nyquist-rate a/d converters - university of torontojohns/ece1371/slides/... · no yes no yes b i...

13
slide 1 of 26 University of Toronto © D.A. Johns, K. Martin, 1997 Nyquist-Rate A/D Converters David Johns and Ken Martin University of Toronto ([email protected]) ([email protected]) slide 2 of 26 University of Toronto © D.A. Johns, K. Martin, 1997 A/D Converter Basics (1) Range of valid input values produce the same output signal quantization error . A/D V in V ref B out V ref b 1 2 1 b 2 2 2 b N 2 N + + + ( ) V in x ± = where 1 2 -- V LSB x 1 2 -- V LSB < < 01 00 10 11 0 1/2 1/4 V LSB V ref ---------- 1/4 1 LSB = = B out V in V ref ------- 3/4 1

Upload: others

Post on 20-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 1 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Nyquist-Rate A/D Converters

David Johns and Ken MartinUniversity of Toronto

([email protected])([email protected])

slide 2 of 26University of Toronto© D.A. Johns, K. Martin, 1997

A/D Converter Basics

(1)

• Range of valid input values produce the same output signal — quantization error.

A/DVinVref

Bout

Vref b12 1– b22 2– … bN2 N–+ + +( ) Vin x±=

where 12---– VLSB x 1

2---VLSB< <

01

00

10

11

0 1/21/4

VLSBVref---------- 1/4 1 LSB= =Bout

VinVref--------

3/4 1

Page 2: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 3 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Analog to Digital ConvertersLow-to-Medium

Speed,High Accuracy

Medium Speed,Medium Accuracy

High Speed,Low-to-Medium

Accuracy

Integrating Successive approximation

Flash

Oversampling(not Nyquist-rate)

Algorithmic Two-step

Interpolating

Folding

Pipelined

Time-interleaved

slide 4 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Integrating Converters

• Low offset and gain errors for low-speed applications • Small amount of circuitry

• Conversion speed is 2N+1 times 1/Tclk

(Vin is held constant during conversion.)

Control

logicCounter

b1b2b3

bN

Clock

fclk1

Tclk-----------=

S2

S1Vin–

Vref

S1S2

R1

C1

Vx

Bout

Comparator

Page 3: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 5 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Integrating Converters

• Count at end of T2 is digital output • Does not depend on RC time-constant

Time

Vx

T1

Phase (I) Phase (II)

Vin1–

Vin2–

Vin3–

T2 (Three values for three inputs)

(Constant slope)

slide 6 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Integrating Converters

• Notches the input frequencies which are multiples of 1/T1

10 100

0

–10

–20

–30

60 120 180 240 300

–20 dB/decade slopeH f( )

(dB)

Frequency (Hz)(Log scale)

Page 4: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 7 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Successive-Approximation Converters

Sample

Start

Stop

No

Yes

No

Yes

bi 1= bi 0=

Signed input

Vin VD/A>

Vin VD/A, 0 i, 1= =

VD/A VD/A Vref 2i 1+⁄+→ VD/A VD/A Vref 2i 1+⁄( )–→

i i 1+→

i N≥

• Makes use of binary search algorithm

• /Requires N steps for N-bit converter

• Successively “tunes” a signal untilwithin 1 LSB of input

• Medium speed

• Moderate accuracy

slide 8 of 26University of Toronto© D.A. Johns, K. Martin, 1997

DAC Based Successive-Approximation

• Adjust until within 1 LSB of • Start with MSB and continue until LSB found • D/A mainly determines overall accuracy • Input S/H required

S/H

D/A converter

Successive-approximation register(SAR) and control logic

b1 b2 bNBout

VD/A

Vin

Vref

VD/A Vin

Page 5: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 9 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Charge Redistribution A/D

CC2C4C8C16C

1. Sample mode

CC2C4C8C16C

2. Hold mode

CC2C4C8C16C

3. Bit cycling

SAR

SAR

SAR

b1 b2 b3 b4 b5 s3

s1

s2

b1 b2 b3 b4 b5 s3

s1

s2

b1 b2 b3 b4 b5 s3

s1

s2

Vx 0≅

Vx Vin–=

Vx Vin–Vref

2-----------+=

Vin Vref

Vin Vref

Vin Vref

slide 10 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Charge Redistribution A/D • McCreary, 75 • Combines S/H, D/A converter, and difference circuit • Sample mode: Caps charged to , compar reset.

• Hold mode: Caps switched to gnd so

• Bit cycling: Cap switched to . If cap left connected to and bit=1. Otherwise, cap back to gnd and bit=0. Repeat times

• Cap bottom plates connected to side to minimize parasitic capacitance at . Parasitic cap does not cause conversion errors but it attenuates .

VinVx Vin–=

Vref Vx 0<Vref

NVref

VxVx

Page 6: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 11 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Algorithmic (or Cyclic) A/D Converter

Sample V = Vin, i = 1

Start

V > 0

V → 2(V – Vref /4) V → 2(V + Vref /4)

i → i + 1

i > N

Stop

No

Yes

No

Yes

bi 1= bi 0=

Signed input• Operates similar to successive-approx converter

• Successive-approx halves ref voltageeach cycle

• Algorithmic doubles error each cycle(leaving ref voltage unchanged)

slide 12 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Ratio-Independent Algorithmic Converter

• McCharles, 77; Li, 84 • Small amount of circuitry — reuse cyclically in time • Requires a high-precision multiply by 2 gain stage

S/H

S/HX2

Cmp

Vref /4–Vref /4

VinShift register

Out

Gain amp

Page 7: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 13 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Ratio-Independent Algorithmic Converter

• Does not rely on cap matching • Sample input twice using C1; hold first charge in C2

and re-combine with first charge on C1

CmpVerr

C1

Q1

C2

1. Sample remainder and cancel input-offset voltage.

CmpVerr

C1

Q1

C2

2. Transfer charge Q1 from C1 to C2.

Q1

CmpVerr

C1

Q2

C2

3. Sample input signal with C1 again

Q1

CmpVerr

C1

Q1+Q2

C2

4. Combine Q1 and Q2 on C1, and connect C1 to output.

Vout = 2 Verr

after storing charge Q1 on C2.

slide 14 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Flash (or Parallel) Converters • Peetz, 86; Yoshii, 87; Hotta, 87; and Gendai, 91

Vref

Vin

(2N–1) to Nencoder

N digitaloutputs

Over range

Comparators

R

R

R

R

R

R

R

Vr1

Vr2

Vr3

Vr4

Vr5

Vr6

Vr7

R2----

R 2⁄

• High-speed

• Large size and power hungry

• 2N comparators

• Speed bottleneck usually large capload at input

• Thermometer code out of comps

• Nands used for simpler decodingand/or bubble error correction

• Use comp offset cancellation

Page 8: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 15 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Issues in Designing Flash A/D Converters • Input Capacitive Loading — use interpolating arch. • Resistor-String Bowing — Due to Iin of bipolar

comps — force center tap (or more) to be correct. • Signal and/or Clock Delay — Small arrival diff in

clock or input cause errors. (250MHz 8-bit A/D needs 5ps matching for 1LSB) — route clock and Vin together with the delays matched [Gendai, 1991]. Match capacitive loads

• Substrate and Power-Supply Noise — and 8-bit, 7.8 mV of noise causes 1 LSB error — shield clocks and use on-chip supply cap bypass

• Flashback — Glitch at input due to going from track to latch mode — use preamps in comparators and match input impedances

Vref 2 V=

slide 16 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Flash Converters — Bubble Errors • Thermometer code should be 1111110000 • Bubble error (noise, metastability)— 1111110100 • Usually occurs near transition point but can cause

gross errors depending on encoder

• Can allow errors in lower 2 LSB but have MSBs encoder look at every 4th comp [Gendai, 91]

(2N–1) to Nencoder

N digitaloutputs

Vin

Vri

……

……… …

[Steyaert, 93]

Page 9: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 17 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Reduced Auto-Zeroing • Tsukamoto et al, ISSCC/96 • Spalding et al, ISSCC/96 • Reduce the auto-zero portion of conversion

— auto zero when not performing conversion— add one more comparator and ripple up auto-zero

Advantages • Lower power — less current drawn from ref string • More speed — more time for conversionDisadvantage • 1/f noise not rejected as much

slide 18 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Two-Step A/D Converters

• High-speed, medium accuracy (but 1 sample latency) • Less area and power than flash • Only 32 comparators in above 8-bit two-step • Gain amp likely sets speed limit • Without digital error correction, many blocks need at

least 8-bit accuracy

4-bit

A/D4-bitD/A 16

First 4 bits

Vin

Gain amp

V1

Vin

VqMSB

4-bit

A/DLSB

Lower 4 bitsb1 b2 b3 b4, , ,( ) b5 b6 b7 b8, , ,( )

Page 10: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 19 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Digital Error Correction

• Relaxes requirements on input A/D• Requires a 5-bit 2nd stage since Vq increased• Example, see [Petschacher, 1990].

S/H14-bit

A/D

S/H2

4-bitD/A 8 S/H3

ErrorcorrectionD

8 bits

Digital delay

4 bits

5 bits

Vin

Gain amp

(4-bit accurate)(8-bit accurate)

(5-bit accurate)

(5-bit accurate)

(8-bit accurate)

(8-bit accurate)

V1

Vin

VqMSB

5-bit

A/DLSB

slide 20 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Interpolating A/D ConvertersVref 1 V=

Vin

R

R

R

R

0.75 V

0.5 V

0.25 V

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

Digitallogic

b1b2b3b4

(Overflow)

Inputamplifiers

Latchcomparators

V1

V2

V3

V4

V2a

V2b

RRRRRRRR

V2c

R

R

R

R

R

R

R

R

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

• Goodenough, 1989

• Steyaert, 1993

• Kusumoto, 1993

• Use input amps toamplify input aroundreference voltages

• Latch thresholds lesscritical

• Less cap on input (fasterthan flash)

• Match delays to latches

• Often combined withfolding architecture

Page 11: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 21 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Interpolating Converters

Vin1.0 (Volts)

(Volts)

0.750.50.2500

5.0

Latch thresholdV1

V2

V2a

V2b V2c

9

I1 I2a I2b I2

933

3333

(Relative width sizing shown)(All lengths same)

current interpolation

slide 22 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Folding A/D Converters

Foldingblock

Foldingblock

2-bitMSB A/Dconverter

Latch

Latch

Latch

Latch

Digitallogic

Vin

b1

b2

b3

b4

V1

V2

V3

V4

Vin

V1

Vin

V2

Vin

V3

Vin

V4

Threshold

Threshold

Threshold

Threshold

Folding block responses

1(Volts)

(Volts)Vr

416------ 8

16------ 12

16------ 16

16------, , ,

=

Vr3

16------ 7

16------ 11

16------ 15

16------, , ,

=

Vref 1 V=

Vr2

16------ 6

16------ 10

16------ 14

16------, , ,

=

Vr116------ 5

16------ 9

16------ 13

16------, , ,

=

416------ 8

16------ 12

16------ 10

0

316------ 7

16------ 11

16------ 15

16------

216------ 6

16------ 10

16------ 14

16------

116------ 5

16------ 9

16------ 13

16------

1

Foldingblock

Foldingblock

• Reduce number oflatches using folding

• Save power and area

• Similar concept to 2-step

• Folding rate of 4 shownfor 4 bit converter

Page 12: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 23 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Folding Circuit

Ib Ib IbIb

Vin

Vout

R1 R1

Vr1Vr2 Vr3 Vr4

Vin

Vout

VCC

VEE

VCC VBE–

VCC VBE– IbR1–

Vr1 Vr2 Vr3 Vr4

(b)

(a)

Q1 Q2VaVb

slide 24 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Folding with Interpolation

Foldingblock

Foldingblock

2-bitMSB A/Dconverter

Latch

Latch

Latch

Latch

Digitallogic

Vin

b1

b2

b3

b4

V1

V2

V3

V4

Vin

V1

Vin

V2

Vin

V3

VinV4

Threshold

Threshold

Threshold

Threshold

Folding-block responses

1(Volts)

(Volts)

Vr316------ 7

16------ 11

16------ 15

16------, , ,

=

Vref 1 V=

Vr116------ 5

16------ 9

16------ 13

16------, , ,

=

416------ 8

16------ 12

16------ 10

0

316------ 7

16------ 11

16------ 15

16------

216------ 6

16------ 10

16------ 14

16------

116------ 5

16------ 9

16------ 13

16------

R

R

V4

V4

V4

R

R

• Folding usually usedwith interpolation

• Reduces input cap (

• Without interp, sameinput cap as flash

• [van Valburg, 1992]

• [van de Grift, 1987]

• [Colleran, 1993]

Page 13: Nyquist-Rate A/D Converters - University of Torontojohns/ece1371/slides/... · No Yes No Yes b i =b1 i = 0 Signed input V in > V D/A V in,0iV D/A ==,1 V D/A V D/A V ... [Gendai, 1991]

slide 25 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Pipelined A/D Converters

D1

Q1

DN-2

QN-1

DN

QN

D1

Q1D1

Q1

DN-2

QN-1

1-bitDAPRX

1-bitDAPRX

1-bitDAPRX

1-bitDAPRX

Vin

N –

1-b

it sh

ift re

gist

er

Analog pipeline(DAPRX - digital approximator)

b1

b2

bN

bN 1–

S/H

2

Cmp

–Vref/4

Vref/4

Vi–1

Vi

bi

slide 26 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Time-Interleaved A/D Converters [Black, 80]

• Use parallel A/Ds and multiplex them• Tone occurs at fs/N for N converters if mismatched• Input S/H critical, others not — perhaps different tech for input S/H

S/H

S/H

S/H

S/H

S/H

N-bit A/D

N-bit A/D

N-bit A/D

N-bit A/D

Dig.mux

Digitaloutput

f2

f3

f4

f1

f0

Vin