nxp semiconductors document number mwct101xsf data … · 2019-12-19 · 2 option with no csec and...

65
MWCT101XSF MWCT101XS Data Sheet Key Features Operating characteristics Voltage range: 2.7 V to 5.5 V Ambient temperature range: -40 °C to 105 °C for HSRUN mode, -40 °C to 125 °C for RUN mode Arm™ Cortex-M4F core, 32-bit CPU Supports up to 112 MHz frequency (HSRUN) with 1.25 Dhrystone MIPS per MHz Arm Core based on the Armv7 Architecture and Thumb®-2 ISA Integrated Digital Signal Processor (DSP) Configurable Nested Vectored Interrupt Controller (NVIC) Single Precision Floating Point Unit (FPU) Clock interfaces 4 - 40 MHz fast external oscillator (SOSC) 48 MHz Fast Internal RC oscillator (FIRC) 8 MHz Slow Internal RC oscillator (SIRC) 128 kHz Low Power Oscillator (LPO) Up to 112 MHz (HSRUN) System Phased Lock Loop (SPLL) Up to 50 MHz DC external square wave input clock Real Time Counter (RTC) Power management Low-power Arm Cortex-M4F core with excellent energy efficiency Power Management Controller (PMC) with multiple power modes: HSRUN, RUN, STOP, VLPR, and VLPS. Note: CSEc (Security) or EEPROM writes/ erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 Mhz) to execute CSEc (Security) or EEPROM writes/erase. Clock gating and low power operation supported on specific peripherals. Memory and memory interfaces Up to 2 MB program flash memory with ECC 64 KB FlexNVM for data flash memory with ECC and EEPROM emulation. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase. Up to 256 KB SRAM with ECC Up to 4 KB of FlexRAM for use as SRAM or EEPROM emulation Up to 4 KB Code cache to minimize performance impact of memory access latencies QuadSPI with HyperBus™ support Mixed-signal analog Up to two 12-bit Analog-to-Digital Converter (ADC) with up to 32 channel analog inputs per module One Analog Comparator (CMP) with internal 8-bit Digital to Analog Converter (DAC) Debug functionality Serial Wire JTAG Debug Port (SWJ-DP) combines Debug Watchpoint and Trace (DWT) Instrumentation Trace Macrocell (ITM) Test Port Interface Unit (TPIU) Flash Patch and Breakpoint (FPB) Unit Human-machine interface (HMI) Up to 89 GPIO pins with interrupt functionality Non-Maskable Interrupt (NMI) NXP Semiconductors Document Number MWCT101XSF Data Sheet: Advance Information Rev. 3, 12/2019 This document contains information on a pre-production product. Specifications and pre-production information herein are subject to change without notice.

Upload: others

Post on 26-Apr-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

MWCT101XSFMWCT101XS Data SheetKey Features

• Operating characteristics– Voltage range: 2.7 V to 5.5 V– Ambient temperature range: -40 °C to 105 °C for

HSRUN mode, -40 °C to 125 °C for RUN mode

• Arm™ Cortex-M4F core, 32-bit CPU– Supports up to 112 MHz frequency (HSRUN) with

1.25 Dhrystone MIPS per MHz– Arm Core based on the Armv7 Architecture and

Thumb®-2 ISA– Integrated Digital Signal Processor (DSP)– Configurable Nested Vectored Interrupt Controller

(NVIC)– Single Precision Floating Point Unit (FPU)

• Clock interfaces– 4 - 40 MHz fast external oscillator (SOSC)– 48 MHz Fast Internal RC oscillator (FIRC)– 8 MHz Slow Internal RC oscillator (SIRC)– 128 kHz Low Power Oscillator (LPO)– Up to 112 MHz (HSRUN) System Phased Lock

Loop (SPLL)– Up to 50 MHz DC external square wave input clock– Real Time Counter (RTC)

• Power management– Low-power Arm Cortex-M4F core with excellent

energy efficiency– Power Management Controller (PMC) with multiple

power modes: HSRUN, RUN, STOP, VLPR, andVLPS. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112MHz) because this use case is not allowed toexecute simultaneously. The device will need toswitch to RUN mode (80 Mhz) to execute CSEc(Security) or EEPROM writes/erase.

– Clock gating and low power operation supported onspecific peripherals.

• Memory and memory interfaces– Up to 2 MB program flash memory with ECC– 64 KB FlexNVM for data flash memory with ECC

and EEPROM emulation. Note: CSEc (Security) orEEPROM writes/erase will trigger error flags inHSRUN mode (112 MHz) because this use case isnot allowed to execute simultaneously. The devicewill need to switch to RUN mode (80 MHz) toexecute CSEc (Security) or EEPROM writes/erase.

– Up to 256 KB SRAM with ECC– Up to 4 KB of FlexRAM for use as SRAM or

EEPROM emulation– Up to 4 KB Code cache to minimize performance

impact of memory access latencies– QuadSPI with HyperBus™ support

• Mixed-signal analog– Up to two 12-bit Analog-to-Digital Converter

(ADC) with up to 32 channel analog inputs permodule

– One Analog Comparator (CMP) with internal 8-bitDigital to Analog Converter (DAC)

• Debug functionality– Serial Wire JTAG Debug Port (SWJ-DP) combines– Debug Watchpoint and Trace (DWT)– Instrumentation Trace Macrocell (ITM)– Test Port Interface Unit (TPIU)– Flash Patch and Breakpoint (FPB) Unit

• Human-machine interface (HMI)– Up to 89 GPIO pins with interrupt functionality– Non-Maskable Interrupt (NMI)

NXP Semiconductors Document Number MWCT101XSF

Data Sheet: Advance Information Rev. 3, 12/2019

This document contains information on a pre-production product. Specificationsand pre-production information herein are subject to change without notice.

• Communications interfaces– Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support

and low power availability– Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability– Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability– Up to three FlexCAN modules (with optional CAN-FD support)– FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).

• Safety and Security– Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the

SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase willtrigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. Thedevice will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.

– 128-bit Unique Identification (ID) number– Error-Correcting Code (ECC) on flash and SRAM memories– System Memory Protection Unit (System MPU)– Cyclic Redundancy Check (CRC) module– Internal watchdog (WDOG)– External Watchdog monitor (EWM) module

• Timing and control– Up eight independent 16-bit FlexTimers (FTM) module, offering up to 64 standard channels (IC/OC/PWM)– One 16-bit Low Power Timer (LPTMR) with flexible wake up control– Two Programmable Delay Blocks (PDB) with flexible trigger system– One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels– 32-bit Real Time Counter (RTC)

• I/O and package– 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA package options

• 16 channel DMA with up to 63 request sources using DMAMUX

MWCT101XS Data Sheet, Rev. 3, 12/2019

2 NXP Semiconductors

Table of Contents1 Block diagram.................................................................................... 4

2 Feature comparison............................................................................ 5

3 Ordering parts.....................................................................................7

3.1 Determining valid orderable parts ............................................ 7

3.2 Ordering information ................................................................ 8

4 General............................................................................................... 9

4.1 Absolute maximum ratings........................................................9

4.2 Voltage and current operating requirements..............................10

4.3 Thermal operating characteristics..............................................11

4.4 Power and ground pins.............................................................. 11

4.5 LVR, LVD and POR operating requirements............................13

4.6 Power mode transition operating behaviors.............................. 13

4.7 Power consumption................................................................... 14

4.8 ESD handling ratings.................................................................17

4.9 EMC radiated emissions operating behaviors........................... 17

5 I/O parameters....................................................................................17

5.1 AC electrical characteristics...................................................... 17

5.2 General AC specifications......................................................... 18

5.3 DC electrical specifications at 3.3 V Range.............................. 18

5.4 DC electrical specifications at 5.0 V Range.............................. 19

5.5 AC electrical specifications at 3.3 V range .............................. 20

5.6 AC electrical specifications at 5 V range ................................. 21

5.7 Standard input pin capacitance.................................................. 22

5.8 Device clock specifications....................................................... 22

6 Peripheral operating requirements and behaviors.............................. 23

6.1 System modules......................................................................... 23

6.2 Clock interface modules............................................................ 23

6.2.1 External System Oscillator electrical specifications....23

6.2.2 External System Oscillator frequency specifications . 25

6.2.3 System Clock Generation (SCG) specifications.......... 26

6.2.3.1 Fast internal RC Oscillator (FIRC)

electrical specifications............................ 26

6.2.3.2 Slow internal RC oscillator (SIRC)

electrical specifications ........................... 26

6.2.4 Low Power Oscillator (LPO) electrical specifications

......................................................................................27

6.2.5 SPLL electrical specifications .....................................27

6.3 Memory and memory interfaces................................................27

6.3.1 Flash memory module (FTFC) electrical

specifications................................................................27

6.3.1.1 Flash timing specifications —

commands................................................ 27

6.3.1.2 Reliability specifications..........................30

6.3.2 QuadSPI AC specifications..........................................31

6.4 Analog modules......................................................................... 35

6.4.1 ADC electrical specifications...................................... 35

6.4.1.1 12-bit ADC operating conditions............. 35

6.4.1.2 12-bit ADC electrical characteristics....... 37

6.4.2 CMP with 8-bit DAC electrical specifications............ 39

6.5 Communication modules........................................................... 43

6.5.1 LPUART electrical specifications............................... 43

6.5.2 LPSPI electrical specifications.................................... 43

6.5.3 LPI2C electrical specifications.................................... 49

6.5.4 FlexCAN electical specifications.................................50

6.5.5 Clockout frequency......................................................50

6.6 Debug modules.......................................................................... 50

6.6.1 SWD electrical specofications .................................... 50

6.6.2 Trace electrical specifications......................................52

6.6.3 JTAG electrical specifications..................................... 53

7 Thermal attributes.............................................................................. 56

7.1 Description.................................................................................56

7.2 Thermal characteristics..............................................................56

7.3 General notes for specifications at maximum junction

temperature................................................................................ 59

8 Dimensions.........................................................................................60

8.1 Obtaining package dimensions ................................................. 60

9 Pinouts................................................................................................61

9.1 Package pinouts and signal descriptions....................................61

10 Revision History.................................................................................61

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 3

1 Block diagramThe figure below shows a superset high level architecture block diagram of the device.Other devices within the family have a subset of the features. See Feature comparison forchip specific values.

Mux

Trace port

Crossbar switch (AXBS-Lite)

eDMA

DMAMUX

Core

Peripheral bus controller

CRC

WDOG

S1M0 M1

DSP

NVIC

ITM

FPB

DWT

AWIC

SWJ-DP

TPIU

JTAG & Serial Wire

Arm Cortex M4F

ICO

DE

DC

OD

E

AHB-AP

PPB

System

M2

S2

GPIO

Mux

FPUClock

SPLL

LPO128 kHz

Async

512BTCD

LPIT

LPI2C FlexIO

Flash memorycontroller

Code flash

S0

Data flash

Low PowerTimer

12-bit ADC

TRGMUX

LPUART

LPSPI

FlexCAN FlexTimer

PDB

generation

LPIT

Peripherals present

on all MWCT101xS devices

Peripherals presenton selected MWCT101xS devices

Key:

Device architectural IPon all MWCT101xS devices

S3

FIRC48 MHz

M3

SOSC8-40 MHz

(see the "Feature Comparison"

memory memory

4-40 MHz

QuadSPI

RTC

CMP8-bit DAC

SIRC8 MHz

FlexRAM/ SRAM

1: On this device, NXP’s system MPU implements the safety mechanisms to prevent masters from accessing restricted memory regions. This system MPU provides memory protection at the level of the Crossbar Switch. Each Crossbar master (Core, DMA) can be assigned different access rights to each protected memory region. The Arm M4 core version in this family does not integrate the Arm Core MPU, which would concurrently monitor only core-initiated memory accesses. In this document, the term MPU refers to NXP’s system MPU.

2: For the device-specific sizes, see the "On-chip SRAM sizes" table in the "Memories and Memory Interfaces" chapter of the MWCT101xS Series Reference Manual.

section in the RM)

ERM

EWM

MCM

Lower region

Upper region

Main SRAM2

Code Cache

Sys

tem

MP

U1

EIM LMEM controller

LMEM

QSPI

CSEc3

System MPU1 System MPU1 System MPU1

3: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device needs to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.

Figure 1. High-level architecture diagram for the MWCT101xS family

Block diagram

MWCT101XS Data Sheet, Rev. 3, 12/2019

4 NXP Semiconductors

2 Feature comparisonThe following figure summarizes the memory and package options for the MWCT101xSseries and demonstrates where this device fits within the overall series. All devices whichshare a common package are pin-to-pin compatible.

NOTEAvailability of peripherals depends on the pin availability in aparticular package. For more information see IO SignalDescription Input Multiplexing sheet(s) attached withReference Manual.

Feature comparison

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 5

EEPROM emulated by FlexRAM1

FlexRAM (also available as system RAM)

Cache

System RAM (including FlexRAM)

Flash

Single supply voltage

Watchdog

Number of I/Os

Memory protection unit

Parameter

Peripheral speed

CRC module

IEEE-754 FPU

Core

EWM

DMA

Crossbar

ISO 26262

HW security module (CSEc)1

Frequency

Error correction code (ECC)

Low power timer (LPTMR)

Low power interrupt timer

LEGEND: Not implemented Available on the device 1 No write or erase access to Flash module, including Security (CSEc) and EEPROM commands, are allowed when device is running at HSRUN mode (112MHz) or VLPR mode. 2 Option with No CSEc and CAN-FD is also available for MWCT1015S 3 Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash. 4 4 KB (up to 512 KB D-Flash as a part of 2M Flash). Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB of the last 512 KB block can be used as Data flash or Program flash. See chapter FTFC for details. 5 Only for Boundary Scan Register 6 See Dimensions for package drawing

Trigger mux (TRGMUX)

Real time counter (RTC)

FlexTimer (16-bit counter) 8 channels

External memory interface

12-bit SAR ADC (1 MSPS each)

FlexIO (8 pins configurable as UART, SPI, I2C, I2S)

Low power I2C

Debug & trace

Packages6

Ecosystem(IDE, compiler, debugger)

FlexCAN(CAN-FD ISO/CD 11898-1)

Low power SPI

Comparator with 8-bit DAC

Programmable delay block (PDB)

MWCT101xS

MWCT1014S MWCT1015S MWCT1016S

1x

SWD, JTAG5 (ITM, SWV, SWO)

NXP S32 Design Studio + GCC + GHS + Lauterbach

LQFP-64LQFP-100

SWD, JTAG(ITM, SWV,SWO), ETM

1x (64)

2x (16) 2x (24) 2x (32)

3x

1x 2x

3x2

(2x with FD)3x

(3x with FD)3x

(1x with FD)

1x

1x (73) 1x (81)

up to 112 MHz (HSRUN)

1x

Arm® Cortex™-M4F

1x

capable up to ASIL-B

up to 112 MHz (HSRUN)

4 KB (up to 64 KB D-Flash)

4 KB

4 KB

64 KB 128 KB 256 KB

-40 to +105ºC / +125ºC

512 KB 1 MB 2 MB3

2.7 - 5.5 V

up to 89 up to 89 up to 89

1x

1x

1x

4x (32) 6x (48) 8x (64)

QuadSPI incl.HyperBus™

2x

Mem

ory

An

alo

gT

imer

Co

mm

un

icat

ion

IDE

sO

ther

Sys

tem

Operating temperature (Ta) Temperature ambient

FIRC CMU

Low power modes

LQFP-100BGA-100

BGA-100

See footnote 4

Low power UART/LIN(Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A and SAE J2602) 3x

HSRUN mode1

2

Figure 2. MWCT101xS product series comparison

Feature comparison

MWCT101XS Data Sheet, Rev. 3, 12/2019

6 NXP Semiconductors

Ordering parts

3.1 Determining valid orderable partsTo determine the orderable part numbers for this device, go to www.nxp.com andperform a part number search.

NOTENot all part number combinations exist

3

Ordering parts

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 7

3.2 Ordering information

Product statusP: Pre QualificationM: Fully Qualified

Product lineWCT: Wireless Charging Technology

Generation1: 1st product Gen2: 2nd product Gen

Core platformF: Arm Cortex M4F

Memory size (Flash)

TemperatureV: -40C to 105C

Tape and Reel T: Trays and Tubes R: Tape and Reel

Package LQFP BGA

64 LH

Pins

100 LL MH

-

ApplicationBlank =Customer A = Auto/IndustrS = A + AUTOSAR

Power Class0 = 5 W1 = 15 W2 = 60 W3 =200 W

Config0 = Standard1 = Premium

Product status

Product line

Generation

Config

Power Class

Memory SizeApplication

Core Platform

Temperature

Package

Features

Tape and Reel

FeaturesP = No CAN-FD and CSEc

M/P WCT 1 0 1 4 S F V LH P N R

M4F

4 5 6

512 K 1 M 2 M

Includes stackBlank = No stackN = NFC

Includes stack

Figure 3. Ordering information

Ordering parts

MWCT101XS Data Sheet, Rev. 3, 12/2019

8 NXP Semiconductors

General

4.1 Absolute maximum ratings

NOTE• Functional operating conditions appear in the DC electrical

characteristics. Absolute maximum ratings are stressratings only, and functional operation at the maximumvalues is not guaranteed. See footnotes in the followingtable for specific conditions.

• Stress beyond the listed maximum values may affect devicereliability or cause permanent damage to the device.

• All the limits defined in the datasheet specification must behonored together and any violation to any one or more willnot guarantee desired operation.

• Unless otherwise specified, all maximum and minimumvalues in the datasheet are across process, voltage, andtemperature.

Table 1. Absolute maximum ratings

Symbol Parameter Conditions1 Min Max Unit

VDD2 2.7 V - 5. 5V input supply voltage — -0.3 5.8 3 V

VREFH 3.3 V / 5.0 V ADC high reference voltage — -0.3 5.8 3 V

IINJPAD_DC_ABS4 Continuous DC input current (positive /

negative) that can be injected into an I/Opin

— -3 +3 mA

VIN_DC Continuous DC Voltage on any I/O pinwith respect to VSS

— -0.8 5.85 V

IINJSUM_DC_ABS Sum of absolute value of injected currentson all the pins (Continuous DC limit)

— — 30 mA

Tramp6 ECU supply ramp rate — 0.5 V/min 500 V/ms —

Tramp_MCU7 MCU supply ramp rate — 0.5 V/min 100 V/ms —

TA8 Ambient temperature — -40 125 °C

TSTG Storage temperature — -55 165 °C

VIN_TRANSIENT Transient overshoot voltage allowed onI/O pin beyond VIN_DC limit

— — 6.8 9 V

1. All voltages are referred to VSS unless otherwise specified.2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the

ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.3. 60 s lifetime – No restrictions i.e. The part can switch.

10 hours lifetime – Device in reset i.e. The part cannot switch.

4

General

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 9

4. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible.5. While respecting the maximum current injection limit6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both

maximum absolute maximum ramp rate and typical operating conditions.7. This is the MCU supply ramp rate, and the ramp rate assumes that the HW design guidelines in AN5426 are followed.

Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.8. TJ (Junction temperature)=135 °C. Assumes TA=125 °C for RUN mode

TJ (Junction temperature)=125 °C. Assumes TA=105 °C for HSRUN mode

• Assumes maximum θJA for 2s2p board. See Thermal characteristics9. 60 seconds lifetime; device in reset (no outputs enabled/toggling)

4.2 Voltage and current operating requirements

NOTEDevice functionality is guaranteed up to the LVR assert level;however, electrical performance of 12-bit ADC, CMP with 8-bit DAC, IO electrical characteristics, and communicationmodules electrical characteristics would be degraded whenvoltage drops below 2.7 V

Table 2. Voltage and current operating requirements 1

Symbol Description Min. Max. Unit Notes

VDD2 Supply voltage 2.73 5.5 V 4

VDD_OFF Voltage allowed to be developed on VDDpin when it is not powered from anyexternal power supply source.

0 0.1 V

VDDA Analog supply voltage 2.7 5.5 V 4

VDD – VDDA VDD-to-VDDA differential voltage – 0.1 0.1 V 4

VREFH ADC reference voltage high 2.7 VDDA + 0.1 V 5

VREFL ADC reference voltage low -0.1 0.1 V

VODPU Open drain pullup voltage level VDD VDD V 6

IINJPAD_DC_OP7 Continuous DC input current (positive /

negative) that can be injected into an I/Opin

-3 +3 mA

IINJSUM_DC_OP Continuous total DC input current that canbe injected across all I/O pins such thatthere's no degradation in accuracy ofanalog modules: ADC and ACMP (Seesection Analog Modules)

— 30 mA

1. Typical conditions assumes VDD = VDDA = VREFH = 5 V, temperature = 25 °C and typical silicon process unless otherwisestated.

2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and theADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.

3. MWCT1016S will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged MWCT1016S isguaranteed to operate from 2.97 V. All other MWCT101xS family devices operate from 2.7 V in all modes.

4. VDD and VDDA must be shorted to a common source on PCB. The differential voltage between VDD and VDDA is for RF-AConly. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 forreference supply design for SAR ADC.

General

MWCT101XS Data Sheet, Rev. 3, 12/2019

10 NXP Semiconductors

5. VREFH should always be equal to or less than VDDA + 0.1 V and VDD + 0.1 V6. Open drain outputs must be pulled to VDD.7. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible.

4.3 Thermal operating characteristicsTable 3. Thermal operating characteristics for 64-pin LQFP and 100-pin LQFP and MAPBGA

packages

Symbol Parameter Value Unit

Min. Typ. Max.

TA C-Grade Part Ambient temperature under bias −40 — 851 ℃TJ C-Grade Part Junction temperature under bias −40 — 1051 ℃TA V-Grade Part Ambient temperature under bias −40 — 1051 ℃TJ V-Grade Part Junction temperature under bias −40 — 1251 ℃TA M-Grade Part Ambient temperature under bias −40 — 1252 ℃TJ M-Grade Part Junction temperature under bias −40 — 1352 ℃

1. Values mentioned are measured at ≤ 112 MHz in HSRUN mode.2. Values mentioned are measured at ≤ 80 MHz in RUN mode.

4.4 Power and ground pins

VDD

VDDA

VREFH

VREFL

VSSA/VSS

V DD

V SS

VDD

VSS

100 LQFP PackageC

DEC

C REF

CD

EC

CDEC

V SS

V DD

CDEC

CD

EC

V SS

V DD

144 LQFP Package

VDD

VSS

CDEC

CDEC

VDD

VSS

CD

EC

V SS

V DD

CDEC

VDD

VDDA

VREFH

VREFL

VSS

CD

EC

C REF

CD

EC

VDD

VSS

CD

EC

VSSA/VSS

VDD

VSS

VDDA

VREFH

VREFL/VSSA/VSS

64 LQFP Package

C REF

CD

EC

CD

EC

VDD

C DEC

NOTE: VDD and VDDA must be shorted to a common source on PCB

Figure 4. Pinout decoupling

Table 4. Supplies decoupling capacitors 1, 2

Symbol Description Min. 3 Typ. Max. Unit

CREF, 4, 5 ADC reference high decoupling capacitance 70 100 — nF

Table continues on the next page...

General

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 11

Table 4. Supplies decoupling capacitors 1, 2 (continued)

Symbol Description Min. 3 Typ. Max. Unit

CDEC5, 6, 7 Recommended decoupling capacitance 70 100 — nF

1. VDD and VDDA must be shorted to a common source on PCB. The differential voltage between VDD and VDDA is for RF-AConly. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 forreference supply design for SAR ADC. All VSS pins should be connected to common ground at the PCB level.

2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).3. Minimum recommendation is after considering component aging and tolerance.4. For improved performance, it is recommended to use 10 μF, 0.1 μF and 1 nF capacitors in parallel.5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.6. Contact your local Field Applications Engineer for details on best analog routing practices.7. The filtering used for decoupling the device supplies must comply with the following best practices rules:

• The protection/decoupling capacitors must be on the path of the trace connected to that component.• No trace exceeding 1 mm from the protection to the trace or to the ground.• The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).• The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.

PMC

VD

D

VFlash = 3.3 V nominal

VCORE = 1.2 V/1.4 V nominal

System RAMTCD RAMI/D CacheEEE RAM

LV SOG

FIRCSIRCSPLL

VS

S

SOSC

GPIOFlash

Pads

ADC CMP

VD

DA

VS

SA

VR

EF

H

VR

EF

L

*Note: VSSA and VSS are shorted at package level

VOSC = 3.3 V nominal

Figure 5. Power diagram

General

MWCT101XS Data Sheet, Rev. 3, 12/2019

12 NXP Semiconductors

4.5 LVR, LVD and POR operating requirementsTable 5. VDD supply LVR, LVD and POR operating requirements

Symbol Description Min. Typ. Max. Unit Notes

VPOR Rising and falling VDD POR detect voltage 1.1 1.6 2.0 V

VLVR LVR falling threshold (RUN, HSRUN, andSTOP modes)

2.50 2.58 2.7 V

VLVR_HYSTLVR hysteresis — 45 — mV 1

VLVR_LP LVR falling threshold (VLPS/VLPR modes) 1.97 2.22 2.44 V

VLVD Falling low-voltage detect threshold 2.8 2.875 3 V

VLVD_HYSTLVD hysteresis — 50 — mV 1

VLVW Falling low-voltage warning threshold 4.19 4.305 4.5 V

VLVW_HYST LVW hysteresis — 75 — mV 1

VBG Bandgap voltage reference 0.97 1.00 1.03 V

1. Rising threshold is the sum of falling threshold and hysteresis voltage.

4.6 Power mode transition operating behaviors

All specifications in the following table assume this clock configuration:

• RUN Mode:• Clock source: FIRC• SYS_CLK/CORE_CLK = 48 MHz• BUS_CLK = 48 MHz• FLASH_CLK = 24 MHz

• HSRUN Mode:• Clock source: SPLL• SYS_CLK/CORE_CLK = 112 MHz• BUS_CLK = 56 MHz• FLASH_CLK = 28 MHz

• VLPR Mode:• Clock source: SIRC• SYS_CLK/CORE_CLK = 4 MHz• BUS_CLK = 4 MHz• FLASH_CLK = 1 MHz

• STOP1/STOP2 Mode:• Clock source: FIRC• SYS_CLK/CORE_CLK = 48 MHz

General

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 13

• BUS_CLK = 48 MHz• FLASH_CLK = 24 MHz

• VLPS Mode: All clock sources disabled.

Table 6. Power mode transition operating behaviors

Symbol Description Min. Typ. Max. Unit

tPOR After a POR event, amount of time from the point VDDreaches 2.7 V to execution of the first instructionacross the operating temperature range of the chip.

— 325 — μs

VLPS → RUN 8 — 17 μs

STOP1 → RUN 0.07 0.075 0.08 μs

STOP2 → RUN 0.07 0.075 0.08 μs

VLPR → RUN 19 — 26 μs

VLPR → VLPS 5.1 5.7 6.5 μs

VLPS → VLPR 18.8 23 27.75 μs

RUN → Compute operation 0.72 0.75 0.77 μs

HSRUN → Compute operation 0.3 0.31 0.35 μs

RUN → STOP1 0.35 0.38 0.4 μs

RUN → STOP2 0.2 0.23 0.25 μs

RUN → VLPS 0.3 0.35 0.4 μs

RUN → VLPR 3.5 3.8 5 μs

VLPS → Asynchronous DMA Wakeup 105 110 125 μs

STOP1 → Asynchronous DMA Wakeup 1 1.1 1.3 μs

STOP2 → Asynchronous DMA Wakeup 1 1.1 1.3 μs

Pin reset → Code execution — 214 — μs

NOTEHSRUN should only be used when frequencies in excess of 80MHz are required. When using 80 MHz and below, RUN modeis the recommended operating mode.

4.7 Power consumption

The following table shows the power consumption targets for the device in variousmodes of operation. Attached MWCT101xS_Power_Modes _Configuration.xlsx detailsthe modes used in gathering the power consumption data stated in the following tableTable 7. For full functionality refer to table: Module operation in available low powermodes of the Reference Manual.

General

MWCT101XS Data Sheet, Rev. 3, 12/2019

14 NXP Semiconductors

Tab

le 7

.P

ow

er c

on

sum

pti

on

(T

ypic

als

un

less

sta

ted

oth

erw

ise)

1Chip/Device

Ambient Temperature (°C)

VL

PS

A)2,

3V

LP

R(m

A)

ST

OP

1(m

A)

ST

OP

2(m

A)

RU

N@

48 M

Hz

(mA

)R

UN

@64

MH

z(m

A)

RU

N@

80 M

Hz

(mA

)H

SR

UN

@11

2M

Hz

(mA

) 4

Idd/MHz (μA/MHz)5

Peripherals disabled 6

Peripherals enabled

Peripherals disabled

Peripherals enabled

Peripherals disabled

Peripherals enabled

Peripherals disabled

Peripherals enabled

Peripherals disabled

Peripherals enabled

Peripherals disabled

Peripherals enabled

MW

CT

1014

S25

Typ

29.8

39.1

1.48

1.50

77.

719

.726

.925

.133

.330

.239

.643

.355

.637

8

85T

yp15

015

91.

721.

857.

28.

120

.427

.126

.133

.530

.540

43.9

56.1

381

Max

359

384

2.60

2.65

9.2

9.9

23.2

29.6

29.3

36.2

34.8

42.1

46.3

59.7

435

105

Typ

256

273

1.80

2.10

7.8

8.5

20.6

27.4

26.6

33.8

31.2

40.5

44.8

57.1

390

Max

850

900

2.65

2.70

10.3

11.1

23.9

30.6

30.3

37.3

35.6

43.5

47.9

61.3

445

125

Max

1960

1998

3.18

3.25

12.9

13.8

26.9

33.6

3540

.338

.746

.8N

AN

A48

4

MW

CT

1015

S25

Typ

3747

1.57

1.61

89.

223

.431

.430

.540

.236

.247

.652

68.3

452

85T

yp20

720

91.

791.

838.

910

.124

.432

.431

.541

.337

.248

.753

.369

.846

5

Max

974

981

3.32

3.38

12.7

13.9

29.3

37.9

36.7

4742

.454

.460

.378

530

105

Typ

419

422

1.99

2.04

9.8

1125

.333

.432

.542

.238

.149

.654

.470

.847

7

Max

2004

2017

4.06

4.13

17.1

18.3

34.1

42.6

41.3

51.4

46.9

58.8

65.7

82.8

587

125

Max

3358

3380

5.28

5.38

22.6

23.7

40.2

48.8

47.3

57.4

52.8

64.8

NA

NA

660

MW

CT

1016

S7

25T

yp38

542.

172.

208.

59.

627

.634

.935

.545

.342

.157

.760

.383

.352

6

85T

yp33

635

72.

302.

3510

.111

.129

.137

.036

.846

.643

.459

.962

.988

.754

3

Max

1660

1736

3.48

3.55

14.5

15.6

34.8

43.6

41.9

53.9

48.7

65.1

70.4

96.1

609

105

Typ

560

577

2.49

2.54

10.9

11.9

29.8

37.8

37.6

47.5

45.2

61.5

63.8

89.1

565

Max

2945

2970

4.40

4.47

18.0

19.0

38.4

46.8

44.9

55.3

51.6

66.8

73.6

97.4

645

125

Max

3990

4166

6.00

6.08

23.4

24.5

44.3

52.5

50.9

61.3

57.5

71.6

NA

NA

719

1.T

ypic

al c

urre

nt n

umbe

rs a

re in

dica

tive

for

typi

cal s

ilico

n pr

oces

s an

d m

ay v

ary

base

d on

the

silic

on d

istr

ibut

ion

and

user

con

figur

atio

n. T

ypic

al c

ondi

tions

ass

umes

VD

D =

VD

DA =

VR

EF

H =

5 V

, tem

pera

ture

= 2

5 °C

and

typi

cal s

ilico

n pr

oces

s un

less

oth

erw

ise

stat

ed. A

ll ou

tput

pin

s ar

e flo

atin

g an

d O

n-ch

ip p

ulld

own

is e

nabl

ed fo

ral

l unu

sed

inpu

t pin

s.

General

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 15

2.T

his

is a

n av

erag

e ba

sed

on th

e us

e ca

se d

escr

ibed

in th

e C

ompa

rato

r se

ctio

n, w

here

by th

e an

alog

sam

plin

g is

taki

ng p

lace

per

iodi

cally

, with

a m

echa

nism

to o

nly

enab

le th

e D

AC

as

requ

ired.

The

num

bers

quo

ted

assu

mes

that

onl

y a

sing

le A

NLC

MP

is a

ctiv

e an

d th

e ot

hers

are

dis

able

d3.

Cur

rent

num

bers

are

for

redu

ced

conf

igur

atio

n an

d m

ay v

ary

base

d on

use

r co

nfig

urat

ion

and

silic

on p

roce

ss v

aria

tion.

4.H

SR

UN

mod

e m

ust n

ot b

e us

ed a

t 125

°C. M

ax a

mbi

ent t

empe

ratu

re fo

r H

SR

UN

mod

e is

105

°C.

5.V

alue

s m

entio

ned

are

mea

sure

d at

RU

N@

80 M

Hz

with

per

iphe

rals

dis

able

d.6.

With

PM

C_R

EG

SC

[CLK

BIA

SD

IS] s

et to

1. S

ee R

efer

ence

Man

ual f

or d

etai

ls.

7.T

he M

WC

T10

16S

dat

a po

ints

ass

ume

that

Qua

dSP

I etc

. are

inac

tive.

General

MWCT101XS Data Sheet, Rev. 3, 12/2019

16 NXP Semiconductors

4.8 ESD handling ratings

Symbol Description Min. Max. Unit Notes

VHBM Electrostatic discharge voltage, human body model − 4000 4000 V 1

VCDM Electrostatic discharge voltage, charged-device model 2

All pins except the corner pins − 500 500 V

Corner pins only − 750 750 V

ILAT Latch-up current at ambient temperature of 125 °C − 100 100 mA 3

1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human BodyModel (HBM).

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method forElectrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4.9 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

I/O parameters

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50%point, and rise and fall times are measured at the 20% and 80% points, as shown in thefollowing figure.

Figure 6. Input signal measurement reference

5

I/O parameters

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 17

5.2 General AC specifications

These general purpose specifications apply to all signals configured for GPIO, UART,and timers.

Table 8. General switching specifications

Symbol Description Min. Max. Unit Notes

GPIO pin interrupt pulse width (digital glitch filterdisabled) — Synchronous path

1.5 — Bus clockcycles

1, 2

GPIO pin interrupt pulse width (digital glitch filterdisabled, passive filter disabled) — Asynchronous path

50 — ns 3

WFRST RESET input filtered pulse — 10 ns 4

WNFRST RESET input not filtered pulse Maximum of(100 ns, busclock period)

— ns 5

1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may ormay not be recognized. In Stop and VLPS modes, the synchronizer is bypassed so shorter pulses can be recognized inthat case.

2. The greater of synchronous and asynchronous timing must be met.3. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized.4. Maximum length of RESET pulse which will be filtered by internal filter.5. Minimum length of RESET pulse, guaranteed not to be filtered by the internal filter. This number depends on bus clock

period also. For example, in VLPR mode bus clock is 4 MHz, which make clock period of 250 ns. In this case, minimumpulse width which will cause reset is 250 ns. For faster bus clock frequencies which have clock period less than 100 ns,the minimum pulse width not filtered will be 100 ns.

5.3 DC electrical specifications at 3.3 V Range

NOTEFor details on the pad types defined in Table 9 and Table 10,see Reference Manual section IO Signal Table and IO SignalDescription Input Multiplexing sheet(s) attached withReference Manual.

Table 9. DC electrical specifications at 3.3 V Range

Symbol Parameter Value Unit Notes

Min. Typ. Max.

VDD I/O Supply Voltage 2.7 3.3 4 V 1

Vih Input Buffer High Voltage 0.7 × VDD — VDD + 0.3 V 2

Vil Input Buffer Low Voltage VSS − 0.3 — 0.3 × VDD V 3

Vhys Input Buffer Hysteresis 0.06 × VDD — — V

IohGPIO I/O current source capability measured whenpad Voh = (VDD − 0.8 V)

3.5 — — mA

Table continues on the next page...

I/O parameters

MWCT101XS Data Sheet, Rev. 3, 12/2019

18 NXP Semiconductors

Table 9. DC electrical specifications at 3.3 V Range (continued)

Symbol Parameter Value Unit Notes

Min. Typ. Max.

IohGPIO-HD_DSE_0

IolGPIO

IolGPIO-HD_DSE_0

I/O current sink capability measured whenpad Vol = 0.8 V

3 — — mA

IohGPIO-HD_DSE_1 I/O current source capability measured whenpad Voh = (VDD − 0.8 V)

14 — — mA 4

IolGPIO-HD_DSE_1 I/O current sink capability measured whenpad Vol = 0.8 V

12 — — mA 4

IohGPIO-FAST_DSE_0 I/O current sink capability measured whenpad Voh=VDD-0.8 V

9.5 — — mA 5

IolGPIO-FAST_DSE_0 I/O current sink capability measured whenpad Vol = 0.8 V

10 — — mA 5

IohGPIO-FAST_DSE_1 I/O current sink capability measured whenpad Voh=VDD-0.8 V

16 — — mA 5

IolGPIO-FAST_DSE_1 I/O current sink capability measured whenpad Vol = 0.8 V

15.5 — — mA 5

IOHT Output high current total for all ports — — 100 mA

IIN Input leakage current (per pin) for full temperature range at VDD = 3.3 V 6

All pins other than high drive port pins 0.005 0.5 μA

High drive port pins 0.010 0.5 μA

RPU Internal pullup resistors 20 60 kΩ 7

RPD Internal pulldown resistors 20 60 kΩ 8

1. MWCT1016S will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged MWCT1016S isguaranteed to operate from 2.97 V. All other MWCT101xS family devices operate from 2.7 V in all modes.

2. For reset pads, same Vih levels are applicable3. For reset pads, same Vil levels are applicable4. The value given is measured at high drive strength mode. For value at low drive strength mode see the Ioh_Standard

value given above.5. For refernce only. Run simulations with the IBIS model and custom board for accurate results.6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All

other GPIOs are normal drive only. For details refer to MWCT101xS_IO_Signal_Description_Input_Multiplexing.xlsxattached with the Reference Manual.

7. Measured at input V = VSS8. Measured at input V = VDD

5.4 DC electrical specifications at 5.0 V RangeTable 10. DC electrical specifications at 5.0 V Range

Symbol Parameter Value Unit Notes

Min. Typ. Max.

VDD I/O Supply Voltage 4 — 5.5 V

Vih Input Buffer High Voltage 0.65 x VDD — VDD + 0.3 V 1

Table continues on the next page...

I/O parameters

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 19

Table 10. DC electrical specifications at 5.0 V Range (continued)

Symbol Parameter Value Unit Notes

Min. Typ. Max.

Vil Input Buffer Low Voltage VSS − 0.3 — 0.35 x VDD V 2

Vhys Input Buffer Hysteresis 0.06 x VDD — — V

Ioh_Standard I/O current source capabilitymeasured when pad Voh= (VDD - 0.8V)

5 — — mA

Iol_Standard I/O current sink capability measuredwhen pad Vol= 0.8 V

5 — — mA

Ioh_Strong I/O current source capabilitymeasured when pad Voh = VDD - 0.8V

20 — — mA 3, 4

Iol_Strong I/O current sink capability measuredwhen pad Vol = 0.8 V

20 — — mA 4, 5

IOHT Output high current total for all ports — — 100 mA

IIN Input leakage current (per pin) for full temperature range at VDD = 5.5 V 6

All pins other than high drive portpins

0.005 0.5 μA

High drive port pins 0.010 0.5 μA

RPU Internal pullup resistors 20 50 kΩ 7

RPD Internal pulldown resistors 20 50 kΩ 8

1. For reset pads, same Vih levels are applicable2. For reset pads, same Vil levels are applicable3. The value given is measured at high drive strength mode. For value at low drive strength mode see the Ioh_Standard

value given above.4. The strong pad I/O pin is capable of switching a 50 pF load at up to 40 MHz.5. The value given is measured at high drive strength mode. For value at low drive strength mode see the Iol_Standard value

given above.6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All

other GPIOs are normal drive only. For details refer to MWCT101xS_IO_Signal_Description_Input_Multiplexing.xlsxattached with the Reference Manual.

7. Measured at input V = VSS8. Measured at input V = VDD

5.5 AC electrical specifications at 3.3 V rangeTable 11. AC electrical specifications at 3.3 V Range

Symbol DSE Rise time (nS) 1 Fall time (nS) 1 Capacitance (pF) 2

Min. Max. Min. Max.

tRFGPIO NA 3.2 14.5 3.4 15.7 25

5.7 23.7 6.0 26.2 50

20.0 80.0 20.8 88.4 200

tRFGPIO-HD 0 3.2 14.5 3.4 15.7 25

Table continues on the next page...

I/O parameters

MWCT101XS Data Sheet, Rev. 3, 12/2019

20 NXP Semiconductors

Table 11. AC electrical specifications at 3.3 V Range (continued)

Symbol DSE Rise time (nS) 1 Fall time (nS) 1 Capacitance (pF) 2

Min. Max. Min. Max.

5.7 23.7 6.0 26.2 50

20.0 80.0 20.8 88.4 200

1 1.5 5.8 1.7 6.1 25

2.4 8.0 2.6 8.3 50

6.3 22.0 6.0 23.8 200

tRFGPIO-FAST 0 0.6 2.8 0.5 2.8 25

3.0 7.1 2.6 7.5 50

12.0 27.0 10.3 26.8 200

1 0.4 1.3 0.38 1.3 25

1.5 3.8 1.4 3.9 50

7.4 14.9 7.0 15.3 200

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be

different, for example for QSPI etc. . For protocol specific AC specifications, see respective sections.

5.6 AC electrical specifications at 5 V rangeTable 12. AC electrical specifications at 5 V Range

Symbol DSE Rise time (nS)1 Fall time (nS) 1 Capacitance (pF) 2

Min. Max . Min. Max.

tRFGPIO NA 2.8 9.4 2.9 10.7 25

5.0 15.7 5.1 17.4 50

17.3 54.8 17.6 59.7 200

tRFGPIO-HD 0 2.8 9.4 2.9 10.7 25

5.0 15.7 5.1 17.4 50

17.3 54.8 17.6 59.7 200

1 1.1 4.6 1.1 5.0 25

2.0 5.7 2.0 5.8 50

5.4 16.0 5.0 16.0 200

tRFGPIO-FAST 0 0.42 2.2 0.37 2.2 25

2.0 5.0 1.9 5.2 50

9.3 18.8 8.5 19.3 200

1 0.37 0.9 0.35 0.9 25

1.2 2.7 1.2 2.9 50

6.0 11.8 6.0 12.3 200

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be

different, for example for QSPI etc. . For protocol specific AC specifications, see respective sections.

I/O parameters

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 21

5.7 Standard input pin capacitanceTable 13. Standard input pin capacitance

Symbol Description Min. Max. Unit

CIN_D Input capacitance: digital pins — 7 pF

NOTEPlease refer to External System Oscillator electricalspecifications for EXTAL/XTAL pins.

5.8 Device clock specificationsTable 14. Device clock specifications 1

Symbol Description Min. Max. Unit

High Speed run mode2

fSYS System and core clock — 112 MHz

fBUS Bus clock — 56 MHz

fFLASH Flash clock — 28 MHz

Normal run mode (MWCT101xS series) 3

fSYS System and core clock — 80 MHz

fBUS Bus clock — 404 MHz

fFLASH Flash clock — 26.67 MHz

VLPR mode5

fSYS System and core clock — 4 MHz

fBUS Bus clock — 4 MHz

fFLASH Flash clock — 1 MHz

fERCLK External reference clock — 16 MHz

1. Refer to the section Feature comparison for the availability of modes and other specifications.2. Only available on some devices. See section Feature comparison.3. With SPLL as system clock source.4. 48 MHz when fSYS is 48 MHz5. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any

other module.

I/O parameters

MWCT101XS Data Sheet, Rev. 3, 12/2019

22 NXP Semiconductors

Peripheral operating requirements and behaviors

6.1 System modules

There are no electrical specifications necessary for the device's system modules.

Clock interface modules

6.2.1 External System Oscillator electrical specifications

6

6.2

Peripheral operating requirements and behaviors

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 23

Single input comparator(EXTAL WAVE) Mux

ref_clk

Differential input comparator(HG/LP mode)

Peak detector LP mode

Driver(HG/LP mode)

Pull down resistor (OFF)

ESD PAD280 ohms

ESD PAD40 ohms

EXTAL pin XTAL pin

Series resistor for current limitation

Crystal or resonatorC1 C2

1M ohms Feedback Resistor

Figure 7. Oscillator connections scheme

Table 15. External System Oscillator electrical specifications

Symbol Description Min. Typ. Max. Unit Notes

gmXOSC Crystal oscillator transconductance

4-8 MHz 2.2 — 13.7 mA/V

8-40 MHz 16 — 47 mA/V

VIL Input low voltage — EXTAL pin in external clock mode VSS — 0.35 * VDD V

VIH Input high voltage — EXTAL pin in external clockmode

0.7 * VDD — VDD V

C1 EXTAL load capacitance — — — 1

C2 XTAL load capacitance — — — 1

RF Feedback resistor 2

Low-gain mode (HGO=0) — — — MΩ

Table continues on the next page...

Clock interface modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

24 NXP Semiconductors

Table 15. External System Oscillator electrical specifications(continued)

Symbol Description Min. Typ. Max. Unit Notes

High-gain mode (HGO=1) — 1 — MΩ

RS Series resistor

Low-gain mode (HGO=0) — 0 — kΩ

High-gain mode (HGO=1) — 0 — kΩ

Vpp Peak-to-peak amplitude of oscillation (oscillator mode) 3

Low-gain mode (HGO=0) — 1.0 — V

High-gain mode (HGO=1) — 3.3 — V

1. Crystal oscillator circuit provides stable oscillations when gmXOSC > 5 * gm_crit. The gm_crit is defined as:

gm_crit = 4 * ESR * (2πF)2 * (C0 + CL)2

where:

• gmXOSC is the transconductance of the internal oscillator circuit• ESR is the equivalent series resistance of the external crystal• F is the external crystal oscillation frequency• C0 is the shunt capacitance of the external crystal• CL is the external crystal total load capacitance. CL = Cs+ [C1*C2/(C1+C2)]• Cs is stray or parasitic capacitance on the pin due to any PCB traces• C1, C2 external load capacitances on EXTAL and XTAL pins

See manufacture datasheet for external crystal component values2. • When low-gain is selected, internal RF will be selected and external RF should not be attached.

• When high-gain is selected, external RF (1 M Ohm) needs to be connected for proper operation of the crystal. Forexternal resistor, up to 5% tolerance is allowed.

3. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to anyother devices.

6.2.2 External System Oscillator frequency specificationsTable 16. External System Oscillator frequency specifications

Symbol Description Min. Typ. Max. Unit Notes

fosc_hi Oscillator crystal or resonator frequency 4 — 40 MHz

fec_extal Input clock frequency (external clock mode) — — 50 MHz 1

tdc_extal Input clock duty cycle (external clock mode) 48 50 52 % 1

tcst Crystal Start-up Time

8 MHz low-gain mode (HGO=0) — 1.5 — ms 2

8 MHz high-gain mode (HGO=1) — 2.5 —

40 MHz low-gain mode (HGO=0) — 2 —

40 MHz high-gain mode (HGO=1) — 2 —

1. Frequencies below 40 MHz can be used for degraded duty cycle up to 40-60%2. Proper PC board layout procedures must be followed to achieve specifications.

Clock interface modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 25

System Clock Generation (SCG) specifications

6.2.3.1 Fast internal RC Oscillator (FIRC) electrical specificationsTable 17. Fast internal RC Oscillator electrical specifications

Symbol Parameter1 Value Unit

Min. Typ. Max.

FFIRC FIRC target frequency — 48 — MHz

ΔF Frequency deviation across process, voltage, andtemperature < 105°C

— ±0.5 ±1 %FFIRC

ΔF125 Frequency deviation across process, voltage, andtemperature < 125°C

— ±0.5 ±1.1 %FFIRC

TStartup Startup time 3.4 5 µs2

TJIT, 3 Cycle-to-Cycle jitter — 250 500 ps

TJIT3 Long term jitter over 1000 cycles — 0.04 0.1 %FFIRC

1. With FIRC regulator enable2. Startup time is defined as the time between clock enablement and clock availability for system use.3. FIRC as system clock

NOTEFast internal RC Oscillator is compliant with CAN and LINstandards.

6.2.3.2 Slow internal RC oscillator (SIRC) electrical specificationsTable 18. Slow internal RC oscillator (SIRC) electrical specifications

Symbol Parameter Value Unit

Min. Typ. Max.

FSIRC SIRC target frequency — 8 — MHz

ΔF Frequency deviation across process, voltage, andtemperature < 105°C

— — ±3 %FSIRC

ΔF125 Frequency deviation across process, voltage, andtemperature < 125°C

— — ±3.3 %FSIRC

TStartup Startup time — 9 12.5 µs1

1. Startup time is defined as the time between clock enablement and clock availability for system use.

6.2.3

System Clock Generation (SCG) specifications

MWCT101XS Data Sheet, Rev. 3, 12/2019

26 NXP Semiconductors

6.2.4 Low Power Oscillator (LPO) electrical specificationsTable 19. Low Power Oscillator (LPO) electrical specifications

Symbol Parameter Min. Typ. Max. Unit

FLPO Internal low power oscillator frequency 113 128 139 kHz

Tstartup Startup Time — — 20 µs

6.2.5 SPLL electrical specificationsTable 20. SPLL electrical specifications

Symbol Parameter Min. Typ. Max. Unit

FSPLL_REF1 PLL Reference Frequency Range 8 — 16 MHz

FSPLL_Input2 PLL Input Frequency 8 — 40 MHz

FVCO_CLK VCO output frequency 180 — 320 MHz

FSPLL_CLK PLL output frequency 90 — 160 MHz

JCYC_SPLL PLL Period Jitter (RMS)3

at FVCO_CLK 180 MHz — 120 — ps

at FVCO_CLK 320 MHz — 75 — ps

JACC_SPLL PLL accumulated jitter over 1µs (RMS)3

at FVCO_CLK 180 MHz — 1350 — ps

at FVCO_CLK 320 MHz — 600 — ps

DUNL Lock exit frequency tolerance ± 4.47 — ± 5.97 %

TSPLL_LOCK Lock detector detection time4 — — 150 × 10-6 +1075(1/FSPLL_REF)

s

1. FSPLL_REF is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFGregister of Reference Manual.

2. FSPLL_Input is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This inputsource could be derived from a crystal oscillator or some other external square wave clock source using OSC bypassmode. For external clock source settings refer SCG_SOSCCFG register of Reference Manual.

3. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of eachPCB and results will vary

4. Lock detector detection time is defined as the time between PLL enablement and clock availability for system use.

Memory and memory interfaces

6.3.1 Flash memory module (FTFC) electrical specifications

This section describes the electrical characteristics of the flash memory module.

6.3

Memory and memory interfaces

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 27

6.3.1.1 Flash timing specifications — commandsTable 21. Flash command timing specifications

Symbol Description1 MWCT1014S MWCT1015S MWCT1016S

Typ Max Typ Max Typ Max Unit Notes

trd1blk Read 1 Blockexecution time

32 KB flash — — — — — — ms

64 KB flash — 0.5 — 0.5 — —

128 KB flash — — — — — —

256 KB flash — — — — — —

512 KB flash — 1.8 — 2 — 2

trd1sec Read 1 Sectionexecution time

2 KB flash — 75 — 75 — 75 µs

4 KB flash — 100 — 100 — 100

tpgmchk Program Checkexecution time

— — 95 — 95 — 100 µs

tpgm8 Program Phraseexecution time

— 90 225 90 225 90 225 µs

tersblk Erase Flash Blockexecution time

32 KB flash — — — — — — ms 2

64 KB flash 30 550 30 550 — —

128 KB flash — — — — — —

256 KB flash — — — — — —

512 KB flash 250 4250 250 4250 250 4250

tersscr Erase Flash Sectorexecution time

— 12 130 12 130 12 130 ms 2

tpgmsec1k Program Sectionexecution time(1KB flash)

— 5 — 5 — 5 — ms

trd1all Read 1s All Blockexecution time

— — 2.3 — 5.2 — 8.2 ms

trdonce Read Onceexecution time

— — 30 — 30 — 30 µs

tpgmonce Program Onceexecution time

— 90 — 90 — 90 — µs

tersall Erase All Blocksexecution time

— 400 4900 700 10000 1400 17000 ms 2

tvfykey Verify BackdoorAccess Keyexecution time

— — 35 — 35 — 35 µs

tersallu Erase All BlocksUnsecureexecution time

— 400 4900 700 10000 1400 17000 ms 2

tpgmpart Program Partitionfor EEPROMexecution time

32 KBEEPROMbackup

70 — 70 — — — ms 3

64 KBEEPROMbackup

71 — 71 — 150 —

Table continues on the next page...

Memory and memory interfaces

MWCT101XS Data Sheet, Rev. 3, 12/2019

28 NXP Semiconductors

Table 21. Flash command timing specifications (continued)

Symbol Description1 MWCT1014S MWCT1015S MWCT1016S

Typ Max Typ Max Typ Max Unit Notes

tsetram Set FlexRAMFunction executiontime

Control Code0xFF

0.08 — 0.08 — 0.08 — ms 3

32 KBEEPROMbackup

0.8 1.2 0.8 1.2 — —

48 KBEEPROMbackup

1 1.5 1 1.5 — —

64 KBEEPROMbackup

1.3 1.9 1.3 1.9 1.3 1.9

teewr8b Byte write toFlexRAM executiontime

32 KBEEPROMbackup

385 1700 385 1700 — — µs 3,4

48 KBEEPROMbackup

430 1850 430 1850 — —

64 KBEEPROMbackup

475 2000 475 2000 475 4000

teewr16b 16-bit write toFlexRAM executiontime

32 KBEEPROMbackup

385 1700 385 1700 — — µs 3,4

48 KBEEPROMbackup

430 1850 430 1850 — —

64 KBEEPROMbackup

475 2000 475 2000 475 4000

teewr32bers 32-bit write toerased FlexRAMlocation executiontime

— 360 2000 360 2000 360 2000 µs

teewr32b 32-bit write toFlexRAM executiontime

32 KBEEPROMbackup

630 2000 630 2000 — — µs 3,4

48 KBEEPROMbackup

720 2125 720 2125 — —

64 KBEEPROMbackup

810 2250 810 2250 810 4500

tquickwr 32-bit Quick Writeexecution time:Time from CCIFclearing (start thewrite) until CCIFsetting (32-bit write

1st 32-bit write 200 550 200 550 200 1100 µs 4,5,6

2nd throughNext to Last(Nth-1) 32-bitwrite

150 550 150 550 150 550

Table continues on the next page...

Memory and memory interfaces

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 29

Table 21. Flash command timing specifications (continued)

Symbol Description1 MWCT1014S MWCT1015S MWCT1016S

Typ Max Typ Max Typ Max Unit Notes

complete, ready fornext 32-bit write)

Last (Nth) 32-bit write (timefor write only,not cleanup)

200 550 200 550 200 550

tquickwrClnup Quick WriteCleanup executiontime

— — (# ofQuickWrites ) *2.0

— (# ofQuickWrites )* 2.0

— (# ofQuickWrites )* 2.0

ms 7

1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/externalclocks).

2. Maximum times for erase parameters based on expectations at cycling end-of-life.3. For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may

be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROMissues detected.

4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2× thetimes shown.

5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occurafter this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid recordset will still be valid and the new records will be discarded.

6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes,

assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

NOTEUnder certain circumstances FlexMEM maximum times may beexceeded. In this case the user or application may wait, or assertreset to the FTFC macro to stop the operation.

6.3.1.2 Reliability specificationsTable 22. NVM reliability specifications

Symbol Description Min. Typ. Max. Unit Notes

When using as Program and Data Flash

tnvmretp1k Data retention after up to 1 K cycles 20 — — years 1

nnvmcycp Cycling endurance 1 K — — cycles 2, 3

When using FlexMemory feature: FlexRAM as Emulated EEPROM

tnvmretee Data retention 5 — — years 4

nnvmwree16

nnvmwree256

Write endurance• EEPROM backup to FlexRAM ratio = 16• EEPROM backup to FlexRAM ratio = 256

100 K

1.6 M

writes

writes

5, 6, 7

1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.2. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not

supported in HSRUN mode).3. Cycling endurance is per DFlash or PFlash Sector.4. Data retention period per block begins upon initial user factory programming or after each subsequent erase. Background

maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years.

Memory and memory interfaces

MWCT101XS Data Sheet, Rev. 3, 12/2019

30 NXP Semiconductors

5. FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across producttemperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achievedwith larger ratios of EEPROM backup to FlexRAM.

6. For usage of any EEE driver other than the FlexMemory feature, the endurance spec will fall back to the specifiedendurance value of the D-Flash specification (1K).

7. FlexMemory calculator tool is available at NXP web site for help in estimation of the maximum write endurance achievableat specific EEPROM/FlexRAM ratios. The “In Spec” portions of the online calculator refer to the NVM reliabilityspecifications section of data sheet. This calculator is only applies to the FlexMemory feature.

6.3.2 QuadSPI AC specifications

The following table describes the QuadSPI electrical characteristics.

• Measurements are with maximum output load of 25 pF, input transition of 1 ns andpad configured with fastest slew settings (DSE = 1'b1).

• I/O operating voltage ranges from 2.97 V to 3.6 V• While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the

interface should be OFF.• Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop

back reflection when using in Internal DQS (PAD Loopback) mode.• QuadSPI trace length should be 3 inches.• For non-Quad mode of operation if external device doesn’t have pull-up feature,

external pull-up needs to be added at board level for non-used pads.• With external pull-up, performance of the interface may degrade based on load

associated with external pull-up.

Memory and memory interfaces

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 31

Tab

le 2

3.Q

uad

SP

I ele

ctri

cal s

pec

ific

atio

ns

FL

AS

H P

OR

TS

ymU

nit

FL

AS

H A

FL

AS

H B

RU

N1

HS

RU

N1

RU

N/H

SR

UN

2

Qu

adS

PI M

od

eS

DR

SD

RS

DR

DD

R3

Inte

rnal

Sam

plin

gIn

tern

al D

QS

Inte

rnal

Sam

plin

gIn

tern

al D

QS

Inte

rnal

Sam

plin

gE

xter

nal

DQ

S

N1

PA

DL

oo

pb

ack

Inte

rnal

Lo

op

bac

kN

1P

AD

Lo

op

bac

kIn

tern

alL

oo

pb

ack

N1

Ext

ern

al D

QS

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Reg

iste

r S

ettin

gs

MC

R[D

DR

_EN

]-

00

00

00

01

MC

R[D

QS

_EN

]-

01

10

11

01

MC

R[S

CLK

CF

G[0

]]-

-1

0-

10

--

MC

R[S

CLK

CF

G[1

]]-

-1

0-

10

--

MC

R[S

CLK

CF

G[2

]]-

--

--

--

-0

MC

R[S

CLK

CF

G[3

]]-

--

--

--

-0

MC

R[S

CLK

CF

G[5

]]-

00

00

00

01

SM

PR

[FS

PH

S]

-0

10

01

00

0

SM

PR

[FS

DLY

]-

00

00

00

00

SO

CC

R

[SO

CC

FG

[7:0

]]

-0

23-

030

--

SO

CC

R[S

OC

CF

G[1

5:8]

]-

--

--

--

-30

FLS

HC

R[T

DH

]-

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x01

Tim

ing

Par

amet

ers

SC

K C

lock

Fre

quen

cyf S

CK

MH

z-

38-

64-

48-

40-

80-

50-

20-

204

SC

K C

lock

Per

iod

t SC

Kns

1/fSCK

-

1/fSCK

-

1/fSCK

-

1/fSCK

-

1/fSCK

-

1/fSCK

-50

.0-

50.0

4-

Tab

le c

ontin

ues

on th

e ne

xt p

age.

..

Memory and memory interfaces

MWCT101XS Data Sheet, Rev. 3, 12/2019

32 NXP Semiconductors

Tab

le 2

3.Q

uad

SP

I ele

ctri

cal s

pec

ific

atio

ns

(co

nti

nu

ed)

FL

AS

H P

OR

TS

ymU

nit

FL

AS

H A

FL

AS

H B

RU

N1

HS

RU

N1

RU

N/H

SR

UN

2

Qu

adS

PI M

od

eS

DR

SD

RS

DR

DD

R3

Inte

rnal

Sam

plin

gIn

tern

al D

QS

Inte

rnal

Sam

plin

gIn

tern

al D

QS

Inte

rnal

Sam

plin

gE

xter

nal

DQ

S

N1

PA

DL

oo

pb

ack

Inte

rnal

Lo

op

bac

kN

1P

AD

Lo

op

bac

kIn

tern

alL

oo

pb

ack

N1

Ext

ern

al D

QS

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

SC

K D

uty

Cyc

let S

DC

ns

tSCK/2 - 1.5

tSCK/2 + 1.5

tSCK/2 - 1.5

tSCK/2 + 1.5

tSCK/2 - 1.5

tSCK/2 + 1.5

tSCK/2 - 1.5

tSCK/2 + 1.5

tSCK/2 - 0.750

tSCK/2 - 0.750

tSCK/2 - 1.5

tSCK/2 + 1.5

tSCK/2 - 2.5

tSCK/2 + 2.5

tSCK/2 - 2.5

tSCK/2 + 2.5

Dat

a In

put S

etup

Tim

et IS

ns15

-2.

5-

10-

14-

1.6

-9

-25

-2

-

Dat

a In

put H

old

Tim

et IH

ns0

-1

-1

-0

-1

-1

-0

-20

-

Dat

a O

utpu

t Val

id T

ime

t OV

ns-

4.5

-4.

5-

4.5

-4

-4

-4

-10

-10

Dat

a O

utpu

t In-

Val

idT

ime

t IVns

-5

-5

-5

-5

-35

-5

-5

5-

CS

to S

CK

Tim

e 6

t CS

SC

Kns

5-

5-

5-

5-

5-

5-

10-

10-

SC

K to

CS

Tim

e 7

t SC

KC

Sns

5-

5-

5-

5-

5-

5-

5-

5-

Out

put L

oad

pf25

2525

2525

2525

25

1.S

ee R

efer

ence

Man

ual f

or d

etai

ls o

n m

ode

setti

ngs

2.S

ee R

efer

ence

Man

ual f

or d

etai

ls o

n m

ode

setti

ngs

3.V

alid

for

Hyp

erR

AM

onl

y4.

RW

DS

(Ext

erna

l DQ

S C

LK)

freq

uenc

y5.

For

ope

ratin

g fr

eque

ncy

≤ 6

4 M

hz,O

utpu

t inv

alid

tim

e is

5 n

s.6.

Pro

gram

reg

iste

r va

lue

Qua

dSP

I_F

LSH

CR

[TC

SS

] = 4

`h2

7.P

rogr

am r

egis

ter

valu

e Q

uadS

PI_

FLS

HC

R[T

CS

H] =

4`h

1

Memory and memory interfaces

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 33

1 2 3

tSCK

tIS tIH

Clock

SCK

CS

Data in

tSDC tSDC

Figure 8. QuadSPI input timing (SDR mode) diagram

1 2 3

tIV tOV

tSCK

tCSSCK tSCKCS

Clock

SCK

CS

Data out

tSDC tSDC tSDC

Invalid

Figure 9. QuadSPI output timing (SDR mode) diagram

invalid invalidD2 invalid invalidD4D3D1 D5

TIS TIS

TIHTIH

TIS– Setup TimeTIH– Hold Time

Figure 10. QuadSPI input timing (HyperRAM mode) diagram

Memory and memory interfaces

MWCT101XS Data Sheet, Rev. 3, 12/2019

34 NXP Semiconductors

CK

tOV

Output Invalid Data

tIV

Figure 11. QuadSPI output timing (HyperRAM mode) diagram

Analog modules

ADC electrical specifications

6.4.1.1 12-bit ADC operating conditionsTable 24. 12-bit ADC operating conditions

Symbol Description Conditions Min. Typ.1 Max. Unit Notes

VREFH ADC reference voltage high See Voltageand currentoperating

requirementsfor values

VDDA See Voltageand currentoperating

requirementsfor values

V 2

VREFL ADC reference voltage low See Voltageand currentoperating

requirementsfor values

0 See Voltageand currentoperating

requirementsfor values

mV 2

VADIN Input voltage VREFL — VREFH V

RS Source impedendance fADCK < 4 MHz — — 5 kΩ

RSW1 Channel Selection SwitchImpedance

— 0.75 1.2 kΩ

RAD Sampling Switch Impedance — 2 5 kΩ

CP1 Pin Capacitance — 10 — pF

CP2 Analog Bus Capacitance — — 4 pF

CS Sampling capacitance — 4 5 pF

Table continues on the next page...

6.4

6.4.1

Analog modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 35

Table 24. 12-bit ADC operating conditions (continued)

Symbol Description Conditions Min. Typ.1 Max. Unit Notes

fADCK ADC conversion clockfrequency

Normal usage 2 40 50 MHz 3, 4

fCONV ADC conversion frequency No ADC hardwareaveraging.5 Continuousconversions enabled,subsequent conversiontime

46.4 928 1160 Ksps 6, 7

ADC hardware averagingset to 32. 5 Continuousconversions enabled,subsequent conversiontime

1.45 29 36.25 Ksps 6, 7

1. Typical values assume VDDA = 5 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF unless otherwise stated.Typical values are for reference only, and are not tested in production.

2. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to VSS.To get maximum performance, reference supply quality should be better than SAR ADC. See application note AN5032 fordetails.

3. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual .4. ADC conversion will become less reliable above maximum frequency.5. When using ADC hardware averaging, see the Reference Manual to determine the most appropriate setting for AVGS.6. Numbers based on the minimum sampling time of 275 ns.7. For guidelines and examples of conversion rate calculation, see the Reference Manual or download the ADC calculator

tool.

Figure 12. ADC input impedance equivalency diagram

ADC electrical specifications

MWCT101XS Data Sheet, Rev. 3, 12/2019

36 NXP Semiconductors

6.4.1.2 12-bit ADC electrical characteristics

NOTE• ADC performance specifications are documented using a

single ADC. For parallel/simultaneous operation of bothADCs, either for sampling the same channel by both ADCsor for sampling different channels by each ADC, someamount of decrease in performance can be expected. Caremust be taken to stagger the two ADC conversions, inparticular the sample phase, to minimize the impact ofsimultaneous conversions.

• On reduced pin packages where ADC reference pins areshared with supply pins, ADC analog performancecharacteristics may be impacted. The amount of variationwill be directly impacted by the external PCB layout andhence care must be taken with PCB routing. See AN5426for details

Table 25. 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS)

Symbol Description Conditions 1 Min. Typ.2 Max. Unit Notes

VDDA Supply voltage 2.7 — 3 V

IDDA_ADC Supply current per ADC — 0.6 — mA 3

SMPLTS Sample Time 275 — Refer tothe

ReferenceManual

ns

TUE4 Total unadjusted error — ±4 ±8 LSB5 6, 7, 8, 9

DNL Differential non-linearity — ±1.0 — LSB5 6, 7, 8, 9

INL Integral non-linearity — ±2.0 — LSB5 6, 7, 8, 9

1. All accuracy numbers assume the ADC is calibrated with VREFH=VDDA=VDD, with the calibration frequency set to less thanor equal to half of the maximum specified ADC clock frequency.

2. Typical values assume VDDA = 3 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF.3. The ADC supply current depends on the ADC conversion rate.4. Represents total static error, which includes offset and full scale error.5. 1 LSB = (VREFH - VREFL)/2N

6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon deviceuse case scenario. When using ADC averaging, refer to the Reference Manual to determine the most appropriate settingsfor AVGS.

7. For ADC signals adjacent to VDD/VSS or XTAL/EXTAL or high frequency switching pins, some degradation in the ADCperformance may be observed.

8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor theinternal analog parameters, assume minor degradation.

9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

ADC electrical specifications

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 37

Table 26. 12-bit ADC characteristics (3 V to 5.5 V)(VREFH = VDDA, VREFL = VSS)

Symbol Description Conditions 1 Min. Typ.2 Max. Unit Notes

VDDA Supply voltage 3 — 5.5 V

IDDA_ADC Supply current per ADC — 1 — mA 3

SMPLTS Sample Time 275 — Refer tothe

ReferenceManual

ns

TUE4 Total unadjusted error — ±4 ±8 LSB5 6, 7, 8, 9

DNL Differential non-linearity — ±0.7 — LSB5 6, 7, 8, 9

INL Integral non-linearity — ±1.0 — LSB5 6, 7, 8, 9

1. All accuracy numbers assume the ADC is calibrated with VREFH=VDDA=VDD, with the calibration frequency set to less thanor equal to half of the maximum specified ADC clock frequency.

2. Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF unless otherwise stated.3. The ADC supply current depends on the ADC conversion rate.4. Represents total static error, which includes offset and full scale error.5. 1 LSB = (VREFH - VREFL)/2N

6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon deviceuse case scenario. When using ADC averaging, refer to the Reference Manual to determine the most appropriate settingsfor AVGS.

7. For ADC signals adjacent to VDD/VSS or XTAL/EXTAL or high frequency switching pins, some degradation in the ADCperformance may be observed.

8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor theinternal analog parameters, assume minor degradation.

9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

NOTE• Due to triple bonding in lower pin packages like the 64-

LQFP, degradation might be seen in ADC parameters.• When using high speed interfaces such as the QuadSPI,

there may be some ADC degradation on the adjacentanalog input paths. See following table for details.

Pin name TGATE purpose

PTE8 CMP0_IN3

PTC3 ADC0_SE11/CMP0_IN4

PTC2 ADC0_SE10/CMP0_IN5

PTD7 CMP0_IN6

PTD6 CMP0_IN7

PTD28 ADC1_SE22

PTD27 ADC1_SE21

ADC electrical specifications

MWCT101XS Data Sheet, Rev. 3, 12/2019

38 NXP Semiconductors

6.4.2 CMP with 8-bit DAC electrical specificationsTable 28. Comparator with 8-bit DAC electrical specifications

Symbol Description Min. Typ. Max. Unit

IDDHS Supply current, High-speed mode1 μA

-40 - 125 ℃ — 230 300

IDDLS Supply current, Low-speed mode1 μA

-40 - 105 ℃ — 6 11

-40 - 125 ℃ 6 13

VAIN Analog input voltage 0 0 - VDDA VDDA V

VAIO Analog input offset voltage, High-speed mode mV

-40 - 125 ℃ -25 ±1 25

VAIO Analog input offset voltage, Low-speed mode mV

-40 - 125 ℃ -40 ±4 40

tDHSB Propagation delay, High-speed mode2 ns

-40 - 105 ℃ — 35 200

-40 - 125 ℃ 35 300

tDLSB Propagation delay, Low-speed mode2 µs

-40 - 105 ℃ — 0.5 2

-40 - 125 ℃ — 0.5 3

tDHSS Propagation delay, High-speed mode3 ns

-40 - 105 ℃ — 70 400

-40 - 125 ℃ — 70 500

tDLSS Propagation delay, Low-speed mode3 µs

-40 - 105 ℃ — 1 5

-40 - 125 ℃ — 1 5

tIDHS Initialization delay, High-speed mode4 μs

-40 - 125 ℃ — 1.5 3

tIDLS Initialization delay, Low-speed mode4 μs

-40 - 125 ℃ — 10 30

VHYST0 Analog comparator hysteresis, Hyst0 mV

-40 - 125 ℃ — 0 —

VHYST1 Analog comparator hysteresis, Hyst1, High-speedmode

mV

-40 - 125 ℃ — 19 66

Analog comparator hysteresis, Hyst1, Low-speedmode

-40 - 125 ℃ — 15 40

VHYST2 Analog comparator hysteresis, Hyst2, High-speedmode

mV

-40 - 125 ℃ — 34 133

Table continues on the next page...

ADC electrical specifications

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 39

Table 28. Comparator with 8-bit DAC electrical specifications (continued)

Symbol Description Min. Typ. Max. Unit

Analog comparator hysteresis, Hyst2, Low-speedmode

-40 - 125 ℃ — 23 80

VHYST3 Analog comparator hysteresis, Hyst3, High-speedmode

mV

-40 - 125 ℃ — 46 200

Analog comparator hysteresis, Hyst3, Low-speedmode

-40 - 125 ℃ — 32 120

IDAC8b 8-bit DAC current adder (enabled)

3.3V Reference Voltage — 6 9 μA

5V Reference Voltage — 10 16 μA

INL5 8-bit DAC integral non-linearity –0.75 — 0.75 LSB6

DNL 8-bit DAC differential non-linearity –0.5 — 0.5 LSB6

tDDAC Initialization and switching settling time — — 30 μs

1. Difference at input > 200mV2. Applied ± (100 mV + VHYST0/1/2/3+ max. of VAIO) around switch point.3. Applied ± (30 mV + 2 × VHYST0/1/2/3+ max. of VAIO) around switch point.4. Applied ± (100 mV + VHYST0/1/2/3).5. Calculation method used: Linear Regression Least Square Method6. 1 LSB = Vreference/256

NOTEFor comparator IN signals adjacent to VDD/VSS or XTAL/EXTAL or switching pins cross coupling may happen andhence hysteresis settings can be used to obtain the desiredcomparator performance. Additionally, an external capacitor(1nF) should be used to filter noise on input signal. Also, sourcedrive should not be weak (Signal with < 50 K pull up/down isrecommended).

ADC electrical specifications

MWCT101XS Data Sheet, Rev. 3, 12/2019

40 NXP Semiconductors

Figure 13. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 0)

Figure 14. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 1)

ADC electrical specifications

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 41

Figure 15. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0)

Figure 16. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1)

ADC electrical specifications

MWCT101XS Data Sheet, Rev. 3, 12/2019

42 NXP Semiconductors

Communication modules

6.5.1 LPUART electrical specifications

Refer to General AC specifications for LPUART specifications.

6.5.1.1 Supported baud rate

Baud rate = Baud clock / ((OSR+1) * SBR).

For details, see section: 'Baud rate generation' of the Reference Manual.

6.5.2 LPSPI electrical specifications

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial buswith master and slave operations. Many of the transfer attributes are programmable. Thefollowing tables provide timing characteristics for classic LPSPI timing modes.

• All timing is shown with respect to 20% VDD and 80% VDD thresholds.• All measurements are with maximum output load of 50 pF, input transition of 1 ns

and pad configured with fastest slew setting ( DSE = 1 ).

6.5

Communication modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 43

Tab

le 2

9.L

PS

PI e

lect

rica

l sp

ecif

icat

ion

s1

Nu

mS

ymb

ol

Des

crip

tio

nC

on

dit

ion

sR

un

Mo

de2

HS

RU

N M

od

e2V

LP

R M

od

eU

nit

5.0

V IO

3.3

V IO

5.0

V IO

3.3

V IO

5.0

V IO

3.3

V IO

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

f per

iph, 3

, 4P

erip

hera

lF

requ

ency

Sla

ve-

40-

40-

56-

56-

4-

4M

Hz

Mas

ter

-40

-40

-56

-56

-4

-4

Mas

ter

Loop

back

5-

40-

48-

48-

48-

4-

4

Mas

ter

Loop

back

(slo

w)6

-48

-48

-48

-48

-4

-4

1f o

pF

requ

ency

of

oper

atio

nS

lave

-10

-10

-14

-14

7-

2-

2M

Hz

Mas

ter

-10

-10

-14

-14

7-

2-

2

Mas

ter

Loop

back

5-

20-

12-

24-

12-

2-

2

Mas

ter

Loop

back

(slo

w)6

-12

-12

-12

-12

-2

-2

2t S

PS

CK

SP

SC

K p

erio

dS

lave

100

-10

0-

72-

72-

500

-50

0-

ns

Mas

ter

100

-10

0-

72-

72-

500

-50

0-

Mas

ter

Loop

back

550

-83

-42

-83

-50

0-

500

-

Mas

ter

Loop

back

(slo

w)6

83-

83-

83-

83-

500

-50

0-

3t L

ead8

Ena

ble

lead

time

(PC

S to

SP

SC

K d

elay

)

Sla

ve-

--

--

--

--

--

-ns

Mas

ter

(PCSSCK+1)*tperiph-25

-

(PCSSCK+1)*tperiph-25

-

(PCSSCK+1)*tperiph-25

-

(PCSSCK+1)*tperiph-25

-

(PCSSCK+1)*tperiph-50

-

(PCSSCK+1)*tperiph-50

-

Mas

ter

Loop

back

5

Mas

ter

Loop

back

(slo

w)6

Tab

le c

ontin

ues

on th

e ne

xt p

age.

..

Communication modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

44 NXP Semiconductors

Tab

le 2

9.L

PS

PI e

lect

rica

l sp

ecif

icat

ion

s1 (

con

tin

ued

)

Nu

mS

ymb

ol

Des

crip

tio

nC

on

dit

ion

sR

un

Mo

de2

HS

RU

N M

od

e2V

LP

R M

od

eU

nit

5.0

V IO

3.3

V IO

5.0

V IO

3.3

V IO

5.0

V IO

3.3

V IO

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

4t L

ag9

Ena

ble

lag

time

(Afte

rS

PS

CK

del

ay)

Sla

ve-

--

--

--

--

--

-ns

Mas

ter

(SCKPCS+1)*tperiph- 25

-

(SCKPCS+1)*tperiph- 25

-

(SCKPCS+1)*tperiph- 25

-

(SCKPCS+1)*tperiph- 25

-

(SCKPCS+1)*tperiph- 50

-

(SCKPCS+1)*tperiph- 50

-

Mas

ter

Loop

back

5

Mas

ter

Loop

back

(slo

w)6

5t W

SP

SC

KC

lock

(SP

SC

K)

high

or

low

time

(SP

SC

Kdu

ty c

ycle

)

Sla

vetSPSCK/2-3

tSPSCK/2+3

tSPSCK/2-3

tSPSCK/2+3

tSPSCK/2-3

tSPSCK/2+3

tSPSCK/2-3

tSPSCK/2+3

tSPSCK/2-5

tSPSCK/2+5

tSPSCK/2-5

tSPSCK/2+5

ns

Mas

ter

Mas

ter

Loop

back

5

Mas

ter

Loop

back

(slo

w)6

6t S

UD

ata

setu

ptim

e(in

puts

)S

lave

3-

5-

3-

5-

18-

18-

ns

Mas

ter

29-

38-

26-

3710

32 11

-72

-78

-

Mas

ter

Loop

back

57

-8

-5

-7

-20

-20

-

Mas

ter

Loop

back

(slo

w)6

8-

10-

7-

9-

20-

20-

7t H

ID

ata

hold

time(

inpu

ts)

Sla

ve3

-3

-3

-3

-14

-14

-ns

Mas

ter

0-

0-

0-

0-

0-

0-

Mas

ter

Loop

back

53

-3

-2

-3

-11

-11

-

Mas

ter

Loop

back

(slo

w)6

3-

3-

3-

3-

12-

12-

Tab

le c

ontin

ues

on th

e ne

xt p

age.

..

Communication modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 45

Tab

le 2

9.L

PS

PI e

lect

rica

l sp

ecif

icat

ion

s1 (

con

tin

ued

)

Nu

mS

ymb

ol

Des

crip

tio

nC

on

dit

ion

sR

un

Mo

de2

HS

RU

N M

od

e2V

LP

R M

od

eU

nit

5.0

V IO

3.3

V IO

5.0

V IO

3.3

V IO

5.0

V IO

3.3

V IO

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

8t a

Sla

ve a

cces

stim

eS

lave

-50

-50

-50

-50

-10

0-

100

ns

9t d

isS

lave

MIS

O(S

OU

T)

disa

ble

time

Sla

ve-

50-

50-

50-

50-

100

-10

0ns

10t v

Dat

a va

lid(a

fter

SP

SC

Ked

ge)

Sla

ve-

30-

39-

26-

36 10

31 11

-92

-96

ns

Mas

ter

-12

-16

-11

-15

-47

-48

Mas

ter

Loop

back

5-

12-

16-

11-

15-

47-

48

Mas

ter

Loop

back

(slo

w)6

-8

-10

-7

-9

-44

-44

11t H

OD

ata

hold

time(

outp

uts)

Sla

ve4

-4

-4

-4

-4

-4

-ns

Mas

ter

-15

--2

2-

-15

--2

3-

-22

--2

9-

Mas

ter

Loop

back

5-1

0-

-14

--1

0-

-14

--1

4-

-19

-

Mas

ter

Loop

back

(slo

w)6

-15

--2

2-

-15

--2

2-

-21

--2

7-

12t R

I/FI

Ris

e/F

all t

ime

inpu

tS

lave

-1

-1

-1

-1

-1

-1

ns

Mas

ter

--

--

--

Mas

ter

Loop

back

5-

--

--

-

Mas

ter

Loop

back

(slo

w)6

--

--

--

13t R

O/F

OR

ise/

Fal

l tim

eou

tput

Sla

ve-

25-

25-

25-

25-

25-

25ns

Mas

ter

--

--

--

Mas

ter

Loop

back

5-

--

--

-

Mas

ter

Loop

back

(slo

w)

6-

--

--

-

Communication modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

46 NXP Semiconductors

1.T

race

leng

th s

houl

d no

t exc

eed

11 in

ches

for

SC

K p

ad w

hen

used

in M

aste

r lo

opba

ck m

ode.

2.W

hile

tran

sitio

ning

from

HS

RU

N m

ode

to R

UN

mod

e, L

PS

PI o

utpu

t clo

ck s

houl

d no

t be

mor

e th

an 1

4 M

Hz.

3.f p

erip

h =

LP

SP

I per

iphe

ral c

lock

4.t p

erip

h =

1/f p

erip

h5.

Mas

ter

Loop

back

mod

e -

In th

is m

ode

LPS

PI_

SC

K c

lock

is d

elay

ed fo

r sa

mpl

ing

the

inpu

t dat

a w

hich

is e

nabl

ed b

y se

tting

LP

SP

I_C

FG

R1[

SA

MP

LE] b

it as

1.

Clo

ck p

ads

used

are

PT

D15

and

PT

E0.

App

licab

le o

nly

for

LPS

PI0

.6.

Mas

ter

Loop

back

(sl

ow)

- In

this

mod

e LP

SP

I_S

CK

clo

ck is

del

ayed

for

sam

plin

g th

e in

put d

ata

whi

ch is

ena

bled

by

setti

ng L

PS

PI_

CF

GR

1[S

AM

PLE

] bit

as 1

.C

lock

pad

use

d is

PT

B2.

App

licab

le o

nly

for

LPS

PI0

.7.

Thi

s is

the

max

imum

ope

ratin

g fr

eque

ncy

(fop

) fo

r LP

SP

I0 w

ith m

ediu

m P

AD

type

onl

y. O

ther

wis

e, th

e m

axim

um o

pera

ting

freq

uenc

y (f

op)

is 1

2 M

hz.

8.S

et th

e P

CS

SC

K c

onfig

urat

ion

bit a

s 0,

for

a m

inim

um o

f 1 d

elay

cyc

le o

f LP

SP

I bau

d ra

te c

lock

, whe

re P

CS

SC

K r

ange

s fr

om 0

to 2

55.

9.S

et th

e S

CK

PC

S c

onfig

urat

ion

bit a

s 0,

for

a m

inim

um o

f 1 d

elay

cyc

le o

f LP

SP

I bau

d ra

te c

lock

, whe

re S

CK

PC

S r

ange

s fr

om 0

to 2

55.

10.

Max

imum

ope

ratin

g fr

eque

ncy

(fop

) is

12

MH

z irr

espe

ctiv

e of

PA

D ty

pe a

nd L

PS

PI i

nsta

nce.

11.

App

licab

le fo

r LP

SP

I0 o

nly

with

med

ium

PA

D ty

pe, w

ith m

axim

um o

pera

ting

freq

uenc

y (f

op)

as 1

4 M

Hz.

Communication modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 47

(OUTPUT)

2

10

6 7

MSB IN2 LSB IN

MSB OUT2 LSB OUT

11

5

5

3

(CPOL=0)

413

1312

12SPSCK

SPSCK(CPOL=1)

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.1. If configured as an output.

SS1

(OUTPUT)

(OUTPUT)

MOSI(OUTPUT)

MISO(INPUT) BIT 6 . . . 1

BIT 6 . . . 1

Figure 17. LPSPI master mode timing (CPHA = 0)

<<CLASSIFICATION>> <<NDA MESSAGE>>

38

2

6 7

MSB IN2

BIT 6 . . . 1 MASTER MSB OUT2 MASTER LSB OUT

55

10

12 13

PORT DATA PORT DATA

3 12 13 4

1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

11

(OUTPUT)

(CPOL=0)SPSCK

SPSCK(CPOL=1)

SS1

(OUTPUT)

(OUTPUT)

MOSI(OUTPUT)

MISO(INPUT) LSB INBIT 6 . . . 1

Figure 18. LPSPI master mode timing (CPHA = 1)

Communication modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

48 NXP Semiconductors

2

10

6 7

MSB IN

BIT 6 . . . 1

SLAVE MSB SLAVE LSB OUT

11

553

8

4

13

12

12

11

See note 1

13

9

See note1

(INPUT)

(CPOL=0)SPSCK

SPSCK(CPOL=1)

SS

(INPUT)

(INPUT)

MOSI(INPUT)

MISO(OUTPUT)

LSB INBIT 6 . . . 1

Notes: 1. Undefined

Figure 19. LPSPI slave mode timing (CPHA = 0)

2

6 7

MSB IN

BIT 6 . . . 1

MSB OUT SLAVE LSB OUT

55

10

12 13

3 12 134

SLAVE

8

9See note 1

(INPUT)

(CPOL=0)SPSCK

SPSCK(CPOL=1)

SS

(INPUT)

(INPUT)

MOSI(INPUT)

MISO(OUTPUT)

11

LSB INBIT 6 . . . 1

Notes: 1. Undefined

Figure 20. LPSPI slave mode timing (CPHA = 1)

6.5.3 LPI2C electrical specifications

See General AC specifications for LPI2C specifications.

For supported baud rate see section 'Chip-specific LPI2C information' of the ReferenceManual.

Communication modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 49

6.5.4 FlexCAN electical specifications

For supported baud rate, see section 'Protocol timing' of the Reference Manual.

6.5.5 Clockout frequency

Maximum supported clock out frequency for this device is 20 MHz

Debug modules

6.6.1 SWD electrical specofications

6.6

Debug modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

50 NXP Semiconductors

Tab

le 3

0.S

WD

ele

ctri

cal s

pec

ific

atio

ns

Sym

bo

lD

escr

ipti

on

Ru

n M

od

eH

SR

UN

Mo

de

VL

PR

Mo

de

Un

it

5.0

V IO

3.3

V IO

5.0

V IO

3.3

V IO

5.0

V IO

3.3

V IO

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

S1

SW

D_C

LK fr

eque

ncy

ofop

erat

ion

-25

-25

-25

-25

-10

-10

MH

z

S2

SW

D_C

LK c

ycle

per

iod

1/S

1-

1/S

1-

1/S

1-

1/S

1-

1/S

1-

1/S

1-

ns

S3

SW

D_C

LK c

lock

pul

se w

idth

S2/2 - 5

S2/2 + 5

S2/2 - 5

S2/2 + 5

S2/2 - 5

S2/2 + 5

S2/2 - 5

S2/2 + 5

S2/2 - 5

S2/2 + 5

S2/2 - 5

S2/2 + 5

ns

S4

SW

D_C

LK r

ise

and

fall

times

-1

-1

-1

-1

-1

-1

ns

S9

SW

D_D

IO in

put d

ata

setu

p tim

eto

SW

D_C

LK r

ise

4-

4-

4-

4-

16-

16-

ns

S10

SW

D_D

IO in

put d

ata

hold

tim

eaf

ter

SW

D_C

LK r

ise

3-

3-

3-

3-

10-

10-

ns

S11

SW

D_C

LK h

igh

to S

WD

_DIO

data

val

id-

28-

38-

28-

38-

70-

77ns

S12

SW

D_C

LK h

igh

to S

WD

_DIO

high

-Z-

28-

38-

28-

38-

70-

77ns

S13

SW

D_C

LK h

igh

to S

WD

_DIO

data

inva

lid0

-0

-0

-0

-0

-0

-ns

Debug modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 51

S2S3 S3

S4 S4

SWD_CLK (input)

Figure 21. Serial wire clock input timing

S11

S12

S9 S10

Input data valid

Output data valid

SWD_CLK

SWD_DIO

SWD_DIO

SWD_DIO

S13

Figure 22. Serial wire data timing

6.6.2 Trace electrical specifications

The following table describes the Trace electrical characteristics.

• Measurements are with maximum output load of 50 pF, input transition of 1 ns andpad configured with fastest slew settings (DSE = 1'b1).

• While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), theinterface should be OFF.

Table 31. Trace specifications

Symbol Description RUN Mode HSRUN Mode VLPRMode

Unit

— Fsys System frequency 80 48 40 112 80 4 MHz

Table continues on the next page...

Debug modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

52 NXP Semiconductors

Table 31. Trace specifications (continued)

Symbol Description RUN Mode HSRUN Mode VLPRMode

Unit

Tra

ce o

n fa

st p

ads

fTRACE Max Trace frequency 80 48 40 74.667 80 4 MHz

tDVO Data Output Valid 4 4 4 4 4 20 ns

tDIV Data Output Invalid -2 -2 -2 -2 -2 -10 ns

Tra

ce o

n sl

ow p

ads

fTRACE Max Trace frequency 22.86 24 20 22.4 22.86 4 MHz

tDVO Data Output Valid 8 8 8 8 8 20 ns

tDIV Data Output Invalid -4 -4 -4 -4 -4 -10 ns

Figure 23. TRACE CLKOUT specifications

6.6.3 JTAG electrical specifications

Debug modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 53

Tab

le 3

2.JT

AG

ele

ctri

cal s

pec

ific

atio

ns

Sym

bo

lD

escr

ipti

on

Ru

n M

od

eH

SR

UN

Mo

de

VL

PR

Mo

de

Un

it

5.0

V IO

3.3

V IO

5.0

V IO

3.3

V IO

5.0

V IO

3.3

V IO

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

Min

.M

ax.

JIT

CLK

freq

uenc

y of

ope

ratio

nM

Hz

Bou

ndar

y S

can

-20

-20

-20

-20

-10

-10

JTA

G-

20-

20-

20-

20-

10-

10

J2T

CLK

cyc

le p

erio

d1/

JI-

1/JI

-1/

JI-

1/JI

-1/

JI-

1/JI

-ns

J3T

CLK

clo

ck p

ulse

wid

thns

Bou

ndar

y S

can

J2/2 - 5

J2/2 + 5

J2/2 - 5

J2/2 + 5

J2/2 - 5

J2/2 + 5

J2/2 - 5

J2/2 + 5

J2/2 - 5

J2/2 + 5

J2/2 - 5

J2/2 + 5

JTA

G

J4T

CLK

ris

e an

d fa

ll tim

es-

1-

1-

1-

1-

1-

1ns

J5B

ound

ary

scan

inpu

t dat

ase

tup

time

to T

CLK

ris

e5

-5

-5

-5

-15

-15

-ns

J6B

ound

ary

scan

inpu

t dat

aho

ld ti

me

afte

r T

CLK

ris

e5

-5

-5

-5

-8

-8

-ns

J7T

CLK

low

to b

ound

ary

scan

outp

ut d

ata

valid

-28

-32

-28

-32

-80

-80

ns

J8T

CLK

low

to b

ound

ary

scan

outp

ut d

ata

inva

lid0

-0

-0

-0

-0

-0

-

J9T

CLK

low

to b

ound

ary

scan

outp

ut h

igh-

Z-

28-

32-

28-

32-

80-

80ns

J10

TM

S, T

DI i

nput

dat

a se

tup

time

to T

CLK

ris

e3

-3

-3

-3

-15

-15

-ns

J11

TM

S, T

DI i

nput

dat

a ho

ldtim

e af

ter

TC

LK r

ise

2-

2-

2-

2-

8-

8-

ns

J12

TC

LK lo

w to

TD

O d

ata

valid

-28

-32

-28

-32

-80

-80

ns

J13

TC

LK lo

w to

TD

O d

ata

inva

lid0

-0

-0

-0

-0

-0

-ns

J14

TC

LK lo

w to

TD

O h

igh-

Z-

28-

32-

28-

32-

80-

80ns

Debug modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

54 NXP Semiconductors

J2J3 J3

J4 J4

TCLK (input)

Figure 24. Test clock input timing

J7

J9

J5 J6

Input data valid

Output data valid

TCLK

Data inputs

Data outputs

Data outputs

J8

Figure 25. Boundary scan (JTAG) timing

Debug modules

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 55

J12

J10 J11

Input data valid

Output data valid

TCLK

TDI/TMS

TDO

J14

TDO

J13

Figure 26. Test Access Port timing

Thermal attributes

7.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTEJunction temperature is a function of die size, on-chip powerdissipation, package thermal resistance, mounting side (board)temperature, ambient temperature, air flow, power dissipationor other components on the board, and board thermal resistance.

7.2 Thermal characteristics

7

Thermal attributes

MWCT101XS Data Sheet, Rev. 3, 12/2019

56 NXP Semiconductors

Tab

le 3

3.T

her

mal

ch

arac

teri

stic

s fo

r th

e 64

/100

-pin

LQ

FP

pac

kag

e

Rat

ing

Co

nd

itio

ns

Sym

bo

lP

acka

ges

Val

ues

Un

it

MW

CT

1014

SM

WC

T10

15S

MW

CT

1016

S

The

rmal

res

ista

nce,

Jun

ctio

n to

Am

bien

t (N

atur

alC

onve

ctio

n)1,

2S

ingl

e la

yer

boar

d(1

s)R

θJA

6461

59N

A°C

/W

100

5221

NA

°C/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Am

bien

t (N

atur

alC

onve

ctio

n)1

Tw

o la

yer

boar

d(1

s1p)

RθJ

A64

4544

NA

°C/W

100

4240

NA

°C/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Am

bien

t (N

atur

alC

onve

ctio

n)1,

2F

our

laye

r bo

ard

(2s2

p)R

θJA

6443

41N

A°C

/W

100

4039

NA

°C/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Am

bien

t (@

200

ft/m

in)1,

3S

ingl

e la

yer

boar

d(1

s)R

θJM

A64

4948

NA

°C/W

100

4241

NA

°C/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Am

bien

t (@

200

ft/m

in)1

Tw

o la

yer

boar

d(1

s1p)

RθJ

MA

6438

37N

A°C

/W

100

3534

NA

°C/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Am

bien

t (@

200

ft/m

in)1,

3F

our

laye

r bo

ard

(2s2

p)R

θJM

A64

3635

NA

°C/W

100

3433

NA

°C/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Boa

rd4

—R

θJB

6425

23N

A°C

/W

100

2524

NA

°C/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Cas

e 5

—R

θJC

6412

11N

A°C

/W

100

1211

NA

°C/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Pac

kage

Top

6N

atur

al C

onve

ctio

JT64

22

NA

°C/W

100

22

NA

°C/W

1.Ju

nctio

n te

mpe

ratu

re is

a fu

nctio

n of

die

siz

e, o

n-ch

ip p

ower

dis

sipa

tion,

pac

kage

ther

mal

res

ista

nce,

mou

ntin

g si

te (

boar

d) te

mpe

ratu

re, a

mbi

ent t

empe

ratu

re, a

irflo

w, p

ower

dis

sipa

tion

of o

ther

com

pone

nts

on th

e bo

ard,

and

boa

rd th

erm

al r

esis

tanc

e.2.

Per

JE

DE

C J

ES

D51

-2 w

ith n

atur

al c

onve

ctio

n fo

r ho

rizon

tally

orie

nted

boa

rd. B

oard

mee

ts J

ES

D51

-9 s

peci

ficat

ion

for

1s o

r 2s

2p b

oard

, res

pect

ivel

y.3.

Per

JE

DE

C J

ES

D51

-6 w

ith fo

rced

con

vect

ion

for

horiz

onta

lly o

rient

ed b

oard

. Boa

rd m

eets

JE

SD

51-9

spe

cific

atio

n fo

r 1s

or

2s2p

boa

rd, r

espe

ctiv

ely.

4.T

herm

al r

esis

tanc

e be

twee

n th

e di

e an

d th

e pr

inte

d ci

rcui

t boa

rd p

er J

ED

EC

JE

SD

51-8

. Boa

rd te

mpe

ratu

re is

mea

sure

d on

the

top

surf

ace

of th

e bo

ard

near

the

pack

age.

5.T

herm

al r

esis

tanc

e be

twee

n th

e di

e an

d th

e ca

se to

p su

rfac

e as

mea

sure

d by

the

cold

pla

te m

etho

d (M

IL S

PE

C-8

83 M

etho

d 10

12.1

).6.

The

rmal

cha

ract

eriz

atio

n pa

ram

eter

indi

catin

g th

e te

mpe

ratu

re d

iffer

ence

bet

wee

n pa

ckag

e to

p an

d th

e ju

nctio

n te

mpe

ratu

re p

er J

ED

EC

JE

SD

51-2

. Whe

n G

reek

lette

rs a

re n

ot a

vaila

ble,

the

ther

mal

cha

ract

eriz

atio

n pa

ram

eter

is w

ritte

n as

Psi

-JT

.

Thermal attributes

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 57

Tab

le 3

4.T

her

mal

ch

arac

teri

stic

s fo

r th

e 10

0 M

AP

BG

A p

acka

ge

Rat

ing

Co

nd

itio

ns

Sym

bo

lV

alu

esU

nit

MW

CT

1015

SM

WC

T10

14S

MW

CT

1016

S

The

rmal

res

ista

nce,

Jun

ctio

n to

Am

bien

t (N

atur

al C

onve

ctio

n)1,

2S

ingl

e la

yer

boar

d (1

s)R

θJA

57.2

61.0

52.5

°C/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Am

bien

t (N

atur

al C

onve

ctio

n)1,

2, 3

Fou

r la

yer

boar

d (2

s2p)

RθJ

A32

.135

.627

.5°C

/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Am

bien

t (@

200

ft/m

in)

1, 2

, 3S

ingl

e la

yer

boar

d (1

s)R

θJM

A44

.146

.639

.0°C

/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Am

bien

t (@

200

ft/m

in)1,

3T

wo

laye

r bo

ard

(2s2

p)R

θJM

A27

.230

.922

.8°C

/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Boa

rd4

—R

θJB

15.3

18.9

11.2

°C/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Cas

e 5

—R

θJC

10.2

14.2

7.5

°C/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Pac

kage

Top

out

side

cen

ter6

—ψ

JT0.

20.

40.

2°C

/W

The

rmal

res

ista

nce,

Jun

ctio

n to

Pac

kage

Bot

tom

out

side

cent

er7

—ψ

JB12

.215

.918

.3°C

/W

1.Ju

nctio

n te

mpe

ratu

re is

a fu

nctio

n of

die

siz

e, o

n-ch

ip p

ower

dis

sipa

tion,

pac

kage

ther

mal

res

ista

nce,

mou

ntin

g si

te (

boar

d) te

mpe

ratu

re, a

mbi

ent t

empe

ratu

re, a

irflo

w, p

ower

dis

sipa

tion

of o

ther

com

pone

nts

on th

e bo

ard,

and

boa

rd th

erm

al r

esis

tanc

e.2.

Per

SE

MI G

38-8

7 an

d JE

DE

C J

ES

D51

-2 w

ith th

e si

ngle

laye

r bo

ard

horiz

onta

l.3.

Per

JE

DE

C J

ES

D51

-6 w

ith th

e bo

ard

horiz

onta

l.4.

The

rmal

res

ista

nce

betw

een

the

die

and

the

prin

ted

circ

uit b

oard

per

JE

DE

C J

ES

D51

-8. B

oard

tem

pera

ture

is m

easu

red

on th

e to

p su

rfac

e of

the

boar

d ne

ar th

epa

ckag

e.5.

The

rmal

res

ista

nce

betw

een

the

die

and

the

case

top

surf

ace

as m

easu

red

by th

e co

ld p

late

met

hod

(MIL

SP

EC

-883

Met

hod

1012

.1).

6.T

herm

al c

hara

cter

izat

ion

para

met

er in

dica

ting

the

tem

pera

ture

diff

eren

ce b

etw

een

pack

age

top

and

the

junc

tion

tem

pera

ture

per

JE

DE

C J

ES

D51

-2. W

hen

Gre

ekle

tters

are

not

ava

ilabl

e, th

e th

erm

al c

hara

cter

izat

ion

para

met

er is

writ

ten

as P

si-J

T.

7.T

herm

al c

hara

cter

izat

ion

para

met

er in

dica

ting

the

tem

pera

ture

diff

eren

ce b

etw

een

pack

age

botto

m c

ente

r an

d th

e ju

nctio

n te

mpe

ratu

re p

er J

ED

EC

JE

SD

51-1

2.W

hen

Gre

ek le

tters

are

not

ava

ilabl

e, th

e th

erm

al c

hara

cter

izat

ion

para

met

er is

writ

ten

as P

si-J

B.

Thermal attributes

MWCT101XS Data Sheet, Rev. 3, 12/2019

58 NXP Semiconductors

7.3 General notes for specifications at maximum junctiontemperature

An estimation of the chip junction temperature, TJ, can be obtained from this equation:

where:• TA = ambient temperature for the package (°C)• RθJA = junction to ambient thermal resistance (°C/W)• PD = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides aquick and easy estimation of thermal performance. Unfortunately, there are two values incommon usage: the value determined on a single layer board and the value obtained on aboard with two planes. For packages such as the PBGA, these values can be different bya factor of two. Which value is closer to the application depends on the power dissipatedby other components on the board. The value obtained on a single layer board isappropriate for the tightly packed printed circuit board. The value obtained on the boardwith the internal planes is usually appropriate if the board has low power dissipation andthe components are well separated.

When a heat sink is used, the thermal resistance is expressed in the following equation asthe sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

where:• RθJA = junction to ambient thermal resistance (°C/W)• RθJC = junction to case thermal resistance (°C/W)• RθCA = case to ambient thermal resistance (°C/W)

RθJC is device related and cannot be influenced by the user. The user controls the thermalenvironment to change the case to ambient thermal resistance, RθCA. For instance, theuser can change the size of the heat sink, the air flow around the device, the interfacematerial, the mounting arrangement on printed circuit board, or change the thermaldissipation on the printed circuit board surrounding the device.

Thermal attributes

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 59

To determine the junction temperature of the device in the application when heat sinksare not used, the Thermal Characterization Parameter (ΨJT) can be used to determine thejunction temperature with a measurement of the temperature at the top center of thepackage case using this equation:

where:• TT = thermocouple temperature on top of the package (°C)• ΨJT = thermal characterization parameter (°C/W)• PD = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a40 gauge type T thermocouple epoxied to the top center of the package case. Thethermocouple should be positioned so that the thermocouple junction rests on thepackage. A small amount of epoxy is placed over the thermocouple junction and overabout 1 mm of wire extending from the junction. The thermocouple wire is placed flatagainst the package case to avoid measurement errors caused by cooling effects of thethermocouple wire.

Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in the package drawings.

To find a package drawing, go to http://www.nxp.com and perform a keyword search forthe drawing’s document number:

Package option Document Number

64-pin LQFP 98ASS23234W

100-pin LQFP 98ASS23308W

100-pin MAPBGA 98ASA00802D

8

Dimensions

MWCT101XS Data Sheet, Rev. 3, 12/2019

60 NXP Semiconductors

Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Revision HistoryThe following table provides a revision history for this document.

Table 35. Revision History

Rev. No. Date Substantial Changes

Rev. 0 May 2017 • Initial release.

Rev. 1 Dec 2017 • In "Feature comparison" section, updated the "MWCT101xS productseries comparison" figure.

• In Table 1,• Updated note 'All the limits defined ... '• Updated parameter 'IINJPAD_DC_ABS', 'VIN_DC', IINJSUM_DC_ABS.

• In Table 2,• Updated min. value of VDD_OFF• Added parameter IINJPAD_DC_OP and IINJSUM_DC_OP.

• Updated footnote to TSPLL_LOCK and removed IDDSPLL in "SPLLelectrical specifications" table.

• In "12-bit ADC electrical characteristics" section,• Updated table: 12-bit ADC characteristics (2.7 V to 3 V)

(VREFH = VDDA, VREFL = VSS)• Added typ. value to IDDA_ADC, TUE, DNL, and INL• Added min. value to SMPLTS• Removed footnote 'All the parameters in this table ... '

• Updated table: 12-bit ADC characteristics (3 V to 5.5 V)(VREFH = VDDA, VREFL = VSS)

• Added typ. value to IDDA_ADC• Removed footnote 'All the parameters in this table ... '

• In "Flash command timing specifications" table, updated Max. valueof tvfykey to 35 μs

• Updated "MWCT101xS product series comparison" figure.• In Table 5, updated TBDs for VLVR_HYST, VLVD_HYST, and VLVW_HYST• In Power mode transition operating behaviors,

• Added VLPR → VLPS• Added VLPS → VLPR• Updated TBDs for VLPS → Asynchronous DMA Wakeup,

STOP1 → Asynchronous DMA Wakeup, and STOP2 →Asynchronous DMA Wakeup

• In Table 7, updated the specifications for MWCT1014S.• Updated the attachment MWCT101xS_Power_Modes

_Configuration.xlsx.• In "Standard input pin capacitance" table, removed CIN_A.• In "External System Oscillator electrical specifications" table,

Table continues on the next page...

9

Pinouts

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 61

Table 35. Revision History (continued)

Rev. No. Date Substantial Changes

• Updated specifications for gmXOSC.• Removed IDDOSC

• In "Fast internal RC Oscillator (FIRC) electrical specifications"section,

• Added parameter ΔF125.• Removed IDDFIRC

• In "Slow internal RC oscillator (SIRC) electrical specifications"section,

• Added parameter ΔF125.• Removed IDDSIRC

• In "Low Power Oscillator (LPO) electrical specifications" section,removed ILPO

• Updated section: "Flash memory module (FTFC) electricalspecifications"

• In section: "12-bit ADC electrical characteristics",• Updated TBDs in Table 25.• Updated TBDs in Table 26.

• In section: QuadSPI AC specifications, updated figure 'QuadSPIoutput timing (HyperRAM mode) diagram'.

• In section: "ADC electrical specifications", updated Table 24.• In section: "CMP with 8-bit DAC electrical specifications", added

note 'For comparator IN signals adjacent ... '• In table: "LPSPI electrical specifications", minor update in footnote 6.• In table: Table 33, updated specifications for MWCT1015S.

Rev. 2 July 2018 • Global update: removed Ethernet and SAI• Updated the attachment MWCT101xS_Power_Modes

_Configuration.xlsx• In 'Key features':

• Added a note under 'Power management', 'Memory andmemory interfaces', and 'Safety and security'

• Updated FlexIO under Communications interfaces• Updated Cryptographic Services Engine (CSEc) under 'Safety

and security'• Updated package information

• In High-level architecture diagram for the MWCT101xS family,added footnote 3

• In "Feature comparison" section, updated the "MWCT101xS productseries comparison" figure:

• Updated the "System RAM" row• Added support for LIN protocol version 2.2 A• Updated the Ecosystem information• Updated the Package information• Updated the Legend notes

• Updated Ordering information• In Absolute maximum ratings :

• Updated the NOTE section• Added parameter 'Tramp_MCU'• Updated footnote for 'Tramp'

• Updated Voltage and current operating requirements• In Power and ground pins

• Removed the 144-pin LQFP package• Updated footnote 'VDD and VDDA must be shorted ...'• Updated the "Power diagram" figure

• In Power mode transition operating behaviors updated numbers for:• VLPR → VLPS

Table continues on the next page...

Revision History

MWCT101XS Data Sheet, Rev. 3, 12/2019

62 NXP Semiconductors

Table 35. Revision History

Rev. No. Date Substantial Changes

• VLPS → VLPR• RUN → VLPS• RUN → VLPR

• In Power consumption :• Updated specs• Removed section 'Modes configuration', amd moved its

content under the fisrt paragraph.• Updated footnote 'Typical current numbers are indicative ...'• Updated footnote 'The MWCT1016S data ...'• Removed footnote 'Above MWCT1016S data is preliminary

targets only'• In General AC specifications :

• Updated max value and footnote of WFRST• Updated symbol for not filtered pulse to 'WNFRST', updated

min value, removed max. value, and added footnote• Fixed naming conventions to align with DS in DC electrical

specifications at 3.3 V Range and DC electrical specifications at 5.0V Range

• Updated specs for AC electrical specifications at 3.3 V range andAC electrical specifications at 5 V range

• In Device clock specifications :• Added footnote to fBUS

• In External System Oscillator frequency specifications :• Updated 'tdc_extal'• Added footnote 'Frequecies below ... ' to 'fec_extal' and 'tdc_extal'

• Updated Flash timing specifications — commands• In Reliability specifications :

• Updated footnotes• In QuadSPI AC specifications :

• Updated 'MCR[SCLKCFG[5]]' value to 0• Updated 'Data Input Setup Time' HSRUN Internal DQS PAD

Loopback value to 1.6• Updated 'Data Input Setup Time' DDR External DQS min.

value to 2• Updated 'Data Input Hold Time' DDR External DQS min. value

to 20• Updated tIV• Upadted figure 'QuadSPI output timing (SDR mode) diagram'

and 'QuadSPI input timing (HyperRAM mode) diagram'• In 12-bit ADC operating conditions :

• Fixed the typo in RSW1• Removed parameter 'ΔVDDA'

• In 12-bit ADC electrical characteristics :• Added note 'On reduced pin packages where ... '• Removed max. value of 'IDDA_ADC'• Added note 'Due to triple ... '

• In CMP with 8-bit DAC electrical specifications :• Updated Typ. and Max. values of 'IDDLS'• Upadted Typ. value of 'tDHSB'• Updated Typ. value of 'VHYST1' , 'VHYST2', and 'VHYST3'

• In LPSPI electrical specifications :• Updated 'fperiph' and 'fop', and 'tSPSCK'• Updated 3.3 V numbers and added footnote against fop, tSU,

ans tV in HSRUN Mode• Added footnote to 'tWSPSCK'

Table continues on the next page...

Revision History

MWCT101XS Data Sheet, Rev. 3, 12/2019

NXP Semiconductors 63

Table 35. Revision History (continued)

Rev. No. Date Substantial Changes

• Updated tLead and tLag• Added footnote in Figure: LPSPI slave mode timing (CPHA =

0) and Figure: LPSPI slave mode timing (CPHA = 1)• In Thermal characteristics :

• Updated table name for the LQFP packages• Added table for the BGA package

• Updated Obtaining package dimensions

Rev. 3 Dec 2019 • Updated Ordering Information in Ordering information• Updated CAN-FD and CSec information for MWCT1015SF in

Feature Comparison figure

Revision History

MWCT101XS Data Sheet, Rev. 3, 12/2019

64 NXP Semiconductors

How to Reach Us:

Home Page:nxp.com

Web Support:nxp.com/support

Information in this document is provided solely to enable system and software implementers to useNXP products. There are no express or implied copyright licenses granted hereunder to design orfabricate any integrated circuits based on the information in this document. NXP reserves the right tomake changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for anyparticular purpose, nor does NXP assume any liability arising out of the application or use of anyproduct or circuit, and specifically disclaims any and all liability, including without limitationconsequential or incidental damages. "Typical" parameters that may be provided in NXP data sheetsand/or specifications can and do vary in different applications, and actual performance may vary overtime. All operating parameters, including "typicals," must be validated for each customer applicationby customer's technical experts. NXP does not convey any license under its patent rights nor therights of others. NXP sells products pursuant to standard terms and conditions of sale, which can befound at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentifiedvulnerabilities. Customers are responsible for the design and operation of their applications andproducts to reduce the effect of these vulnerabilities on customer's applications and products, andNXP accepts no liability for any vulnerability that is discovered. Customers should implementappropriate design and operating safeguards to minimize the risks associated with their applicationsand products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARECLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS, eIQ,Immersiv3D, EdgeLock, and EdgeScale are trademarks of NXP B.V. All other product or servicenames are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11,Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registeredtrademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technologymay be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture andPower.org word marks and the Power and Power.org logos and related marks are trademarks andservice marks licensed by Power.org.

© 2017–2019 NXP B.V.

Document Number MWCT101XSFRevision 3, 12/2019