6YYY EIATF-SC-14

*I

S * S I l f I f l I I I

)0 0 200 400 600 800 1000 1200

Time (s)

Fig. 22 - Pool temperatures, Internal and external to shroud Power elevation)

23

Page 38: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

0

0

a

2U.

300.0 1 a I I I IPIPER-ONE Test PO-IC-2A

298.0

296.0

294.0

292.0

290.0

288.0

286.0

284.0-200 0 200 400 6C

Time (s)

Fig. 23 - Pool temperatures (differential positions)

K0 800 1000 1200

U.

650.

600.

550.

500.

450.

400.

PIPER-ONE Test PO-IC-2A XXX E1ATF-IC-0YYY EIATSAT

X_ I

350.

300.

250 200 0 200 400 600 E

Time (s)

Fig. 24- Temperature at IC Inlet comparison with saturationtemperature

800 1000 1200

24

Page 39: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

&

g00 I I - a I I a

PIPER-ONE Test PO-IC-2AGOo

700

600

500

400

300

200

100

0 -- X

-100 * I I I I

-200 0 200 400 60

Time (s)

Fig. 25 - Rod power and thermal power across IC

0 800 1000 1200

80.0

70.0

60.0

50.0

40.0

PIPER-ONE Test 130-1ý2A R TM EIATSIC2-TSICI

S

S..

0

I-U

CSS..S

0

30.0 1-

20.0 I-

10.0 -

0.0 1-

-10.0.20

I2000 0 200 400 600 800 1000 1I

Time (s)

Fig. 26- Temperature jump across the wall

25

Page 40: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

20

NIS.-.100

a

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0 -

-10.0

_.3fl At

P I I I I

IPIPER-ONE Test PO-IC-2A XXX EIATFICI-TFIC2

9 | | II |

-2200 0 200 400 600

Time (s)

Fig. 27 - Fluid temperature disuniformity across tubes

I

800 1000 1200

20I..

N4-0C.20

I-a0I..0=a

20.0 . . . .PIPER-ONE Test PO-IC-2A

15.0

10.0

5.0

0.0 -

-10.0 I

-15.0

-20.0

-25.0-200 0 200 400

Time (s)

Fig. 28 - Surface temperature disuniformitles

XXX EIATSICS-TSIC8YYY EIATSICS-TSIC9ZZZ EIATSICS-TSIC9

W..

J I I I i I I

600 800 1000 1200

26

Page 41: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

3. ADOPTED CODES AND NODALIZATION

3.1 The used codes

The standard version of the RelapS/mod3.1 has been adopted as reference code in thepresent study; none of the possible user selectable options has been activated when

performing the reference calculation; necessary adjustments of initial and boundaryconditions (see below), within the experimental uncertainty bands, have been done with this

code version ("reference" code version) aiming at getting the "base calculation". Theadopted standard version of Relap5/mod3.1 runs on an IBM RISC 6000.

Once the "base calculation" results have been obtained, previous code versionsRelapS/mod2.5, Relap5/mod3 7J and RelapS/mod3 v80, running on Cray mainframe, IBMPC 486 and IBM RISC 6000 respectively, have been utilized, too.

3.2 Strategy of calculations and specific objectives

The overall strategy of the performed analysis aimed at assessing the capabilities of thereference code version and at identifying possible improvements with respect to previous codeversions; sensitivity calculations considering variations in the nodalization have beenperformed in this framework.

An additional objective of the analysis was to confirm the explanation given for thereasons of constant IC flow when core power is varied.

3.3 Adopted nodalization

Considering the above objectives, the acquired experience in the use of the latestRelap5 code versions, the code user guidelines, ref. /19/, and the criteria proposed in ref./20/ for nodalization development and qualification, a new PIPER-ONE input deck has beendeveloped.

The sketch of the new nodalization is shown in Fig. 29. Actually this has beendeveloped in the frame of the BIP (Boiling Instability Program) proposal, e.g. ref. /18/, andalready used in that frame for the planning of experiments.

The main difference with respect to the original nodalization (e.g. ref. /16/) lies in thenumber of nodes that in this case is roughly three times larger. Moreover, the hardwaremodifications in the primary circuit of the facility have also been considered. In particular,the feedwater line has been added and the connection zone between downcomer and lowerplenum and the region around the top of the separator have been slightly modified to betterreproduce natural circulation in the reference reactor.

The IC system nodalization is essentially the same as adopted for the post-test analysisof the PO-SD-8 experiment (refs. /5/ and /6/); only the pool nodalization has been changedto account for the presence of a shroud enveloping the IC component.

Relevant input values related to the hydraulic volumes and to the connecting junctionsof the nodalization, are summarized in Tabs. V and VI. The following items can be added toclarify Fig. 29 and the last tables:- the nodes 100 to 140 (in total 14 nodes) represent the lower plenum which is connected

with the jet-pump/downcomer region through the junction 325-03, with the core bypassthrough the junction 130-02 and with the IC system through the junction/valve 550; -thehydraulic volumes 325, 330, 335 and 345 (11 nodes) are also part of the lower plenumand constitute the connection region downcomer - lower plenum;

- the nodes 200, from I to 16 represent the core: among these, the nodes 200-01 to 200-14

27

Page 42: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

constitute the active region;- the nodes 145 to 180 (in total 40 nodes) represent the core bypass that is connected to

lower plenum and to the core exit region (through the junction 205-02);- the upper plenum region is simulated by nodes from 205-01, to 220-02 (4 nodes) and

include connections to core, core bypass and to the volume surrounding the fuel boxsimulator (see below);

- the volume surrounding the fuel box simulator has been included to preserve the squarecross section for the fuel box, at the same time avoiding unrealistic thickness to maintainthe pressure; it is connected with the main loop through the junction 360-01;

- the separator region consists of nodes from 220-03 to 220-20 (18 nodes) and isconstituted by a "PIPE" component;

- the steam dome is constituted by vertical and horizontal parts, i.e. nodes from 235 to 265(21 nodes) and includes connections with the separator through the junction 235-01, withthe 'separator annulus' (see below) through the junction 235-02, with the downcomerthrough the junction 270-01, with the IC system through the junction 245-03 and with"external systems" like the steam line, the pressure control, the SRV and the ADS throughthe TMDPJUN 433 and valves from 443 to 473;

- the 'separator annulus' is a region outside the separator region and has been introduced toavoid the return of possible wall condensed liquid directly to the core region, volumes 225and 230 (9 nodes); it is connected with the downcomer through ani horizontal lineincluding nodes 290 and 295;

- the downcomer is constituted by a cylindrical part consisting of hydraulic volumes from270 to 310 (22 nodes) and by an annular part, hydraulic volume 320 (15 nodes)surrounding the jet pump simulator; the downcomer is connected with the steamdome/separator region through the junction 270-01, with the feedwater system throughthe TMDPJUN 453, with the separator annulus through the junction 300-03 and with thejet-pump through the junction 310-03;

- the jet-pump simulator is constituted by the cylindrical hydraulic component 315 (15nodes) directly connected with the downcomer and the lower plenum region;

- structures heating systems and cooling systems are part of the nodalization and reflect thecharacteristics of the components in the facility (ref. /13/);

- emergency systems have also been included according to the design of PIPER-ONE, e.g.nodes 410, 420, etc.;

- the IC system consists of:a) connecting pipes, i.e. hydraulic volumes 500 and 540 (37 nodes) connecting the IC to

the primary circuit;b)the heat exchange zone constituted by parallel tubes (i.e. hydraulic volume 515), inlet

and outlet plena, (i.e. hydraulic volumes 510 and 520) and single outlet tube i.e.hydraulic volumes 525 (21 nodes);

c) the pool where the following zones can be recognized:cl) the heat transfer region internal to the shroud i.e. hydraulic volumes 552, 560 and

561 (14 nodes);c2) the outer annulus, i.e. hydraulic volumes 652, 660 and 661 (14 nodes);c3) plenum regions, i.e. hydraulic volumes 551 and 562 (2 nodes);c4) external pipes, i.e. hydraulic volumes 563 and 564 (44 nodes);

= structures are connected with each hydraulic volume: pipe walls have been separatedfrom flanges;

- the active structures of the rod simulators have been subdivided into 10 radial meshes.

28

Page 43: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

NODE VOLUME HEIGHT/LENGTH ZONE(m31103) (in)

100-01 3.212 0.3110-01 2.677 0.25110-02 2.677 0.25 Lower plenum

110-03 1.545 0.1443

110-04 1.545 0.1443

110-05 1.193 0.1114

111-01 1.730 0.1615

112-01 1.713 0.16

115-01 1.869 0.1745

120-01 1.944 0.2

120-02 1.944 0.2

130-01 1.488 0.176

135-01 1.692 0.2

140-01 1.692 0.2

325-01 1.393 0.327

330-01 0.85 0.185

335-01 1.079 0.257335-02 1.079 0.257335-03 1.943 0.257335-04 1.943 0.257

345-01 1.21 0.16345-02 0.247 0.18345-03 0.247 0.18345-04 0.343 0.25

345-05 0.343 0.25

TOTAL 34.961

200-01 0.78 0.265

200-02 0.78 0.265 Core200-03 0.78 0.265200-04 0.78 0.265200-05 0.78 0.265200-06 0.78 0.265200-07 0.78 0.265

200-08 0.78 0.265200-09 0.78 0.265

200-10 0.78 0.265

Tab. V - Details of nodes geometry in the RELAP5 nodalization

29

Page 44: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

NODE VOLUME HEIGHT/LENGTH ZONE

(m3xt03) (M)

200-11 0.78 0.265200-12 0.78 0.265200-13 0.78 0.265200-14 0.78 0.265200-15 0.814 0.229200-16 0.711 0.2

TOTAL 12.445

145-01 0.057 0.2 Bypass145-02 0.057 0.2145-03 0.054 0.1892145-04 0.054 0.1892145-05 0.054 0.1892145-06 0.054 0.1892145-07 0.054 0.1892

150-01 0.976 0.2468150-02 0.976 0.2468150-03 0.976 0.2468150-04 0.976 0.2468150-05 0.976 0.2468

155-01 0.186 0.223

160-01 0.178 0.2133160-02 0.178 0.2133160-0_3 0.178 0.2133160-04 0.178 0.2133160-05 0.178 0.2133160-06 0.178 0.2133160-07 0.178 0.2133160-08 0.178 0.2133160-09 0.178 0.2133160-10 0.178 0.2133

165-01 0.168 0.2015

170-01 0.196 0.235170-02 0.196 0.235170-03 0.196 0.235170-04 0. 196 0.235170-05 0. 196 0.235

170-06 0.196 0.235170-07 0. 196 0.235170-08 0. 196 0.235170-09 0. 196 0.235

Tab. V - Details of nodes geometry in the RELAP5 nodalization (cont'ed)

30

Page 45: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

NODE VOLUME HEIGHT/LENGTH ZONE

(m3x10 3) (W)

170-10 0.196 0.235

175-01 0.173 0.2075

180-01 0.211 0.1776180-02 0.211 0.1776180-03 0.211 0.1776180-04 0.211 0.1776

TOTAL 10.400

205-01 1.262 0.22 Upper plenum

210-01 2.262 0.22

220-01 2.200 0.214220-02 2.200 0.214

TOTAL 8.924

220-03 0.5651 0.2345220-04 0.5651 0.2345220-05 0.5651 0.2345220-06 0.5651 0.2345220-07 0.5651 0.2345220-08 0.5651 0.2345220-09 0.5651 0.2345220-10 0.5651 0.2345220-11 0.5651 0.2345220-12 0.5651 0.2345220-13 0.5651 0.2345220-14 0.5651 0.2345220-15 0.5651 0.2345220-15 0.5651 0.2345220-16 0.5651 0.2345220-17 0.5651 0.2345220-18 0.5651 0.2345220-19 0.5651 0.2345220-20 0.5651 0.2345

225-01 2.447 0.34

230-01 3.684 0.512230-02 3.375 0.469230-03 3.375 0.469230-04 3.375 0.469230-05 3.375 0.469230-06 3.375 0.469230-07 3.375 0.469

Tab. V - Details of nodes geometry in the RELAP5 nodalization (cont'ed)

3'

Page 46: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

NODE VOLUME HEIGHT/LENGTH ZONE

(m3xt03 ) (m)

230-08 3.375 0.469

235-01 2.554 0.246

240-01 2.595 0.25240-02 2.595 0.25240-03 2.595 0.25240-04 2.595 0.25

245-01 3.789 0.365

250-01 1.555 0.289250-02 1.555 0.289250-03 1.555 0.289250-04 1.555 0.289250-05 1.555 0.289

255-01 1.647 0.289255-02 1.647 0.289255-03 1.647 0.289255-04 1.647 0.289255-05 1.647 0.289

260-01 1.662 0.25260-02 1.662 0.25260-03 1.662 0.25260-04 1.662 0.25

265-01 1.635 0.246

280-01 0.418 0.3295280-02 0.418 0.3295

TOTAL 81.7548

270-01 1.367 0.247 Downcomer and jet pump

275-01 2.009 0.362275-02 2.009 0.362275-03 2.009 0.362275-04 2.009 0.362

280-01 1.660 0.3

285-01 1.660 0.3285-02 1.660 0.3285-03 1.660 0.3285-04 1.660 0.3285-05 1.660 0.3285-06 1.660 0.3

Tab. V - Details of nodes geometry in the RELAP5 nodalization (cont'ed)

32

Page 47: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

NODE VOLUME HEIGHT/LENGTH ZONE(m311O3) Wm

295-01 1.078 0.39295-02 1.078 0.39

300-01 0.988 0.283

305-01 1.012 0.29305-02 1.012 0.29305-03 1.012 0.29305-04 1.012 0.29305-05 1.012 0.29305-06 1.012 0.29305-07 1.012 0.29305-08 1.012 0.29

310-01 1.385 0.325

315-01 0.355 0.273315-02 0.355 0.273315-03 0.355 0.273315-04 0.355 0.273315-05 0.355 0.273315-06 0.355 0.273315-07 0.355 0.273315-08 0.355 0.273315-09 0.355 0.273315-10 0.355 0.273315-11 0.355 0.273315-12 0.355 0.273315-13 0.355 0.273315-14 0.355 0.273315-15 0.355 0.273

320-01 0.737 0.273320-02 0.737 0.273320-03 0.737 0.273320-04 0.737 0.273320-05 0.737 0.273320-06 0.737 0.273320-07 0.737 0.273320-08 0.737 0.273320-09 0.737 0.273320-10 0.737 0.273320-11 0.737 0.273320-12 0.737 0.273320-13 0.737 0.273320-14 0.737 0.273320-15 0.737 0.273

TOTAL 49.849

Tab. V - Details of nodes geometry in the RELAP5 nodalization (cont'ed)

33

Page 48: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

NODE VOLUME HEIGHT/LENGTH ZONE(m3xlO3) Wm

360-01 1.926 0.429 Filler

370-01 2.379 0.53370-02 2.379 0.53370-03 2.379 0.53370-04 2.379 0.53370-05 2.379 0.53370-06 2.379 0.53370-07 2.379 0.53

IC500-01 0.141 0.38500-02 0.141 0.38500-03 0.141 0.38500-04 0.141 0.38500-05 O0.141 0.38500-06 0.115 0.312.500-07 0.115 0.312500-08 0.115 0.312500-09 0.115 0.312500-10 0.078 0.212

510-01 0.12 0.2

515-01 0.1927 0.0632515-02 0.1927 0.0632515-03 0.1927 0.0632515-04 0.1927 0.0632515-05 0.1927 0.0632

540-01 0.089 0.35540-02 0.089 0.35540-03 0.120 0.472540-04 0.120 0.472540-05 0.120 0.472540-06 0.120 0.472540-07 0.120 0.472540-08 0.120 0.472540-09 0.120 0.472540-10 0.120 0.472

540-11 0.120 0.472540-12 0.120 0.472540-13 0.120 0.472540-14 0.120 0.472540-15 0.120 0.472540-16 0.120 0.472540-17 0.120 0.472540-18 0.120 0.472540-19 0.120 0.472540-20 0.120 0.472 1

Tab. V - Details of nodes geometry in the RELAP5 nodalization (cont'ed)

34

Page 49: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

NODE VOLUME HEIGHT/LENGTH ZONE(M3,103) (M)

540-21 0.120 0.472540-22 0.120 0.472540-23 0.102 0.4540-24 0.076 0.3540-25 0.089 0.35540-26 0.089 0.35540-27 0.089 0.35

TOTAL 5.2295

551-01 55.755 0.07875 IC Tank

552-01 7.875 0.07875

560-01 7.875 0.07875560-02 7.875 0.07875560-03 7.875 0.07875560-04 7.875 0.07875560-06 7.875 0.07875560-07 10.0 0.1560-08 5.1 0.1560-09 5.5 0.0632560-10 5.5 0.0632560-11 5.5 0.0632560-12 5.5 0.0632

561-01 5.5 0.0632

562-01 65.9 0.1

652-01 47.88 0.07875

660-01 47.88 0.07875660-02 47.88 0.07875660-03 47.88 0.07875660-04 47.88 0.07875660-05 47.88 0.07875660-05 47.88 0.07875660-06 47.88 0.07875660-07 60.8 0.1660-08 60.8 0.1660-09 38.43 0.0632660-10 38.43 0.0632660-11 38.43 0.0632660-12 38.43 0.0632

TOTAL 868.29

Tab. V - Details of nodes geometry in the RELAP5 nodalization (cont'ed)

35

Page 50: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

SIGNIFICANT FLOW AREA KD KR POSITIONJUNCTION m2xl04

primary loop:130-02 2.86 0. 0. bypass inlet140-02 5.938 0.19 0.9 core inlet205-01 16.49 14.5 10.6 core outlet205-02 8.3 0.1 0.1 bypass outlet220-02 24.1 0. 0. separator inlet235-01 24.1 0. 0. separator outlet235-02 3.94 100. 100. separator annulus235-03 42.6 0.1 0.1 steam dome lower connection245-02 53.82 0.1 0.1 steam dome upper connection310-02 27. 0. 0. lower downcomer annulus310-03 13. 1. 1. jet pump inlet340-00 8.5 1. I. lower plenum valve

IC loop505-00 3. 10. 10. top valve510-01 3.7 0.1 0.1 inlet pipe510-02 3. 0.1 0.1 tube inlet520-01 3. 0.1 0.1 tube outlet520-02 1.7 0.1 0.1 outlet pipe550-00 0.06 300. - bottom valve

Tab. VI - Details of relevant junction related parameters of RELAP5 nodalization

36

Page 51: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

5i5

570

175

_ 1 0 250

260

6 0 0

m7

220

290 m0

IC TANK

as

LI

go

a 10

200

S40 370

0

320It

160 00

a

120

c C= ,"=

. ..= . 340 -.... ...

1332

345 335 I IJ

a 0 PIPER-ONE=

Fig. 29 - Nodalization of PIPER-ONE loop

37

Page 52: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

38

Page 53: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

4. ANALYSIS OF POST-TEST CALCULATION RESULTS

The prc-test results, that have been the basis for the design of the PO-IC-2experiment, arc not comparable with the actual data because of the differences betweenspecified and actual values of the initial and boundary conditions. In particular, as alreadymentioned, the electrical power supply to the fuel rod simulator was limited to less than100 kW.

For these reasons, the post-test analysis has comprised three phases:1. achievement of good comparison between calculated and predicted trends of available

primary circuit data;2. definition of a reference calculation on the basis of the above activity;3. execution of a series of sensitivity calculations aiming at reaching the stated objectives.

In the frame of the analysis at item I., boundary and initial condition values related tothe primary loop have been changed within the presumed experimental error bands, up togetting a satisfactory comparison between predicted and measured time trends in theprimary circuit itself.

Once this process ended (this required a somewhat large effort because of the relativelow power of the expcriment+), the reference calculation results were also compared withthe experimental values in the IC system (phase 2.).

The phase 3. of the analysis consisted of five different steps aiming at the evaluationof:3a) influence of code version;3b) influence of selected initial/boundary condition values;3c) user effects;3d) nodalization effects;3c) sensitivity of code results when a geometric/hydraulic relevant parameter is changed in

the input deck;An additional calculation (identified as IC37 in the following) was performed to

confirm the conclusions related to the reasons why IC flowrate remains constant whenvarying core supplied power; this is included in the above group 3e).

Finally, the results of a scaling analysis are shown; these demonstrate the suitabilityof the data base in relation to scenarios expected in SBWR plants (sect. 4A).

4.1 Steady state calculations (Phase I of the post-test analysis)

As already mentioned, the main objective of the calculations was to match theprimary circuit pressure trend.

The initial condition at the assumed "time zero" in the experiment was achieved atzero core power and zero flows inside feedwatcr and steam lines and at core inlet;structures heating systems were active to compensate heat losses to environment.

The very first series of calculations was carried out changing:* the fluid temperature values around the loop (+/- 3K around the saturation value);

+ This means that minor variations in the boundary and initial condition values (e.g. changes of heat lossesof +/-I kw, of initial downcomer level of +/-0.2 m, of the timing of opcning/closure of IC valves of 2 s,consideration of primary circuit leaks as low as 0.0001 kg/s) have a sensible cffcct on primary pressurevalues as it happens in all tests performed at low power in any experimental racility, temperaturesimbalances in the fluid and in the structures with main reference to the thick flanges.

39

Page 54: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

* the heat losses to environment (in the range 0 - 5 kW) and the related spatialdistribution, excluding the heat losses through the chamber of rods electrical connectors(see below);

* downcomer and core regions level (in the range +I- 1 m around the availableexperimental value).

Subsequently, a leak was introduced in the lower downeomer (leak flow varied in therange 0. - 0.05 kg/s starting from 600 s into the transient). Moreover, the time trend of theheat losses across the rod connectors zone has also been varied during the transientaccounting for changes in the flows of the cooling nitrogen in this zone.

Finally IC valves characteristics, e.g. opening/closure time and actuation time (variedin the ranges +/- I s and +/- 2 s, respectively) have been changed.

The final situation considered for initial and boundary conditions can be seen inTabs. VII and VIII including the comparison between calculated and measured (ifavailable) values.

It should be noted that almost 30 code runs were necessary to achieve the reportedfinal results.

The comparison between measured and calculated trends of primary pressure, lowerplenum temperature and levels in the core region and in the downeomer, is given in Figs.30 to 33. The calculated trends have been obtained from the code run IC31 (see below). Adetailed analysis of the comparison can be found in sect. 4.2.

Here it is sufficient to emphasize three minor discrepancies in the pressure trend:- at the transient beginning owing to the initial fluid temperature stratification not

correctly considered in the code;- during the phase of electrical power interruption mostly due to inadequate consideration

of heat input to the fluid from the structures heating system;- in the second phase of the test that is a consequence of the above.The error in all the three cases is less than 0.1 MPa.

The measured lower plenum temperature is only bounded in the calculation (Fig. 3 1):this is due to the position of the thermocouple that is close to the connection between themain loop and the IC; in the Relap calculation an average volume related value is reported.

Larger differences appear from the level measurements (Figs. 32 and 33); in this casethe reliability of the experimental signal is quite low. In the frame of the performedsensitivity calculations, it has been checked that large variations of these quantities (i.e.greater than the actual differences between measured and calculated trends) do not causevariations in the overall transient scenario with main reference to primary pressure andflowrate across the IC.

40

Page 55: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

PARAMETER UNIT EXP CALC (0)

LP pressure MPa 5.1 5.1

LP temperature 0C 262. 258.5

Core level m 11.9 11.8

DC level m 10.7 10.5

IC line fluid temperature 0C 17.5 is.

IC pool fluid temperature 0C 17.5 18.

IC mass flowrate kc/s 0. 0.

Core power kW 0. 0.

Primary system heat losses: *)

- core region kW - 1.97

- steam dome kW - 8.5

- separator annulus kW - --0.43

- upper downcomer kW - --0.39

- lower downcomer kW -_3.4

- LP/core inlet kW -_2.5(0) Reference case (1C3 1)

(*) Sign "-" refers to power added to the fluid, sign +" to power lost

Tab. VII - Comparison between measured and calculated initial conditions

PARAMETER OR EVENT TIME

EXP CALC

Test initiation 0. 0.

Power versus time as in Table IV

IC top valve opens 4. 4.

IC bottom valve opens 32. 32.

IC top valve closes 508. 508.

IC bottom valve closes - 508.

IC top valve opens 602. 605.

IC bottom valve opens 602. 606.

IC top and bottom valve close 1106. 1106.

Tab. VIII - Comparison between measured and calculated boundary conditions

41

Page 56: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

'Ua.

SI..

S

0.

5.750

5.500

5.250

5.000

4.750

4.500

4.250

4.000

3.750

3.500

3.250-200

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX 1031P130010000YYY E12APA-LP-1

0 200 400 600 800 1000 1200

Time (s)

Fig. 30 - Measured and calculated trends of lower plenum pressure

CL

E

320.

300.

280.

260.

240.

220.

200.

180.

160.

140.

120. * --200 0 200 400 600 800 1000

Time (s)

1200

Fig. 31 - Measured and calculated trends of lower plenum temperature

42

Page 57: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

13.000

12.500 1-PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX IC31CNTRLVAR20VYY E12ALP-CC-1

12.000

-. 11.500E

11.000

10.500

10.000

9.500

9.000

I I I I

9.500 ,-20)0 0 200 400 600 800 1000

Time (a)

1200

Fig. 32 - Measured and calculated trends of core level

12.000

11.500

11.000

E 10.500

10.000

9.500

9.000

8.500

8.000 '.--200 0 200 400 600 800 1000 1200

Time (s)

Fig. 33- Measured and calculated trends of downcomer level

43

Page 58: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

4.2 Reference calculation results (Phase 2 of the post test analysis)

Each of the performed calculations (see below) has been evaluated on the basis of 39time trends of selected thcrmalhydraulic quantities. These can be subdivided into threemain groups:

A) variables related to the primary circuit that have been selected considering theavailability of experimental data (the numbers into parentheses below refer to theidentification of figures in the Appendices):- lower plenum pressure, (Fig. I);- lower plenum fluid temperature, (Fig. 2).- rod surface temperature at level 9, (Fig. 3);- core region level, (Fig. 4).- downcomer levels, (Fig. 5);- core power, (Fig. 6);

B) variables related to the IC system that have been selected considering the availability ofexperimental data:- mass flow rate, (Fig. 7);- differential pressure across the IC, (Fig. 8);- fluid temperatures along the IC system - primary side, (Figs. 9 - 12 and Fig. 27);- wall temperatures in the IC system, (Figs. 13 - 18);- fluid temperatures in the pool, (Figs. 19 - 26);- exchanged power across the IC (Fig. 28);- temperature difference between selected points (Figs. 29 - 3 1);

C) calculated variables related to the IC system that are relevant for understanding theconcerned phenomena and for evaluating the code behaviour- heat transfer coefficients in the IC, (Figs. 32 - 34);- void fractions inside the IC tubes, (Fig. 35);- liquid and steam velocities inside the IC tubes, (Figs. 36 and 37);- internal and external heat transfer modes in the IC tubes (Figs. 38 and 39);- differences between steam and liquid temperature of primary fluid (Fig. 40).

The reference calculation results, that is case IC3 1, are reported in App. I (Figs. I -40) and arc discussed in the next section.

Computer related statisticsThe calculations performed by RELAPS/Mod 3.1 have been run on the IBM RISC

6000, as results from sect. 3.1. The following relevant code run statistics applies(specifically related to the IC3 1 calculation):" CPU time is of the order of 20000 s (Fig. 41 in App. I);* time step ranges between 0.05 and 0.1 s (Fig. 42 in App. I), with the exception of the

period of IC isolation.The relation between code selected time step and imposed maximum time step can

be seen in Fig. 43 of App. 1.

44

Page 59: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

4.2.1 Primary circuit behaviour

In order to better address the comparison between measured and calculated trends,five phenomenological windows (Ph.W) can be distinguished looking at the primary circuitpressure (Fig. 1):* Ph.W I from transient beginning to 50 s: the prediction does not agree with the

experiment owing to minor errors in initial conditions: the presence of a cold patch ofliquid in the primary circuit (roughly 20 cm with less than 10 K of subcooling) or theinitial temperature of the IC inlet pipe can be considered for improving the agreementbetween measured and calculated trends; however this does not affect the subsequenttransient;

* Ph.W 2 from 50 s to 440 s: this constitutes the low power part of the test. An excellentqualitative and quantitative agreement between measured and calculated trends can beobserved: this demonstrates that the IC removed power is very well predicted;

* Ph. W 3 from 440 s to 650 s: this includes the power shut-off period (i.e. from 440 s to588 s) and the period necessary to achieve a "quasi steady-state" in the high power partof the test (i.e. from 588 s to 650 s). The disagreement in this Ph.W is mostly due towrong estimation of the behaviour of the structure heating system, to the inaccuratemodelling of the conduction heat transfer in the thick flanges (much larger number ofmeshes is required) and to the phenomena that occur inside the IC after its isolation. Inparticular, it is interesting to note that a sudden void collapse occurs in the IC primarysystem after its isolation; this brings the pressure from about 4 MPa to saturation valuescorresponding to the liquid temperature in the pool (i.e. of the order of 0.01 MPa). Twomain consequences in terms of code calculation are:a) the time step required to predict the condensation shock is very low (of the order of

1.e-6 s) and the code appeared not qualified in this connection;b) the test conditions (essentially the insurge of liquid into the IC line) resulting from the

shock occurrence affect the code prediction in the period 588 s to 650 s and are themain reason for the discrepancy in this period;

* Ph.W 4 from 650 s to 1088 s: this constitutes the high power part of the test. Anexcellent qualitative agreement between measured and calculated trends can be noted;the difference between the two curves is a result of the previous Ph.W and is less than0.1 MPa. Again the overall trend shows that the IC exchanged power is very wellpredicted;

* Ph. W 5 from 1088 s to the end: power shutoff occurs in this period. The goodagreement between measured and calculated trends confirms that the energy balance iswell considered in the calculation.

It should be noted that the Ph.W 2 and 4 are of main interest in our study.A few additional remarks related to the comparison between measured and predicted

trends of the remaining primary circuit related quantities (Figs. 2 - 6 of App. 1) are asfollows:- the negative peaks in the measured lower plenum temperature (Fig. 2), as already

mentioned, are due to the cold water coming from the IC; a volume averaged value iscalculated by the code; the discrepancies during the Ph. W 3 are due to cold liquidstratification caused by the cooling of the rod connectors chamber;

- discrepancies in the rod surface temperatures are essentially due to the position of thethermocouple that does not coincide with the surface of the rod (Fig. 3);

- inaccuracies in the experimental signal and minor leaks from the primary circuit are to beconsidered when examining the discrepancies in levels (Figs. 4 and 5 of App. 1), as wellas the fact that core and DC levels are influenced by the fluid velocity. However this doesnot hold for the lower DC level measurement (signal LP-LD-1); a code inadequacy

45

Page 60: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

seems evident in this respect;- the calculated quantity is the heat transferred from' the rods to the fluid while the

experimental quantity is the electrical power supply to the rods: this explains the errors(not present during the "quasi steady- state") in the core power curves (Fig. 6 of App. 1).

4.2.2 IC behaviour

PrimaryThe mass flowrate across the IC is quite well predicted by the code (Fig. 7 of App. 1);

the zero flow resulting from the turbine signal in the first 200 s is originated by amalfunction of this device, as already mentioned. Peaks in the experiment during the Ph.W 1,3 and 5 are not predicted. It can be concluded that the calculated result is within theexperimental error bands in the Ph. W 2 and 4 that are of main interest in the present study.

Some more work is necessary to qualify the measured pressure drop signal (Fig. 8);nevertheless the prediction can be retained within the experimental error bands in the Ph. W2 and 4.

The fluid temperatures at the IC inlet are represented in Figs. 9 and 27 of App. 1. Theagreement between measured and calculated trends is quite good during all the consideredPh.W. Moreover, Fig. 27 shows that saturation temperature is measured and calculatedduring the Ph.W 2 and 4 at the IC entrance. The presence of subcooled liquid at the IC inletduring the Ph.W I and 3 can be deduced from the trends in Fig. 9, although informationabout absolute pressure in the IC line is not available.

Fluid temperature is very well predicted by the code at the center of the IC: thecalculated trend (liquid temperature) lies between the two measured signals in Fig. 10 ofApp. 1. Subcooling in the lowest three nodes of the IC can be deduced from the analysis ofFig. 11 of App. 1: all the steam is condensed in the first two nodes in both the Ph. W 2 and 4.

The comparison of fluid temperatures at the outlet of the IC, Fig. 12 of App. 1,confirms that the overall heat transfer to the pool is satisfactorily predicted by thecalculation: this appears to be true also considering separately the tubes region (whereboth condensation and heat transfer to the pool from subcooled liquid take place) and thesingle tube region (where only heat transfer to the pool from subcooled liquid takes place).

The data in Fig. 13 of App. 1 show an overestimation of the surface temperature bythe code: this is true for all the surface temperatures, i.e. both in the inner and in the outersurface of the tubes, during the Ph. W 2 and 4, as it also results from Figs. 15, 16, 17, and18 of App. 1. Considering that the overall power exchanged is quite well predicted, one candeduce a code error in predicting the heat transfer coefficient either in the inner surface or inthe outer surface, either in both the surfaces (an average error of the external surfacetemperature of 20 K results in underestimating the heat transfer coefficient of about 20% inthe conditions of Ph. W 2 at the top of the IC, see also sect. 4.2.3). This conclusion is alsosupported by the observation that measured and calculated surface temperatures are veryclose during the Ph. W 1, 3 and 5, i.e. when flowrate and exchanged power are nearly zero.

An abrupt external surface temperature change can be observed at about 900 s (Ph. W4) in the calculation (Fig. 17 of App. 1): this is a consequence of a change in heat transfercoefficient from mode 2 (forced convection) to mode 3 (nucleate boiling) as it results fromFig. 39 of App. 1; mode 3 is also the heat transfer coefficient mode during the entire Ph. W2 (Fig. 39).

Discrepancies between measured and calculated trends during the Ph. W 3 appearfrom Fig. 18 of App. 1; in this connection it should be noted that in order to perform thecalculation in this Ph. W, it has been necessary to add two TMDPVOL and relatedTMDPJUN connected with the IC nodes: the reason for adding these components was tosmooth the abrupt pressure collapse due to sudden condensation; the effect of the added

46

Page 61: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

nodes can be seen, as far as Ph. W 3 is concerned, in the Fig. 18 of App. 1.

PoolThe good agreement between measured and calculated trends, of pool temperature at

different axial elevations (essentially, Figs. 19, 20, 23 and 24 of App. 1) constitutes anindependent proof of the agreement in the overall exchanged power. Three additionalaspects should be noted from the analysis of figures from 19 to 26 of App. 1:- changes in the slope of the predicted trends during the Ph. W 3 (e.g. Fig. 19) are due to

the necessity of the TMDPVOL discussed in the previous paragraphs;- discrepancies in some measured and predicted trends (e.g. Fig. 20 or Fig. 26) are either

of minor importance (only 3 K in Fig. 26, within the experimental error band), either dueto different positions considered in the calculation and in the experiment (Fig. 20);

- external and internal side pool temperature are nearly the same demonstrating thatconduction across the shroud prevents the possibility of establishing sufficienttemperature difference to give rise to natural circulation inside the pool.

In definitive, from observing:a) fluid temperature at IC inlet, outlet and inside IC,b) surface temperatures in the tubes and,c) fluid temperature in the pool,

it can be deduced that variables a) and c) are well predicted (also flowrate and overallexchanged power are well predicted); but, variables b) are overestimated. The conclusion isthat the heat transfer coefficients across the tubes (either on the internal or external surface)are calculated with some error (see sect. 4.2.3). Figures from 29 to 31 of App. I supportthis conclusion.

Furthermore, the temperature increase in the pool results from Fig. 3 1: the smoothincrease of fluid temperature in the pool leads to a smooth decrease of the temperaturedifference between tubes inner wall surface temperature and pool temperature itself.Removed power remain constant: this means an average increase of the overall heat transfercoefficient during the experiment.

Calculated quantitiesAs already mentioned, calculated quantities that have not a corresponding measured

trend are reported in Figs. 32 - 40 of App. 1.As far as heat transfer coefficients are concerned during the Ph.W 2 and 4, the

following observations can be made (Figs. 33 to 35 and 38, 39 of App. 1; inner and outer

coefficients can be recognized by the last two digits in the variables labels at the rightuppermost corner in the figures, "00" and "01", respectively):- in the upper zone of the tubes Heat Transfer Coefficients at the inner wall (HTCI) are

always smaller than Heat Transfer Coefficients at the outer wall (HTCO); in particularaverage values of HTCI and HTCO are 15000 and 18000 W/m2K, respectively;

- both HTCO and HTCI become noticeably lower along the axis reaching values as low as1200 W/m2/K for HTCO in the bottom of the IC tubes;

- at the bottom of IC tubes HTCO is much smaller than HTCI, thus controlling the overallheat transfer process;

- the effect of the sharp transition from mode 2 to mode 3 of the HTCO can also beobserved in Fig. 33 at about 900 s into the transient (see also Fig. 39 and the previousdiscussion);

- no sharp transitions during PH.W 2 and 4 can be observed in HTCI (Fig. 38).The void fraction trends along the axis confirm that condensation is predicted only in

the top two nodes simulating the IC tubes (Fig. 35): only liquid is present in the bottomthree nodes during the whole experiment.

47

Page 62: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

As reasonable, higher liquid velocities are calculated in the upper two nodes (liquid isentrained by steam, Fig. 36) than in the bottom three nodes.

An apparently unphysical steam velocity trend is calculated in the central node(upward oriented steam velocity in a node where void fraction is zero), Fig. 37: this doesnot happen in the two lowest nodes.

The degree of subcooling calculated for each of the 5 nodes representing the IC tubes,can be drawn from Fig. 40 of App. 1. It can be noted that, in the second IC node from thetop (where both steam and liquid are simultaneously present and predicted void fractionaround 0.9, Fig. 35), roughly 20 K subcooling are calculated during both Ph.W 2 and 4.

4.2.3 Heat transfer coefficient across the IC tubes

In order to better understand the comparison between calculated and experimentaldata in the reference calculation, relevant data were put in the frame of the Tabs. IXa andIXb, considering the Ph.W 2 and 4, respectively.

Each row deals with one of the five axial zones in which the IC tubes have beensubdivided.

The. first four columns deal with measured and calculated values of temperaturedifferences between primary fluid and inner surface (Tfi and Twi) and between outer surfaceand pool fluid (Two and Tfo). If surface temperature is not available from the experiment ata given level, the assumption is made, for that level, that calculated fluid temperature is thesame in the experiment. This is justified by the comparisons between measured andcalculated fluid temperatures (Figs. 9, 10, 12, 19, 20, 23, 24 of App. 1).

The second group of four columns deals with calculated values of exchanged poweracross each axial level at the inner (subscript "i") and at the outer surface of the IC tubes(subscript "o"). The four values of power (symbol "PO"), from left to right in the tables,have been calculated starting from inner "HTC", outer "HTC", inner "Q" value and outer"HTRNR" values, respectively (HTC, Q and HTRNR are Relap5 output quantities).

The following remarks can be done from the analysis of the tables, with reference toboth the selected phenomenological windows:* exchanged power is much higher in the uppermost two nodes than in the remaining three

bottom nodes;* power calculated from the HTC is not consistent with actual value at the inner surface in

the uppermost three nodes;* only one temperature difference has been obtained for the inner surface: this seems not

enough to draw conclusions;* experimental temperature differences at the outer surface are substantially lower than

calculated values (factor 1.5 - 2): calculated heat transfer coefficient can be retainedunderestimated for the same amount. The presumable error coming from "fin" effectintroduced by the externally welded thermocouples has not been considered in thisconclusion.

In the above analysis, the assumption has been made that the phenomenon is quasi-stationary: this is supported by the time trends of the main quantities. Furthermore, thegood agreement between measured and calculated levels (pressure drop inside the tubes)confirms this assumption.

48

Page 63: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

Ph.w.2 (300. s)

IC TfI Twi Two- Tfo POi POO poQ, poHo

ZONE (K) (K) (kW) (kW) (kW) (MW)

EXP CALC EXP CALC CALC CALC CALC CALC

1 106. (2) 39 50. (0) 76 21.8 73. 22. 23.3

2 - 70.5 68.0) 84.5 11.2 59. 6+23 14+17

3 - 61. 50.(2) 85. 6. 30. 6. 6.

4 - 53. - 62. 4.5 4.5 4.5 4.5

5 - 43.5 32.(2) 50. 3.2 3.1 3.2 3.1

Twi/o =

PoiPOO =POo~ =poQ, i =

poH,o =

(I) -

(2) --

inside/outside fluid temperatureinside/outside wall surface temperatureinside exchanged power evaluated from HTCoutside exchanged power cvaluatcd from HTC

inside exchanged powcr calculated by code (variable "Q")

outside exchanged power evaluated from heat flux (variable "HTRNR")

actual value

experimental fluid temperature equal to calculated one

Tab. IXa - Evaluation of the heat transfer coefficient (Ph.w.2)

Ph.w.4 (900. s-

IC Tfi - TWi Two - Tfo POi Poo poQj poH,o

ZONE (K) (KW) (KW) (KW) (KW) (KW)

EXP CALC EXP CALC CALC CALC CALC CALC

1 94. (2) 33.5 25. (1) 44 22.8 4.6. 22.7 22.7

2 45.5 35. () 65 17.5 54. 5.2-22 19-15

3 61. 43. (2) 65. 5.7 22.9 5.5. 5.5

4 50. 53. 4.1 4.1 4.3 4.2

5 40.7 31.( 2 ) 44. 3. 3. 3.1 3.1

TWO0 =

Poi =

PO0J =poQi =

(1) =

(2) =

inside/outside fluid temperatureinside /outside wall surface temperatureinside exchanged power evaluated from HTCoutside exchanged power evaluated from HTC

inside exchanged power by code (variable "Q")

outside exchanged power evaluated from heat flux (variable "HTRNR")

actual value

experimental fluid temperature equal to calculated one

Tab. IXb - Evaluation of the heat transfer coefficient (Ph.w.4)

49

Page 64: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

4.3 Sensitivity Calculations (Phase 3. of the Post-test analysis)

A large number of sensitivity calculations has been carried out as results from Tab. X,where the varied parameters have been reported together with some qualitatively significanteffects on the results.

The calculation ICA6 was carried out with rough boundary conditions, alreadyproducing a "good" overall agreement with experimental data (App. 4). After that, some"tuning", changing the parameter values within the experimental error bands, was done:almost 30 calculations were performed, among which the IC19-IC31 specifically mentionedin Tab. X.

The result of the tuning was the reference calculation IC31 (App. 1).Calculations from IC28 to IC36 in Tab. X aimed at finding parameters having large

influence on the results: e.g. it was found that conduction heat transfer mesh size has almostno effect on the results (calculation IC32), while IC tubes node length introduces heavyoscillations in the relevant output quantities (calculation IC34).

Finally, calculation IC37 (App. 3) was carried out as a counterpart of calculation IC3 Ito demonstrate the influence of the presence of a large parallel circuit (i.e. vesseldowncomer) upon the IC global performance.

CODE RUN CHARACTERISTICS/VARIED PARAMETERS MAIN RESULTS

ICA6 (I) Rough boundary conditions Overall system behaviourqualitativeiy predicted

IC19+lC27 Sensitivity analyses - varied parameters: Effects on primary system response;- heat losses (value and distribution) minor changes on IC behaviour- core and downcomer initial levels;- core and downcomer initial liquid temperaturedistribution;

- leaks in primary system;- IC valves operation.

IC3 !(2) Reference caselC28-IC30 Liquid insurge in the IC line during the power Effect on primary system pressure

switch-off and IC isolation phase. soon after the power switch-on andVaried parameter: IC restart- IC boundary condition modellingHeat exchanger modelling.

IC32 Varied parameter- IC tube structure mesh size No effect

1C33/1C36 (3) - Heated diameter of IC tube wall external side Large effect on IC outlet liquidtemperature

1C34 - IC tube node number Small effects on IC fluidtemperature distribution andprimary system behaviourStrong oscillations in the wallsurface temperature of IC tubes

IC35 - IC tube material thermal conductivity Small effectsIC37 (4) Recirculation rate in primary system.

Varied parameter Step increase in IC mass flow rate- LP valve closure during transient

(I) Results in Appendix 4(2) Results in Appendix I

(3) Results in Appendix 2(4) Results in Appendix 3

Tab. X - List of calculations and varied parameters

50

Page 65: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

4.3.1 Significant results

Five main groups of calculations have been distinguished following the discussion undersect. 4. These are classified in Tab. XI where the varied parameter ranges are reported, ifapplicable. In the last part of Tab. XI, the differences between measured and calculatedvalues of surface temperature in the lowest node of the IC tubes, are reported too. This isdone at 100, 300 and 1000 s into the transient, the first two values belonging to Ph.W 2 andthe last one to Ph.W. 4. It can be noted that in almost all the cases, calculated outer surfacetemperature values are larger than measured values (the consideration about possiblethermocouples "fin" effect should be made here, too). Assuming that heat transfer powerand fluid temperature are the same in the experiment andconcluded that calculated HTC values are lower than in thefrom sect. 4.2.3.

in the calculation, it can beexperiment, as it also results

GROUP CASE VARIED PARAMETER EFFECT ON PREDICTEDIC PERFORMANCE

(TS4C-7) - M1TEMPIS5I0)100.s 300.s 1000.5

3a) USED CODE VERSIONINFLUENCE OF IC31" RELAPS/Mod3.1 -16.9 -17.1 -12.CODE VERSION IC7J RELAP5/Mod3V7J -14.6 -0.1 -

ICV8 RELAP5/Mod3V80 -14.8 -0.4 -ICM2 RELAPS/Mod2.5 -14.7 -14.8 -17.1

3b)INFLUENCE OFINITIAL AND BOUNDARY IC31 INITIAL AND -16.9 -17.1 -12.CONDITIONS ICA6* BOUNDARY CONDITIONS -12.9 -13.3 -4.63c)USER EFFECT IC31 IN/OUT FLOW TO -16.9 -17.1 -12.

IC28 IC CONTROL VOLUMES -16.7 -16.7 -11.8IC29 -16.9 -16.9 -11.4

_____________IC30(°) -16.9 -17.2 -

3d) MESH NUMBER OF IC

NODALIZATION EFFECTS PIPE WALL:IC31* 10 -16.9 -17.1 -12.IC32 20 -17.1 -17.5 -12.4

NODE NUMBER OF ICPIPE AND CORRESPONDINGINTERNAL POOL ZONE:

IC31 5 -16.9 -17.1 -12.IC34 10 -10.6 -14.6 -4.4

IC PIPE MATERIALTHERMAL CONDUCTIVITY

IC31 STANDARD STEEL -16.9 -17.2 -12.1C35 STANDARD STEEL *2 -17.3 -17.5 -12.3

3c) HEATED DIAMETER IN THECHANGES OF RELEVANT EXTERNAL SIDE OF IC PIPEPARAMETERS WALL:

IC31* 0.005 m -16.9 -17.1 -12.IC33 0.1 m -43.7 -44. -37.3IC36 0.001 m -3.0 -3.4 0.3

IC37 LP-VALVE CLOSURE AT1300.$ IN THE TRANSIENT -16.6 -17.2 -31.9

without control volumes in the IC * Results in Appendix (see Tab. X)

Tab. XI - Documented calculations

..... f

51

Page 66: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

In all cases, six quantities have been selected to characterize the influence of thevaried parameter:- lower plenum pressure;- IC tubes surface temperature (external side level 3);- IC tubes internal fluid temperature (level 3);- IC outlet fluid temperature;- IC HTC inside tubes (level 3);- IC HTC outside tubes (level 3).

00.

33b.0.

5.750

5.500

5.250

5.000

4.750

4.500

4.250

4.000

3.750

3.500

3.250 "-200 0 200 400 600 800 1000

Time (s)

1200

Fig. 34 - Lower plenum pressure

52

Page 67: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

160.

140.

120.

100.

80.

60.

SII-

40.

20.

O. ' ' I I

-200 0 200 400 600 800

Time (s)

Fig. 35 - IC tubes wall surface temperature (external side level 3)

1000 1200

350.

300.

250.

200.

150.

PIPER-ONE Test PO-1C-2APost-test calculation3a Influence of code version

MA

EI2ATF-1C-1EI2ATF-1C-2IC31TEMPF51 5030000IC7JTEMPF515O30000ICV8TEMPF515030000*ICM2TEMPFS51530000

Ea

100.

-0.-200 0 200 400 600 800 1000

Time (s)

1200

Fig. 36 - IC tubes fluid temperature (middle elevation)

53

Page 68: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

140.PIPER-ONE Test PO-IC-2APost-test calculation3a Influence of code version

XXIC3ITEMPF525O6000YYY IC7JTEMPF525O6000ZZZ ICVBTEMPF52506000M# ICM2TEMPF52506000

120.

100.

* 80.

I 60.

40. F

20.

II

d • • I • • |ni II I --- - - --200 0 200 400 600 800 1000 1200

Time (s)

Fig. 37 - IC outlet fluid temperature

xlO 43.50

3.00

* I I I I I

S

Al

2.50 -

2.00 F

7 I I I I I

PIPER-ONE Test PO-IC-2APost-test calculation3a Influence of code version

XXX IC31HTHTC515000200YYY IC7JHTHTC515000200ZZZ ICVSHTHTC515000200

#S ICM2HTHTC515000200

1.50

1.00

0.50

0.00

n • |-0.50-20'0 0 200 400 600 800 1000 1200

Time (s)

Fig. 38 - Heat transfer coefficient at the Inside of IC tubes wall (level 3)

54

Page 69: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

x 10

E

42.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

-0.25-200

SPIPER-ONE Test PO-IC-2APost-test calculation3a Influence of code version

'X*1031 HTHTC515000201YYY IC7JHTHTC5ISO02OIZZZ ICVSHTHTC515000201M# ICM2HTHTC5I 5000201

I I I I I - I - I I - - B I I I I

0 200 400 600 800 1000 1200

Time (s)

Fig. 39 - Heat transfer coefficient at the outside of IC tubes wall (level 3)

CL

C-0,

Sa.

5.750 "

5.500

5.250

5.000

4.750

4.500

4.250

4.000

3.750

3.500

3.250-200

m

PIPER-ONE Test PO-IC-2APost-test calculation3b Influence of I/B condition values

XXX EI2APA-LP-1YYY IC31P130010000ZZZ ICASPI30010000

I * I I I I I

I mm B B m i

0 200 400 600

Time (s)

800 1000 1200 1400

Fig. 40 - Lower plenum pressure

55

Page 70: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

Influence of code versionThe nodalization used for calculation IC31 has been modified (if necessary) and run

with different code versions as specified in Tab. XI. The six selected quantities arecompared in Figs. 34 to 39. Primary pressure is not very much affected by code version(Fig. 34). Overestimation of external temperature appears from all code versions (Fig. 35).

The unphysical behaviour for fluid temperature already noted in the analysis of theexperiment PO-SD-8 by the 7J code version (ref. /6/), can also be noted in Figs. 36 and 37also with reference to the v80 version.

Internal heat transfer coefficient is oscillating only in Relap5/mod3.1 (Figs. 38 and39); HTC values are lower in the case of v 3.1. Calculations with 7J and v80 versionsstopped at almost 500 s into the transient.

Influence of initial and boundary conditionsA large number of boundary conditions has been varied between ICA6 and IC31

calculations (ICA6 can be retained a blind post-test), as already mentioned. Differences inthe results can be appreciated looking at figures from 40 to 45.

The influence of the considered changes cannotbe retained relevant as far as the ICbehaviour is concerned. HTC are lower in ICA6 than in IC3 1 calculations (Fig. 45).

User effectsAlmost arbitrary conditions were imposed to run the calculations during PH.W 3,

attempting to prevent calculation failure due to shock condensation.Mostly, changes in the duration and phenomenology of Ph.W 3 can be noted in the

results (Figs. 46 to 51); the influence on the subsequent Ph.W 4 seems negligible.

Nodalization effectsThe studied nodalization effects include the increase. in the number of conduction heat

transfer meshes and the increase in the number of hydraulic nodes, (calculations IC32 andIC34 in Tab. XI, respectively). The change of steel conductivity (calculation IC35 inTab. XI) has also been included in this group, although it could have been in the calculationgroup 3e) of Tab. XI. The results are shown in Figs. 52 - 57 with reference to the chosensix quantities: IC31 results are also reported.

The effects of these variations at a global level, i.e. considering primary circuitpressure (Fig. 52) or fluid temperature at the IC outlet (Fig. 55) are negligible. However,local effects can be very important as shown by the inner wall surface temperature in Fig. 53and by the heat transfer coefficient in Fig. 57.

In particular the comparison of IC34 and IC31 related trends in Fig. 57 leads to theconclusion that (condensation) heat transfer coefficient should be in someway connectedwith node dimensions: a given HTC correlation can produce satisfactory results with nodesof given dimensions, but unacceptable results if node dimensions are changed.

Changes of relevant parametersFor simplicity, only the effect of hydraulic diameter change in the secondary side of

the IC is discussed under this item. Calculations IC33 and IC36 are characterized byhydraulic diameters 20 times and 5 times, respectively, larger and lower than the value ofthe same quantity in calculation IC31. Relevant results are shown in Figs. 58 - 63.

This quantity has a strong effect both regarding primary pressure (Fig. 58) and IC relatedquantities, like fluid temperature at the outlet (Fig. 61) and heat transfer coefficient (Fig. 63).

The judgement about the preferable value for hydraulic diameter is difficult from thepresented data.

56

Page 71: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

160.

140.

120.

a I I I 1 9 5 S

PIPER-ONE Test PO-IC-2APost-test calculation3b Influence of I/B condition values

XXX EI2ATS-IC-3YYY IC31HTTEMP515000210ZZZ ICA6HTTEMP515000210

EA2

100. 1-

80.

60.

40.

20.

0.-20

a a I I I a ff I I I I a I 1 p

10 0 200 400 600

Time (s)

800 1000 1200 1400

Fig. 41 - IC tubes wall surface temperature (external side level 3)

300.

250.

200.

150.

100.

EA2

50.

0. L-

-200 0 200 400 600

Time (s)

800 1000 1200 1400

Fig. 42 - IC tubes fluid temperature (middle elevation)

57

Page 72: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

140.PIPER-ONE Test PO-IC-2APost-test calculation3b Influence of I/B condition values

XXX IC31TEMPF525060000YYY ICASTEMPF525060000

120.

100. I

S

iE0

80.

60.

* I

* I

* I

* I40. F

20. j

I

• I I • I I I •0.-200 0 200 400 600

Time (s)

800 1000 1200 1400

Fig. 43 - IC outlet fluid temperature

xl10 43.00

2.50

E 2.00

. 1.50

S 1.00C0.50

0.00

| |I • -. -

PIPER-ONE Test PO-IC-2APost-test calculation3b influence of I/B condition values

XXX ICA6HTHTC515000200YYY IC31 HTHTC515000200

- I

- I

.~X~L4/

I

Lf_. . . . ..* I--- I a

-200 0 200 400 6oo

Time (s)

800 1000 1200 1400

Fig. 44 - Heat transfer coefficient at the Inside of IC tubes wall (level 3)

58

Page 73: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

x 10

_E

Ci

b.

42.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

PIPER-ONE Test PO-IC-2APost-test calculation3b Influence of 1/8 condition values

)=c ICAGHTNTC515000201YYY 1031 HTHTC51 5000201

a * a I a * a i a a a a * a a"Vdr.•l-2200 0 200 400 600 800 1000

Time (s)

Fig. 45 - Heat transfer coefficient at the outside of IC tubes wall (level 3)

1200 1400

5.750-

5.500

5.250

5.000

4.750

4.500

4.250

4.000

3.750

3.500

3.250 L-200 0 200 400 600 800 1000

Time (s)

1200

Fig. 46 - Lower plenum pressure

59

Page 74: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

160.

140.

120.

100.

80.

60.

0I.-

40.

20.

0.-200 0 200 400 600 800 1000

Time (s)

1200

Fig. 47 - IC tubes wall surface temperature (external side level 3)

0

a.2I.-

350.

300.

250.

200.

150.

100.

50.

0. '-

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 48 - IC tubes fluid temperature (middle elevation)

60

Page 75: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

140.

120.

100.

80.

60.E

40.

20.

o. L

-200 0 200 400 600 800 1000

Time (s)

1200

Fig. 49 - IC outlet fluid temperature

4x 10 2.00

1.75PIPER-ONE Test PO-IC-2APost-test calculation3c User effects

XXX 1C31 HTI4TC51 5000200YYY 1C28HTHTC5I5000!00ZZZ IC29HTHTC51 50000### IC30HTHTC5I SO!0fO

2

*5

I0

L.

SaCSh..

SS

1.50

1.25

1.00

0.75

0.50

0.25

0.00

I

-0.25 '--20)0 0 200 400 600 800 1000 1200

Time (s)

Fig. 50 - Heat transfer coefficient at the Inside of IC tubes wall (level 3)

61

Page 76: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

x 0 42.25

2.00

1.75

1.50

S 1.25

1.00

0.75

0.50

0.25

0.00 L

-0.25 --200 0 200 400 600 800 1000 1200

Time (s)

outside of IC tubes wall (level 3)Fig. 51 - Heat transfer coefficient

S

S

20

5.750

5.500

5.250

5000

4.750 -

4.500

4.250

4.000

3.750

3.500

3.250 --200

PIPER-ONE Test PO-IC-2APost-test calculation3d Nodalizatlon effects

XOX EI2APA-LP-1YYY IC31P130010000ZZZ 1C32P130010000#M IC34P130010000AA IC35P130010000

I

* ---v- -

a a a a a a a a a a a a - a

0 200 400 600 800 1000

Time (s)

1200

Fig. 52 - Lower plenum pressure

62

Page 77: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

160.

EA

140. .I* 0..- .... .. i.. ... . Z I140. zz~zI3d Nodalization effects

MAI

120.

100.

so.

60.

40. ,

20.

0.-200 0 200 400 600 800

Time (s)

Fig. 53 - IC tubes wall surface temperature (external side level 3)

1000 1200

300.

250.

200.

150.

100.

CL

EA

50.

0.-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 54 - IC tubes fluid temperature (middle elevation)

63

Page 78: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

140.

120.

100.

PIPER-ONE Test PO-IC-2APost.test calculation3d Nodalization effects

XXX IC31TEMPF525060000YYY IC32TEMPF52S060000ZZZ IC34TEMPF525060000### IC35TEMPF525060000

MI0S.EI.-

80.

60.

40.

20.

0. I I g I

-200 0 200

Fig. 55 - IC outlet fluid temperature

400 600 800 1000

Time (s)

1200

x10 43.00

2.50

PIPER-ONE Test PO-IC-2APost.test calculation3d Nodalization effects

xxxYYYzzz

S1

Q

XU

2.00

1.50

1.00

0.50

0.00

E

IC31 HTHTC515000200IC32HTHTC51 5000200IC34HTHTC515000400IC35HTHTC51 S000200

|

• | • • • •

-0.50 L

-20'0 0 200 400 600 800 1000 1200

Time (s)

Fig. 56 - Heat transfer coefficient at the Inside of IC tubes wall (level 3)

64

Page 79: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

x 10

144-.

I

IaC

4-.S0

42.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

-0.25.200

PIPER-ONE Test PO-IC-2APost.test calculation3d Nodalization effects

XXX IC31HTHTC515000201YYY IC32HTHTC515000201ZZZ IC34HTHTC515000401M# IC35HTHTC515000201

0 200 400 600 800 1000 1200

Time (s)

Fig. 57 - Heat transfer coefficient at the outside of IC tubes wall (level 3)

0

S

5.750

5.500

5.250

5.000

4.750

4.500

4.250

4.000

3.750

3.500

3.250-200

- I------- I I U

PIPER-ONE Test PO-IC-2APost-test calculation3e Changes of relevant parameters

D

MX E12APA-LP-1YVY 1C31P130010000ZZZ IC33PI30010000ME# IC36PI30010000

I

A • mI I0 200 400 600

Time (s)

800 1000 1200

Fig. 58 - Lower plenum pressure

65

Page 80: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

160.

140.

120.

100.

80.

60.

SI-E12

0. * * I I I I p p p •

-200 0 200 400 600 800

Time (s)

Fig. 59 - IC tubes wall surface temperature (external side level 3)

1000 1200

300.

250.

200.

150.

100.

6~0a..Sa-00.

0I-

50.

-200 0 200 400 600 800 1000

Time (s)

1200

Fig. 60 - IC tubes fluid temperature (middle elevation)

66

Page 81: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

140.

120.

100.

FS

EA

00.

60.

40.

20.

- * I

* I

* I

* I

PiPER-ONE Test PO-IC2APost.test calculation39 Changes of relevant parameters

XXX IC3iTEMPF525O60000YYY IC33TEMPF525060000ZZZ IC36TEMPF525060000.

I

0.i I iI I I

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 61 - IC outlet fluid temperature

xl0 43.00

2.50

C

E

2.00 0

1.50 F

PIPPos3-

- I- I

ER-ONE Test PO-IC-2A,t.test calculationChanges of relevant parameters

S I I I I "

XXX 1C31 HTHTC515000200YYY IC33HTHTC5I 5000200ZZZ IC36HTHTC5150002000

1.00

0.50 1

0.00 S-.

-0.50 "-20

i I i i i I 8 iI 1 6 1 1 1 # Ia0 0 200 400 600 800 1000 1200

Time (s)

FIg. 62 - Heat transfer coefficient at the Inside of IC tubes wall (level 3)

67

Page 82: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

Xt0 42.25PIPER-ONE Test PO-IC-2A X 5

XXX IC31HTHTC5150DO201

2.00 Post.test calculation YYY IC33HTHTC515000201

39 Changes of relevant parameters ZZZ IC36HTHTC515000201

1.75 -

E~ 1.50

1.25

1.00

.* 0.75

0.50

0.25

0.00

-0.25 ' ' 2 ' 5 '

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 63 - Heat transfer coefficient at the outside of IC tubes wall (level 3)

4.3.2 Results in Apps. 2 and 4

The results of calculation IC36 are shown in App. 2. It can be noted that the

(arbitrary) variation (i.e. reduction) in the hydraulic diameter value of the pool nodes largelyimproves the comparison between measured and predicted wall temperatures (e.g. Figs. 17

and 18 in App. 2) with respect to the reference calculation IC31 (see also data in the last

columns of Tab. XI). The primary' side related quantities are either unaffected (e.g.

downcomer level, Fig. 2 of App. 2), either better predicted (e.g. pressure, Fig. 1 in App. 2).The results related to the calculation ICA6 are reported in App. 4, just because ICA6

can be considered as a blind post test. Some comments have already been given above.

4.3.3 isolation of downcomer (App. 3)

The isolation of downcomer was assumed to demonstrate that IC flowrate and

exchanged power increase with core supplied power, if the IC constitutes the only path for

the steam coming from the core.The IC37 calculation has the same input as the IC31 calculation, the only difference

being the closure of the isolation valve between core and downcomer region at 300 s into

the transient. The following effects can be noted:a) IC flowrate in Ph.W 2 increases after the isolation (Fig. 7 of App. 3);b)IC flowrate in Ph.W 4 is larger than in Ph.W 2 (Fig. 7 of App. 3);c) as a consequence of the above, IC exchanged power is also larger (Fig. 28 of App. 3) in

Ph.W 4 with respect to Ph.W 2; this conclusion can also be inferred from the primary

circuit pressure (Fig. 1 of App. 3) that decreases during Ph.W 4;d) condensing steam is present in the third volume from the top (Fig. 35 of App. 3): this is the

local cause for the increase of the IC exchanged power as also results from observing HTC

in Fig. 33 of App. 3;e)the pressure peak in Ph.W 3 is better predicted in calculation IC37 than in calculation

IC31. This confirms the conclusion that pressure increase in the test is caused by steamproduction without circulation from the downcomer: the consequent stratification effect

is underestimated by the code in the reference calculation.

68

Page 83: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

4.4 Scaling analysis

The problem to bc raised in the frame of a scaling study, can be synthesized by thefollowing questions:* is the experimental data base rcprescntativc of situations expected in the reference plant

(SBWR in this case)'?* are the code capabilities and limits (detected in this study) applicable to plant

predictions?The first question is addressed in the present framework (details in App. 6, ref.

/22/). The second question needs the availability of counterpart tests; some aspects arediscussed in ref. /23/.

A few details, taken from App. 6, arc reported below.The following parameters are considered in the analysis of scaling efforts:

I) Elevation of IC relative to TAF;2) Length of IC tubes;3) Diameter of IC tubes-4) Total heat exchange area of IC.5) Inlct flow area of IC.

Each of the selected parameters is varied in the range from the actual value up tothe right scaled value and for each variation a new nodalization is set up and a calculationis run. A final calculation is performed including all the variations at the same time.

The results can be summarized as follows:a) no new phenomena occurred in any of the calculations;b) the most important parameter in this analysis, i.e. the largest scaling distortions in

PIPER-ONE apparatus, is constituted by the elevation of the IC (parameter nr. 1).above).

The qualitative scenario in the final calculation (i.e. the one including all thevariations) does not differ from the experimental scenario.

69

Page 84: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 85: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

5. CONCLUSIONS

The present document reports the analysis performed with Rclap5 in relation to thePIPER-ONE experiment PO-IC-2. The test is the follow-up of the similar experiment PO-SD-A and aims at characterizing phenomena connected with the operation of IsolationCondenser in a geometric configuration typical for SBWR. The test studied was conductedat high pressure (around 5 MPa) to study code performances in this situation.

Conclusion can be drawn in relation to:A) overall system performance;B) thcrmalhydraulic phenomena inside the IC;C) code capabilities;D) effect of various changes in the calculation conditions.

It has been confirmed that a constant removed power characterizes the ICpcrformancc.(itcm A)) whatever arc the primary loop thcrmaihydraulic conditions. Fromthe analysis of experimental data supported by specific code calculations, the reason whyIC exchanged power remains constant, when core power conditions are varied, has beenmade clear. This is a consequence of IC flowratc that is determined by the pressuredifference created in the downcomcr of the main loop; this remains almost constant duringthe performed cxpcriment. Constant IC flowratc means constant condensation length in theIC tubes and constant transferred power to the pool (sec also below).

The shroud put in the pool was not cffcctivc in provoking natural circulation becauseof the high conductivity across its wall, that led to fluid temperature stratification with thesame characteristics in the inner and outer zones of the pool.

Heat transfer coefficients are several (3-7) times larger in the condensing zones of theIC tubes than in the single phase liquid region (item B)); the fluid pool temperatureincrease (up to 70 K) has a negligible role in this connection (high pressure steam). Liquidlevel in the IC remains almost constant when varying core power.

A new detailed nodalization of PIPER-ONE apparatus was adopted for this study.The standard version of Rclap5/mod3. I is able to catch the overall phenomenology duringthe four main pcriods of the experiment (item C)).

Discrepancies have been identified mainly concerning the IC tubes surfacetemperatures, that arc overestimated by the code, particularly on the outer surface: thismeans underestimation by the code of the outer heat transfer coefficient, provided that theoverall exchanged power is well predicted. However the possible "fin" effect originated bythermocouples has not been considered in this conclusion. An unphysically high heattransfer coefficient is produced in the output by the code although apparently not used(Tab. IX). During the phenomenological window nr 3 (i.e. during the period of power shut-off) the code was not able to simulate the condensation shock occurring in the IC line.

An extensive series of sensitivity calculations has been carried out (item D)). Thesedemonstrated:* some improvements in the code results when passing from the earliest to the latest

Relap5/mod3 code versions; however oscillations in condensation heat transfer value aremuch larger in the reference code version. Furthermore the transition logics from heattransfer mode 2 to 3 (and viccvcrsa) could be improved;

* changes in the equivalent diameter of the pool side of the IC has an important effect onthe calculation of the local quantities like heat transfer coefficient and temperatures;

* changes in nodalization can also have a noticeable effect as far as the calculation of theabove mentioned quantities is concerned. The last item stressed the need to define somerelationship between the (condensation) heat transfer coefficient and the average node

71

Page 86: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

dimensions: this seems necessary to get reproducible results especially whencondensation heat transfer is involved.

The performed scaling analysis (sec also App. 6) demonstrated that the scalingdistortions identified in the PIPER-ONE hardware, do not affect, qualitatively, thephenomena occurring during the selected experiments.

Analyses, related to the same test have been carried out by CATHARE code, e.g.ref. /24/.

Further activity in this area includes the analysis of a companion experiment duringwhich nitrogen gas was injected into the primary circuit and actually caused largedegradation of the IC removed power.

72

Page 87: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

REFERENCES

/I/ D'Auria F., Modro M., Oriolo F., Tasaka K.: "Relevant Thcrmalhydraulic Aspects ofNew Generation LWR's"CSNl Spec. Meet. On Transient Two-Phase Flow - System Thermaihydraulics, Aix-En-Provcncc (F), April 6-8, 1992.

/2/ D'Auria F., Galassi G.M., Oriolo F.: "Thermaihydraulic Phenomena and CodeRequirements for Future Reactors Safety Analysis"Int. Conf. on Design and Safcty of Nuclear Power Plants (ANP) - Tokyo (J), October25-29, 1992.

/3/ Andreuccetti P., Barbucci P., Donatini F., D'Auria F., Galassi G.M., Oriolo F.:"Capabilities of the RELAP5 in Simulating SBWR and AP-600 ThermalhydraulicBehaviour"IAEA Technical Committee Meet. (TCM) on Progress in Development and DesignAspects of Advanced Water Cooled Reactors, Rome (I), September 9-12, 1991.

/4/ Bovalini R., D'Auria F., Mazzini M.: "Experiments of Core Coolability by a GravityDriven System Performed in Piper-One Apparatus"ANS Winter Meeting, San Francisco (CA), November 10-15, 199 1.

/5/ Bovalini R., D'Auria F., Mazzini M., Vigni P.: "Isolation Condenser Performances inPIPER-ONE Apparatus"1992 European Two-Phase Flow Group Meet. , Stockholm (S), June 1-3, 1992.

/6/ D'Auria F., Vigni P., Marsili P.: "Application of Relap5/Mod3 to the Evaluation ofIsolation Condenser Performance"Int. Conf. on Nuclear Engineering (ICONE-2) - San Francisco (US), March 21- 24,1993

/7/ Bovalini R., D'Auria F., Galassi G.M., Mazzini M.: "Piper-One Research: theExperiment PO-SD-8 Related to the Evaluation of Isolation Condenser Performance.Post-Test Analysis Carried out by Relap5/Mod3-7J code"University of Pisa Report, DCMN - NT 200 (92), Pisa (1), November 1992.

/8/ D'Auria F., Galassi G.M., Mazzini M., Pintorc S.: "Ricerca Piper-One: specifichedettagliatc della prova PO-IC-2"University of Pisa Report, DCMN - NT 234(94), Pisa (I), Giugno 1994.

/9/ Ransom V.H., Wagner R.J., Trapp J.A., Jonhsen G.W., Miller C.S., Kiser D.M.,Riemkc R.A.: "Relap5/mod2 Code Manual - Vol. 1: Code Structure, Systems andSolution Methods"NUREG/CR-4312 EGG 2396 - EGG Idaho Inc., March 1987.

/101 Carlson K.E., Ricmke R.A., Rouhani S.Z., Shumway R.W., Weaver W.L.:"Rclap5/Mod3 Code Manual - Volume II. User Guide and Input Requirements"NUREG/CR-5535, June 1990.

73

Page 88: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

/ 1I/ D'Auria F., Oriolo F., Bclla L., Cavicchia V.:"AP-600 ThcrmalhydraulicPhenomenology: A RelapS/mod2 Model Simulation"Int. Conf. on New Trends in Nuclear System Thcrmohydraulics - Pisa (1), May 30 -June 2 1994Int. Top. Meeting on Advanced Reactor Safety - Pittsburgh (PA) April 17-21, 1994

/12/ Barbucci P., Bclla L., D'Auria F., Oriolo F.: "SBWR Thcrmalhydraulic Performance:a RELAP5/MOD2 Model Simulation"6th Int. Top. Meet. on Nuclear Reactor Thermaihydraulics, Grenoble (F), Oct. 5-81993

/13/ Bovalini R., D'Auria F., Di Marco P., Galassi G.M., Giannccchini S., Mazzini M.,Mariotti F., Piccinini L., Vigni P.: "PIPER-ONE: a Facility for the Simulation ofSBLOCA in BWRs"Spec. Meet. on Small Break LOCA Analyses in LWRs, Pisa (1), June 23-27 1985

/14/ Bovalini R., D'Auria F., Mazzini M., Pintorc S., Vigni P.: "PIPER-ONE Research:Overview of the Experiments Carried out"9th Conf. of Italian Society of Heat Transport, Pisa (I), June 13-14 1991

/15/ Bovalini R., D'Auria F., Mazzini M., Pintore S., Vigni P.: "PIPER-ONE Research:Lesson Learned"9th Conf. of Italian Society of Heat Transport, Pisa (1), June 13-14 1991

/16/ D'Auria F., Fruttuoso G.:" OECD CSNI ISP 21, PIPER-ONE Test PO-SB-7: Post-Test Analysis Performed at Pisa University by RELAP5/MOD2 Code"University of Pisa Report, DCMN - RL 386 (89), Pisa (1), March 1989OECD CSNI 2nd Workshop on ISP 21, Calci (1), Apr. 13-14 1989

/17/ D'Auria F., Galassi G.M., Mazzini M.: " PIPER-ONE Research: Specifications ofPO-SD-8 Experiment" (in Italian)University of Pisa Report, DCMN - NT 190 (92), Pisa (1), Jan. 1992

/18/ Ambrosini W., D'Auria F., Galassi G.M., Mazzini M., Virdis M: "PreliminaryPlanning of BIP Tests to be Performed in PIPER-ONE Apparatus"University of Pisa Report, DCMN - NT 207 (93), Pisa (1), May 1993.

/19/ D'Auria F., Mazzini M., Oriolo F., Paci S.: "Comparison Report of the OECD/CSNIInternational Standard Problem 21 (PIPER-ONE Experiment PO-SB-7)"CSNI Report Nr. 162, Paris (F), Nov. 1989

/20/ Bajs T., Bonuccclli M., D'Auria F., Debrecin N., Galassi G.M.: "On TransientQualification of LOBI/MOD2, SPES, LSTF, BETHSY and KRSKO PlantNodalizations for RELAP5/MOD2 Code"University of Pisa Report, DCMN - NT 185(9 1), Pisa (1), Dec. 1991

/21/ Brandani M., Rizzo F.L., Gesi E, James A.J.: "SBWR-IC &PCC Systems: anApproach to Passive Safety"IAEA Technical Committee Meet. (TCM) on Progress in Development and DesignAspects of Advanced Water Cooled Reactors, Rome (1), September 9-12, 1991

74

Page 89: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

/22/ D'Auria F., Faluomi V.: "Qualitative Analysis of Scaling Effects in IsolationCondenser Behaviour with RELAP5/MOD3. 1 Thermalhydraulic Code"ICONE-4 Conference, New Orleans (US), March 10-14, 1996

/23/ D'Auria F., Faluomi V., Vigni P.: "Evaluation of Hardware Data inThermalhydraulic Facilities Relevant to SBWR Technology"2nd European Thermal Sciences and 14th UIT Nat. Heat Transfer Conf., Roma (I),May 29-31, 1996

/24/ D'Auria F., Mazzini M., Kalli H., Sorjonen J.: "Application of CATHARE Code tothe Isolation Condenser Experiment in PIPER-ONE Loop"ICONE-4 Conference, New Orleans (US), March 10-14, 1996

/25/ Billa C., D'Auria F., Di Marco P., Mazzini M., Vigni P.: "PIPER-ONE Research:Facility Description for OECD-CSNI International Standard Problem N. 21 (ISP 21)"University of Pisa Report, DCMN - RL 246(86), Pisa (1), Sept. 1986OECD CSNI 1st Workshop on ISP 21, Marina di Grosseto (I), Sept. 22-23 1986

/26/ Cioni L., D'Auria F., Di Marco P., Galassi G.M., Mazzini M.: "PIPER-ONEResearch: Boundary and Initial Conditions for OECD-CSNI International StandardProblem 21 (ISP 21)"University of Pisa Report, DCMN - RL 247(86), Pisa (I), Sept. 1986OECD CSNI I st Workshop on ISP 21, Marina di Grosseto (1), Sept. 22-23 1986

/27/ Billa C., Bovalini R., D'Auria F., Mazzini M., Oriolo F., Piccinini L. "PIPER-ONEResearch: Available Instrumentation and Specifications for OECD- CSNIInternational Standard Problem 21 (ISP 21)"University of Pisa Report, DCMN - RL 255(86), Pisa (1), Sept. 1986OECD CSNI 1st Workshop on ISP 21, Marina di Grosseto (1), Sept. 22-23 1986

/28/ Breghi M.P.: "Uncertainty Evaluation of the Measurements taken in PIPER-ONEApparatus"University of Pisa Report DCMN RL 382 (89), Pisa (1), 1989

75

Page 90: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 91: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

APPENDIX 1:

RESULTS OF REFERENCE CALCULATION

(Post-Test IC 31)

Page 92: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 93: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

7.000

6.000

5.000

4.000

3.000

-~~---

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX 161P30010000ooYYY E12APA-LP-1

S

a..

*7

PH.W.1

PH.W.2 PH.W.4

2.000 F

1.000 PH.W.5

S S S S Sm I0.000 I

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 1 - Measured and calculated trends of lower plenum pressure

E9

320.

300.

280.

260.

240.

220.

200.

180.

160.

140.

120. L--200 0 200 400 600 800 1000 1200

Time (s)

Fig. 2 - Measured and calculated trends of lower plenum temperature

A[-I

Page 94: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

5.0

a0I.-

350.

325.

300.

275.

250.

225.

200.

175.

150.

125.

100.

. fPIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC31 HTTEMP2001 00810YYY 1C31 HTTEMP2001009IO.ZZZ 1C31HTTEMP200101010W# E12ATC-31 -9

a 11 II 11

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 3 - Measured and calculated trends of rod surface temperature (level 9)

E

13.000

12.500

12.000

11.500

11.000

10.500

10.000

9.500

9.000

8.500 L--200 0 200 400 600 800 1000

Time (s)

1200

Fig. 4 - Measured and calculated trends of core level

AI-2

Page 95: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

E

14.000

13.000

12.000

11.000

10.000

9.000

8.000-200 0 200 400 600 8

Time (s)

Fig. 5 - Measured and calculated trends of downcomer level

00 1000 1200

IF

120.

100.

80.

60.

40.

20.

0.

1 4 1 I

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

MX IC31CNTRLVAR40YYY E12AWH-POWER

-20. L-20

m Ia)0 0 200 400 600

Time (s)

800 1000 1200

Fig. 6 - Measured and calculated trends of core power

AW-3

Page 96: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

0

Lu

I-

0.400

0.350

0.300

0.250

0.200

0.150

0.100

0.050

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

,I I1 Ll , , , .

XXX IC31MFLOWJS5000000YYY 1C31MFL0WJ5O500000qZZZ E12AWW-IC-1

J*

0.000 I- LX-.

-0.050 '-2010 0 200 400 600 800 1000 1200

Time (s)

Fig. 7 - Measured and calculated trends of IC mass flow rate

C

18.0

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0

-2.0 '-

-200 0 200 400 600 800 1000

Time (s)

1200

Fig. 8 - Measured and calculated trends of IC differential pressure

AI-4

Page 97: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

350. . S S S * S S S 5 5 * * S

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX 1031TEMPF500100000YYY E12ATF-IC-O

300. V

250. -

o 200.

S 150.

100. 1-

So. 1-

S S S S S'S I IU.

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 9 - Measured and calculated trends of IC inlet fluid temperature

300.* PIPER-ONE Test PO-IC-2A

Post-test calcUlationRELAPS/Mod3.1

XXX IC31TEMPF515030000YYY E12ATF-IC-1ZZZ E12ATF-IC-2

250. F

200. I-

*i 150.

EA

100. I"

so. i"

0.-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 10. Measured and calculated trends of IC tubes fluid temperature(middle elevation)

AI-5

Page 98: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

0

'U

0.2'UI-

350.

300.

250.

200.

150.

100.

50.

I I

* I

* I

a I I I I

PIPER-ONE Test PO-IC-2APost.test calculationRELAP5/Mod3.1

I IXXX IC31TEMPFSISOIOOOOYYY 1C31TEMPFI51520000ZUZ 1C31TEMPF515030000##S IC31TEMPF515040000AM IC31TEMPF515050000

| I • I • •

0.-20

XXX IC31TEMPFS4001000010 0 200 400 600 Boo

Time (s)

1000 1200 1400

Fig. 11 - Calculated trends of IC fluid temperature along the axis

110.0

100.0

90.0

PIPER-ONE Test PO.IC-2APost.test calculationRELAP51Mod3.1

80.0 F

E.1!

70.0 j

60.0

50.0

40.0

30.0

20.0

YYY E12ATF-IC-5

10.0 ,-20

2 1 t I I

I0 0 200 400 600

Time (a)

800 1000 1200 1400

Fig. 12 - Measured and calculated trends of IC outlet fluid temperature

AI-6

Page 99: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

300. !I

II

I

i250.

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC31 HTTEMP515000101YYY E12ATS-IC-2

EA

200.

150.

100.

r

s0.

l1u-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 13 - Measured and calculated trends of IC tubes wall surface temperature

(internal side top elevation)

300.

250.

200.

150.

100.

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5IMod3.1

XXX IC31HTTEMP515000101YYY IC31HTTEMP5150002Or'ZZZ IC31HTTEMPS15000301WU 1C31 HTTEMPS150004O1-

MAA IC31HTTEMPS15000501

EA

50.

0. 1.2(

I I

0 0 200 400 600 800 1000 1200

Time (s)

Fig. 14 - Calculated trends of IC tubes wall surface temperature along the axis

(internal side)

AI-7

Page 100: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

160.

140.

120.

PIPER-ONE Test PO-IC-2APost-test calculationRELAPSfMod3.1

)=( MC3HTTEMM55000I 10.YYY E12ATS-IC-1

I.I-

100. F

80. 1-

60. 1-

40. F

20. F

• I I . I I I a I I a I 20.-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 15 - Measured and calculated trends of IC tubes wall surface temperature(external side top elevation)

160.PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

S * I * S S

IXX 1C31HTTEMP515000210.YYY EI2ATS-IC-3

140. 1

120. I

5• 100.

! 80.

Io.

40.

20.

0. I m m m m m m I I m m II I I I I I a a a

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 16 - Measured and calculated trends of IC tubes wall surface temperature(external side level 3)

A1-8

Page 101: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

140.

EA

LLL tIZFP I •-IL,5I120. RELAPS/Mod3.1 &." EI2ATS-IC-g

100.

80.

60.

40.

20.

0. * I p p p I I p p 3 I

-200 0 200 400 600 800 1000

Time (s)

Fig. 17 - Measured and calculated trends of IC tubes wall surface temperature(external side middle elevation)

1200

I-

EA

90.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0 L--200 0 200 400 600 800 1000 1200

Time (s)

Fig. 18 - Measured and calculated trends of IC tubes wall surface temperature

(external side bottom elevation)

AI-9

Page 102: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

120.

100.

80.

60.

40.

PIPER-ONE Test PO-lC-2APost-test calculationRELAP5/Mod3.1

XXX IC31TEMPF561OIOOOOYYY IC31TEMPF562010000ZZZ E12ATF-SC-1

0I-

I-

U I

20. F-

0. '--200

I I I I

0 200 400 600 800 1000 1200

Time (s)

Fig. 19 - Measured and calculated trends of IC internal pool fluid temperature(top level)

100.0

90.0

80.0

70.0

60.0

50.0

40.0

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC31TEMPF560110000YYY IC31TEMPF560120000ZZZ EI2ATF-SC-2

&

CLE

C-I.-

30.0 1-

20.0 F

BII i

10.0-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 20 - Measured and calculated trends of IC Internal pool fluid temperature(level 2)

Al-10

Page 103: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

24.000

23.000 .... - .M,&UZZZ . E12ATF-SC-8RELAP5IMod3.1 # EI2ATF-SC-9

22.000

6 21.000

E 20.0000.E

g-19.000

18.000

17.000

16.000-200 0 200 400 600 800 1000

Time (s)

Fig. 21 - Measured and calculated trends of IC Internal pool fluid temperature

(middle level)

1200

EA

22.000

21.000

20.000

19.000

18.000

17.000

a I 9 I

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC31TEMPF551010000YYY IC31TEMPF552010000ZZZ EI2ATF-SC-6

xv _41Y__" _Wý .

16.000 L._-200

aL A I a I a I - I I I a I I I

0 200 400 600 800 1000 1200

Time (s)

Fig. 22 - Measured and calculated trends of IC Internal pool fluid temperature(bottom level)

Al-II

Page 104: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

6

I-

110.0 .1. .I I a a I a 9PIPER-ONE Test PO-IC-2A XOXX IC31TEMPF66101

100.0 Post-test calculation YYY IC31TEMPF56201

RELAPS/Mod3.1 ZZZ EI2ATF-SC-10

90.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0 a a I I I I a I a a a-200 0 200 400 600 800 1000

Time (s)

Fig. 23 - Measured and calculated trends of IC external pool fluid temperature

(top level)

1200

0

'U00.20I-

65.0

60.0

55.0

50.0

45.0

40.0

35.0

30.0

25.0

20.0

15.0 --2V00 0 200 400 600 800 1000

Time (s)

Fig. 24 - Measured and calculated trends of IC external pool fluid temperature(level 11)

1200

Al-12

Page 105: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

EA

34.0

32.0

30.0

28.0

26.0

24.0

22.0

20.0

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC31TEMPF660070000YYY IC31TEMPF660080000ZZZ Et2ATF-SC-12

18.0

16.0-200

I I I S S I I I S I p p p

0 200 400 600 800 1000 1200

Time (s)

Fig. 25 - Measured and calculated trends of IC external pool fluid temperature(middle level)

II-I.

22.500

22.000

21.500

21.000

20.500

20.000

19.500

19.000

18.500

18.000

17 fnil

I I g

PiPER-ONE Test PO-IC-2A XXX IC31TEMPF55100

Post-test calculation YYY IC31TEMPF65200

RELAPSMod3.1 ZZZ EI2ATF-SC-14

I -

1000010000

I I I5 I III

. * 1 1 . a

91 1 9 I 1 1- - • • I

• • •vvv.;200 0 200 400 600 800 1000

Time (s)

Fig. 26 - Measured and calculated trends of IC external pool fluid temperature(bottom level)

1200

AI-13

Page 106: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

400.

350.

300.

250.

200.

150.

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC31TEMPG500080000-YYY E12ATF-IC-0ZZZ E12ATSAT

C.4

100.

50. -

|m

n . a-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 27 - Measured and calculated trends of steam temperature at IC Inletcompared with experimental saturated temperature

1000

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX 1031 CNTRLVAR62YYY E12AICPOWER

800 -

600 1-

i

03.

400 F

200

0 F

-200.20

I I IIO0 0 200 400 600 800 1000 1200

Time (s)

Fig. 28 - Measured and calculated trends of IC exchanged power

AI-14

Page 107: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

140.

120.

100.

80.

60.

40.

EA

20.

0.

-20.-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 29 - Measured and calculated trends of temperature difference betweeninternal and external side of IC tubes wall (top elevation)

180.

160. FPIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC31CALCYYY E12EXP

EA

140.

120.

100.

80.

60.

40.

20.

0.

-20. '-2C

I Da1)0 0 200 400 600 800 1000 1200

Time (s)

Fig. 30 - Measured and calculated trends of temperature difference betweenIC fluid and external side of IC tubes wall (middle elevation)

AI-15

Page 108: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

250.

200.

150.

100.

50.

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX IC31CAL.CYYY E12AEXP

0

0

0I-

0.

-50.-200

I I UI I I a 2 2 a 2 1

0 200 400 600 800 1000 1200

Time (s)

Fig. 31 - Measured and calculated trends of temperature difference betweenInternal side of IC tubes wall and IC pool fluid temperature (top elevation)

4x 10 3.50

3.00

2.50

_ 2.00

1.50

* 1.00

2 0.50

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX IC3IHTHTC515000100YYY IC3IHTHTC515000101

I-

0.00

-0.50 L-20

I20 0 200 400 600 800 1000 1200

Time (s)

Fig. 32- Calculated trends of the heat transfer coefficient at the Insideand the outside of IC tubes wall (top elevation)

Al-16

Page 109: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

x10 41.20

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC31HTHTC515000300YYY IC31HTHTC515000301

CCCUI..

SC

1.00

0.80

0.60

0.40

0.20

0.00

-0.20-200 0 200 400 600 800 1000

Time (s)

Fig. 33 - Calculated trends of the heat transfer coefficient at the Insideand the outside of IC tubes wall (middle elevation)

1200

2500PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC31 HTHTC515000500YYY IC31 HTHTC515000501

2000 F

C,'

4-CC.2C

8k.SCC60

4-4-I00

1500 F

1000 I

500

0

I a I I I-5000 0 200 400 600 800 1000 1200

Time (s)

Fig. 34 - Calculated trends of the heat transfer coefficient at the Insideand the outside of IC tubes wall (bottom elevation)

AI-17

Page 110: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

Ca

0

S

U

S

1.400

1.200

1.000

0.800

0.600

0.400

0.200

0.000

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5IMod3.1

XXX IC31VOIDG515010000YYY IC31VOIDG515020000ZZZ IC31VOIDG515030000### IC31VOIDG515040000AAA IC31VOIDG515050000

S I a I Ia I I

-2!00 0 200 400 600 800

Time (s)

Fig. 35 - Calculated trends of IC tubes void fraction along the axis

1000 1200

1.200

1.000

0.800

0.600

0.400

0.200

0.000

-0.200

.AftU An

I I I I I

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC31VELF515010000YYY IC31VELF515020000ZZZ IC31VELF515030000## IC31VELF515040000MA IC31VELF515050000

I I I I I S I S I I I I I

-2!00 0 200 400 600 800

Time (s)

Fig. 36 - Calculated trends of IC tubes liquid velocity along the axis

1000 1200

AI-18

Page 111: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

4.000PIPER-ONE Test PO-IC-2APost-test calculationRELAP5IMod3.1

xJxxyyyzzzgsaMA

IC31VELG515010O00IC31VELG515020000IC31 VELG515030000IC31VELG515040000IC31VELG515050000

3.000

2.000

1.000

0.000

-1.000

-2.000-200

p 3 I I I I I I I p p p j

0 200 400 600 800 1000 1200

Time (s)

Fig. 37 - Calculated trends of IC tubes steam velocity along the axis

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

I:E

CI-

12

10

8.

XY•

zz

AA

II

I

j

XIC31HTMODES15000100YIC31HTMODE515000200ZI131 HTMODE51 500030QIIC31HTMODE515000400AIO31HTMODE51 o4q

4

2 A 01 w R 1A * I 74A 7 1 A

I ma

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 38 - Calculated trends of IC tubes heat transfer mode (Internal side)

Al-19

Page 112: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

3

E

IPi

fPCRI

1 6 1 I

PER-ONE Test PO-IC-2Aost-test calculationELAPS/Mod3.1

r Y XYZ XYZ

xxxvyYzzzM.

MA

I -------- I I

IC31HTMODE51500010,IC31HTMODE515000201IC31HTMODE5150003011C31HTMOOE515000401IC31HTMODE515000501Y XYVZ

2

J i a n I

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 39 - Calculated trends of IC tubes heat transfer mode (external side)

350.

300.

250.

200.

150.

100.

6'0

'a0a.E0I-

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC31TG-TFSISOIYYY IC31TG-TFS1502ZZZ IC31TG-TF51503### 1C3ITG-TF51504MA IC31TG-TFSISOS

50.

0.

-50.• m " • II

-200 0 200 400 600

Time (s)

800 1000 1200 1400

Fig. 40 - Calculated trends of subcooling degree inside IC tubes

AI-20

Page 113: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

4b

a

2.00

1.50

1.00

0.50

0.00

-0.50

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC31CPUTIMEO

• e I I • i • 1

-200 0 200 400 600 800 1000 1200 1400

Time (s)

Fig. 41 - CPU versus transient time

a

0.0

Et.

0.140

0.120

0.100

0.080

0.060

0.040

0.020

0.000

-0.020 L--200 0 200 400 600 800 1000 1200 1400

Time (a)

Fig. 42 - Time step versus transient time

A[-21

Page 114: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

a..3S0

0.140

0.120

0.100

0.080

0.060

0.040

0.020

0.000

.nnnn -

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX( IC31 OTOYYY IC3iDTMAX

-2200 0 200 400 600 800 1000 120

Time (s)

Fig. 43 - Time stop and specified maximum time step versus transient time

0 1400

A1-22

Page 115: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

APPENDIX 2:

IC 36 Results

Page 116: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 117: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

a

Ua

5.750

5.500

5.250

5.000

4.750

4.500

4.250

4.000

3.750

3.500

3.250-200

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

Xocx IC36PI30010000YYY E12APA-LP-1

I t I I I I I I I I I I I

0 200 400 600 800 1000 1200

Time (s)

Fig. 1 - Measured and predicted trends of lower plenum pressure

06

0.

I.-

320.

300.

280.

260.

240.

220.

200.

180.

160.

140.

1 -nL-4200 0 200 400 600 800

Time (s)

Fig. 2 - Measured and calculated trends of lower plenum temperature

1000 1200

A2-1

Page 118: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

350.

325.

300.

275.

250.

225.

200.

IPIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

)=c IC36H4TTEMP200100810YYY IC36HTTEMP20010091O.ZZZ IC36H4TTEMP200101010*" E12ATC-31-9

E~02

I I I I I a I a I

175.

150.

125.

100.-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 3 - Measured and calculated trends of rod surface temperature (level 9)

13.000

12.500

12.000

• 11.500

i 11.000

10.500

10.000

9.500

9.000

8.500 L--200 0 200 400 600 800 1000

Time (s)

1200

Fig. 4 - Measured and calculated trends of core level

A2-2

Page 119: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

14.000

13.000

- 12.000

11.000

10.000

9.000

8.000 t

-200 0 200 400 600 8

Time (s)

Fig. 5 - Measured and calculated trends of downcomer level

00 1000 1200

IFbe

120.

100.

80.

60.

40.

20.

0.

-20. L--200 0 200 400 600 800 1000

Time (s)

1200

Fig. 6 - Measured and calculated trends of core power

A2-3

Page 120: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

0.400 * V

0.350 1-PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

0.300

0

.2

0.250 1-

XX C36MfLOWJWSOOOOOYYY IC36MFLOWJ5O5000000ZZZ E12AWW-IC-1

0.200 F

0.150 F

0.100 F

0.050 -jJ.~N~n#lIIuIFrtIiIPIIuI1 J~U I "Ti'

0.000 F

-0.050-2C

. S S S S S S S S S S

00 0 200 400 600 800 1000 1200

Time (s)

Fig. 7 - Measured and calculated trends of IC mass flow rate

0.

S

0_.

C

60.0

50.0

40.0

30.0

20.0

10.0

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX IC36P52509-P50008YYY EI2APD-IC-2D

CALCULATED VALUE DOES NOT

CORRESPOND TO EXPERIMENTAL

TAP POSITION

JL - W 17--

0.0

-10.0.20

A A m I m m m ma I00 0 200 400 600 800 1000 1200

Time (s)

Fig. 8 - Measured and calculated trends of IC differential pressure

A2-4

Page 121: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

350.

300.

250.

200.

150.

U I I 5

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

,O(X IC36TEMPF50omooooYYY EI2ATF-IC-0

II.

100.

50.

0.-200

i m ia I I0 200 400 600 Soo 1000 1200

Time (s)

Fig. 9 - Measured and calculated trends of IC Inlet fluid temperature

300.

250.

200.

150.

100.

* I

I I 1 I

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS!Mod3.1

XXX IC36TEMPF515030000YYY E12ATF-IC-1ZZZ E12ATF-IC-2

II-

50.

I1m m m m0

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 10 - Measured and calculated trends of IC tubes fluid temperature(middle elevation)

A2-5

Page 122: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

400.

350.

300.

250.

200.

150.

I -I I m i

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

Yyyy

AM

9 1 I

IC3GTBMPF1501OIOOOIC36TEMPFS15020000IC36TEMPF515030000IC36TEMPF51504000WIC36TEMPF515050000

0Ia

100.

20.

0.-200

I I I I ~ I I I * I I I I

0 200 400 600 800 1000 1200

Time (s)

Fig. 11 - Calculated trends of IC tubes fluid temperature along the axis

120.

100.

80.

I-

S:

PIPER-ONE TestPost-test calculatRELAPS/Mod3.1

* I

* I

PO-tC-2AIon

I I 1 5 1 9 9 1 I

XXX IC36TEMPF525040000YYY IC36TEMPF525050000ZZZ IC36TEMPF525060000### E12ATF-IC-5

60.1

40.

20.

CALCULATED VALUE NOTCONSISTENT WITH THERMOCOUPLEPOSITION

I I I I I I I

0.-20•0 0 200 400 600 800 1000 1200

Time (s)

Fig. 12 - Measured and calculated trends of IC outlet fluid temperature

A2-6

Page 123: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

300.

250.

200.

150.

100.

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5IMod3.1

41 1 V

XXX IC36HTrTEMPSISOOOIOIYYY E12ATS-IC-2

0I.-I

50.0 . I I I I I I I U I I

-200 0 200 400 600 goo 1000

Time (s)

Fig. 13 - Measured and calculated trends of IC tubes wall surface temperature(internal side top elevation)

1200

300.

250.

200.

150.

100.

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXU 1036HTTEMP515000I10YYY IC36HTTEMP5150002Or'ZZZ IC36HTTEMP51 5000301### IC36HTTEMP515000401-MAA 1036HTTEMP515000501

EA

50.

-

0..2001 I I aI I I

0 200 400 600

Time (s)

800 1000 1200

Fig. 14 - Calculated trends of IC tubes wall surface temperature along the axis(internal side)

A2-7

Page 124: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

160.

140.

120.

100.

80.

60.

CS

I.40.

20.

O.

-200 0 200 400 600 800 1000

Time (s)

1200

Fig. 15 - Measured and calculated trends of IC tubes wall surface temperature(external side top elevation)

5.S

0S0.2S

I-

160.

140.

120.

100.

80.

60.

40.

20.

0. 1--200 0 200 400 600 800 1000

Time (s)

1200

Fig. 16 - Measured and calculated trends of IC tubes wall surface temperature(external side level 3)

A2-8

Page 125: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

120.

100.

U

II-I.

60.

40.

20.

0. | | I I I | U U I I I

-200 0 200 400 600 800 1000

Time (s)

Fig. 17 - Measured and calculated trends of IC tubes wall surface temperature(external side middle elevation)

1200

US

0C.ES

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0 L--200 0 200 400 600 800 1000

Time (s)

1200

Fig. 18 - Measured and calculated trends of IC tubes wall surface temperature(external side bottom elevation)

A2-9

Page 126: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

120.

100.

I 4 I II

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXXx IC36TEMPFSSIOIOOOOYYY IC36TEMPFS62OIO000ZZZ E12ATF-SC-1

80. I-6'

6II.-

60.

40.

I-

I,,

20.

I| •

0. _-20

I ma t

a0 0 200 400 600 800 1000 1200

Time (s)

Fig. 19 - Measured and calculated trends of IC internal pool fluid temperature(top level)

100.0

90.0

80.0

70.0

p il - - i • Pi- I

PIPER-ONE Test PO-IC-2APost-test calculationRELAPSIMod3.1

XiO(X IC36TEMPF5601 10000YYY IC36TEMPF56012000OZZZ E12ATF-SC-2

60.0

Co0. 50.0

40.0

30.0

20.0

I|

10.0 .O0 0 200 400 600 800 1000 1200

Time (s)

Fig. 20 - Measured and calculated trends of IC internal pool fluid temperature(level 2)

A2- 0

Page 127: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

23.000

22.000

21.000

20.000

19.000

II I a I

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX 1036TEMPF560070000YYY EI2ATF-SC-4ZZZ E12ATF-SC-8W E12ATF-SC-9

S

I

I18.000

17.000

16.000 ---200 0 200 400 600 800 1000 1200

Time (s)

Fig. 21 - Measured and calculated trends of IC internal pool fluid temperature

(middle level)

21.500

21.000

5 1 B I

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

)O(X IC36TEMPF551010O00YYY IC36TEMPF552010000.ZZZ E12ATF-SG4

20.500 F

20.000

19.500

E 19.000

E 18.500

18.000

17.500

17.000

16.500-200

X*

II I . . I ....I

0 200 400 600 800 1000 1200

Time (s)

Fig. 22 - Measured and calculated trends of IC Internal pool fluid temperature

(bottom level)

A2-11

Page 128: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

110.0

100.0

90.0

80.0

PIPER-ONE Test PO-IC.2APost-test calculationRELAPS/Mod3.1

WX IC38TEMPF861010oooYYY IC36TEMPF562010000.ZZZ E12ATF-SC-1 0

a 70.0

60.0

50.0

40.0

30.0

20.0

10.0II iI

-200 0 200 400 600 800 1000

Time (s)

1200

Fig. 23 - Measured and calculated trends of IC external pool fluid temperature(top level)

65.0

60.0

55.0

50.0

4S.0

40.0

35.0

TPIPER-ONE Test PO-IC-2APost-test calculationRELAP51Mod3.1

'CcxYYY

1036TEMPF660090000IC36TEMPF$68OIOOOOIC36TEMPF660110000EI2ATF-SC-1 I

8~06

I-aE0I-

30.0

25.0

20.0

15.0-200

m m

0 200 400 600 800 1000 1200

Time (s)

Fig. 24 - Measured and calculated trends of IC external pool fluid temperature(level 11)

A2-12

Page 129: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

34.0

32.0

30.0

28.0

26.0

24.0

22.0

PIPER-ONE Test PO-C-2APost-test calculationRELAPS/Mod3.1

XXXY)Y IC=8TTEMMPFO680W0700000WZZZ E12ATF-SC-12

I-20.0

18.0

.1r n• v.w -2200 0 200 400 600 800 1000

Time (s)

Fig. 25 - Measured and calculated trends of IC external pool fluid temperature(middle level)

1200

E1!

22.500

22.000

21.500

21.000

20.500

20.000

19.500

19.000

18.500

16.000

I7qlf -n

, PIPER-ONE Test POIC-2A XXX IC3S6TEMPF551010000Post-test calculation YYY IC3STEMPF6520O0000

RELAPS/Mod3.1 ZZZ EI2ATF-SC-14

"AAA

xy

B i i i i i I I

el••VV-2100 0 200 400 600 800 1000

Time (a)

Fig. 26 - Measured end calculated trends of iC external pool fluid temperature(bottom level)

1200

A2-13

Page 130: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

400.

350.

300.

..... J* T

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX IC36TEMPG5000SOOQOYYY E12ATF-IC-0ZZZ E12ATSAT

S

S

I-I.3.-

250.

200.

150.

100.

50.2i

|ft a

-200 0 200 400 600

Time (s)

Boo 1000 1200

Fig. 27 - Measured and calculated trends of steam temperature at IC Inletcompared with experimental saturated temperature

I.h.S

00.

1000

800

600

400

200

0

-200 L--200 0 200 400 600 800 1000

Time (s)

1200

Fig. 28 - Measured and calculated trends of IC exchanged power

A2-14

Page 131: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

5.

I.-

140.

120.

100.

80.

60.

40.

20.

0.

-20.

PIPER-ONE Test PO-1-2APost-test calculationRELAP5/Mod3.1

XXX IC36CAL.CfYY E12EXP

- I

- I

|i5 I I i 6

-200 0 200 400

Time (s)

600 800 1000 1200

Fig. 29 - Measured and calculated trends of temperature difference betweeninternal and external side of IC tubes wall (top elevation)

U

0.EA

180.

160.

140.

120.

100.

80.

60.

40.

20.

0.

II 6 1 a I

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

WX 1036CALCYYY E12EXP

I

4l. X

m m a i

-20. .-20'0 0 200 400 600 800 1000 1200

Time (s)

Fig. 30 - Measured and calculated trends of temperature difference between

IC fluid and external side of IC tubes wall (middle elevation)

A2-15

Page 132: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

250.

200.

150.

100.

mnI

PIPER-ONE Test PO-IC-2APost-test calculationRELAPSIMod3.1

XXX IC36CALCYYY E12AEXP

0

I.0

0.

-50.-200

m i m m 0 n m

0 200 400 600 800 1000 1200

Time (s)

Fig. 31 - Measured and calculated trends of temperature difference betweeninternal side of IC tubes wall and IC pool fluid temperature (top elevation)

X10 43.00

2.50

2

3.

I

I

2.00

1.50

- '

- I

- I

- I

- I

- I

- I

- I

I 1 I 1

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

1 4 4 6 a • e

XXX IC36HTHTC5I5000100YYY IC36HTHTC5500010I

1.00

0.50

0.00

-0.50_2(00 0 200 400 600 800 1000 1200

Time (s)

Fig. 32 Calculated trends of the heat transfer coefficient at the Insideand the outside of IC tubes wall (top elevation)

A2-16

Page 133: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

xlO 41.80

4-

CD8

a-.

C

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

fPIPER-ONE Test P0-ICPost-test calculationRELAPSMod3.1

-2A xxIc36HTHTrCSl5OO0300YYY 1036HTHTC51 5000301

x1j" -X--0.20 '

-20'0 0 200 400 600 800 1000 1200

Time (s)

Fig. 33 - Calculated trends of the heat transfer coefficient at the insideand the outside of IC tubes wall (middle elevation)

3500

3000

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC36HTHTC515000500YYY IC36HTHTC515000501

£

4..

I.2080SIC

USz

2500 F

2000

1500 F

1000

500

0

I I I I I I I I I I I I

-500 ..20 i0 0 200 400 600 800 1000 1200

Time (s)

Fig. 34 - Calculated trends of the heat transfer coefficient at the Insideand the outside of IC tubes wall (bottom elevation)

A2-17

Page 134: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

1.400PIPER-ONE Test PO-IC-2A XXX IM

YYY lc:-1.200 zzz $C

RELAPS/Mod3.1 M# Ic:AAA ICZ

1.000

0.800

0 .600

0 0.400

0.200

0.000 _#A..... Z

-0.200 , , , , I , ,-200 0 200 400 600 800

Time (s)

Fig. 35 - Calculated trends of IC tubes void fraction along the axis

3SVOIDG51501000036VOIDG51502000036VOIDG51503000036VOIDG51504000036VOIDG515050000

I I I

1000 1200

1.600

1.400

1.200

1.000

0.800

0.600

M I I I

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

xxxWYYzzzMA

C I I

1C36VELF515010000IC36VELF515020000IC36VELF515030000IC36VELF515040000IC36VELF51 505O000

.2_o01

0.400

0.200

0.000

-0.200-200

a I

0 200 400 600 800 1000 1200

Time (s)

Fig. 36 - Calculated trends of IC tubes liquid velocity along the axis

A2-18

Page 135: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

1.500PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

MXWYYzzzM'

AM

IC36VELGSISO100001036VELG5 15020000IC36VELG3515030000IC36VELG5 15040000IC36VELGSISMSOOO

1.000 F

B,

0.500

0.000

-0.500

I

~~li ~ - ie h *I.h d

"IJ

-1.000

I

-1.500 1-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 37 - Calculated trends of IC tubes steam velocity along the axis

0E

c

12

10

8

6

4

I ~

PIPER-ONE Test PO-IC-2APost-test calculationRELAPSIMod3.1

XX(X IC36HTMODES15000100YYY IC36HTMODE515000206ZZZ IC-36HTMODE515000300-### IC36HTMODES15000400MA Ir6HTMODES1 5T0

2

I I | II • • II •

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 38 - Calculated trends of IC tubes heat transfer mode (internal side)

A2-19

Page 136: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

3

I

TPIPER-ONE Test PO-ZC-2APost-test calculationRELAPS/Mod3.1

XY Xr

. S * S

,OcX IC36ITMODESS15000%YYY IC36HTMODES15=0001ZZZ IC36HTMODE5150003O1MU IC36HTMODE515000401

AAA IC36HTMODE51500050fxy II

2 i e E,. TWl

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 39 - Calculated trends of IC tubes heat transfer mode (external side)

A2-20

Page 137: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

APPENDIX 3:

IC 37 Results

Page 138: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 139: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

6.750 .. .1 1 5 5 1 1B.

PIPER-ONE Test PO-IC-2A XXX IC37PISOO0OOOO5.500 Post-test calculation YYY EI2APA-1

RELAP5/Mod3.15.250

5.000

4.750

4.500

- 4.250

4.000

3.750

3.500

3.250 , , , U , , , I-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 1 - Measured and predicted trends of lower plenum pressure

320.PIPER-ONE Test PO-IC-2A xxx IC37TEMPF130010000

300. Post-test calculation YYY EI2ATF-LP-1

RELAP5/Mod3.1280.

260.

- 240.

, 220.

200.

180.

160.

140.

120.-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 2 - Measured and calculated trends of lower plenum temperature

A3-M

Page 140: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

350.

325.

300.

fPIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

ob cx C7HTmP20oiooiYYY IC37IIITEMP2001009IO.ZZZ IC37HTTEMP200101010#ff E12ATC-31 -9

275. F

I 250.

225.

200. I

175.

150.

125.

100.-20'0 0 200 400 600 800 1000 1200

Time (s)

Fig. 3 - Measured and calculated trends of rod surface temperature (level 9)

14.000

13.000

12.000

11.000I10.000

9.000

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX IC37CNTRLVARt2OWYY Et2ALP-CC-1

I-. k

i"

8.000

7.000

ilm m m I Q i l

6.000 1.2(00 0 200 400 600 800 1000 1200

Time (a)

Fig. 4- Measured and calculated trends of core level

A3-2

Page 141: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

14.000

a.

S

a

13.000 h *,, .,

12.000

11.000

10.000

9.000

8.000-200 0 200 400 600 8

Time (s)

Fig. 5 - Measured and calculated trends of downcomer level

00 1000 1200

120.

100.

80.

'R

60.

40.

20.

0.

-20. L--200 0 200 400 600 800 1000

Time (s)

1200

Fig. 6 - Measured and calculated trends of care power

A3-3

Page 142: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

39

0.080

0.070

0.060

0.050

0.040

0.030

0.020

0.010 -

0.000 - ,,- -----

-0.010,-200 0 200 400 600 8

Time (s)

Fig. 7 - Measured and calculated trends of IC mass flow rate

00 1000 1200

AC0.

h.

o-

0.

S

5

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0

-5.0 L--200 0 200 400 600 800 1000 1200

Time (s)

Fig. 8 - Measured and calculated trends of IC differential pressure

A3-4

Page 143: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

350.

300.

250. F

Ea.200.

150.

100.

50.

T:==

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

r . ""

-~ ', x y ~

K-

)OCX IC37TEMPFSOOIOOOOOYYY E12ATF-IC-0

nLI m m m A m mI I I I I

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 9 - Measured and calculated trends of IC Inlet fluid temperature

I.

350.

300.

250.

200.

150.

100.

50.

PIPER-ONE Test PO-IC-2APost-test calculationRELAP51Mod3.1

WX IC37TEMPF515030000YYY E12ATF-IC-1ZZZ E12ATF-IC-2

0. --20

m m6 2)0 0 200 400 600 800 1000 1200

Time (s)

Fig. 10 - Measured and calculated trends of IC tubes fluid temperature(middle elevation)

A3-5

Page 144: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

350. I I I

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

4 9 4I

XXX

zzz

AM

IC37TEMPF515010000IC37TEMPF515020000IC37TEMPF515030000-IC37TEMPF51 5040000IC37TEMPF515050000

300.

250.

* 200.

'150.

100.

50. 1-

0• . - a a a a J - -- I I I - -. I

02,.200 0 200 400 600 800 1000

Time (s)

1200

Fig. 11 - Calculated trends of IC tubes fluid temperature along the axis

ISO.

160.

140.

120.

100.

80.

60.

0

I.I-

40.

20.

0.-200 0 200 400 600 800 1000 1200

Time (a)

Fig. 12 - Measured and calculated trends of IC outlet fluid temperature

A3-6

Page 145: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

300.PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC37H4TTEMP51W00IOIYYY Et2ATS-tC-2

250. I

200. 1-

I-I.

150.

100.

50.

0. J U U I I ' ' ' '

-200 0 200 400 600 800 1000

Time (s)

Fig. 13 - Measured and calculated trends of IC tubes wall surface temperature(internal side top elevation)

1200

300. I a a a

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

I m l i

250.

a I

IC37HTTEMP515000IOIIC37HTTEMP5I 5000201'IC37HTTEMP515000301IC37HTTEMP51500040I*IC37HTTEMP515000501

CL.Ea

200.

150.

100.

50. F

A . i I i i0 2 I

.200 0 200 400 600 800 1000 1200

Time (s)

Fig. 14 - Calculated trends of IC tubes wall surface temperature along the axis(internal side)

A3-7

Page 146: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

6'

i2

160.

140.

120.

100.

80.

60.

40.

20.

0.

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXCX IC37HTTEMP$1500011M~YYY E12ATS-10-1

I S U I U U I U U I I I S

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 15 - Measured and calculated trends of IC tubes wall surface temperature

(external side top elevation)

160.

140.

120.

100.

80.

60.

6'S

S

S

iI-

40.

20.

0. "-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 16 - Measured and calculated trends of IC tubes wall surface temperature

(external side level 3)

A3-8

Page 147: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

160.

140.

120.

100.

80.

60.

10

E0

20.

O.-200 0 200 400 600 800 1000

Time (s)

Fig. 17 - Measured and calculated trends of IC tubes wall surface temperature(external side middle elevation)

1200

EA

120.

100.

80.

60.

40.

20.

7 I D I 1

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX IC37HTTEMP515000510YYY E12ATS-IC-7

0. 1-2D

pf p a I a 5 1 a 9 p 1 0 1

}0 0 200 400 600 800 1000 1200

Time (s)

Fig. 18 - Measured and calculated trends of IC tubes wall surface temperature(external side bottom elevation)

A3-9

Page 148: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

120.PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

)=~ IC37TEMPF5S1010000YYY IC37TEMPFS$2OI 0000ZZZ E12ATF-SC-1

100. F

G

80.

60.

40.

20.

0. 1 1 * I a a

-200 0 200 400 600 800 1000

Time (s)

Fig. 19 - Measured and calculated trends of IC Internal pool fluid temperature(top level)

1200

100.0PIPER-ONE Test PO-IC-2APost-test calculationRELAPSMod3.1

XXX IC37TEMPF560110000YYY IC37TEMPF560120000ZZZ EI2ATF-SC-290.0 r-

S

S

I.I-

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0 ,-20

2 -a a I a 2 1 a 2 a 0 U

10 0 200 400 600 800 1000 1200

Time (a)

Fig. 20 - Measured and calculated trends of IC Internal pool fluid temperature(level 2)

A3-10

Page 149: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

25.000PIPER-ONE Test PO-C-2AI -- A A--- . ... .

XXX IC37TEMPF560070000WVy =ArVt1-.

24.000 - rosi6 calculation ZZZ EI2ATF-SC-8RELAPS/Mod3.1 m EI2ATF-SC-9

23.000

22.000

21.000

S20.000E

19.000

18.000

17.000

16.000-200 0 200 400 600 800 1000

Time (s)

Fig. 21 - Measured and calculated trends of IC Internal pool fluid temperature(middle level)

1200

23.000

22.000

21.000

S20.000

E 19.000

18.000

I S S S

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXIC37TEMPF551010000YIYY IC37TEMPF55201 0000ZZZ E12ATF-SC-6

Xv --X*-,O,

17.000 I

. . K C I I I I I

16.000-20l0 0 200 400 600 800 1000 1200

Time (a)

Fig. 22 - Measured and calculated trends of IC Internal pool fluid temperature(bottom level)

A3-11

Page 150: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

C9

110.0

100.0

90.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

--- a- IPIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX IC37TEMPF661O10000YYY IC37TEMPF582I0000ZZZ E12ATF-SC-10

t •I aI a I

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 23 - Measured and calculated trends of IC external pool fluid temperature(top level)

E

1!

70.0

60.0

50.0

40.0

30.0

20.0

10.0 L--

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 24 - Measured and calculated trends of IC external pool fluid temperature(level 11)

A3-12

Page 151: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

0C.EA

40.0

37.5

35.0

32.5

30.0

27.5

25.0

22.5

20.0

17.5

15.0 --200

PIPER-ONE Teat PO.IC-2APost-test calculationRELAPS/Mod3.1

ioxIC37TEMPFOG6070000YYY IC7TrEMPF660080000.ZUZ E12ATF-SC-12

S I 0 3 5 I U S S S I S I

0 200 400 600 800 1000 1200

Time (s)

Fig. 25 - Measured and calculated trends of IC external pool fluid temperature(middle level)

EA

22.500

22.000

21.500

21.000

20.500

20.000

19.500

19.000

18.500

18.000

17 nn

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

S . U . IU I

XXX IC37TEMPF551010000YYY IC37TEMPF;652O10000.ZZZ E12ATF-SC-14

xy

-2200 0 200 400 600 800 1000

Time (s)

Fig. 26 - Measured and calculated trends of IC external pool fluid temperature(bottom level)

1200

A3-13

Page 152: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

400.

350.

300.

250.

200.

150.E1-

* I • I 5 I

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX IC37TEMPG500080000-YYY E12ATF-IC-0ZZZ E12ATSAT

100.

0.-200

I I |

0 200 400 600 800 1000 1200

Time (s)

Fig. 27 - Measured and calculated trends of steam temperature at IC inletcompared with experimental saturated temperature

140.

120.

100.

30

C.

s0.

60.

40.

20.

0.

-20. '--200 0 200 400 600 800 1000 1200

Time (s)

Fig. 28 - Measured and calculated trends of IC exchanged power

A3-14

Page 153: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

140.

120.

100.

80.

60.

40.

E'

I!

20.0. -

-20.-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 29 - Measured and calculated trends of temperature difference between

Internal and external side of IC tubes wall (top elevation)

300.

250.

200.

EA

1SO.

100.

So.

0.

-50. "-200 0 200 400 600 800 1000 1200

Time (a)

Fig. 30 - Measured and calculated trends of temperature difference betweenIC fluid and external side of IC tubes wall (middle elevation)

A3-15

Page 154: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

250.

200.

150.

100.

5.0

0

I.3-

50.

0.

-50.-

"dl,W U zuu 400 600 800 1000 1200

Time (s)

Fig. 31 - Measured and calculated trends of temperature difference betweenInternal side of IC tubes wall and IC pool fluid temperature (top elevation)

xlO 43.00

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX IC37HTHTC515000100YYY IC37HTHTC515000101

2.50 1-

E

a-

In

2.00 I

1.50

1.00

0.50

0.00

6.

-0.50 L-20

m I m m ma a I I I a I

i0 0 200 400 600 800 1000 1200

Time (s)

Fig. 32 - Calculated trends of the heat transfer coefficient at the Insideand the outside of IC tubes wall (top elevation)

A3-16

Page 155: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

4.0K 01.60

9.E

L1

1.40

1.20

1.00

0.80

0.60

0.40

0.20

PIPER-ONE Teot PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC37HTHTC515000300YYY IC37HTI.JTC515000301

0:00

-0.20.200 0 200 400 600 800 1000

Time (s)

1200

Fig. 33 - Calculated trends of the heat transfer coefficient at the Inside

and the outside of IC tubes wall (middle elevation)

9000

8000

7000

6000

RELAPSIIUod.

4-

SC

4-US

5000 1-

4000 1-

P E Test PO-IC-2A xxx IC37HTHTC515000500

calculation YYY IC37HTHTC515000501I6ied3.1

3000

2000

1000

01-

-1000-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 34 - Calculated trends of the heat transfer coefficient at the Inside

and the outside of IC tubes wall (bottom elevation)

A3-17

Page 156: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

.9

0

1.400

1.200

1.000

0.800

0.600

0.400

0.200

0.000 -

_n o'flf

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

xxx IcYYy ICzzz ICM1 IC

AAA IC

. I I

37V010G51 501 0000 .37V011DG51502000037V0IDG515030000 -37V0IDG51504000037V0IDG51 5050000

10

'A #A

1 I I I I 1 1

-2?00 0 200 400 600 800

Time (s)

Fig. 35 - Calculated trends of IC tubes void fraction along the axis

1000 1200

3.500

3.000

2.500

2.000

1.500

1.000

0.500

0.000

_,V./1W•

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

^0 IM2/V CLrQIl w I %&&M

YYY IC37VELF515020000ZZZ IC37VELF515030000W IC37VELF515040000MA IC37VEL 5 5

i I II a

"V ;,JWV-2?00 0 200 400 600 800

Time (s)

Fig. 36 - Calculated trends of IC tubes liquid velocity along the axis

1000 1200

A3-18

Page 157: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

E

0

4.000

3.000

2.000

1.000

0.000

-1.000

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX IC37VELG5150100O0YYY IC37VELG515020000ZZZ IC37VELG515030000##W IC37VELG515040000AAA IC37VELG515050000

I14 A -

-2.000 '-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 37 - Calculated trends of IC tubes steam velocity along the axis

9PIPER-ONE Test PO-IC-2APost-test calculationRELAPSMod3.1

I I I 1 1 4 1

E

C

12

10

8

6

4

rIvvw.A

XXX IC37HTMODE515o0o100YYY IC37HTMODE5SINW206ZZZ IC37HTMODE51500030Q

fl IC 37HITMODES15000400T 50Q .

- - I2 AldF O, _ . # '5 . ý4~ A. 4A .

| I • i ..... S I I S

-200 0 200 400 600 800 1000 1200

Time (a)

Fig. 38 - Calculated trends of IC tubes heat transfer mode (Internal side)

A3-19

Page 158: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

3

*1

I

* I I a a I

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

J a I a 6 9 -

.%¥-" • . w

XXX IC37HTMODE5150001 01LYYY IC37HTMODE515000201ZZZ IC37HTMOOE51500030Ot### IC37HTMODE515000401MA IC37HTMOOE515000S0fXV7I x1 z X7 X

2. X-40.7 - i - - - . - . - - -

I a

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 39 - Calculated trends of IC tubes heat transfer mode (external side)

A3-20

Page 159: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

APPENDIX 4:

ICA6 Results

Page 160: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 161: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

5.750

5.500

5.250

5.000

' 4.750

. 4.500

S4.250

4.000

3.750

3.500

3.650-200

. . . .

PIPER-ONE Test PO-IC-2APost4est calculationRELAPS/Mod3.1

XXX ICASPI30010000YYY EI2APA-LP-1

I I i I m

0 200 400 600 g00

Time (s)

1000 1200 1400

Fig. 1 - Measured and predicted trends of lower plenum pressure

320.

300.

280.

260.

240.

220.

200.I,-

180.

160.

140.

120.-200

Fig

PIPER-ONE Test PO-IC-2APost4est calculationRELAP51Mod3.1

)00( ICA6TEMPF130010000'flY EI2ATF4LP-1

0 200 400 600 800 1000

Time (s)

.2 - Measured and calculated trends of lower plenum temperature

1200 1400

A4-1

Page 162: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

S

S

a.20

I-

290.0

280.0

270.0

260.0

250.0

240.0

230.0-2

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXCX ICASHTTEMP200100810Y'VY ICAGHTTEMP20010091aZZZ ICASHTTEMP200101010"S E12ATC-31-9

i I m I mp.

Wo 0 200 400 600 800 1000 1200

Time (s)

Fig. 3 - Measured and calculated trends of rod surface temperature (level 9)

1400

*0

CL

13.000

12.500

12.000

11.500

11.000

10.500

10.000

9.500

9.000

8.500

8.000-200

Fig

!II

I

II

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX ICASCNTRLVAR20YYY E12ALP-CC-1

a a a a a a a * a a a a aI E

0 200 400 600 8M

Time (s)

4- Measured and calculated trends of core level

00 1000 1200 1400

A4-2

Page 163: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

14.000

13.000 RELAP51Mod3.1

12.000

S11.000 '••r

10.000

9.000

8.000

7.000 ' ' '-200 0 200 400 600 800

Time (s)

Fig. 5 - Measured and calculated trends of downcomer level

1000 1200 1400

100.PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

XXX ICASCNTRLVAR40VWY E12AWH-POWER

80. F __ A, . -__ -

r0a-

60.

40.

20.

0.

-20. L--200

2 1 1 a -- a a I * I I I I I I

0 200 400 600 800 1000 1200

Time (s)

Fig. 6 - Measured and calculated trends of core power

A4-3

Page 164: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

0.400

6

0'U

0.350

0.300

0.250

0.200

0.150

0.100

0.050

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

MX ICASMFLOWJ550000000YYY ICA6MFLOWJW500000OOZZZ Et2AWW-lC-i

• g | dig

0.0001--

-0 .050 1.. L '-200 0 200 400 600 800

Time (s)

Fig. 7 - Measured and calculated trends of IC mass flow rate

1000 1200 1400

S

0._

0

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

-2.5 L--200 0 200 400 600 800 1000

Time (s)

1200

Fig. 8 - Measured and calculated trends of IC differential pressure

A4-4

Page 165: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

350.

300.

250.

200.

150.

S

I.100.

50.

0. * , . , . . I . I I S S

-200 0 200 400 600 800 1000

Time (s)

Fig. 9 - Measured and calculated trends of IC Inlet fluid temperature

1200 1400

300.

250.

200.

PIPER-ONE Test PO-IC-2A

Post-test calculationRELAPS/Mod3.1

2IE9

150. -

W~O ICASTEMPF515030000YYY E12ATF-IC-1ZZZ EI2ATFC-IC2

100.

50.

-200 0 200 400 600

Time (a)

Boo 1000 1200 1400

Fig. 10 - Measured and calculated trends of IC tubes fluid temperature(middle elevation)

A4-5

Page 166: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

400.

350.

300.

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX ICA6TEMPF515010000YYY ICA6TEMPF$15020000ZZZ ICA6TEMPF515030000 -U# ICAeTEMPF515040000

AAA ICAOTEMPF51505000

S

I.250.

200.

150.

100.

50.

0.-200

. S S S S S S S S S S S S S S

0 200 400 600

Time (s)

800 1000 1200 1400

Fig. 11 - Calculated trends of IC tubes fluid temperature along the axis

120.

100.

80.

60.

40.

S

IE0I-

20.

0.-200 0 200 400 600

Time (3)

800 1000 1200 1400

Fig. 12 - Measured and calculated trends of IC outlet fluid temperature

A4-6

Page 167: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

300. , , , , , , , , , ,

PIPER-ONE Test PO-IC-2A XXX ICA8HTTEMP51W500t01Post-test calculation YYY EI2ATS4C-2

250 I RELAPS/Mod3.1

200.

ISO

i 150.

100.

50.00.

50. I

0. * * . I p p p p p p p p p

-200 0 200 400 600 800 1000 1200 1400

Time (s)

Fig. 13 - Measured and calculated trends of IC tubes wall surface temperature(internal side top elevation)

3 0 0 . 1 a. . .. .

PIPER-ONE Test PO-IC-2A Xxx CA6HTTEMP5I500t01Post-test calculation YYY ICA6HTTEMPS5000o01"

250. RELAP5/Mod3.1 Z# ICASHTTEMPS15000401

AAA ICA6HTTEMP515000501

200.SO

•• 150.0

50.

-200 0 200 400 600 800 1000 1200 1400

Time (s)

Fig. 14 - Calculated trends of IC tubes wall surface temperature along the axis(internal side)

A4-7

Page 168: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

160.

140.

120.

~100.

1 80.

60.

40.

II I

- I

- I

- I

~

I I I I I

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

xxX ICA6I4TTEMP5ISOOOIIO.YYY E12ATS-lC-1

20.

0. I.!00 0 200 400 600 B00 1000 1200 1400

Time (s)

Fig. 15 - Measured and calculated trends of IC tubes wall surface temperature(external side top elevation)

160.

140.

120.

2. 100.

80.

,- 60.

40.

20.

0. L,

-200 0 200 400 600 800 1000 1200 1400

Time (9)

Fig. 16 - Measured and calculated trends of IC tubes wall surface temperature(external side level 3)

A4-8

Page 169: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

140.

I

120. RELAPS/Mod3.1 s# EI2AT$-IC-e

100.

go.

60.

40.

20.

0. t . I I I I I I I p p p '

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 17 - Measured and calculated trends of IC tubes wall surface temperature

(external side middle elevation)

1400

i.

90.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

- I

- I

PIPER-ONE Test PO-IC-2A XXX ICA6HTTEMP5I5000S10.

Post-test calculation YYY EI2ATS-IC-7

RELAPStMod3.1

* I

* I

* I

10.0 1-20

p p p p p p p p p p p p p p p

10 0 200 400 600

Time (a)

800 1000 1200 1400

Fig. 18 - Measured and calculated trends of IC tubes wall surface temperature(external side bottom elevation)

A4-9

Page 170: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

120. S i I * * e I | i e

PIPER-ONE Test PO-IC-2A XXX ICASTEMPF561010000Post-test calculation YYY ICASTEMPF562010000RELAPSiMod3.1 ZZZ EI2ATF-SC-1

80.

60.E

40.

20.

20.0. I * * . * * " * C C C C C C C

-200 0 200 400 600 800 1000 1200 1400

Time (s)

Fig. 19 - Measured and calculated trends of IC Internal pool fluid temperature(top level)

100.0 1 1 a . , . . . .PIPER-ONE Test PO.IC-2A xxx ICASTEMPF560110000

90.0 Post-test calculation YYY ICASTEMPF56OI20000

RELAP5IMod3.1 ZZZ EI2ATF-SC-2

80.0

70.060.0

50.0C-

40.0

30.0 -•

20.0 - ¥,

I-I

10.0 * A C I I I I C C C I 1 C C

-200 0 200 400 600 800 1000 1200 1400

Time (s)

Fig. 20 - Measured and calculated trends of IC internal pool fluid temperature(level 2)

A4-10

Page 171: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

30.0

28.0

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXXC ICASTEMPF560080000YYV EI2ATF-SC-4ZZZ EI2ATF-SC-8### E12ATF-SC-4

26.0 1-

6~S..

S

0.

24.0

22.0

I-I

20.0

18.0 1

16.0-2

I

200 0 200 400 600 800 1000 1200 1400

Time (s)

Fig. 21 - Measured and calculated trends of IC internal pool fluid temperature(middle level)

21.500

21.000

20.500

20.000

19.500

19.000S0L.

e18.500

18.000

PiPER-ONE Test PO-IC-2A xxx ICA6TEMPF551010000

Post-test calculation YYY ICASTEMPF552010000

RELAP5IMod3.1 ZZZ E12ATF-SC-6

* I

* I

* I

17.500 F

17.000 F

16.500 '

-20 0 0 200 400 600 800 1000 1200 1400

Time (s)

Fig. 22 - Measured and calculated trends of IC Internal pool fluid temperature(bottom level)

A4-11

Page 172: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

II2SI-

0

0

I.I-

110.0 , 1 1 a I 1 , . . . . . .PIPER-ONE Test PO-IC-2A XXX ICASTEMPF66101C

100.0 Post-test calculation YYY ICASTEMPF56201C

RELAPSIMod3.1 ZZZ EI2ATF-SC-10

90.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0 J * p p p S S S • S S °-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 23 - Measured and calculated trends of IC external pool fluid temperature(top level)

65.0 1 1 . . . . . . .

PIPER-ONE Test PO-lC-2A XXX ICA6TEMPF6600960.0 Post-test calculation YYY ICA6TEMPF66010

I RELAPS/Mod3.1 ZZZ ICASTEMPF66011US EI2ATF-SC-1I

55.0

50.0

45.0

40.0

35.0

30.0

25.0

20.0

15.0 I I S I I I S I I S S S S

-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 24- Measured and calculated trends of IC external pool fluid temperature(level 11)

1400

1400

A4-12

Page 173: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

34.0

32.0

30.0

28.0

26.0

24.0

22.0

EA

PIPER-ONEPost-test caRELAP51Mo

Test PO-IC-2A XXX ICASTEMPF660070000iculation YYY ICA.TEMPF660080000d3.1 ZZZ EI2ATF-SC-12

20.0

18.0

-2200 0 200 400 600 800 1000 1200

Time (s)

Fig. 25 - Measured and calculated trends of IC external pool fluid temperature(middle level)

1400

EA

22.500

22.000

21.500

21.000

20.500

20.000

19.500

19.000

18.500

18.000

17.500

PIPER-ONE Test PO-IC-2A X)0( ICASTEMPF551010000Post-test calculation YYY ICASTEMPF652010000' RELAPS/Mod3.1 ZZZ EI2ATF-SC-14RELP5 H3I

ft5

-2200 0 200 400 600 800 1000 1200

Time (s)

Fig. 26 - Measured and calculated trends of IC external pool fluid temperature(bottom level)

1400

A4-13

Page 174: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

400.

350.

300.

250.5.U

I* I

* I

* I

- I

- I

- I.

I I i I i

PIPER-ONE Test PO-I.2APost-test calculationRELAPS/Mod3.1

XOC ICA6TEMPG500080000 -

YYY E12ATF-IC-0ZZZ E12ATSAT

200. 1

150.

100.

50.

. I I I I I I I I I I I I

-200 0 200 400 600 800 1000 1;

Time (s)

Fig. 27 -- Measured and calculated trends of steam temperature at IC inletcompared with experimental saturated temperature

I I

200 1400

1000

800

600

4000

00~

200

0

-200 1~-200 0 200 400 600 800 1000 1200

Time (s)

Fig. 28 - Measured and calculated trends of IC exchanged power

A4-14

Page 175: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

140.

120.

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

X)XC ICA6CALCYYY E12EXP

100. F

1.80.

60.

40.

20.

- - - - - - - - - - - - - - - - - -a_0. 1---

-20. L--200 0 200 400 600 800 1000 1200

Time (s)

Fig. 29 - Measured and calculated trends of temperature difference betweenInternal and external side of IC tubes wall (top elevation)

180.

160.

140.

120.

100.

80.

60.C.EA

II

PIPER-ONE Test PO-IC-2APost-test calculationIELAP5!Mod3.1

(rfu*WIr

XXX ICASCAL.CYYY E12EXP

40.

20. lK! k .0. F- -

I• I

-20.20l0 0 200 400 600 800 1000 1200

Time (s)

Fig. 30 - Measured and calculated trends of temperature difference betweenIC fluid and external side of IC tubes wall (middle elevation)

A4-15

Page 176: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

250.

200.

150.

100.

50.

0

I

.-501L0 200 400 600 800 1000 1200

Time (s)

Fig. 31 - Measured and calculated trends of temperature difference betweenInternal side of IC tubes wall and IC pool fluid temperature (top elevation)

x10 43.00

2.50 t

C'd

C

.3

0

(I0

2.00 1

1.50

* I

- I

- I

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

XXX ICA6HTHTC51500D00OYYY ICA6HTHTC515000101

1.00

0.50

0.00

-0.50 '-2C10 0 200 400 600 800 1000 1200 1400

Time (s)

Fig. 32 - Calculated trends of the heat transfer coefficient at the Insideand the outside of IC tubes wall (top elevation)

A4-16

Page 177: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

9000

8000 F

q * U U I i I

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

a I a a

XXX ICA6HTHTC515000300YYY ICA6HTHTC515000301

7000 1-2

IS

C

I0

6000 1-

5000 1-

4000 1'

3000 1-

2000 F

1000 F

0oF-*

-1000-2( 0 0 200 400 600 800 1000 1200 1400

Time (s)

Fig. 33 - Calculated trends of the heat transfer coefficient at the Insideand the outside of IC tubes wall (middle elevation)

2

C0*13

S1;CS

SS

2500

2000

1500

1000

* I

- I

* I

- I

* I

- I

PIPER-ONE Test PO-IC-2APost-test calculationRELAPS/Mod3.1

- I a I

XXX ICASHTHTC51 5000500YYY ICASHTHTC515000501-

500 1

0 ----------------------------

m i i i i I i m i i i m i

-500-2€00 0 200 400 600 800 1000 1200 1400

Time (s)

Fig. 34 - Calculated trends of the heat transfer coefficient at the Insideand the outside of IC tubes wall (bottom elevation)

A4-17

Page 178: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

.20

0

0

U.20

1.400 1 , , , , , ,PIPER-ONE Test PO-IC-2A xxx ICAPost-test calculation YYY ICA

1.200 RELAPS/Mod3.1 ZZ# ICAM ICA

AAA ICA1.000

0.800

0.600

0.400

0.200

0 .0 0 0 - - . ... . ... . .. . . . . . ... . .

-0.200-200 0 200 400 600 800 1000

Time (s)

Fig. 35 - Calculated trends of IC tubes void fraction along the axis

1200 1400

1.600 , 1 a a I I I I aPIPER-ONE Test PO-IC-2A XXX ICA6VELF515010000

1.400 Post-test calculation YYY ICA6VELF5150000.RELAP5/Mod3.1 ZZ8 ICASVELF515040000

1.200 AAA ICA6VELF515050000.

1.000

0.800 I0.00 !!0.200 -

0.000 40- ..

-0 .2 0 0 1 , j , I I t I , ,

-200 0 200 400 600 800 1000 1200 14

Time (s)

Fig. 36 - Calculated trends of IC tubes liquid velocity along the axis

00

A4-18

Page 179: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

1.000

EI S I l I i I 4 1 a

PIPER-ONE Test PO-IC-2APost-test calculationRELAPSIMod3.1

xxxfyYznz#5SAAA

I i I I

ICA6VELG515010000ICA6VELG515020000ICASVELG515030000ICA6VELG515040000ICASVELG515050000

0.800

0.600

- 0.400

' 0.200

0.000

-0.200

4.400

-0.600

Uiiiii

-200 0 200 400 600 800 1000 1200 1400

Time (s)

Fig. 37 - Calculated trends of IC tubes steam velocity along the axis

I5-0

.5-0,CS5-

SS

12

10

a

6

4

PIPER-ONE Test PO-IC-2APost-test calculationRELAP5/Mod3.1

4 Z- A. Zw, ZA , '

XXX ICABHTMODE515000I 02YYY ICA6HTMODE5I5000200ZnZ ICA6HTMODE515O00309##t ICASHTMODE5ISOOO400

~ riIQMHTMODE51500050Q

__V2 v_AV&V A-DA 74A ----- T4A- -_-X&A ,

I S S S I I I S I * I I I I I

-200 0 200 400 600 800 1000 1200 1400

Time (a)

Fig. 38 - Calculated trends of IC tubes heat transfer mode (internal side)

A4-19

Page 180: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

PIPER-ONE Test PO-IC-2APost-test calculationRELAPSIMod3.1

ICA6HTMODE5I5000101ICASHTMODE515000201ICA6HTMODESI5000301ICA6HTMODES15000401ICA6HTMODE515000501

3

I

2

-200 0 200 400 600 800 1000 1200 1400

Time (s)

Fig. 39 - Calculated trends of IC tubes heat transfer mode (external side)

A4-20

Page 181: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

APPENDIX 5:

Listing of RELAP5/MOD3.1 input deck

Page 182: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 183: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

apgoic-02

100 new trenaent:01 mgp-bhk

• t|im *tsep• mint most ale Mae201 100. 1.e-7 i.e-i 07503 20 500 5001a 100. 1.:-? 1.:-i *70@3 2: 00 1:00 i@203 430. 1..-7 I.._3 070.3 1600 2000 2006204 442. 1.0-? S.e-4 07003 2000 2009 2000205 730. 1.0-7 1..-3 07003 1.e. M.ee 2...20: 1200. 1.0-7 1.0-1 07003 0 i20 0 i040207 i.,f 1.0-? 1.*-1 07003 20 1 00 1i4e

added minor edit request

2000I001 htmode 51500010020200002 htmode 51500020020800003 broode 515000300

e0800004 htmod. 51500040020000005 tcoe 51500050020000000 htmod 51500010120800007 htmde 51500020120000008 htmode 515000301208000090 htmode 51500040120400010 htmode 515000501

* minor edit request

Spressures and fluid temperatures301 p 130010000 * pa-lp-1302 p 24S010000 a ed303 tompf 100010000 * Ip304 tompf 110040000 * Ip middle305 tempt 140010000 core inlet304 tompf 200010000 core hot307 tempt 200070000 core middle308 tompt 200140000 core top300 tempg 200140000 core top

* fluid temperatures310 tempf 150010000 * by guide tube311 tompf 155010000 * bypass bot312 tempf 145010000 bypass middle313 tempf 175010000 * bypass top314 tempg 175010000 * bypass top315 tempf 220010000 * up314 tempa 220010000 * up317 tempf 245010000 • ed318 tempo 245010000 * ad

• fluid temperatures310 temptf 270010000320 tempo 270010000 a321 tempf 300010000322 tompf 310010000323 tompf 320150000324 tempf 315150000325 tompf 330010000 0324 tompf 345010000327 tampf 345050e00 4

• le•es328 ontrivar 010 * dc-ann329 antelvar Olt * dc-jp330 antrIvar 015 * Ip331 antrlvar 014 c core332 entrivar 017 a up333 antrivar 020 • core total334 ontrivar 030 - bypass335 antrIvar 035 sea334 entriver 650 • fuel box exterior

• quality & void fraction337 voldo 200010000336 voldg 200080000 0330 voldg 200130000340 voidg 200140000341 voidg 200150000342 voidg 245010000343 qualm 200100000344 quals 200110000345 qualm 200120000

Smess* flowrates344 mflowj 340000000347 mtlowj 130010000348 mflowj 130020000340 mflowj 140020000.350 mfloyj 205010000351 mflowj 205020000352 mflowj 3100010000

353 mflowj 235010000354 mflowj 335020000 •

* mass flowrateI355 mflowj S05000000 io top354 mflowS 245010000357 flowj 225020000 *356 mflowj 245020000350 mflowj 270020000300 iflowj 503010000 *301 mflowl 504010000

343 AflowJ 4430100000343 inflowS 340010000

god su race temp344 httemp 200140110 5345 htteop 320100410344 httemp 300100510347 httemp 200100710 5301 httemp 300100810 5340 httss 300100010 5170 httesp 300101410 5371 httemp 200101210 *372 httep 2 00101410 *

: quality a void traction (2nd group)373 voido 245010000374 voido 240610000375 voldo 2460030000370 voldg 250016000377 void: 250 30000370 voidq a5s050000o370 voldg 255010000

300 void 2355e1e000301 voidg 210010000

382 ontrivar 040 core power30 onrva :e*I power

304 ontrrIer 041 * 1c power385 ontriver 042 " ic power304 ontrivar 043 * I. power

-------------------------------------------

trips------------------------------------------

Ip vlv501 time 0 ge null 0 08. 1 * op. vlv ip-1p502 time 0 ge null 0 1.e* 1 a o10. vlv lp-Jp

s etart beat loesee@ ep. annulusS07 time 0 go null 0 100. 1 .

• start beat losse* upp. do508 time 0 go null 0 100. 1 .

b beat losses509 time 0 go null 0 100.510 time 0 go null 0 1.e511 tme 0 ga null 0 0.

: core 4 bypass power513 time 0 go null 0 100.515 time 0 go null 0 500.heat.

5 fbI A fb2 beat losose (only fbi u514 time 0 go null 0 300.$17 time 0 go null 0 I.eS

Ic loop Oontrol top viV520 time I go null 0 104.523 time 0 go null 0 108.5s3 time 0 go null 0 705.554 time 0 go null 0 1204.414 520 zor 523432 553 acr 554433 414 or 632

• 1o loop control hot vivS21 time 0 go null 0 132.522 time 0 go null e 400.551 time 0 go null 1 704.552 time 0 go null 0 1204.415 521 mot 522430 551 zot 552431 f15 or 430

431 521 and S21

• added break control for pa-ic-2540 time 0 go null 0 710.

I co control water In.50 time 0 go null e 440.0o541 time 0 go null 0 400.05435 500 "or 501

i co control water out.542 time 0 go null 0 401.04503 time 0 go null 0 903.[0430 562 "r 543

- steam line (tj 4331525 time 0 go null 0 1.06

: pressure Control520 tim 0 go null 0 -1.527 time 0 ge null 0 10.520 time 0 go null 0 00.417 527 zor 524

fw control529 time 0 to null 0 1.06

I *I - table 001

I * start rod beatI e start bypass

tliLted)I • fbl startI fb2 Mstart

I* op vlv io top1 * ci viv to topI* op Wv co topI a ci vIV ic topa & op/cl io topa * op/cl 1i topa - op/cl to top

I op vvi IQ batI * ci viV Ic botI * op lv 1o bhotI * 01 vlv t0 bata a op/cl So botn - op/cl Is hot

n • op/clt c hotn • opl/l ic bot

I*

I*I*

C,I•

1 actual CIO.n actual op.

Is

* auxiliary systemsS30 p 100e10000 go null532 p 10001i00S ge null534 p 1i0010000 go null534 p 100010000 go null

0000

1.e0 1 -start ipci1.04 I 9 start ipas1.06 1 -start bpcs1.00 1 * start Iposh

A5-I

Page 184: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

- erv Control537 p 245010000 ge null 0 36.50.5 n *533 p 245010000 It null 0 200.0.5 1 *533 p 245010000 It null 0 32.50.5 n * oto. ero602 537 zor 539 n - op. erv

: ads control546 tim 0 gonull 0 100. 1 - ads541 p 245010000 go null 0 70.50O5 n *4d1 540 and 541 1 - op. ads

• draining Sea576 time 0 go null 0 1.04 1 - op. drain. ann571 ontrlvar 035 go null 0 1.*4 n - lO. dre. en.

• heat losses o tank (including external pipes) & to line 11q.580 time 0 ge null 0 200. l *

: heat losses I* line581 time 0 go null 0 100. 1 •

• heat loese ad582 time 0 ge null 0 100. 1 .

: heat looses core region (external vessel)563 time 0 go null 0 80. 1 .

• end trip signal512 time 0 go null 0 1300. 1 * end of problem400 512 * end of problem

------------------------------------------

*hydraulic components---- * -------------------------------------

• lower plenum hot1000000 lv.plb branch1000001 2 . 11000101 0.010703 0.3 0. 0. 90. 0.3 4.o-5 0.045000001000200 000 5.04544 1.10004 2507.o3 0.1001101 100010000 110000000 0.00 0. 0. 0000001002101 345010000 100010000 0.00 0. 0. 0000001001201 0. 0. 0.1002201 0. 0. 0.

• lower plenum contral1100000 lp.*ld pipe1100001 51100101 0.010709 S1100301 0.250 21100302 0.1443 41100303 0.1114 S1100401 0.000 51100801 90.0 S1100001 4.00-5 0.045 51101001 00000 S1101101 000000 41101201 000 5.045o4 1.100e4 2537.e3 0.0 0. 51101300 11101161 0.0 0.0 0.0 4

: lower plenum added br. for ic ConA.1110000 lw.icl branch1110001 1 11110101 0.010705 0.1815 0. 0. 00. 0.1415 4.6-5 0.0G 5000001110200 000 5.04506 1.100l 4 25?7.o3 0.1111101 110010000 111000000 0.00 0. 0. 0000001111201 0.0 0. 0.

Slotwe plenum added br. for Io Conn.1120000 lw.1c2 branch1120001 1 11120101 0.010703 0.14 0. 0. 30. 0.14 4.e-5 0.045000001120200 000 5.045o4 1.100e4 2597.*3 0.1121101 111010000 112000000 0.00 0. 0. 0000001131201 0.0 0. 0.

• lover plenum topi1150000 lp.top1 branch1150001 2 11150101 0.010705 0.1745 0. 0. to. 0.1745 4.e-5 0.045000001150200 000 5.04541 1.120e4 2597.e3 0.1151101 112010000 113000000 0.00 0. 0. 0000001152101 115010000 120000000 0.00 0. 0. 0000001151201 0.0 0. 0.1152201 0.0 0. 0.

- lower plenum topa1200000 lp.top2 pipe1200001 21200101 0.00572 21200301 0.2 21200401 0.000 21200401 30.0 21200801 4.0o-5 0.065 21201001 00000 21201101 000000 11201201 000 S.04546 1.124*4 2557.03 0.0 0. 21201300 11301301 0.0 0.0 0.0 1

: lower plenum top31300000 lp.topl branch1300001 2 1

1300101 0.008457 0.174 0. 0. t0. 0.170000001300200 000 5.04Se4 1.120o4 2537.*31)01101 120010000 13000000 0.00 0. 0.1302101 130000000 145000000 0.00 0. 0.1301201 0.0 0. 0.1302201 0.0 0. 0.

* lower plenum top41350000 lp.tolp branch1350001 1 11350101 0.006457 0.3 0. 0. 30. 0.2000001350200 000 5.04504 1.120e0 2537.031351101 130010000 135000000 0.00 0. 0.1351101 0.0 0. 0.

- lower plenum topS1400000 lp.tops branch1400001 2 11400101 0.008457 0.2 0. 0. 30. 0.2000001400200 000 5.04546 1.120*4 2507.o31401101 135010000 140000000 0.00 0. 0.

1402101 140010000 200000000 1.315 e-4 0.3 3.91401201 0.0 0. 0.1402201 0.0 0. 0.

• core by bottom hor1450000 by.bhor pipe1450001 71450101 0.000286 71450301 0.2 21450302 0.1032 71450401 0.000 71450401 -30.0 21450402 0.0 71490001 4.7o-8 0.0 71451001 00000 71451101 000000 41451201 000 5.04504 1.120*6 25t7.@3 0.01451300 11451301 0. 0.0 0.0 4

: guide tube - bot.by1500000 gui.tub pipe1500001 51500101 0.003253 51500301 0.2440 51500401 0.000 51500001 30.0 51500801 4.00-5 0.0 S1501001 00000 51501101 000000 41501201 000 5.045ol 1.12006 2597.e3 0.01501300 11501301 0. 0.0 0.0 4

: bypass vertical bet1550000 by.vertl branch1550001 3 11550101 0.00003S 0.223 0. 0. 30. 0.2230o0001550200 00 5.04544 1.12004 2537..31 51101 145010000 1550000000 0.50-4 1. 1.1552101 150010000 15000000 .827e-3 0.1 0.11553101 1S5010000 140000000 0. 0. 0.1551201 0. 0. 0.1552201 0. 0. 0.1553201 0. 0. 0.

• bypase vertical n21400000 by.vort2 pipe1400001 101400101 0.00083S 101400301 0.2133 101400401 0.000 101400401 30.0 101400001 4.00-S 0.0 101001001 00000 101001101 000000 31401201 000 5.045O4 1.120*6 2517.e3 0.01401300 11601301 0. 0.0 0.0 1

- bypaee vertical n31450000 by.vrt3 branch1850001 2 11850101 0.000835 0.201s 0. 0. 30. 0.301000001450200 000 5.045.4 1.120e4 3597.031451101 160010006 145000000 0. 0. 0.1452101 145010000 170000000 0. 0. 0.14S1201 0. 0. 0.1452201 0. 0. 0.

• bypass vertical no1700000 by.vort4 pipe1700001 101700101 0.000035 101700301 0.235 101700401 0.000 101700801 30.0 101700601 4.00-S 0.0 1t1701001 00000 101701101 000000 51701201 000 5.04504 1.12004 2537.e3 0.01701300 11701301 0.0 0.0 0.0 3

4.o-S 0.045

0.00000000560000

4.0-5 0.049

0.O00000

4.a-5 0.065

0.000000000000

0. 7

0. 5

4.0-S 0.0

000000000000000000

0. 10

LS 4.0-5 0.0

0.000000000000

0. 10

A5-2

Page 185: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

1700001 101700101 0.000035 101700301 0.235 101700401 0.000 101700401 50.0 101700801 4.00-S 0.0 101701001 00000 101701101 000000 01701201 000 5.4Sa0 1.120a0 2501701300 11701301 0.0 0.0 0.0 0

• bypass ertlcal nS1750000 by.raftS branch1750001 2 11750101 0.000835 0.2075 0. 0.000001750200 000 S.04S50 1.120e01751101 170010000 17S000000 0.1752101 175010000 100000000 0.1751201 0.0 0. 0.1752201 0.0 0. 0.

: bypass horizontal top1600000 by.hort pipe1600001 S1800101 0.00119 51000301 0.1774 51800401 0.000 51800001 0.0 S1600001 4.0.-5 0.0 51801001 00000 S1801101 000000 41001201 000 5.045-0 1.120*0 25#1001300 11801301 0.0 0.0 0.0 4

• oare channel2000000 core pipe2000001 102000101 0.002043 142000102 0.003S50 142000301 0.205 142000302 0.220 152000303 0.2 102000401 0.000 102000001 90.0 102000001 4.0.-S 0.013 102001001 00000 142001101 000000 152001201 000 5.04500 1.120.0 2552001202 000 5.445.0 1.12186 25S2001203 000 5.04500 1.120.0 2512001204 000 S.04506 1.12804 252001205 000 S.04506 1.128o0 252001204 000 5.04506 1.12040 2512001207 000 5.045O4 1.12040 25S2001208 000 5.04504 1.12800 2593201300 12001301 0. 0.0 0.0 S2001302 0. 0. 0.0 102001303 0. 0. 0.0 15

* Coro top2050000 cora.top branch2050001 2 12050101 0.01028 0.22 0. 0.000002050200 000 S.04506 1.151042051101 200010000 205000000 1.44902052101 180010000 200000000 0.03.-2051201 0. 0. 0.2052201 0.0 0. 0.

• upper plonus 12100000 up.col branch2100001 2 12100101 0.01028 0.22 0. 0.000002100200 000 5.04504 1.151042101101 205010000 210000000 0.2102101 210010000 220000000 0.2101201 0. 0. 0.2102201 0. 0. 0.

7.03 0.0 0. 10

s0. 0.2075 4.0-S 0.0

2597.03 0.0. 0. 0000000.1 0.1 000000

7.03 0.0 0. S

97.e3 0.0M7.03 0.07.03 0.97.e3 0.97.03 0.97.e3 0.97.e3 0.97.e3 0.

0.0.0.0.0.0.0.0.

240

10121414

3251101 225010000 230000000 0. 0. 0. 0000002252101 225010000 210000000 0. 0. 0. 00000022S1201 0. 0. 0.2252201 0. 0. 0.

- stoam separator annulus2300000 oaa pipe2300001 02300101 0.007100 02300301 0.512 12300302 0.400 a2300401 0.000 •2300 01 00.0 82300001 4.0.-S 0.052 02301001 00000 02301101 000000 72301201 000 5.04500 1.15104 2597.e3 0.0 4.0 S2301202 000 S.04500 1.15164 2557.03 0.0 4.0 02301203 000 5.045. 0 1.10104 2907..3 0.5 0.0 a2301300 12301301 0. 0. 0.0 7

- steat do.e hot (k in J. 2 changed for po-ic-l1)2350000 .do.bot branch2300001 6 12350101 0.01038 0.246 0. 0. 50. 0.240 4.0-S 0.0000002350200 000 5.045o0 1.1Sl5o 2507.ol 0.52351101 220010000 239000000 0. 0. 0. 0000002352101 235000000 230010000 3.94e-4 100. 100. 0000002353101 235000000 295000000 0.00420 0.1 0.1 0000002354101 230010000 240000000 0. 0. 0. 0000002351201 0.0 0. 0.2352201 0. 0. 0.2353201 0. 0. 0.2354201 0. 0. 0.

• steam do". vsrt.left2400000 sd.ver.1 pipe2400001 42400101 0.01038 42400301 0.25 42400001 0.000 42400001 90.0 42400801 4.0o-S 0.0 42401001 00000 42401101 000000 32401201 000 5.040.0 1.15100 2597.03 0.0 0. 42401300 12401301 0. 0. 0.0 3

• steam dome top left2450000 odo.top branch2450001 2 12450101 0.01030 0.305 0. 0. 50. 0.305 4.o-S 0.00000024S0200 000 5.04506 1.1514e 2597.03 1.2451101 240010000 245000000 0. 0. 0. 0000002452101 245000000 250000000 0. 0.1 0.1 0000002451201 0. 0. 0.2452201 0. 0. 0.

• steam dome top har pipe2500000 .d.toh pipe2500001 52500101 0.005302 S2500301 0.280 52500401 0.000 52500001 0.0 52500001 4.04-5 0.0 52501001 00000 52501101 000000 42501201 000 5.045.0 1.1521o 2597.02 0.05 0. S2501300 12501301 0. 0.0 0.0 0

• steam dome hot hob pipe2550000 ed.boh pipe2000001 02990101 0.00570 52090301 0.38202550401 0.000 S2550401 0.0 52550001 4.0o-5 0.074 52051001 00000 52551101 000000 42551201 000 0.04500 1.151o0 2597.e3 1.0 0. 52501300 12551301 0. 0. 0.0 4

• oj conneoting upper parts of ad2590000 oj.ted sneljun2590101 250010000 240000000 0.005302 0.1 0.1 0000002590201 1 0. 0.000 0.000

• steam dome vert.rlght2000000 sd.vor.r pipe2600001 42000101 0.000447 42000301 0.2O 42000401 0.000 42000001 -50.0 42400801 4.0o-5 0.0 42001001 00000 42001101 000000 32001201 000 045.0o 1.1510o 2507.03 1.0 0. 42001300 12401301 0. 0. 0.0 3

* stam dome right part bottom

00. 0.22

2597.e3-3 14.5 10.43 0.1 0.1

90. 0.22

2507.030. 0.0. 0.

* steam sOparator pipe220000 st.eep pipe2200001 202200101 0.01028 22200102 0.00241 202200301 0.214 22200302 0.2345 202200401 0.000 202200001 50.0 202200801 4.0e-5 0.0 202201001 00000 202201101 000000 152201201 000 S.04506 1.151*6 2597.e3 0.1.115042201202 000 5.04504 1.151*0 2057.03 0.2201203 000 5.04500 1.lSleo 2597.e3 0.92201300 12201301 0.0 0. 0.0 1i

Sbaot sea3250000 @@a.bat branch

2S20001 2 12250101 0.007150 0.34 0. 0. 10. 0.34000002250200 000 5.045.0 1.12000 2057.03

4,0-5 0.0

0.000000000000

4 .e-9 0.0

0.000000000000

0. 10

0. 10O. 20

4.-S5 0.052

0.

A5-3

Page 186: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

26500002450001245010100000265020034051101265210120S12012652201

* do top2700000270000127001010000027002002701101270210137012012702201

: do top2750001215000127501012750301275O4012750601275080127510012751101275120127513002751301

: df fv2800000200000128001010000020002002001101200210120012012802201

2050000205000120501012050301205040125504012850601

2851001285110128512012513002051301

: bypa.

2900000

200010129003012900401250060129008012901001

2901101200120120013002001301

• vlv of

202000029201011. 1.212020120203002020301

2950000

2050101205030129504012950601295080129510012951101295120129513002051301

: do at300000030000013000101000003000200300110130021033003101300120130022013003201

• do mi

.da.rlb20.006647

000

2600100002650100000. 0.0. 0.

branob

0.206 0. 0.

0.4506 1.15106265000000 0.270000000 0.

0.0.

-90. -0.246 4.0-5 0.0

2507.e3 1.0. 0. 0000000. 0. 000000

do.top branch2 10.005534 0.247 0. 0. -00. -0.247 4.,-S 0.0

000 5.04504 1.15104 2597.03 0.1255010000 270000000 0. 0.1 0.1 000000270010000 275000000 0. 0. 0. 0000000. 0. 0.0. 0. 0.

upotroon fvod.tufw pipe40.005534 40.302 40.000 4

-90.0 44.00-S 0.0 400000 4000060 3000 5.04506 1.151*4 2597.*3 0.0 0. 4I0. 0. 0.0 3

connection zonedo.fwa branch2 10.00C534 0.3 0. 0. -00. -0.3 4.0-5 0.0

00* 5.04504 1.10*04 2507.03 0.275010000 200000000 0. 0.1 0.1 000000200010000 285000000 0. 0. 0. 0000000. 0. 0.0.0 0. 0.

dovnotream fwd•.tdfw pIp*60.005534 60.3 60.000 G

-00.0 04.00-S 0.0 G00000 4000000 5000 5.045.6 1.1909s 2597..0 0.0 0. 6I0.0 0. 0.0 5

a of steeam donby.ed pipe20.00124t 20.3295 20.000 20.0 2

4.00-5 0.04 200000 2000000 1000 5.0450* 1.100*6 2597.e3 0. 0. 210. 0.0. 0.0 1

f ,d bypoosvlv.sdby valve290010000 205000000 0.0012506 0.0 0.0 000100 1.

0 0.000 0.000 0.000mtrvlv570 571 1. 0.

a of steam domeby.a82 pipe20.002765 20.3t 20.000 2

0.0 24.00-5 0.04 200000 2000000 1000 5.045e6 1.100*6 2597.03 0.0 0.0 2I0. 0.0 0.0 1

ddlo zonedc.mal1 branch3 10.00349 0.283 0. 0. -90. -0.283 4.o-S 0.0

000 5.045e0 1.1OOeO 2007.*3 0.285010000 300000000 0. 0. 0. 000000

* 300010000 305000000 0. 0. 0. 0000001 205010000 300000000 0.00046 0.1 0.1 000000* 0.0 0. 0.1 0.0 0. 0.* 0. 0. 0.

.ddle zone n2

3000000 do.Aida pviv3050001 83050101 0.00349 33050102 0.004261 a3050301 0.2t 330S0302 0.281 a3000401 0.000 a3000601 -00.0 03050801 4.0.-5 0.0 83051001 00000 83051101 000000 7301201 000 5.04560 13051300 13051301 0.0 0. 0.

: do jet pump top3100000 do.jpto bz3100001 3 13100101 0.004261 0.335000003100200 000 0.040.3101101 300010000 310000

3102101 310010000 320000310510l 310010000 3156003101201 0.0 0. 0.3102201 0. 0. 0.3103201 0.0 0. 0.

- jot pump3150000 jet.pump pipe3150001 103150101 0.0013 13150301 0.373 13150401 0.000 131500601 -90.0 .13100801 4.00-5 0.0 13101001 00000 13151101 000000 13101201 000 5.0405o 13151300 13101301 0.0 0. 0.

- do annular pert320000 do.ann pip*3200001 103200101 0.0027 13200301 0.273 13200302 0.1 13200401 0.000 13200601 -00.0 13200001 4.0e-5 0.0 13201001 00000 13201101 000000 13201201 000 5.04506 13201300 13201301 0. 0. 0.

- do jot pump hot3250000 do.jpbo b32:0001 3 13200101 0.00426 0.327000003250200 000 5.045a32511*1 310010000 3200043252101 325010000 3300013253101 325010000 3350003201201 0.0 0. 0.3252201 0. 0. 0.3253201 0.0 0. 0.

• do hot3300000 do.jpbo bh3300001 0 13300101 0.000 0.185000003300200 000 5.045

.1006 2597.03 0.0 0.

0 7

anch

0. 0.

.4 1le00as000 0.000 0.

.515

.5

.100.4 20

0 14

-00. -0.325

2097.*30. 0.0. 0.1. 1.

4.0-S 0.0

0.000000000000000000

97.o3 0.0 0. 15

.0.4

.5

15

.100*6 2597.*3 0.0 0. 1I

•0 14

ranch

0. 0. -90. -0.327 4.o.S 0.0244

G 1.10006 2597.03 0.W00t 0. 1. 1. 000000

0000 0. 0. 0. 0000006000 0. 0.1 0.1 000000

ranch

0.89.-3 0. -90. -0.185 4.0-5 0.0244

i0 1.100.0 2597.03 0.

• added break for po-to-23310000 br.vol tndpvol3310101 0. 10. 10. 0. 0. 0. 4.0-S 0. 000003310200 0003310201 0. 1.5:1 1.28600 2.:01.4 0.3310202 1.6. 1.$0: 1.286005 3.01:0.

E fv injection In do3320000 br.j tadpjun3320101 330010000 331000000 0.03320200 1 5403320201 -1. 0.0 0. 0.3320202 0. 0.05 0. 0.3320203 100. 0.00 0. 0.3320204 101. 0.0 0. 0.3320205 1.06 0.0 0. 0.

: lower plenum horizontal part3350000 lp.horl pipe3350001 43150101 4.0*42 23350102 0.00750 43350201 0. 13350202 0. 2 • 16.10.-3350203 0. 33350301 0.257 43350401 0.000 43350001 0.0 43300801 4.0o-S 0.0 43300001 0. 0.0 13350902 0. 0. 2 * 0.57 0.573350903 0. 0.0 33301001 00000 4

A5-4

Page 187: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

3351101 000000 33351201 000 5.045.6 1-10040 2597.*3 0.0 0.0 •3351300 13351301 0.0 0.0 0.0 3

: lover plenum valve3400000 va.lopl valve3400101 335010000 3450000000 .S0OG-4 S.0 5.0 o00100 1.1. 1. *1.3400201 1 0.0 0.000 0.0003400300 strVlv3400301 501 502 1. 0.

: lover plenum bor-23450000 lp.hor2 pipe3450001 53450101 0.00750 13450102 0.00137 53450301 0.10 13450302 0.18 334S0303 0.25 S3450401 0.000 53450601 0.0 334S0402 -00.0 53450601 4.0.-S 0.0 53450001 0. 0.0 23450002 0.5 0.S 334•0003 0. 0.0 43451001 00000 53451101 000000 43451201 000 SO4SeO 1.100o6 2S07.e3 0.0 0. 53451300 13451301 0.0 0. 0.0 4

: fuol box exterior top3400000 fuel.boX branch3600001 2 13000101 4.480•4-3 0.429 0. 0. 00. 0.429 4.*-5 0.0000003000200 000 5.04509 1.151.4 2507..3 1.3401101 300010000 205000000 l.a-S 10. 10. 000000 •3402101 300000000 370010000 0. 0. 0. 0000003001201 0. 0. 0.3602201 0. 0. 0.

: fuel box exterior3700000 fuel.bo pipe3700001 73700101 4.489

4*-3 7

3700301 0.53 73700401 0.000 73700401 00.0 73700601 •.0*-5 0.0 73701001 00000 73701101 000000 43701201 000 5.04564 1,lSIa4 2597.e3 0.0 0. 73701300 13701301 0. 0.0 0.0 4

: up lpse Injection tank olm4000000 vlpCs tmdpvol4000101 0. 10. 10. 0. 0. 0. 4.0-S 0. 000004000200 0004000201 0. 22.7o5 4.134s4 2.001e4 0.4000202 1000. 22.7.5 4.134e4 2.401*6 0.4000203 le0 22.7.5 4.134e4 2.40104 0.

• Ipos Injection tj In up4030000 upilpajc todpjun4030101 400000000 210010000 0.04030200 1 532 p 1100100004030201 -1. 0.0 0. 0.4030202 0. 0.232 0. 0.4030203 0.3006 0.232 0. 0.4030204 0.40.4 0.200 0. 0.4030205 0.06.6 0.100 0. 0.4030204 1.10.4 0.173 0. G.4030207 1.360. 0.144 0. 0.4030200 1.44.0 0.120 0. 0.4030200 1.9040 0.069 0. 0.4030210 2.05.4 0.040 0. 0.4030211 2.090o 0.046 0. 0.4030212 2.15.0 0.0 0. 0.4030213 0.00e4 0.0 0. 0.

• by Ip1e Injection tank @in4100000 vbyce tadpvol4100101 0. 10. 10. 0. 0. 0. 4.0-S 0. 000004100200 0004100201 0. 22.75 4.134e4 2.601si 0.4100202 1000. 22.7s5 4.134.4 2.60106 0.4100203 3..0 22.7.5 4.134e4 2.001*6 0.

• by 11•1 injection tj4130000 jby.,s twdpjun4130101 410000000 17S010000 0.04130200 1 S36 p 1100100004130201 -1. 0.0 0. 0.4130202 0. 0.110 0. 0.4130203 0.30e6 0.116 0. 0.4130204 0.400e 0.105 0. 0.413020S 0.6000 0.095 0. 0.4130206 1.10*0 0,064 0. 0.4130207 1.3804 0.074 0. 0.4130208 1.44e6 0.000 0. 0.4130200 1.00.0 0.044 0. 0.4130210 2.0506 0.030 0. 0.4130211 2.0904 0.024 0. 0.4130212 2.15.4 0.0 0. 0.

• lpol tank csiluator0200000 vipol tmdpvol4200101 0. 10. 10. 0. 0. 0. 4.0-3 0. 0000o4200200 0004200201 0. 38.0S 4.134o4 2.001o40O.

4300202 1.e0 26.05 •.13044 2.001e 0.

• ipol Injeotion in oore.bypase4230000 lpeIj.by tmdpjun4230101 420000000 145010000 0.04230200 1 S30 p 1100100004230201 -1. 0.000 0. 0.4230202 0. 01300 0. 0.42302030 0.30.6 0.340 0. 0.

4230204 0.500S 0.345 0. 0.4230205 0.440. 0.330 0. 0.4230204 0.004 0.310 0. 0.4230207 1.25.0 0.250 0. 0.4230306 1.4104 0.108 0. 0.4230200 1.51*0 @.115 0. 0.4230210 1.SS4. 0.060 0. 0.4230211 1.65.0 0. 0. 0.42302312 9.5106 0. 0. 0.

- *teen line downstream4300000 ot.al tmdpvol4300101 0. 3. 10. 0. 0. 0. 4.4-S 0. 000004300200 0004300201 0. l.o5 4.175.S 2.50104 1.4300202 1. 1.oS 4.175a5 2.S04.0 1.4300203 1.0o 1.o5 4.175s5 2.500,0 1.

•steam line during steady *tat*4330000 ete4m.lI tmdpjun4330101 245010000 430000000 0.04330200 1 5254330201 -1. 0.0 0. 0.4330202 0. 0. 0.346 0.4330203 1.06 0. 0.348 0.

• pro control volume4400000 out.sl tmdpvol4400101 0. 0.5 10. 0. 0. 0. 4.0-S 0. 000004400200 o004400201 0. 5.04504 1.151 0 2507.03 1.4400202 1. 5.04SO4 1.15104 2507.13 1.4400203 1.o4 S.045.0 1.1516 2507.*3 1.

Spressure control for steady stte4430000 va.lopl valve4430101 245010000 44000000 5.000-3 0.0 0.0 0001001. 1.4430201 1 0. 0.0403 0.0004430300 mrvliv4430301 617 528 1. 1.

• fv tank ssluator4500000 tw.vol todpvol4300101 0. 10. 10. 0. 0. 0. dc-S 0. 000004500200 0004S00201 0. S.504 6.2840s 24.01.4 0.4500202 1.*4 .5.54 4.20405 2.40160 0.

* fL Injection In do4530000 fw. tmdpjun4530101 450000000 200000000 0.04330200 1 5204530201 -1. 0.0 0. 0.4530202 0. 6.0443 0. 0.4530203 100. 0.0443 0. 0.4530204 101. 0. 0. 0.4330205 1.00 0. 0. 0.

* swrv tank4400000 out'vr t.apvol4400101 0. 3. 10. 0. 0. 0. 4.6-S 0. 000004000200 0004010201 0. 1.1S 4.175e5 2.50400 1.4400202 1.eo 1.oS 4.175o5 2.50100 1.

• ler vIV4430000 va.erv Valve4430101 245010000 440000000 1.540-0 1.e-0 1.0-1 000101. 1.4430201 0 0.000 0.000 0.0004030300 mtrvlv4030301 002 500 100. 0.

• ad. tvol4700000 outed. tmdpvol4700101 0. 10. 100. 0. 0. 0. 4.e-S 0. 000004700200 0004700201 0. loS 03224. 2.30000o 1.4700202 1.4 1.:: 03224. 2.50:0040 1.

* ads vlv4730000 val.ads valve4730101 245010000 470000000 36.3e-4 0.1 0.1 000100 1.1.4730201 0 0.000 0.000 0.0004730300 trpvlv4730301 401

• 1. line top5000000 tolin.t pipe5000001 105000101 3.70-4 S5000102 3.7e-4 10$000301 0.30 5S000302 0.312 9

1.

0 1.

A5-5

Page 188: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

5000303 0.212 105000401 0.0 105000001 0. 5

$000602 -90. 105000701 0. S5000702 -0.212 t5000703 -0.112 105000801 4.00.- 0.0 1*5000001 0.0 0.0 45000002 0.3 0.3 55080003 0.0 0.0 05001001 01000 •5001002 00000 10

5001101 000000 98001201 000 5.045.0 0.741o5S 2307.0) 1.5001202 000 5.04500 0.7461.5 2S97.03 1.5001203 000 5.045.4 0.7041.5 2507..) 1.5001204 000 S.04544 1.1510.4 2507.*3 O.S5001205 000 5.0450a 0.7401.5 2507..) 0.5001301 0.0 0.0 0.0 0

: lvl to topSOSGOO5 vlv.iot valve5050101 245000000 500000000 3..-4 10. 10. 0oo1.5050201 0 0.000 0.000 0.0005030300 trpvlv500301 )03

: to top5100000 top.Icb branch3100001 2 05100101 0.00.4 0.2 0. 0. -00. -0.1 4.0-5000005100200 000 5.045a0 0.740105 2507..)5101101 510010000 513000000 0. 0.1 0.15102101 500010000 510000000 0. 0.1 0.15101201 o. 0. 0.5102201 0. 0. 0.

* to control5110000 locon tmdpvol5110101 0. 10. 100. 0. 0. 0. 4.0-5 0. 000005110200 0005110201 0. 3.506 0.$305 2.00306 0. *5110202 1..4 3.504 4.S3.e 2.00364 0.

0.0.0.0.0.

070010

100 1. 1.

1.0.5-

0.0000000000000

A vIV Io control5120000 vlv.icc valve5120101 520000000 511000000 3.0-7 100. 100. 00011.3120201 0 0.000 0.000 0.0005120300 trpvlv5120301 035

• Is control3130000 Ioeee tnapvol5130161 0. 10. 100. 0. 0. 0. 4.0-5 0. 000005130200 0005130201 0. 2.5.0 0.530S 2.00304 0.5130202 1.0* 2.5.0 4.53*5 2.603)0 0.

• vIV to control5140000 vlv.1CC valve5140101 520000000 513000000 .0-4 100. 100. 00011.5140201 0 0.000 0.000 0.0005140300 t rpvlV3140301 )03

: I tube.5150000 la.tubea pipeSis5001 53150101 3.05.-3 55150301 0.0052 53130001 5.0 51150001 -90. 53150801 4.00-S 0.018 55150001 0.0 0.0 4S151001 00000 55151101 00a0c0 45151201 000 5.045.0 0.7401o5 2507.43.) 0.03I51301 0.0 0.0 0.0 4

• to bot5200000 bot.IAb branch5200001 2 05200101 1.00-4 0.1 0. 0. -to. -0.1 4.6-.000005200200 000 3.045.0 0.7461.3 2508.03 05201101 513010000 520000000 0. 0.1 0.15202101 520010000 525000000 1.7.-4 0.1 0.153201201 0. 0. 0.5202201 0. 0. 0.

• to tub. Internal to the tank3250000 1c.tube1 pipe3250001 145250101 2.4o-4 145230301 0.1 13250302 0.07875 03230)5 0.100 145250401 0.0 143250001 -00. 05250002 0. 143250801 4.00-4 0.010 145250001 0.0 0.4 052S0002 0.2 0.2 10523000) 0.0 0.0 135251001 00000 0

00 1. 1.

.00 1. 1.

0. 5

5251002 01000 145251101 000000 1352S1201 000 5.00506 0.746105 2507.4303 0.0 0. 13251202 000 5.04564 0.7461a5 2557.4315 0.0 0. 1525130) 000 5.04506 0.7401.5 2597.43.3 0.0 0. 53231204 000 5.04530 0.7401.3 2597.43.o 0.0 0. T

5251205 000 5.045.0 0.7441.5 2507.43.3 0.0 0. 14S251301 0.0 0.0 0.0 13

* sit tank junoct.5300000 Lo.61 onol jua5300101 525010000 540000000 2.50-4 0.1 0.1 000000S300201 0 0.000 0.000 0.500

- so tube aztornal to the tank5400000 l.tubal pipe5400001 275400101 2.5446-4 275400301 0.35 25400303 0.472 233400)03 0.4 235400304 0.) 245400305 0.35 275400401 0.0 275400401 0. 25400402 -00. 225400003 0. 235400004 -00. 245400005 0. 275400001 4.0..0 0.010 275400001 0.0 0.0 25400002 0.2 0.2 s5400003 0.0 0.0 215400504 0.3 0.3 225400005 0.0 0.0 203401001 01000 2S401002 00000 225401003 01000 235401004 00000 245401005 01000 275401101 000000 20S401201 000 5.045.4 0.7461.5 2507.43)3 0.0 0. 275401301 0.0 0.0 0.0 20

• vlv itheot5500000 vlv.tcb valve5500101 540010000 111000000 0.040-4 300. 1.o0 000100 1.1. 1.5500201 0 0.000 0.000 0.0005300300 trpvlv5500301 0)1

: to tank bell5510000 Lcta.bl branch5310001 3 05510101 0.70. 0.07175 0. 0. 00. 0.07875 4.e-S 1.6.-)000005510200 000 1.07.5 0.748805 3342.43.3 0.05511101 S31010000 552000000 0. 0. 0. 0000003512101 551010000 503000000 0.1 0.1 0. 0000005513101 551010000 504000000 0.1 0.1 0. 0000005511201 0. 0. 0.5513201 0. 0. 0.5513201 0. 0. 0.

* Io tank bot2 Internal part5520000 icta.b2 branch5520001 1 05520101 0.1 0.07075 0. 0. 10. 0.0707 4.e*-S 1.$0-$000005520200 000 1.07.5 0.740805 3342.43). 0.05521101 552010000 540000000 0. 0. 0. 4000005521201 0. 0. 0.

t i0-tonk Internal part (with bWtElI)5300000 lo.tonk pipe5600001 125000101 0.1 75000102 0.05315000103 0.007 125400301 0.0797S 05600302 0.1 a5000303 0.0632 123400401 0.0 12

$400401 90. 123000001 4.00-4 1.000 125600001 0.0 0.0 115601001 00000 125001101 000000 115401201 000 1.07.5 0.74&8oS 3383.43.3 0.0 0. 25001202 000 1.07o5 0.7488.5 3383.43.3 0.0 0. 45001203 000 1.07.5 0.7480.5 3383.43.3 0.0 0. 05001204 000 1.07.5 0.744065 3)32.43.3 0.0 4. 45001205 000 1.07.5 0.740805 3382.43e3 0.0 0. 105301200 000 1.07.5 0.1408.5 3)32.4)0) 0.0 0. 125401301 0.0 0.0 0.0 11

• Ic tank topl5010000 1ota.tl brancb5410001 1 05010101 0.087 0.0032 0. G. O0. 0.0632 4.e-5 1.0o-)000005410240 000 1.007S 0.7488.5 3342.43.3 0.05011101 560010000 501000000 1. 0. 0. 0000005011201 0. 0. 0.

: 1o tank tMop5620000 Icta.t2 branch5020001 3 0

1.06-5

.0000000000000

A5-6

Page 189: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

S$20101 *.45, 0.1 0. 0. 00.00000

5420200 000 1.07.5 0.740805521101 501010000 S$3000000 0.5422101 540000000 543010000 0.15423101 542000000 544010000 0.15421201 0. 0. 0.5422201 0. 0. 0.5422201 0. 0. 0.

0.1 6.0-S 1.0.-3

2342.4).) 0.00. 0. 000000

0.1 0. 0000000.1 0. 000000

5801201 000 1.07.5 0.7408.5 2S04..3 0.0 0. 15001202 000 1.07s5 0.74085 2504.e3 0.0 0. 25001303 000 1.07.5 425.5.3 2504.03 0.5 0. 35001204 000 1.0705 425.S53 2504..3 1.0 0. 55001301 0.0 0.0 0.0 4

0top esurgelins- tank to5050000 Icceasj oagjun5050101 500000000 S62010000 0.1 0.1 0.1 0000005050201 0 0.000 0.000 0.000

I io-tank longer 1zt. piping5430000 loft..pt pipe5430001 225030101 2.240.-S 225430301 0.11 45430302 0.07075 115430303 0.1 135530304 0.0032 105203005 0.11 225630401 0.0 225430401 0. 45430602 0 0. 1i5030403 0. 325430001 4.00-4 0.000 225430001 0.0 0.0 35430902 0.1 0.1 45430003 0.0 0.0 175430004 0.1 0.1 105430005 0.0 0.0 215431001 00000 225431101 000000 21S431201 000 1.07.5 0.7408.5 3)82.43.35431202 000 1.07.5 0.740805 33)2.43.35431203 000 1.07.5 0.748805 3)82.43.35431204 000 1.07.5 0.7400.5 33)2.43.354)1205 000 1.07.5 0.740805 3232.43.35031204 000 1.07.5 0.7468e5 3320.43*35031301 0.0 0.0 0.0 21

* Io-tank short art. piping5440000 Xc.te.p2 pipe5040001 225640101 2.248.-3 225440301 0.03 45640302 0.07875 115440303 0.1 135640304 0.0432 185440305 0.03 225440401 0.0 225440401 0. 4540402 00. 105440403 0. 225440801 4.0.-S 0.000 225440001 0.0 0.0 3S440002 0.1 0.1 45040903 0.0 0.0 175640004 0.1 0.1 105440005 0.0 0.0 215441001 00000 225441101 000000 215441201 000 1.07.5 0.748805 3362.43.35441202 000 1.07.5 0.748085 3)02.43*.544120) 000 1.07e5 0.740685 3302.43e35441204 000 1.07.5 0.748805 3302.43.35441205 000 1.07o5 0.7400.5 3382.43.35641204 000 1.07.5 0.7400.5 3332.43e35041301 0.0 0.0 0.0 21

- Ic tank bot2 external part4520000 Icta.b2 branch0520001 2 04520101 0.000 0.07075 0. 0. 00.000004520200 000 1.07.5 0.7480.54521101 452010000 440000000 0.4522101 551010000 452000000 0.4521201 0. 0. 0.0522201 0. 0. 0.

0.07075 A.e-S 1.6e-3

1342.43.3 0.00. 0. 0000000. 0. 000000

0.00.00.00.00.00.0

0.0.0.0.0.0.

24

01022

• Ic-tank external part (with baffle)40000000 ia.tan pip.4400001 124400101 0.400 124000301 0.07075 66600302 0.1 04600303 0.0432 126400401 0.0 126400001 00. 124000001 4.0ooi 1.000 124400001 0.0 0.0 110001001 00000 124401101 000000 116401201 000 1.07.5 0.740845 3382.43.34601202 000 1.07.5 0.740865 3302.43.36601203 000 1.07.5 0.748085 3382.43e34001204 000 1.07.5 0.7400.5 3302.43.)401205 000 1.07.5 0.7400.5 332:.43.34601204 000 1.07.5 0.7480.5 33)2.43.364012301 0.0 0.0 0.0 11

0.00.00.00.00.00.0

0.0.0.0.0.0.

24401012

• 1o tank topi external4410000 lota.tI. branch4410001 2 00410101 0.4008 0.0632 0. 0. 0.000006410200 000 1.07e5 0.7400.54611101 6041010000 542000000 0.6012101 440010000 411000000 0.6011201 0. 0. 0.4612201 0. 0. 0.

0.0432 4.o-5 1.4.-3

3342.43o3 0.00. 0. 0000000. 0. 000000

0.00.00.00.00.00.0

0.0.0.0.0.0.

4

0

22

s tructures

- lower plenum bottom flange11001000 1 5 1 1 0.011001100 0 111001101 4 0.07311001201 1 411001301 0.0 411001400 011001401 551.0 5

11001501 100010000 0 1 1 0.011 111001401 000000000 0 0 1 0.011 111001701 0 0.0 0.0 0.0 111001001 0. 100. lee. 0. 0. 0. 0. 1. 1

* top of54SO000545010154502005650201545)202

Io tankouttlo tadpvol0. 10. 100. 0. 0. 0. 4.0-S 0. 60000000

0. 1.5 03224. 2.SQiOeO 1.1.04 1..5 03224. 2.50004.4 1.

a top 1c - tmdpvo1 atmo.feora5040000 Icoctop ongljun5440101 S70010000 545000000 0.1 0.15440201 0 0.000 0.000 0.000

• top of to tank5700000 lcctop pipeS700001 35700101 1.00 35700301 0.2 35700401 0.0 35700601 00. 35700001 4.0.-4 0.0 35700001 0.0 0.0 25701001 00000 35701101 000000 25701201 000 1.07e5 425.05e3 2504.22e35701301 0.0 0.0 0.0 2

* top 10 - ourgeline5750000 Lac0e4 ongijun5750101 570000000 500010000 0.1 0.15750201 0 0.000 0.000 0.000

• otrgo line de1 to5000000 iccotop pipe5000001 55800101 0.1 55800301 0.2 S5000401 0.0 S5000401 00. 55900601 4.00e- 0.0 55000001 0.0 0.0 45001001 00000 55801101 000000 4

0.1 000000

* thick flange In varlous zones11002000 0 10 2 1 0.050

11002100 0 111002101 0 0.107511002201 1 911002301 0.0 911002401 S51.0 1011002501 100010000 0 111002502 130010000 0 111002503 110040000 0 111002504 210010000 0 111002505 235010000 0 111002500 245010000 0 111002507 225010000 0 111002500 220020000 0 111002401 000000000 0 011002701 0 0.011002001 0. 100. 100. 0. 0. 0.

1 0.0001 0.0001 0.0001 0.0801 0.0801 0.0801 0.0801 0.0001 0.0800.0 0.0

0. 1. 0

12

S

1.0 0. 3

0.1 000000

* added structure for n2 beat losses11003000 1 10 1 1 0.05011003100 0 111003101 0 0.04011003201 1 011003301 0.0 011003401 551.0 10

11003501 130010000 0 1 1 0.100 111003401 000000000 0 2002 1 0.100 111003701 0 0.0 0.0 0.0 111003801 0. 100. 100. 0. 1. 0. 0. 1. 1

c cor, region cylindrical vessel11103000 30 5 2 1 0.054511103100 0 111103101 4 0.0704511103201 1 411163301 0.0 4

A5-7

Page 190: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

111i4s1&111035011110 35611110350311103504111035051116350411103567111035071113500•

1110351011103 511

111035121116351311103514111635151110351611103601111036021110340311103604111434451110360611103607111036061110360011103610111036111110361211103613111054141110361511103461111036171110361011103610111036201110362111103622111034231110342411103425111036261110362711101326111034201110363011103631111036321110363311103634111036351110163411103637111036341110363011103701

551.0166010006110610006111010•000

11501040012601006613061000037001000034001000•205010008210610000220010600225010000230010006235010000240010000245610000600000000-601

-801

-601-6011

-601-001*001

00 00 00011-601-801

-601-601-601-801-801

000000040000000006000000006400000600600000000

-801

-001

-601-601-801-801-501

4400•000041-5411-04&

-001

-801000000010

-601-60104400a 60

S0 110000 11000000 1

0 110000 10 110000 1a 10 10 110000 10 1

10000 10 116000 I0- 10 000000 350400000 35040000 350400000 350400000 350400000 350400006 3504

o 350400000 350400000 35040 •of000 3500• 0000 35'05O000o 350000000 3500400006 350000000 350000000 35050 00 00 600000 000000 00 350100000 3501O00c0e 50100000 350100000 350100000 350100000 350100000 350100000 35010 100000 3506

00000 350400000 350600000 35060 0

0.0

0.3200.1440.160.1700.2000.170O.5300.6250.2200.2200.3140.2900.4600.1600.2500.3650.2200.1440.1446.14440.1440.1440.1600.1600.1700.2000.3000.1700.53o4.5340.5300.5300.5300.5300.5300.4296.2209.2200.2140.2140.2600.4600.4400.4600.4690.4490.4690.4600.4600.1640.2500.250O.2SO0.2500.3650.0

12

I

0111210202122242533343039

234S

76

111213141514171i1520212223242526272820303132333435363738393,

1130161111201411113014121126161311301614112016151120181611201617112014181120161911201620112011211130162211301423112016241120162511201626112016271120163S112016291120163011201431112014321120163111201634112016351120170111201801

*bottom1140500011405100114051011140520111405301114054011140550111405502114056011140570111405001

a000000s6 0040000066 0000000000 0000000000 0000000000 0000O80000 0904000080 0000000000 000000000 0006004400 0

000000000 0000000000 0000000000 .

000000000 0604600000 0000000000 0000000000 0000000000 0000600006O 0000000006 06500000000 •

000000000 a000000000 0O000000000 00400000000 0

00. 100. 100.

2301 12901 12901 12001 12901 12001 12901 12601 12001 12001 12001 12091 12001 12001 12061 12001 12001 12001 12001 12001 12001 10 10 10 10 10 10.0 0.0

0. 0. 0. 0.

4.3130.2130.2130.2136.2130.2130.2130.2130.2130.20.2350.2350.2350.2350.2350.2350.2350.2350.2350.2350.200.170.170.170.170.170.01. 35

101112

1314is1617Is102021222324252627202930313233343535

of heoter rods2 5 2 100 1a 0.1321 00.0 8551.0 0135010000 0140010000 0000000000 000. 100. 100. 0.

.0311

11

00.l

0. 0III

I1

11II1II11

0.0

- guide tube11561000 S 5 2 1 0.03711501100 0 111501101 4 0.0411501201 1 411501301 0.0 411501401 561.0 511501501 150010000 10000 111501$01 000000000 0 011501701 0 0.011501011 0. 100. 100. 0. 0. 0

1 0.21 0.21 0.2

0 0.0 0.00. 1. 2

1 0.243 51 0.243 50.0 0.0 5

0. 1. 5

2222

* core bypase flanges (In guide tubes)11502000 3 5 3 1 0.03711502100 0 1

11103801 0. 100. 100. 0. 0. 0. 0. 1. 30

Sore bypass oylindrical11201006 35 5 2 1 011201100 0 111201101 4 0.0210611201201 1 411201301 0.0 411201401 551.0 S11201501 145010000 011201503 145020000 011201503 145030006 011201504 145040006 011201505 145050006 011201504 145040000 611201517 145070000 011201500 155010000 0112015•0 140010000 511201510 140020000 011201511 140030000 011201512 160040000 011201513 140050000 011201514 160040000 011201515 160070000 011201516 140086000 011201517 16000600 011201516 160100600 011201510 165010000 011201520 170010000 011201521 170020000 011201522 170030004 011201523 170040000 011261524 170050004 111201525 170060000 611201526 170070000 011201527 170088000 011201528 17000000 011201520 170100000 011201530 175010000 011201531 100010000 011201532 180020000 011201533 180030006 011201534 160040000 011201535 160050444 011211601 000000000 011201662 00006000o 611201403 00000000011201604 400000000 011301405 404100000 011201600 000000000 011201607 00000000 011201600 000006000 011201600 100010000 0

.01623

11563101 4 0.14611502261 1 411502301 0.O 411502401 561.0 511502501 150010000 011502502 150030000 011502503 150050000 011502601 000000000 011502701 011502601 0. 100. 100. 0.

1 11 1I I

0 10.0 0.00. 0. 0.

0.1000.1000.1090.1090.01. 3

12S33

11111111I1I1II1I111II1I

0.2 10.2 20.169 30.169 40.100 S0.160 60.10, 70.213 60.213 %0.213 100.213 110.313 120.313 130.213 140.213 150.213 160.213 170.213 1i0.2 100.235 200.235 210.235 220.235 230.2135 240.235 250.235 200.235 370.235 280.235 230.20 300.17 310.17 320.17 330.17 340.17 350.2 16.2 20.180 30.189 60.180 50.180 60.180 70.213 60.213 6

• fuel boz wall11601000 16 5 1 1 0.011601106 0 1116611o0 4 0.00311601201 1 411611301 0.0 411601401 541.0 S11401501 200010000 1000011801401 370010000 011601602 370010000 011601403 370020000 011601604 370020000 011601605 370030000 011601606 370030000 011601607 370040004 011601608 370040000 011601600 370050000 011601410 370050000 011601611 370040000 011601412 370040000 011601613 370070000 611401414 370070000 011401615 360010000 011401616 360010000 011601701 011601801 0. 100. 100. 0. 0.11601901 0. 100. 100. 0. 0.

L

1I1II

1

I1I0.0

0. 0.0. 0.

11III1I1I11111111

,001. 101. 16

0.076320.076320.076326.076320.076320.076320.076330.076320.076320.070320.074320. 0761320.076320.076320.074320.072320.076320.0

1612

4S567a

1011121314151616

I II I1 1I I1 1I II I1 11 11 11 1I I0 10 10 16 10 10 10 12001 12001 1

• bottom11651000116511400

1165110111051192116511031145110411651105

114511661165120111451202116512031165120411651205

unheated length2 10 3 1 0.06 13 0.00301 0.00251 0.00351 0.00431 0.00502 0.0061152 33 44 S5 64 7

A5-8

Page 191: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

115S1200 5 911651301 0.0 011051401 541.0 s011051501 000000000 0 0 111051503 000000000 0 0 111651641 140010000 0 1 111051002 135010000 0 1 111451701 0 0.0 0.011451001 0. 100. 10e. 0. 0. 0. 0. 1. 2

* core activ tlenrth12001000 14 10 2 1 0.012001100 0 112001101 3 0.002012001103 1 0.002S12001103 1 0.003512001104 1 0.004312001105 1 0.005012001100 2 0.000115121001201 2 312001203 2 412001203 4 S12001204 S 012001205 4 712001200 5 912001301 0.04 312001302 0.0 S12001303 0.00 012001304 0.0 012001401 541.0 1012001501 OOO000000 0 0 112001001 240014000 1ese0 1 112001701 000 0.041724 o.012001702 900 0.051724 0.012001703 000 0.040804SS 0.012001704 000 0.0004695 0.01200170S 000 0.084483 0.012001700 000 0.084493 0.012001707 000 0.0600S5 0.012001708 too 0.040055 0.012001700 000 0.004403 0.012001710 900 0.004403 0.012001711 000 0.0489055 0.012001712 900 0.0080455 0.012001713 000 0.051724 0.012001714 900 0.051724 0.012001001 0. 100. 100. 0. 0. 0.12001902 O. 100. 100. 0.13 0. 0.12001903 $. 100. 100. 0. 0.13 0.12001004 0. 100. 100. 0.13 0. p.12001005 0. 100. 100. 0. 0.13 0.12001900 0. 100. 100. 0.13 0. 0.12001007 0. 100. 100. 0. 0.13 0.12001108 0. 100. 100. 0.13 0. 0.13001900 0. 100. 100. 0. 0.13 0.13001010 0. 100. 100. 0.13 0. 0.12001911 0. 100. 100. 0. 0.13 0.12001913 0.10e. 100. 0.13 0. 0.12001012 0. 100. 100. 0. O.13 0.12001014 0. I0*. 100. 0. 0. 0.

3.21.03.21.9O.O

O.O.O.O.O.0.0.0.0.0.0.0.0.0.

12122

4.040.24

0.00.00.00.00.00.00.00.00.00.00.00.00.00.0

0.00.0

1.1.1.1.1.1.1.1.1.1.1.1.

12202002 225010000 0 1 1 0.1lls 212202003 230010000 0 1 1 0.043 312202404 230010000 0 1 1 0.2345 412303405 230010000 0 1 1 0.23sa 513302000 33002000 0 1 1 0.2345 012202007 330020000 0 1 1 0.2345 713220200 230030000 0 1 1 0.234S a12203000 230030000 0 1 1 9.234S 012202010 310040000 0 1 1 0.2345 101220211 230040000 0 1 1 0.2345 1112203012 2300s0000 1 1 0.2345 1213203013 230050000 0 1 1 0.2345 1313203014 230060000 0 1 1 0.2345 1412202015 230000000 0 1 1 0.2345 1s12203010 230070000 0 1 1 0.234S 1012302017 230070000 0 1 1 0.334S 171220216 2300000000 0 1 1 0.2345 1t12202410 230080000 0 1 1 0.2345 1012303701 0 0.0 0.0 0.0 1012303201 0. 10. 100. 0. O. 0. 0. 1. 1012202901 0. 100. 100. 0. O. 0. 0. 1. 10

1414123

9

00

78

10

11121314

I234S07601011121314

a 04 borisontal pipes12501000 10 5 2 1 0.036612501100 0 112501101 4 0.04712501301 1 413201301 0.0 412501401 S01. S12501501 250010000 lo00 112501502 255010000 10000 112S01001 00W000000 0 012561701 0 o.012501001 0. 100. 100. 0. 0. 0. 0.

* 04 horizontal pipes flanges12502000 5 S 2 1 0.030012502100 0 112503101 4 0.133512502201 1 412502301 0.0 412502401 501. 512502501 2S0010000 0 112002502 250050000 0 112502503 255010000 0 112502504 255030000 0 112032505 2550S0000 0 112502001 000000000 0 012502701 0 0.012502801 0. 100. 100. 0. 0. 0. O.

1 0.2701 0.2791 0.2700.0 0.0

1. 10

S101010

a top unheated lengrth12002000 2 10 2 1 0.012002100 200112002401 501. 1012002501 000000000 0 012002502 000000000 0 012002001 200150000 0 112002002 300100000 0 112002701 0 0.012002901 1. 100. 100. 0. 0. 0. 0.

11I10.0

1. 2

3.004 13.3 23.044 13.2 20.0 2

* upper tic plate12051000 1 S 1 1 0.012051100 0 112051101 4 0.01512051201 1 4120S1301 0.0 412051400 012051401 541.0 512051501 200100000 0 1 1 0.860o-312051401 205010000 0 1 1 0.0800-312051701 0 0.0 0.0 0.0 112051001 0. 100. 100. 0. 0. 0. 0. 1.12051901 0. 100. 100. 0. 0. 0. 0. 1.

• separator walls - flange12201000 1 S 2 1 0.0274512201100 a 112201101 4 0.107512201201 1 412201301 0.0 412201401 51. 512201501 220030000 0 1 112301001 000000000 0 0 112201701 0 0.0 0.012201801 0. 100. 100. 0. 0. 0. 0. 1.

aod ma ud pipe12001000 17 S 2 1 0.042712001100 0 112001101 4 0.050812001201 1 412401301 0.0 412001401 501. S12001501 200010000 10000 112001502 206010000 0000 112001503 270010000 00000 112001504 275010000 10000 11240150S 280010000 00000 112001500 285010000 10000 112001001 o00000000 00000 012001002 000000000 000o0 012001003 000000000 00000 012001404 000000000 00000 012401405 000000000 00000 012001000 .801 O0000 350113001701 0 0.O12001001 0. 100. 1M0. 0. 0. 0.

* dc flanges

12402000 10 S 2 1 0.042712002100 0 112002101 4 0.14012002201 1 412002301 0.0 412002401 501. S12002501 200010000 0 112002502 200010000 0 112002503 205010000 1 112002504 270010000 0 112002505 28500000 0 112002504 300010000 0 112002507 310010000 0 112002500 320150000 0 112402500 325010000 0 112002510 330010000 0 112002001 400000000 0 012402701 0 0.013002801 0. 100. 100. 0. 0. 0.

0 oan-do conneotion12001000 4 S 2 1 0.0213001100 0 112901101 4 0.021113401201 1 413901301 0.0 413901401 501. 512001501 200010000 10O00 112001502 295010000 10000 112001001 000000000 0 012901402 000000000 1 012301003 000000000 0 012001004 000000000 0 012901701 0 0.012901801 0. 100. too. 0. 0. 0.

0.

0.

1.

IIII

11III111

1.

11

I.

1

1I1

1

1.

.1090.109

.109

.109

.109O.100o.o

0.25 40.240 50.247 00.302 100.3 110.3 170.2S 40.200 S0.247 00.302 100.3 110.3 170.0 177

I334SSs

I1

11

4.060.000.080.000.080.080.000.08

0.060.00

10

0.080 10.006 10.0 1

1

a separator wall12202000 19 5 2 1 0.0274012202100 0 112202101 4 0.0301512202201 1 a12202301 0.0 412202401 Sol. 513203S01 230030000 00000 112202502 320040000 00000 112202503 220040000 0000 113202504 220050000 10000 112202001 220010000 0 1

0.

1 0.21 0.351* 0.31 0.31 0.251 0.350.0 0.0

1. 4

1234S0700101010

3412304I

0.234S 10.1015 30.043 30.2345 106.2345 1

A5-9

Page 192: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

- sea-do aeomwction ftlae-412902000 4 5 a 1 0.0212902108 0 112902101 4 0.059512902201 1 412902301 0.0 413902401 561. 512902501 290010000 0000 1 1 0.12903502 295010000 10000 1 1 ,12902001 oeoOO0000 0 O 1 0.13002602 000000000 0 0 1 0.12902603 000000000 0 0 1 0,

12902404 000000000 0 0 1 0.13902701 0 8.0 0.0 0.129020801 0. 100. 100. 0. 0. 0. 0. 1. 4

- lovet downcomec13001000 24 5 2 1 0.030013001100 0 113001101 4 0.044513001201 1 413001301 0.0 413001401 551.0 S13001501 300010000 0 1 1 0.13001502 305010000 10000 1 1 0.13001503 310010000 e 1 1 0,13001504 320010000 10000 1 1 0,13001505 325010000 0 1 1 013001500 330010000 0 1 1 0.13001401 000000000 0 0 1 013001402 -801 00000 3503 1 0.13001003 000000000 0 0 1 0,13001604 000000000 00000 0 1 O,13001605 000000000 0 0 1 013001606 000000000 0 0 1 013001701 0 0.0 0.0 013001801 0. 100. 100. 0. 0. 0. 0. 1. 30

• lot pump13151000 1S 5 2 1 0.013313151100 0 113151101 4 0.014713%51201 1 413151031 0.0 413151401 551.0 S13151501 315010000 10000 1 1 013151502 315150000 0 1 1 0.1315101 320010000 10000 1 1 013151002 320150000 0 1 1 013151701 0 0.0 0.0 0.13151001 0. 100. 100. 0. 0. 0. 0. 1. Is13151001 0. 100. I00. 0. 0. 0. 0. 1. 15

* lower plenum hoc13351000 7 S 2 1 0.034413351100 0 113351101 4 0.02811351201 1 413351301 0.0 413351401 551.0 513351501 335010000 10000 1 1 013351502 345010000 10000 1 1 013351401 000000000 0 0 1 013351602 000000000 0 0 1 013351701 0 0.0 0.0 013351001 0. 100. 100. 0. 0. 0. 0. 1. 7

• Ip hot flanges13352000 3 5 2 1 0.024413352100 0 113352101 4 0.1335M1U3301 1 4

13352301 0.0 413352401 5S5.0 S13352501 335010000 0 1 1 013353202 335046000 0 1 1 013352503 345010000 0 1 1 013352401 000000000 0 0 1 013352701 0 0.0 0.0 013352801 0. 100. 100. 0. 0. 0. 0. 1. 1

: lp pipe13353000 2 5 2 1 0.0190513353100 0 113353101 4 0.02413133S3201 1 413353301 0.0 413353401 551.0 S1353501 345040000 10000 1 1 013353001 110020000 -10000 1 1 013353701 0 0.0 0.0 013353801 0. 100. 100. 0. 0. 0. 0. 1. 213353901 0. 100. 100. 0. 0. 0. 0. 1. 3

• to pipe external11000000 t0 5 2 1 0.00915000100 0 115000101 4 0.010 * 0.01315000201 1 415000301 0.0 415000401 551.0 515000501 500010000 10000 1 1 615000502 500000000 10000 1 1 015000503 500100000 00000 I 1a15000601 -401 00000 250715000002 -001 00000 350715000603 -001 00000 350715000604 -001 00000 35011M00005 -001 00000 $35715000000 -001 00000 3507

.0?0.070.070.070.070.0

34

1

44

.275 1328 9

.24 10

.327 24

.27 2s

.27 20

.215 1241 9

.20 10

.21S 24

.2? 25

.27 2a

.0 20

.373

.1

.213

.1

.0

14is14isis

15000007150006001500040S

154004101500070115000801

- to exit1501000015410104150101011501020115010301150104011501050115010502150105051501050415010505150100011501000315010003115010004150104051501040015010007/150100001501070115010401

• 1. pipe1510000015100100151001011510020115100301151o0001151005o1151005021510000115100002151007011510000115100901

• IC heat151500001515010015150101151502011515030115150401151505011515000115150402151504031515000415150405151507011515000115150001

* Io beat152500001525010015250101152502011525030115250401152505011525050215250503152500011525000215250400135250041525000515250006152501007152500001525000915250102152507011525080115250001

• 10 tenk156000000156001001500010115400201150003011560040115600501150003021560050315600504154005051500050015600507/15000001150000021510006031540040415400060515000400015400010,1506001061510010015000010

-041 4000o 3507 1 0.21-801 O0000 3507 1 0.21-301 00900 30§7 1 0.21-811 00000 3501 1 0.11.1 0.0 0.0 0.0 1t

. 10. 10e. 0. 0. 0. 0. 1. 10

27 5 2 1 0.0090 14 0.010 * 0.0131 60.0 4551.0 5540010000 10000 1 1 0.35 2540030000 100i0 1 1 0.412 225402310000 0 1 1 0.4 a2540240000 0 1 1 0.3 24540250044 10000 1 1 0.3S 27000000000 00000 0 1 0.25 1000000000 00000 0 1 0.35 2-801 00000 3504 1 0.472 22000000000 00000 O 1 0.4 23000000000 00000 0 1 0.3 24000000000 00000 0 1 0.3S 25000444040 4,0000 0 1 0.35 24000000001 00000 0 1 0.35 270 0.0 0.0 0.0 210. 100. 100. 0. 0. 0. 0. 1. 27

Internal flanges2 30 2 1 0.0950 130 0.1251 290.0 29551.0 30510010000 00000 1 1 0.10 1520010000 00000 0. 1 0.10 2502010000 00000 1 1 0.10 1500080000 00000 1 1 0.10 20 0.4 0.0 0.0 20. 100. 100. 0. 0. 0. 0. 1. 20. 100. 100. 0. 0. 0. 0. 1. 2

exchanger 12 tubes5 10 2 1 0.004110 1S 40.01094

1 90.0 9551.0 10515010000 10000 1 1 0.758 5501010000 00000 1 1 0.758 1500120000 00000 1 1 0.,758 2540110000 00000 1 1 0.758 3500100000 00000 1 1 0.758 4540000000 00000 1 1 0.758 50 0.0 0.0 0.0 S0. 100. 100. 0. 0. 0. 0. 1. 50.005 100. 100. 0. 0. 0. 0. 1. 5

exchanger - bottom exit single tube14 10 2 1 0.01040 191 0.01341 30.0 9551.0 10525010000 00000 1 1 0.1 1525020000 10000 1 1 0.01075 9525020000 10000 1 1 0.104 14525000700 00000 1 1 0.1 1500070000 00000 1 1 0.01075 2500050000 o0000 1 1 0.07875 2500040000 00000 1 1 0.0715 45$0030000 o0000 1 1 0.07085 5560030000 00000 1 1 0.07875 5560010000 0,00 1 1 0.07875 7$55010000 o0000 1 1 0.7478S 7S51010000 00000 1 1 0.07875 &

551010000 00000 1 1 0.104 140 0.0 0.0 0.0 140. 100. 100. 0. 0. 0. 0. 1. 140. 100. 100. 0. 0. 0. 0. 1. 14

- to consider heat loee to eanvl.10 5 2 1 0.47500 14 0.4781 40.0 4551.0 5551010000 00000 1 1 0.0767!

451210000 00000 1 1 0.0707660010000 10000 1 1 0.0787!660070000 10000 1 1 0.1060090000 10000 1 1 0.0032401010000 00000 1 1 0.0032542010400 00000 1 1 0.1

-a1l 0 3505 1 0.0087-. 01 0 3505 1 0.0087-801 0 3505 1 0.0787.- 01 0 3505 1 0.0787-801 0 3505 1 0.0787-401 8 3505 1 0.0787-001 0 350S & 0.07/1-801 0 3505 1 0.0,76-801 0 3505 1 0.1o001 0 3SOS 1 0.1

3 1

2 10

.AS

.12

.2S

.12

.0

474/1

.1

.1

.11.1.5

I2S3S

'.25'.25'.0

222

.34 5

.212 9

.11 .101 0.381 0.381 0.301 0.38

1 0.303

5 1$2S a

10

1415

145 152a53$5

SS7

S 0910

123aS4

A5-10

Page 193: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

15600011 -001 0 3505 1 0.9632 1115000012 -001 0 350S 1 0.0432 1215600013 -001 0 351S 1 0.00132 115600614 -001 0 3505 1 0.0632 161S564015 -801 0 3505 1 80.432 1s15600016 -001 0 3S0S 1 0.1 161S600701 0 0.0 0.0 0.0 1615600401 0. 1i0. Leo. 0. 0. 0. 0. 1. 16

i I2 tank external pipes - for beat ises..15304000 22 5 2 1 6.0262S15430100 0 115630101 4 4.029515630201 1 415030301 0.0 41S630001 551.0 SIS630501 563014660 10000 1 1 0.11 615030502 503050000 10000 1 1 0.07875 1115430503 563120000 10000 1 1 0.1 131S530504 563164000 10000 1 1 0.0633 Is15030s05 031940000 10000 1 1 0.11 2215630601 .001 0 350& 1 0.11 415630602 -801 0 3506 1 0.0707S 1115630603 .-01 0 3506 1 0.1 1315630604 -801 0 3508 1 0.0632 is15630405 -001 0 3500 1 0.11 2215630701 0 0.0 0.0 0.0 2215430601 0. 100. 100. 0. 0. 0. 0. 1. 22

I n. tank external pIp** - for beat l0esee1S640000 22 S 2 1 0.024251S640100 0 115640101 4 0.02051S640201 1 41S640301 0.0 416460401 551.0 5156460501 S4010000 10000 1 11S440002 S4050000 10000 1 1IS440503 S46120000 10000 1 215640054 566140000 10000 1 115640505 564190000 10000 1 11S540601 -601 0 3504 115640402 -801 0 3506 115640003 -601 0 3506 1IS640604 -001 0 3506 115640605 .001 0 3500 115640701 0 0.0 0.015640801 0. 100. 100. 0. 0. 0. 0. 1. 22

• In tank Internal baffle16000000 16 S 2 1 0.3S16600100 0 110600101 4 0.35314460201 1 414600301 0.0 414600401 551.0 516000501 552010000 00000 1 116400502 50010000 10060 1 116600S03 560070000 10000 1 116600504 500000000 10000 1 116000505 501010000 00000 1 116400601 652010000 40000 1 114600602 0 60010000 10000 1 116000003 660070000 10000 1 116000604 660900060 10000 1 116600005 601010000 00000 & 110400701 0 0.0 0.016600001 0. 100. 100. 0. 0. 0. 0. 1. 1414400901 0. 100. 100. 0. 0. 0. 0. 1. 14

0.03 40.07075 110.1 130.0432 100.03 220.03 40.0767S 110.1 130.0012 100.03 220.0 22

20100126 1273.0 27.S0"30100127 1323.0 20.0520100120 1373.0 28.60201040129 1423.4 0 .1520140130 1473.0 29.7020100131 1523.0 30.2S20100133 1573.0 16.00......................... .... ......... 0 ...................... 0..0.a

• .alore opecitloo doll* ac*laoo

20100151 1.0 3$.52940420100152 123.0 3.S0240.620100153 173.0 5.526409620140014 223.0 3.56240.620100155 273.0 3.502490420100154 2393.0 3.S0249.0201001S7 323.0 1.457200420100108 373.0 3.057042030150 423.0 30.9334s020100100 473.0 4.108000420100101 S23.0 4.21070.020100102 573.0 4.234020o20100163 623.0 4.37020.620100104 473.0 4.46300420100145 723.0 4.5$300.0301001604 773.0 4.56225e430100107 823.0 4.623041620100148 073.0 4.604700.20100160 023.0 4.751805020100170 073.0 4.03295.0

20100171 1023.0 4.01360-020100172 1073.0 S.033300e30100173 1123.0 S.10310.620100174 1173.0 S.37200e420100175 1223.0 5.601100420100170 1273.0 5.S01015520100177 1323.0 0.142010420100178 1373.0 0.44245.020100170 1423.0 6.72210o020100100 1473.0 7.00335.620100101 1523.0 7.263800020100182 1573.0 7.56425.6

• gonduttlvlta' mat..-2 r.. *

20100201 293.2 306.120100203 373.2 374.020100203 573.2 344.320100204 1000.0 360.120100205 2000.0 064.3*. ......................... p...............

c dor. opec. mat. -2- *

20100251 293.2 3.4496e4

20100252 373.2 3.544080*20100253 S73.2 3.7104.020100254 1000.0 3.718

044

20100255 2000.0 3.7164loa-----------------------------------------c oondutttvita, mat. -3- ml *---------------------------- ---------------

20100301 203.2 71.1820100302 573.2 58.4220100303 773.2 58.6220100304 1073.2 48.1520100305 2000.0 40.15*-----------------------------------------

galore ap0 . sat. -3-------------------------------------------

2010351 203.2 4.0S3O4eo20100352 S73.2 4.05304,:20100353 773.2 4.05304e0201003S4 1073.2 4.05304020100355 2000.0 4.AS304e4

- - - - -----------------------* conduttlvlt* ma~t. -4- bn-o•

---------------------------------------- a--

20100401 293.0 23.020100402 400.0 23.020100403 O5.0 22.S20100404 600.0 22.020100405 700.0 21.520100404 000.0 20.920100407 000.0 20.520100400 1000.0 20.120100409 1100.0 10.620100410 1200.0 19.420100411 1300.0 10.120100412 2000.0 10.1

* clore Opea.mat. -4- C

20100445 203.0 1.5020o420100452 400.0 2.0121e420100453 500.0 2.4135e020100454 400.0 2.46

9e$

30100455 700.0 2.9127e020190456 090.0 3.007e620100457 000.0 3.260.20100450 1000.0 3.3972e620100459 1100.0 3.4041.430100400 1200.0 $.SGI1a020101401 1300.0 3.G537e020100402 1400.0 3.7123eo20100463 1500.0 3.75004.20100404 2000.0 $.750060-----------------------------------------------------------------conduttLvLte, sat.-S- 1/000

S. ....................20100501 234 .3 14.60

0.07075 10.0707S 74.1 00.0032 130.0032 140.07875 10.07875 70.1 90.0632 130.0632 1&0.0 14

........-----------------------------------

• materiel table.-------------------------------------------

20100100 tbl/totn I I s "tainless• teel20100200 tbl/totn 1 1 a copper20100300 tbl/tgtn 1 1 • nickel20100400 tblitatn I I a boron nitride201000SO tbl/tgtn 1 1 * Inc. 60020100400 tbl/tgtn 1 I filler (oeraaolg)*--------------------------------------- a--

01 0 onduttlyltel accia

20100101 1.0 15.1620100102 123.0 15.1020100103 173.0 15.1020100104 223.0 15.1020100105 373.0 15.1620100100 203.0 15.1620100107 323.0 15.6220100100 373.0 10.3720100100 423.0 17.0920100110 473.0 17.0120100111 523.0 10.S020100112 573.0 10.3020100113 623.0 10.9520100114 473.0 20.502010011S 723.0 21.1320100116 773.0 31.7720100117 923.0 22.3420100116 873.0 22.9520100110 923.0 23.S530100120 973.0 24.1220100121 1023.0 24.4630100122 1073.0 25.2520100123 1123.0 25.6120100124 1173.0 26.3820100$25 1223.0 26.94

A5-11

Page 194: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

20100502 100.5 15.1220100503 477.0 17.4S28010504 5a8.$ 10.1120100505 0699. 20.6220100500 811.0 22.7920100507 622.0 24.8120100508 1033.2 26.0320100509 1144.3 20.0520100510 2000.0 20.85

* calor.• Slpe. s1at. -5-

20100551 294.3 3.7429200

20100552 300.5 3.619950020100553 477.0 4.006980020100884 580.0 4.2740020100555 400.0 4.451*020100884 s11.0 4.001790*20100557 022.0 4.939080020100880 1033.2 5.11701.020100559 1144.3 5.20032.020100560 2000.0 5.20032s1

*----- --------------------------------------* oonduttlvlta" mat.-0- ill.

8109---------------------------------------------------------------a20100001 200.2 0.5)04

20100002 2000.0 0.9304

*----------------- 6-------------------------------------------a• osier.s pec. sat. -0-

20100081 204.2 1.-2678.020100052 2000.0 1.9297500

--- *----tI--t--de --------------------------------

------------------------- *----------------

* heat removal by cooling call from ad (max 200 kw)/ heat lossespa-ie-220250100 htc-t 50720280101 -1.0 0.020250102 0.0 0.020250103 1.0 -1. "15.20250104 450. -1. -I5.20250105 481. -4. -15.20250100 000. -4. *15.20250107 001. -1. -15.20250100 1.0l -1. -15.

• heat removal by cooling coll from ude (max 40 kw|/ heat 1lossepo-lo-220250200 htc-t 50820250201 -1.0 0.020250202 0.0 0.020250203 1.0 -1. -20.20250200 450. -1. -20.20250208 451. -15. -20.20250200 000. -15. -20.20250207 001. -1. *20.20250200 2.0 -1. *20.

• heat removal by cooling coll from mdc (max 10 kw) (hete loesespo-io-2)20256300 htc-t 50920250301 -1.0 0.020250302 0.0 0.020250303 1.0 20.20250304 1.04 20.

: heat removal by cooling coil from lp Cmax 50 kw)20250400 hto-t 51020250401 -1.0 0.020250402 0.0 0.020250400 1.0 323.30250404 1.00 323.

: heat losees from Is tank20250500 htc-t 50020250501 -1.0 0.020250502 0.0 0.020250503 1.0 50.20250504 1.0 50.

: bhat losses from•steam dome top lutilized for po-oad-)20250000 htc-t 58220280601 -1.0 0.020250002 0.0 0.020250603 1.0 00.202506004 1.$ 00.

• heat looses from Ic line20250700 htc-t 5120250701 -1.0 0.020250702 0.0 0.020250703 1.0 50.20250704 082. 50.20250705 1.4e 54.

a beat losese from It tank external pipes & Ic lin liquid20350800 htc-t 56020250101 -1.0 0.020250802 0.0 0.020250003 1.0 so. a20250804 1.00 50.

a heat losse, from core region (external vessel)20250900 htc-t S8320250601 -1.0 0.0

20250002 0.0 0.020250003 1.0 5.2025004 1.0l S.

b heat exchange between ma, udoo "ad and Ip slabs with coolingcoil* - aemigned environment tamperature value -20280100 toup 51120280101 -1.0 0.020280102 0.0 0.020200103 1.0 303.20200100 1.O 303.

ogre powor20260000 power S1320290001 -1.0 0.020250002 0.0 0.020250003 5.0 0.0410.020290004 430.0 0.041O0.20200050 040.7 0.004o0202900006 504.1 0.0040020250007 550. *.07047e020290008 590. 0.07330*020210000 1000. 0.07330.120290010 1088. 0.020200011 1.0 0.

• bypass heaters20290100 htrnrate 51520290101 -1. 0.0020250102 0. 0.0020290103 1.99 0.0020250100 2.0 -2.05e320290105 200. -2.15.3

20290100 201. Gý20290107 1.06 0.

* power lose from fuel box -lower part- fbI20250200 htrnrate 51020290201 -1. 0.0020210202 0. 0.0020290203 0.01 5.900420200204 30. 5.50e4202530205 50. 5.00e4

20290200 70. S.90e420290207 100. 5.900420290208 201. 7.90e420290209 202. 7.900420290210 400. 10.900420290211 1003. 10.50e320290212 1.00 10.60.3

a power lose from fuel box -upper part- fb220290300 htrn•ate S1720290301 -1. 0.00202S0302 0. 0.0020250303 0.01 0.4500320210304 100. 0.0O5)20290305 360. 0.0500320290300 050. 0.4500320290307 1002. 5.0500420260300 1003. 0.4504320290309 1.04 0.45003

--------- *--------------------------------

* control variables- - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -

• do lvI annular partl20500100 do.lvlI20500101 0. 0.120S00102 0,27320500103 0.27320500104 0.27320500105 0.27320500100 0.27320500107 0.27320500100 0.27320500106 0.27320500110 0.27320500111 0.27320500112 0.27320500113 0.27320500114 0.27320500115 0.273

* do lvl part 220500200 do.v1220500201 0. 0.32520500202 0.20120500203 0.28120500204 0.20120500205

0.201

20500204 0.28120500207 0.2020500200 0.2920500209 0.2920500210 0.283

* do lyl part 320500)00 do.1Iv13

20500301 0. 0.30020500302 0.30020500303 0.30020500304 0.30020500305 0.30020500300 0,30020500307 0.30020500306 0.30220500305 0.302

sun 1. 0.voidt 326150000voldf 320140000vaid! 320150900void! 320120000vol4 320110000voidf 320100000volda 3200P0000void! 32000000vold! 320010000vold! 320000000voldf 320050006vaid! 320040000voidf 320030000voidf 320020000voidf 320010000

DuNvoldfvoid!

voldfvoldfvoldfvoid!

voidfvoldfvoaidvoid!

1. 0.310010000305000000305070000305060000305050000305020000305030000300020000305010000300010000

sun 1. 0Ivoidf 205000000volid 205050000voLdf 285000000voidf 280030000vold! 205020000voldf 205010000void! 200010000voldf 275040000voidt 275803000

A5-12

Page 195: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

7"¸

205003102050031120500312

0.3620.3620.247

voldf 375020000voldt 275010000voldt 270010000

* do lvI jet pump region20500400 do.lvl420500401 0. 0.27320500402 0.27320500403 0.27330500404 0.27320500405 0.27320500404 0.27320500407 0.37320500408 0.27320500400 0.27320500410 0.27320500411 0.27320500412 0.27320500413 0.27320500414 0.27320500415 0.273

sunvoldevoidtvold[voldfvoidfvoildtvoidfvoidtvoidtvoldtveldtveldtvoLdfveidtvoedt

* do lvi total annular region20501000 dc.lvl.a OuR20501001 0. 1. ontrivar20S01002 1. ontrlvar20501003 1. ontrlvar20501004 0.244 voldt20501005 0.25 voldf20501006 0.25 voldt20501007 0.25 velrd20501008 0.25 voldf

* do lvI total Jet pump region20501100 de.lv.jp sun20501101 0. 1. cntrlver20501102 1. ontrlvar20501103 1. cntrlvar20501104 0.327 voidt20501105 0.105 voldf20501104 0.244 voldt20501107 0.25 vOedt20501108 0.25 voidt20501109 0.25 voidt20501110 0.25 vOldt

1. 0. 1315150000315140000315130000315120000315110000315100000315090000315080000315070000315040000315050000315040000315030000315020000315010000

1. 0. 1001002003245010000240010000240020000200030000240040000

1. 0. 1002003004325010000330010000265010000240010000260020000260030000260040000

1. 0. 1100010000110010000110020000110030000110040000110050000111010000112010000115010600120010000120020000130010000135010000140010000

1. 0. 1200010000200020000200030000200040000200050000200060000200070000200080000200090000200100000200110000200120000200130000200140000200150000200140000

* Go lvi total In the core region30502000 do.lv.Jp sun20502001 0. 1. antzlvar20502002 1. ontrivar20502003 1. ontrlvar20502004 1. antrlvar

* core bypase level part I

20502500 by.lvll sUR

20502501 0. 0.3440 voidt20502502 0.3440 voldI

20502503 0.2446 vold[

20502504 0.4405 voed(

20502505 0.2440 voidt20502504 0.223 void(20502507 0.2133 voldf20502500 0.2133 vold(20502500 0.2133 voldf20502510 0.2133 voldt

20502511 0.2133 voldt

20502512 0.2133 voldt20502513 0.2133 vOedt

20502514 0.2133 veldt20502515 0.2133 voldt20502514 0.2133 voldt20502517 0.2015 veldt

ore bypase level part 220502400 by.1vI2 sum20502401 0. 0.235 voldt20502402 0.23S voidt

20502403 0.235 voldt20502404 0.235 vold•20502405 0.235 vo1ld

20502404 0.235 void•20502407 0.235 voldi

20502406 0.235 void12050260t 0.235 void20502610 0.235 void20502411 0.2075 vold

• by lvl total from by bet20503000 dc.lv.Jp sun

20503001 0. 1. cntrlvar20503002 1. antrlvar

• pep ennulus level20503500 sep.annl sum

20503501 0. 0.34 vold

20503502 0.512 void20503503 0.443 void20503504 0.443 Vold

20503505 0.449 vold20503504 0.460 vold

20503507 0.443 void20503500 0.449 void20503509 0.449 void

1. 0. 11500100001500200001500300001500400001500500001550100001600100001400200001400300001400400001400500001400460000140070000140080000140000000140100000145010000

1. 0.170010000

f 170020000f 170030000f 170040000f 170050000f 170070000f 170070000

f 170090000f 170100000f 175010000

1. 0. 1025024

1. 0. 101501401701M

* Ip lvI vertical20501500 lp.lvl20501501 0. 0.3020501502 0.2520501503 0.2520501504 0.144320501505 0.144320501504 0.111420501507 0.141520501508 0.140020501509 0.174520501510 0.220501511 0.220501512 0.17420501513 0.220501514 0.2

• core level20501400 core.lvl20501401 0. 0.24520501602 0.24520501603 0.2652050104 0.24520501405 0.26520501404 0.26520501407 0.34520501408 0.21520501403 0.24520501410 0.24520501411 0.26520501412 0.24520501413 0.24520501641 0.24520501415 0.22020501414 0.2

• upper plenum level20501700 up.lvl20501701 0. 0.2220501702 0.22

• up-map level20501000 upee.lvl20501801 0. 0.21420501002 0.21420501003 0.234520501804 0.234520501005 0.234520501004 0.234520501007 0.234520501808 0.234520501800 0.234520501810 0.234520501811 0.234520501812 0.234520501613 0.234520501814 0.234520501015 0.234520501816 0.234520501017 0.234520501010 0.234520501i19 0.234520501020 0.2345

SURMvoeldvoidfvoidfvoidfvoidfvoid*fvoid[voidfvoldf'voidtvoidfvoldtvoLdtvoeld

sunvoldtvoldt

voldtvoldfvoidtvoldfvoidtvoldf

veldiveldtvoldfvoeldvoidtvoldf

fffffffff

1. 0. 1225010000230010000230020000230030000230040000230050000230040000230070000230080000

• core pover20504000 oore.pe eum 1. 0. 120504001 0. 0.142907 htrnr 20010010120504002 0.142907 bhrer 20010020120504003 0.142007 htrnr 20010030120504004 0.102307 hnrnr 20010040120504005 0.142007 htrnr 20010050120504006 0.142307 htrnr 200100601

20504007 0.102307 htzrr 200100701

20504008 0.162907 htrnr 20010080120504009 0.162907 htrer 200100901

20504010 0.162907 htrnr 200101001

20504011 0.142307 htrnr 20010110120504012 0.142307 htrur 20010120120504013 0.142307 htrnr 200101301

20504014 0.123907 htxnr 200101401

- ext fuel box level20SOSO00 ezt.fblv20505001 0. 0.5320505002 0.5320505003 0.5320505004 0.5320505005 0.5320505004 0.5320505007 0.5320505000 0.429

• heat ozehaneo le

sum 1. 0.voeld 370010000voidt 370020000voelf 370030000voldf 370040000vOedt 370050000voldt 370040000veldt 370070000voLdt 340010000sum 1. 0.

voldf 205010000vold( 210010000

veldvoldfvoldfveldt'voldfvoidf

voldfvoldfvoldfvoldfvoidfvoidf'voldtvoeldvoeldvoldtvoeldvoidf'voldtvoldfveldt

1. 0. 1220010000220020000220030000220040000220050000220040000220070000220080000220030000220100000220110000220120000220130000220140000220150000220140000220170000220180000220130000220200000

20506000 lc.ht sum 1. 0. 120504001 0. 1. q $10010000

2050002 1. q 51501000020504003 1. q 51502000020504004 1. q 51503000020506005 1. q 5150400002050004 1. q 51505000020504007 1. q 520010000

• heat exchange Io exit pipe (in the tank)20506100 lc.tube sum 1. 0. 120504101 0. 1. q 52501000020504102 1. q 52502000020500103 1. q 52503000020504104 1. q 52504000020504105 1. q 52505000020506104 1. q 5250400002050107 1. q 52507000020504108 1. q 52500000020506100 1. q 52503000020504110 1. q 52510000020506111 1. q 52511000020506112 1. q 525120000

A5-13

Page 196: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

20504113 1.20500114 1.

* ht Is total20504200 ic.ht.to20504201 0. -1.30500202 -1.

* environment heat loos20504300 ic.t.hl20504301 0. 0.23520500302 0.23520500303 0.23520500304 0.23520506305 0.23520500300 0.23520500307 0.23520500306 0.23520500300 0.20620504310 0.20820500311 0.18020504312 0.10020500313 0.18020500314 0.18820500315 0.18820500314 0.200

* heat exchange from lo20507100 to.tevl20507101 0. 1.20507102 1.20507103 1.20507104 1.20507105 1.20507106 1.20507107 1.20507108 1.20507100 1.20507110 1.20507111 1.20507112 1.20507113 1.30507114 1.

: hoet exchange from ic20507200 ic.tav220507201 0. 1.20507202 1.20507203 1.20507204 1.20507205 1.20507200 1.20507207 2.20507308 1.20507200 1.20507210 1.20507211 1.20507212 1.20507213 1.20507214 1.

* heat exchange from to20507300 lc.tav320507301 0. 1.20507302 1.20507303 1.20507304 1.20507305 1.20507300 1.20507307 1.20507300 1.20507300 1.20507310 1.20507311 1.20507312 1.20507313 1.20507314 1.20507315 1.20507310 1.

q 525130000q 525140000

uIM 1. 0.antrlvar 040ontrlvar 001

from to tanksum 1. 0. 1

htrnr 560000101htrnr 50000201htrnr 560000301htrnr 500000401htrnr 560000501htrnr 540000001htrnr 500000701htrur 500000601htrnr 540000001htrnr 500001001htrnt 500001101htrnr 500001201htrnr 500001301htrnr 540001401htrnr 540001501htrnr 560001001

I

tank exteotqqqqqqqqqqq00q

tank ext

qqqqqqqqq

qqq

et0

pipe vertical (longer)1. 0. 1503050000503000000503070000543000000543050000543100000543110000503120000503130000503100000503150000563160000503170000563180000

pipe vertical (short)1. 0. 1504050000500060000504070000564080000504090000504100000564110000504120000504130000544140000544150000504180000504170000504180000

tank ext pipesunbqqqqqqqqqqqqqqq

qsu

ent rlvar

entrlvar

enta v~

all four horizontal1. 0. 1503010000503020000563030000503040000503100000563200000503210000503220000504010000504020000504030000544040000504 10000504200000504210000504220000

1. 0.003071072073

h tt tank2050750020507501205075022050750320507504

I.

external totaltank.htt0. 1.

1.1.1.

A5-14

Page 197: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

APPENDIX 6:

Overview of the scaling analysis

Page 198: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 199: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

IThe American Society ofMechanical Engineers

Reprinted FromProceedings of the ASME-JSME 4th International

Conference on Nuclear EngineeringEditors: A. S. Rao, R. B. Duffey, and D. Elias

Book No. 10389C - 1996

QUALITATIVE ANALYSIS OF SCALING EFFECTS IN ISOLATIONCONDENSER BEHAVIOUR WITH RELAP5hMOD3.1 THERMALHYDRAULIC

CODE

Francesco D'AuriaDepartment of Mechanical and Nuclear ConstructionsUniversity of PisaVia Diotisalvi, 2 - 56126 Pisa-(ltaly)

Tel. +39-50-585253

Vittorio FaluomiDepartment of Mechanical and Nuclear ConstructionsUniversity of Pisa Via Diotisalvi. 2- 56126 Pisa (Italy)

Tel. +39-50-585253

ABSTRACTThis paper deals with the attempt to analyse, with the

RelapS/Mod3.1 code, the scaling effects in the behaviour ofIsolation Condenser taking as reference the PO-IC-02experiment performed in the PIPER-ONE facility availableat Pisa University.

The PIPER-ONE is an experimental facility simulating aG;eneral Electric BWR-6 with volume and height scalingratio of 1/2200 and Ill, respectively. The facility wasproperly modified to test the thennalhydraulic caracteristicsof an isolation condenser-type system.

The isolation condenser-type system consists of a once-through heat exchanger immersed in a pool with water atambient temperature and installed at about 10 m above thecore.

Several calculations have been performed withRelapS/Mod3ITj and RelapS/Mod3.1 codes, and thecapabilities of code to simulate the behaviour of the isolationcondenser component have .been assessed. The resultsobtained cannot be extrapolated to the plant because of thedifferent scaling of isolation condenser .ystem with respectto the other components of the facility.

In this paper the effects of "scaling" changes in thefacility nodalization are analysed with the use ofRelaph/Mod3. I code.

The following parameters are considered in the analysisof scaline effects:

I) Elevation of isolation condenser relative to the top ofactive ftcl (TAF):2) Length of Isolation Condenser tubes-3) Diameter of Isolation condenser tubes:4) Heat exchange area of Isolation condenser"5) Inlet flow area of Isolation condenser.

A final calculation including all the modifications hasalso been performed.

1. INTRODUCTION

Innovative reactors, (essentially AP-600 and SBWR) arecharacterized by simplification in the design and by thepresence of passive systems. 'Experimental and theoreticalresearch are needed to qualify the new components and tocharacterize the new thenmal-hydraulic scenarios expectedduring accidents. Available system codes have to be validatedin order to be used for evaluating the thennal-hydraulicperfonnmances of the new systems, especially in case of longlasting transients evolving at low pressure (D'Auria et. al,1992a).

In the frame of the activities carried out at University ofPisa related to the analysis of thermal-h.draulic situations ofinterest to the mentioned reactors (e.g. D'Auria et. al, 1992band Andeuccetti et al., 1991), three series of experiments havebeen carried out utilizing the PIPER-ONE facility. These wereaimed at the experimental investigation of the behaviour ofsystems simulating the main features of the Gravity DrivenCooling System (GDCS, first series of experiments. Bovaliniet al.. 1991a) and of the reactor pressure vessel IsolationCondenser (IC, second and third series of experiments.Bovalini et al.. 1992a, D*Auria et. al? 1993, Bovalini et al.,1992b. and D"Auria et. al, 1994a, respectively). At the sametime RelapS/Mod2 and Mod3 codes (Carlson et al., 1990)have been extensively applied as best estimate tools to predictthe transient scenarios of both SBWR and AP-600 reactors(see also D'Auria et. al, 1994b, and Barbucci et al., 1993).

The object of this paper is to evaluate the possibilities touse RelapS/Mod 3.1 code (Carlson et al., 1990) forextrapolating the behaviour of PIPER-ONE facility. hi order toachieve this, a qualified RelapS/Mod3. I nodalization (Bovaliniet al., 1995) of the PIPER-ONE has been used and theconsidered modifications have been implemented step-b.-step to investigate the single effects of each parameter in thescaling process (D'Auria et al., et al., 1992c)

2. EXPERIMENTAL FACILITYThe simplilied sketch of the apparatus is sho%, n in Fig. I it

includes the main loop, the ECCS simulators (LPCI/CS.

A6-I

Page 200: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

QUANTITY UNIT PIPER-ONE SBWR () RATIO(+) IDEAL (N) VALUEPIPER-ONEJ OF THE RATIOSBWR PIPER-ONE/SBWR

I rimarv vstem volume m3 0.199 595. 1/2990 1129902 Core height In 3.710 2.743 1.35/1 1I13 Maximun nominal core MW 0.320 2000. 1/6200 1/2990

power4 Value of 3% core power MW 0.041 () 60. 1/1463 1/2990S Ratio (3% core power) MW/hn 0.206 0.1 2.06/1 111

/primary system voluhe 3

6 Isolation condenser heat m2 0.301 184 1/610 112990transfer area (++)

7 Isolation condenser heat W" 1.512 0.31 4.9/1 1/1transfer area over primarysystem volume

8 lsolatictmiavIftne 1113 0.0015 2.334 1/1556 1/29909 Isolation condenser volune - 0.0075 0.0038 1.97/1 I/

over primary system volume10 Isolation condenser heat ru2/kW 7.341 3.066 2.39/I 111

transfer area over 3% corepower

I I Height of isolation m 8.64 24.75 1/2.86 1/1condenser top related tobottom of active fuel

12 Diameter ofa single tube In 0.020 0.0508 1/2.54 1/113 iTda'fa.ai.let1te In 0.0023 0.0023 1/1 1/1

(*) non-dimenmomi (4)I(' data have been taken from Tefeience 1151 ti+) ube bundles (-)misated to BWR6

Tab. 1 - Comparison between isolation condenser related data in PIPER-ONE and in SBWR.

HPCI/CS) and the systems simulating ADS, SRV andsteam line, as well as the blow-down line. Ten zones can beidentified in the mnain loop: lower plenum, core, core bypass(outside the core), guide tube region, upper plenum, region ofseparators and dryers, steam dome, upper down comer, lowerdown comer and jet pump region.

The volume scaling factor is about 1/2200, %&tile the corecell geometry and the piezometric heads acting on the lowercore support plate are the same in the model and in thereference plant.

The heated bundle consists of 16 (4x4) indirectly heatedelectrical rocd whose height, pitch and diameter are the sameas in the reference plant (Fig. 2). The maximum availablepower is 320 kW, corresponding to about 25% of scaled fullpower of the reference BWR.

As already mentioned, the facility hardware was modifiedby inserting the ICS loop. which can operate at the samepressure as the main circuit.

The main component of Isolation Condenser loop is a heatexchanger consisting of a couple of flanges that support 12pipes, 22 nun outer diameter and 0.4 m long. it is inmnersed ina tank of I 1n3 volumne,'containing stagnant water, located at4th floor of the PIPER-ONE service structure. The heatexchanger is connected at the top and at the bottomrespectively with the steam dome and the lower plenum of themain loop. In order to enhance natural convection inside the

pool, a sort of shroud has been installed that divides the poolinto two parts; a hot one and a cold one, the formerencompassing the IC as can be seen in Fig. 4.

The Isolation Condenser loop is instrumented with aturbine flow-meter and a diflerential pressure transducer onthe hot side and a series of almost 30 thermocouples in variousposition of the IC and of the pool as can be derived from Fig.2.

Hardware restrictions preclude the possibilityjo have asystem correctly scaled with respect to those provided for thenew generation nuclear reactors, particularly dte GE SBWR. Inparticular, the heat transfer area of Isolation Condenser inPIPER-ONE is roughly five times larger than the ideal value(Tab. I). The distance between bottom of the active fuel andthe Isolation Condenser and the height of the core itself, aretwo of the most important parameters differentiating PIPER-ONE from SBWR. These essentially prevent any possibility ofextrapolating PIPER-ONE experimental data to SBWR.

3. EXPERIMENTThe experiment comprises two phases characterized by

ditferent values of heating power (about 40 and 75 MW,respectively), later indicated as phases A and the B of the test.They correspond to the scaled value of the core decay powerand to the capability of heat removal by the IC device,

A6-2

Page 201: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

PARAMETER SIGN UNIT VALUE

LP pressure PA-LP-I MPa 5.1

LP fluid temperature TF-LP-. K 262.5

Core level LP-CC-l in 11.9

Down comer level LP-LD-I m 10.7

IC line fluid temperature TF-IC-l K 17.5

IC pool fluid temperature TF.SC-l K 17.5

Tab. 2- PIPER-ONE test PO-IC-2: initial conditions

PARAMETER OR EVENT TIME (s)

Test initiation 0.0

IC top valve opens 4.0

IC bottom valve opens 32.0

IC top valve closes 508.0

IC top valve opens again 602.0

IC top and bottom valve close 1106.0

End o' test 1194.0

Tab. 3- PIPER-ONE test PO-IC-2: boundary conditions

determined from the previous test PO-SD-8 (Bovalini et al.,1 992b).

As usual for the experiments carried out in the PIPER-ONEfacility, the test was dcsigned on the basis of pre-testcalculations perfonned by Relap5/Mod3 code.

The test specifications foresaw constant heating power for.5/10 minutes for both experimental phases, in such a way thatquasi-steady state conditions could be reached by the mainthennal-hydnaulic quantities (pressure, flow rates, collapsedlevels, etc.).

In the test, the primary circuit was pressurized at thespecified value by single-phase natural circulation, the heatsource was provided by the core simulator and the structureheating system. Then, liquid was drained from the primarycircuit for establishing the test specified liquid levels, roughlyat the steanm separator top elevation. After some hundredsseconds of steady conditions, with heat losses compensated bythe heating cables, the test started by supplying power to thecore simulator and opening the valves of the IC loop.

The initial and boundary conditions measured during thetest PO-IC-02 are given in Tabs. 2 and 3.

The most significant results measured during the phases Aand B are rexprted in the Figures 3 to 6.

Figure 5 shows the different phases of the transient; whenthe core pxower is around 40 kW. the primary pressuredecreases (0.3 MPa/min), demonstrating that the powerexchanged through the Isolation Condenser is greater than thesupplied power. Roughly a steady condition is reached ataround 75 kW (phase B), with a decrease of primary pressureof only 0.02 MPalmin. According also to the results of the testP(-SD-9, the overall power removed by the IsolationCondenser is of the order of 80 kW, corresponding to anaverage heat flux of about 200 kW/in2 in the consideredconditions. The condensate mass flow rate, registered at thedrain line (Fig. 4), appears quite constant along the two phasesof the test (the tuftine transducer was initially blocked, but

started to operate with about 3 minutes of delay from theopening of the IC valve).

In Fig. 5, the fluid temperatures measured in threepositions along the Isolation Condenser heat exchanger arecompared with the steam temperature at the IC inlet (equal tothe saturation temperature corresponding to the primary systempressure)- in particular, the bottom curve gives an idea of thesub cooled conditions attained by the liquid exiting from theheat exchanger.

Finally, the curves in Fig. 6 essentially show the strongfluid temperature stratification in the pool: in the upper zone,the temperature increases up to about boiling conditions at thetest end. while the bottom part of the pool remains at ambienttemperature during all the test (fluid temperature less than 204C).

4. SCALING METHOD AND INPUT DECKMODIFICATIONS

4.1 The scaling methodThe adopted scaling methodology is organised in the

following steps (Fig. 7):

I) set-up of nodalization of considered facility andcalculation of a transient to qualifying tie nodalization itself.This input deck is used for the "base calculation" (D'Auria etal., 1995).

2) identification of relevant parameters for the consideredtransient: this step defines which parameters in the facilitieshave to be properly scaled to represent the reference plantbehaviour.

3) ctnsideration of the value of above parameters in thefacility and scaling to the reference plant.

A6-3

Page 202: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

Parameter Identifier Scaling Facility actual Facility scaled Reference value

factor value value lant)

Elevation of Isolation Condenser TOIC-TAF 111 4.7 m 22.7 m 22.7 mifrom the coreIsolation Condenser Heat IC HTA 1/2990 0.23 in2 0.061 m2 184 m2

exchange areaIsolation Condenser Tubes IC TDH 1/1 0.02 m 0.05 m 0.05 mEquivalent DiameterIsolation Condenser Tube length IC TL 1/1 0.314 in 2.4 m 2.4 mIsolation Condenser flow area IC TFA 1/2990 0.0037 m2 0.00102 m2 3.05 m2

Tab. 4: Modified parameter for scaling analysis

Input deck Parameter changed Nodalization modifications Remark:POGONLYI elevation of IC (same -add of a MSV to connect the old MSV to the The dimension of added tubes

as SBWR) new position of IC (30 volumes) and heat structures are the same-add a 35 volumes to the IC outlet line as the preesistent componenets.

connecting the IC to the DC. No heat losses are applied tothese new volumes.

POGONLY2 heat transfer area change of heat slab dimensions and inner andscaled to SBWR outer cilindrical shell representing the IC tube

wall to have a scaled heat transfer area nad thesame values of heat slab radius as reference

_________________ ~~~lant. _________________

POGONLY3 tube diameter of IC change of hydraulic diameter of IC tubes in the(same as SBWR) volume representing the bundle in the

nodalization

POGONLY4 Length of IC tubes change of length of IC tube and pool dimension.same as SBWR Te position of IC relatively to the pool is kept

constant as in the base case nodalization.POGONLYS IC flow area (scaled to the flow area of pipe stack representing the IC

the SBWR) bundle has been scaled to the SBWR plant.

Table 5: List of modifications made to the nase nodalization for parameter influence evaluation in the scaling activity.

4) set-up of individual facility nodalizations adopting thescaled values from the previous step.

5) set-tip of the final nodalization with all themodifications; comparison of the results with the experimentaldata.

6) test calculation of a different transient adopting thescaled input deck, and comparison vith plant calculationresults (base case can be considered). This step has not beendealt witi in the present paper.

4.2 Relevant modification to the base input deckThe standard IBM RISC version of Relap5/Mod3. I has

been adopted.The base nodalization of the PIPER-ONE facility has been

previously developed for PO-IC-2 experiment analysis(Bovalini et al., 1995)

The list of modilied parameters is given in Tab. 4. For eachparamneter different calculations have been performed,including sensitivities and use of different codes.

In Tab. 5 the different nodalizations and the modificationsintroduced are summarized.

The following constraints have been considered:

a) the overall facility volune has been kept nearly constant(overall modifications increase the total volume of 2 %),because it was already scaled to the plant;

b) the additional volumes are thermally insulated.

5. RESULTS OF CODE APPLICATION

5.1 Output relevant parametersFor evaluating the calculation results the

parameters have been used:following

- System pressure;- IC mass flowrate,- IC fluid temperature jump from inlet to outlet;

A6-4

Page 203: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

- Core level;- Dowuncomer level;- Temperature jump from IC fluid to inner pool

fluid,- IC exchanged power.- Temperature jump from inner to outlet pool fluid.

Some results are given in Figs. 8 to 15. The completeevaluation of results can be found in D 'Auria et al., 1995.

5.2 One-step analysisThe results of single parameter variations are given in Figs.

9 fronm Il. Detected differences are related to theexperimental data:

PONI (Elevation of IC same as in the SBWR plant):Large difference in the pressure trend of primary system aredue to the high flow rate in the IC (higher driving force) andconsequent high heat transfer between IC tubes and pool.Higher values of fluid temperature in the IC tubes (>50 K) givea lower fluid temperature jump along the IC tubes (150 Klower than in the exp. case). No relevant modifications in thephenomenological description of the transient.

PON2 (Heat transfer area scaled to SBEWR): No significantdifferences in the overall scenario were calculated. hi the ICtubes the calculated fluid temperature was 100 K lower than inthe experiment. To be noted that the calculation was stoppedafter 800 s. due to code failure in the calculation of waterproperties.

PON3 (Tube diameter of IC same as in the SBWR): Thecalculation showed similar results as in previous case, withsome differences in the primary s.'stem pressure, owing to thehigher value of fluid temperature in the IC tubes (around 250K) and at the IC outlet.

PON4 (Length of IC tubes same as SBWR): Lower valuesof IC tubes Iluid temperature than in previous calculations havebeen calculated. The length of tubes allows more cooling of ICfluid from IC pool, so that the values of subcooling at the ICoutlet is higher than in previous cases and also higher thanexperimental and base calculation values.

PON5 (IC flow area scaled to the SBWR): Similar resultsas PON3 calculation.

5.3 Global Effect analysisThe different modifications to the base input deck previous

analysed have been considered togheter to evaluate the globaleffects in the transient. The Figs. 1 2 to 15 show the results.

System pressure: the elevation of IC with respect to thecore mostly contributes to the diflerent trend of pressure, lowerthan experimental value of 0.5-0.8 MPa (Fig. 12). This effectis due mainly to the increase of mass flow rate (Fig. 13)through the IC and the higher power exchanged (Fig. 14) in theIC itself

Mass flow rate: the average value of mass flow ratethrough the IC is nearly twice (0.05 Kg/s instead of 0.025Kg/s) than in the experimental and base case. This also affectsthe exchanged power, higher than in the experimental case.

Fluid temperature in IC tubes: the value of IC tubesfluid temperature is 50 K higher than in the experimental case(Fig. 15). Moreover, the temperature jump between IC inletand outlet is 150 K lower than the experimental results. Thiseffect is connected with the pressure trend.

6. CONCLUSIONSWith the above described scaling method the following

main results have been achieved:

- the relevant phenomenological aspect of PO-IC-2 experiment(i.e. the constant value of power exchanged in IC bundledepending on dowucomer level) have been also calculatingby the modified (scaled-up) nodalization; so, the measuredscenario can be considered applicable to the SBWR, thoughthe experimental apparatus was not properly scaled.

The adopted method seem to be capable to handle the mainphenomenological aspect of transient, and might also predictsome aspects that are expected but not obtained due tolhiitation of facility design.

In addition, it can be noted that there is no substantialdisagreement in the overall evaluation of parametersconsidered as reference to evaluate the scaled nodalization: thesystem pressure decreases, following an increment of massflow rate of IC and the related increment of power exchanged.The subcooling is also is than in experimental case, accordingwith the low level of energy stored in the system (low value ofsystem pressure). Some additional interesting effects can benoted in the calculation perforned with this modifiednodalization : along the inner pool there is no strong thermalstratification as in the experimental case (Fig. 16) and thecalculated mass flow rate through the internal pool (Fig. 17) ishigher than the base value. These effects can be directlyconnected with the modifications of input deck, especially withthe new position of Isolation Condenser with respect to thecore.

REFERENCESAndreuccetti P., Barbucci P., Donatini F., D'Auria F.,

Galassi G. M., Oriolo F., 1991: "Capabilities of the RELAPSin Simulating SBWR and AP-600 ThermalhydraulicBehaviour", IAEA Technical Committee AMeet. (Ta f) onProgress in Development and Design Aspects of AdvancedIfaiter ('ooled Reactors, Rome (I).

Barbucci P., Bella L., D'Auria F., Oriolo F., 1993: "SBWRThennalhvdraulic Perfornance: a RELAPS/MOD2 ModelSimulation', 6th Int. Top. Meet. on Nuclear ReactorThennalhydraulics, Grenoble (F).

Bovalini R., IYAuria F., Mazzini M., 1991: "Experiments ofCore Coolability by a Gravity Driven System performed in

A6-5

Page 204: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

PIPER-ONE Apparatus", .4AM Winter Afeeting, San Francisco(CA).

Bovalini R., D'Auria F., Mazzini M., Vigni P., 1992a:"Isolation Condenser Perfornances in PIPER-ONEApparatus", European Two-Phase Flow Group Meet.,Stockholm (S).

Bovalini R., DYAuria F., Galassi G.M.. Mazini M., 1992b:"Piper4-One Research: the Experiment PO-SD-S Related to theEvaluation of Isolation Condenser Performance. Post-TestAnalysis Carried out by RelapS/Mod3-7J code", University ofPisa Report. DCMN - NT 200 (92), Pisa (I).

Bovalini R., D'Auria F., Galassi G. M., Mazzini M. 1995:'Post-test Analysis of PIPER-ONE PO-IC-02 Experiment byRelapS/Mod3 Codes" . Uniersin, of Pisa Report, DCMN NT254 (95). Pisa (I).

Carlson K.E., Riemke R.A., Rouhani S.Z., Shurnway R.W.,Weaver W.L..1990: "Relap5/Mod3 Code Manual - Volume II.User Guide and Input Requirements", NUREG/..VR-5535.

DIAuria F., Modro M., Oriolo F., Tasaka K., 1992a:"Relevant Thermaihydraulic Aspects of New GenerationLWRs" CSN! Spec. AMeer. On Twansient Two-Phase Flow -

System Thelrnalhydraidics, Aix-En-Provence (F).

DIAuria F., Galassi G.M., Oriolo F., 1992b:"Thermalhydraulic Phenomena and Code Requirements for

Future Reactors Safety Analysis", Int. Coif on Design andSafety of Nuclear Power Plants (AVP) - Tokyo (J).

D'Auria F., 1992c: "Scaling and Counterpart Tests", CSNISpec. Aleeting om Trmnsienr Two-Phase Flow: SystemTheimallhdraulics - Aix en Provence (F).

DAuria F., Vigni P., Marsili P., 1993: "Application ofRelapS/Mod3 to the Evaluation of Isolation CondenserPerfonnance", Int. Conf. on Nuclear Engineering (7CONE-2) -San Francisco (US).

DAuria F., Galassi G.M:, Mazzini M., Pintore S., 1994a:"Ricerca Piper-One: specifiche Dettagliate della Prova PO-IC-2" Universi.v of Pisa Report. DCMN - NT 234(94), Pisa (1).

DIAuria F., Oriolo F., Bella L., Cavicchia V., 1994b: "AP-600 Thennalhydraulic Phenomenology: A Relap5/Mod2 ModelSimulation", Int. Conf on New Trends in Nuclear SystemThermohyvdraulics - Pisa (I). Int. Top. A4eertig on AdvancedReactor Safety - Pittsburgh (PA).

D'Auria F, Faluomi. V., 1995: "Qualitative Analysis of ascaling method for Piper-One facility", University of PisaReport, to be published.

t -bc,

0,a

'17 3C

"r4ct

Fig. 1 - Sketch of PIPER-ONE Fig. 2 - Sketch of isolation condenser poolwith temperature measurement locations

A6-6

Page 205: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

II

gI

TMie (a) ram Is)

Fig. 3 - Phases of experimental transient

350.

ISO.

4M0.

350.

Mo0.

430

* 91.rns Tea POIC-2 xxaa~.UA W1-t Wa £IAW.

*EZldpd M £ZAWts

XXX 9QATF4C-SV4rf WAMC4= CIZATF4C.

Fig. 4 - Condensate mass flow rate

Plper-Oa Tes1 POI-3, Uxi £'ZAW-rC.1

370.0 s na anecs vuly• WY OAW,4C.t

8- ATt3-PSC4360.0

330.0

3140.0

3.0330.0

.0M 0 2% 400 I0M 0 1000 12N0

ram Is)

Fig 6 - Fluid temperature along the pool

0 200 4W0 6M0 am I=0

T7** (S)Fig. 5- Fluid temperature along IsolationCondenser tubes

Fig. 7 - Flow chart of scaling method adopted

A6-7

Page 206: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

14.000

14.000L

2.000

I*

II

.20 0 2D 4W0 600 $G low 1200

T"m '()

Fig. 8 - Scaling results: system pressure,one step analysis

I

TWO ($I

Fig. 9- Scaling results: IC mass flow rate,one stepanalysis

11.20

* Pipu-oc Toml Poac2 1= C P~OMPSe a effec * alnalySa V• ¢1OC3TVAM

1.00 One-t,- calculat= POaffMfvAwMW ONC3CALVAMIAM POOfOfVMVAMWs PON4aNTfVAAM

0.80 000 P9oNM.VMWU

4 0.40

0.200

.0.2,0-200 0 200 M we 11 low0 21200

TMW a)

Fig. 11 - Scaling results: IC power exchangedone step analysis

0.400PWER, ONG[Tom P"4-l Mx W11 sMf- rCCK

41,30O

70.2S0

0.150

0'- II

Two ta)

Fig. 10 - Scaling results: IC middle level tube fluidone step analysis

?4.500

IL -u

a 2 400 6W0 No0 low 1200M 20 400 600 W00 1000 1200

T7kn (s)

Fig. 12 - Scaling results: system pressure, globaleffects analysis

nfw (4s

Fig. 13 - Scaling results: IC mass flowrateeffects analysis

A6-8

Page 207: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

B IG

I I

Tim. Is) TWO 48)

Fig. 14- Scaling results: IC exchanged power

global effects analysisFig. 15 - Scaling results:middle level tubefluid temperature,global effects analysis

380A.

IIII£

4OO

111-u (S)

ismGO

Fig. 16 - Scaling results: thermal stratificationalong the pool.global effects analysis

Tkne (8)

Fig. 17 - Scaling results:calculated circulation flowalong the poolglobal effects analysis

A6-9

Page 208: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 209: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

NRC FORM 536 U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER(24M) (Assiged by MtC, Add VoL. SM. Rev.NRC. 113 BIBLIOGRAPHIC DATA SHEET

,roehwkuct ,u " myaw NUREGIIA-01352. TITLE AND SUBTITLE CAMP006

Post-Test Analysis of PIPER-ONE PO-IC-2 Experiment by RELAP5IMOD3 Codes D REPORT P

MONTH YEAR

November 19964. FIN OR GRANT NUMBER

W6238S. AUTHOR(S) 6. TYPE OF REPORT

R. Bovalilni, F. D. Aurla, G. M. Galassi, M. Mazzini Technical

7. PERIOD COVERED pbova Dan)

. PERFORMIG ORGANIZATION - NAME AND ADDRESS EWNr. pwhShvmOfficeva•crReg% US& MEcbwRFgub/y CnaVsaxn aid ewft afin udduea ifowi,

PMyvde name end mRllng ddwssj

University of PisaVia Diotisalvi, 21-56126 PisaItaly

S. SPONSORING ORGAN17-ATION. -AM AND ADDRESS g'• MyC 6" 'Sen as&val 1 cotcr pmvids ARC Ws/xk , t or Reix U.&. Akba ftbx-y Ccmdnsimand m•ft iddres.j

Office of Nuclear Regulatory ResearchU.S. Nuclear Regulatory CommissionWashington, DC 20555-0001

10. SUPPLEMENTARY NOTES

S. Smith, NRC Project Manager11. ABSTRACT (2= wads arbs)

RELAPS/MOD3.1 was applied to the PO-IC-2 experiment performed In PIPER-ONE facility, which has been modified toreproduce typical isolation condenser thermal-hydraulic conditions. RELAP5 is a well known code widely used at the University ofPisa during the past seven years. RELAP5/MOD3.1 was the latest version of the code made available by the Idaho NationalEngineering Laboratory at the time of the reported study. PIPER-ONE Is an experimental facility simulating a General ElectricBWR-6 with volume and height scaling ratios of 1/2200 and 1.11, respectively. In the frame of the present activity a once-throughheat exchanger Immersed in a pool of ambient temperature water. Installed approximately 10 m above the core, was utilized toreproduce qualitatively the phenomenologles expected for the Isolation Condenser In the simplified BWR (SBWR). The PO-IC-2experiment is the flood up of the PO-SD-8 and has been designed to solve some of the problems encountered In the analysis ofthe PO-SD-8 experiment A very wide analysis Is presented hereafter Including the use of different code versions.

12. KEY WORDS/DESCRIPTORS AMt wod, ara, Nutwi u.wtIww in/ic.tig i. ,-t) 13. AVALABILITY STATEMENT

CAMP UnlimitedRELAP5/MOD3 14. SEcURnY CLASSIFCATIONRELAP/MOD3(rv P~ew

unclassifiedI'r. Repo

unclassified15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 C2419) 7W form vm elecoanl=4 prodwed by Elb Fadval Famm. Irc

Page 210: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

Federal Recycling Program

Page 211: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa
Page 212: NUREG/IA-0135, 'Post-Test Analysis of PIPER-ONE PO-IC-2 ...PO-IC-2 Experiment by RELAP5/MOD3 Codes Prepared by R. Bovalini, E D'Auria, G. M. Galassi, M. Mazzini University of Pisa

UNITED STATESNUCLEAR REGULATORY COMMISSION

WASHINGTON, DC 20555-0001

SPECIAL STANDARD MAILPOSTAGE AND FEES PAID

USNRCPERMIT NO. G-67

OFFICIAL BUSINESSPENALTY FOR PRIVATE USE. $300