obsolete - analog devices · v/mv voltage gain avo rl = 2000, vo = t5v 12.5 18 10 16 10 16 output...

14
--. ANALOG W DEVICES FEATURES . High Slew Rate 130V /JJ.s Min . Fast Settling Time (+10V,0.1%) 100nsTyp .Gain-BandwidthProduct(AvCL=+5) 80MHzTyp . Low Supply Current """,..""""' ".""""".""'" 8mA Max . Low Noise 8nV/-fflZ Typ . Low Offset Voltage 1mV Max . High Output Current :t80mA Typ . Eliminates External Buffer . Standard 8-Pin Packages . Available in Die Form ORDERING INFORMATION t PACKAGE T A =+25°C HERMETIC vos MAX TO-99 DIP (mV) 8-PIN 8-PIN 1.0 OP64AJ' OP64AZ. 1.0 OP64EJ OP64EZ 2.0 OP64FJ OP64FZ 2.5 - - OP64GP 2.5 - OP64GS,t XIND= Extended IndustrialTemperature Range, -40°C to+B5°C . Fordevices processed intotal complianceto MIL-SDT-B83, add/B83 after part number. Consult factory for 883 data sheet. t Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-99 can packages. tt For availability and burn-in information on SO and PLCC packages, contact your local sales office. HERMETIC OPERATING PLASTIC LCC TEMPERATURE 8-PIN 2O-CONTACT RANGE OP64ARC/BB3 MIL XIND XINO XINO XINO SIMPLIFIED SCHEMATIC High-Speed, WideBandwidth Operational Amplifier (AycL~5) OP-64 I GENERAL DESCRIPTION The OP-54 is a high-performance monolithic operational ampli- fier that combines high speed and wide bandwidth with low power consumption. Advanced processing techniques have en- Continued PIN CONNECTIONS 8I DISABLE I w ..J ..J CD q5q~q zzzoz q~q:jq z z ~ z z 20-LEAD HERMETIC LCC (RC-Suffix) II EPOXYMINI-DIP (P-Suffix) 8-PIN CERDIP (Z-Suffix) EPOXYSO (S-Suffix) DISABLE DISABLE NULL NULL -- ----- ~ Y- (CASE) TO-99 (J-Suffix) Y+ OUT Y- OBSOLETE OBSOLETE

Upload: others

Post on 02-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

--. ANALOGW DEVICES

FEATURES.HighSlew Rate 130V/JJ.sMin.Fast Settling Time (+10V,0.1%) 100nsTyp. Gain-BandwidthProduct(AvCL=+5) 80MHzTyp. Low Supply Current """,..""""' ".""""".""'" 8mA Max. Low Noise 8nV/-fflZ Typ. Low Offset Voltage 1mV Max.High Output Current :t80mA Typ. Eliminates External Buffer. Standard 8-Pin Packages. Available in Die Form

ORDERING INFORMATION tPACKAGE

TA =+25°C HERMETICvos MAX TO-99 DIP

(mV) 8-PIN 8-PIN

1.0 OP64AJ' OP64AZ.1.0 OP64EJ OP64EZ2.0 OP64FJ OP64FZ2.5 - - OP64GP2.5 - OP64GS,t

XIND= Extended IndustrialTemperature Range, -40°C to +B5°C. Fordevices processed intotal compliancetoMIL-SDT-B83,add/B83 afterpart

number. Consult factoryfor 883 data sheet.t Burn-in is available on commercial and industrial temperature range parts in

CerDIP, plastic DIP, and TO-99 can packages.tt For availability and burn-in information on SO and PLCC packages, contact

your local sales office.

HERMETIC OPERATINGPLASTIC LCC TEMPERATURE

8-PIN 2O-CONTACT RANGE

OP64ARC/BB3 MILXINDXINOXINOXINO

SIMPLIFIED SCHEMATIC

High-Speed,WideBandwidthOperationalAmplifier(AycL~ 5)

OP-64 I

GENERAL DESCRIPTION

The OP-54 is a high-performance monolithic operational ampli-fier that combines high speed and wide bandwidth with low powerconsumption. Advanced processing techniques have en-

Continued

PIN CONNECTIONS

8 I DISABLE

I

w..J..J CD

q5q~qzzzoz

q~q:jqz z ~ zz

20-LEAD HERMETIC LCC

(RC-Suffix)

IIEPOXYMINI-DIP

(P-Suffix)

8-PIN CERDIP(Z-Suffix)

EPOXYSO(S-Suffix)

DISABLE

DISABLE

NULL NULL

-- -----

~Y- (CASE)

TO-99(J-Suffix)

Y+

OUT

Y-

OBSOLETEOBSOLETE

Page 2: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

OP-64

GENERAL DESCRIPTION Continued

enabled PMI to make the OP-64 superior in cost and perform-ance to many dielectrically-isolated and hybrid op amps.

Slew rate of the OP-64 is over 130V/flS. It is stable in gains of ~5and has a settling time of only 100ns to 0.1 % with a 10V stepinput. However, unlike other high-speed op amps which havehigh supply requirements, the OP-64 needs less than 8mA ofsupply current. This enables the OP-64 to be packaged in spacesaving 8-pin packages. The OP-64 can deliver :t80mA of output

current eliminating the need for a separate buffer ~Iifier inmany applications. Noise of the OP-64 is only 8nV-.JHz, reduc-ing system noise in wide band applications. In addition to its dy-namic performance, the OP-64 adds DC precision with an inputoffset voltage of under 1mY.

The OP-64 is an ideal choice for RF, video and pulse amplifierapplications and in new designs can replace the HA-5190/95 orEL-2190/95 with improved performance and reduced powerconsumption. Its high output current also suits the OP-64 for usein AID or cable driver applications. The OP-64 includes a DIS-ABLE pin which, when set low, shuts the amplifier off and re-duces the supply current to 0.75mA.

ABSOLUTE MAXIMUM RATINGS (Note 1)Supply Voltage """""""""""""""""""""""""""""'""" :t18V

Input Voltage Supply VoltageDifferential Input Voltage 20V

DISABLE Input Voltage Supply VoltageOutput Short-Circuit Duration 10 secStorage Temperature Range

(J, Z, RC) -65°C to +175°C(P, S) -65°C to +150°C

Operating Temperature Range .OP-64A (J, Z, RC) -55°C to +125°COP-64E, F (J, Z) """"""""""""""""""""'" -40°C to +85°COP-64G (P, S) -40°C to +85°C

Maximum Junction TemperatureOP-64A (J ,Z, RC) """""""""""""""""""""""""'" +175°COP-64E, F (J, Z) +175°COP-64G (P, S) """"""""""""""""""""""""""""'" +150°C

Lead Temperature (Soldering, 60 see) +300°C

PACKAGE TYPE

TO-99 (J)

8-Pin Hermetic DIP (Z)

8-Pin Plastic DIP (P)

20-Contact LCC (RC, TC)

8-Pin SO (S)

NOTES:

1. Absolute maximum ratings apply to both DICE and packaged parts, unlessotherwise noted.

2. a'A is specified for worst case mounting conditions, Le., aJA is specified ford~vicein socket for TO, CerDIP, P-DIP, and LCC packages; ajA is specifiedfor device soldered to printed circuit board for SO package.

alA (Note 2)

150

148

103

98

158

UNITSalc

18

16

43

38

43

.CIW

.CIW

.CIW

.CIW

.CIW

2-702 OPERA TlONAL AMPLIFIERS REV. A

-~-- -- ~

ELECTRICAL CHARACTERISTICS at Vs = :t15V, TA = +25°C, unless otherwise noted.

OP-64A/E OP-64F OP-64GPARAMETER SYMBOL CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS

OffsetVos 0.4 1 0.8 2 1.2 2.5 mV- -

Voltage

Input BiasIB VCM=OV 0.2 1 - 0.4 2 0.8 2.5 IlACurrent

Input Offsetlos VCM=OV - 0.1 1 0.3 2 - 0.6 2.5 IlACurrent

Input Voltage IVR (Note 1) t11 t11 t11 VRange

Common-ModeCMR VCM=t11V 90 100 84 94 84 94 dB

Rejection-

Power-Supply PSRR Vs = t5V to t18V 5 17.8 15 31.6 - 15 31,6 IlVNRejection Ratio

Large-Signal RL = 2kn, Vo = t10V 30 45 20 35 20 35V/mV

Voltage Gain AvoRL = 2000, Vo = t5V 12.5 18 10 16 10 16

Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5Vo V

Swing RL = 20012 t10 t11.7 t10 t11.7 - t10 t11.7

OutputlOUT t80 t80 t80 mACurrent

SupplyISY No Load 6.2 8 - 6.2 8 6.2 8 mACurrent

NOTE:

1. Guaranteed by CMR test.

OBSOLETEOBSOLETE

Page 3: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

OP-64

ELECTRICAL CHARACTERISTICS at Vs = :t15V, TA= +25°C, unless otherwise noted.

OP-64A/E OP-64F OP-64GPARAMETER SYMBOL CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS

Disable SupplyISYDIS

DISABLE = OV0.75 1 0.75 1 0.75 1 mA-

Current Total lor both supplies

DISABLEIDIS DISABLE = OV 0.5 0.5 0.5 mA- -

Current

Slew Rate SR RL = 2kO 130 170 - 130 170 130 170

V/S IIFull-PowerBWp (Note 2) 2 2.7 2 2.7 2 2.7 MHz- -

Bandwidth

Gain-BandwidthGBWP Ay = +5 80 80 80 MHz- - - - -

Product

Settling Time ts 10V Step 0.1% - 100 - - 100 - 100 - ns

Phase Margin film Ay=+5- 57 - - 57 - - 57 - degrees

InputCIN

- 5 - - 5 - - 5 - pFCapacitance

Open-LoopOutput Ra

- 30 - - 30 - - 30 - 0Resistance

VoltageI = 10Hz - 30 - - 30 - 300

10= 100Hz- 10 - 10 - - 10 -

nV /...fHZNoise en I = 1kHz - 8 - 8 - - 8Density 0

10= 10kHz- 8 - - 8 - 8

Current Noisein 10= 10kHz 7.5 7.5 pN...fHz

Density- - - - 7.5

External VasRpot= 20kO

- 4 - 4 - - 4 - mVTrim Range

Supply VoltageVs :t5 :t15 :t18 :t5 :t15 :t18 :t5 :t15 :t18 V

Range

NOTES:

1. Guaranteed by CMR test.

2. Guaranteed by slew-rate test and lormula BWp = SR/(2n10VpEAK).

OBSOLETEOBSOLETE

Page 4: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

ELECTRICAL CHARACTERISTICS at Vs = ::!:15V,-55°C:;; TA :;;+ 125°C for OP-64A, unless otherwise noted.

OP-64ACONDITIONS MIN TYP MAX

VCM = OV

VCM=OV

(Note 1)

VCM=:t11

Power-Supply PSRRRejection Ratio Vs = :t5V to:t18V

RL = 2kn, Vo =:t10V

RL = 20012, Vo = :t5V

RL= 2knRL= 200n

No Load

UNITS

2 mV

2 ~A

2 ~A

V

dB

31.6 ~V/V

V/mV

V

8.5 mA

NOTE:

1. Guaranteed by CMR test.

2-704 OPERATIONAL AMPLIFIERS

~-

REV. A

OP-64

ELECTRICAL CHARACTERISTICS at Vs = ::!:15V,-40°C :;;TA:;;+85°C for OP-64E/F/G, unless otherwise noted.

OP-64E OP-64F OP.64GPARAMETER SYMBOL CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS

OffsetVos 0.5 1.5 1.0 3 1.5- - - 3.5 mV

Voltage

InputBiasIB VCM=OV

- 0.3 2.5 - 0.5 3 - 1.5 3.5 ACurrent

Input Offsetlos VCM=OV - 0.2 2.5 - 0.5 3 - 1.0 3.5 A

Current

Input Voltage IVR (Note 1) :t11 - - :t11 - - :t11 - - VRange

Common-Mode CMR VCM=:t11 86 100 80 94 80 94- - - dBRejection

Power-Supply PSRR Vs = :t5Vto :t18V- 5 31.6 - 15 50 - 15 50 V/V

Rejection Ratio

Large-Signal RL= 2k12,Vo =:t10V 20 40 - 15 35 - 15 35Avo V/mV

Voltage Gain RL = 20012, Vo = :t5V 7.5 12 - 5 10 - 5 10

Output VoltageVo

RL= 2k12 :t11 :t12.3 - :t11 :t12.3 - :t11 :t12.3V

Swing RL = 20012 :t10 :t11.5 - :t10 :t11.5 - :t10 :t11.5

SupplyISY No Load - 6.3 8.5 - 6.3 8.5 - 6.3 8.5 mACurrent

NOTE:1. Guaranteed by CMRtest.

PARAMETER SYMBOL

OffsetVosVoltage

Input BiasIBCurrent

Input OffsetlosCurrent

Input Voltage IVRRange

Common-ModeCMR

Rejection

0.4-

0.35-

0.3

:t11 -

86 100

- 8

20 307.5 10

:t11 :t12:t7.5 :t10

6.4

Large-SignalAvoVoltage Gain

Output VoltageVoSwing

SupplyISYCurrent

OBSOLETEOBSOLETE

Page 5: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

OP-54

DICE CHARACTERISTICS

1. NULL2. -IN3. +IN4. v-5. NULL6. OUT7. V+8. DISABLE II

DIE SIZE 0.086 x 0.065 inch, 5,590 sq. mils(2.18 x 1.65 mm, 3.60 sq. mm)

WAFER TEST LIMITS at Vs = :t15V,TA= +25°C, unless otherwise noted.

OP-64GBCLIMITS

2.5

UNITS

mV MAX

2.5

2.5

~A MAX

~A MAX

:tff

84

VMIN

dBMIN

3f.6 ~V/V MAX

20fO

V/mV MIN

:tff:tfO

VMIN

f20

8

V/~s MIN

mA MAX

NOTES:

f. Guaranteed by CMR test.

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed forstandard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

~~~~.~.~ ...~. .~.~~~-~ - - - --

PARAMETER SYMBOL CONDITIONS

Offset Voltage Vas

Input Bias Current '8 VCM=OV

Input Offset Current 'as VCM=OV

Input Voltage Range IVR (Note f)

Common-Mode Rejection CMR VCM=:tf1V

Power SupplyPSRR Vs=:t5Vto:tf8VRejection Ratio

large-SignalAva

RL =2kO, Vo=:tfOVVoltage Gain RL = 2000, Va =:t5V

Output VoltageVa

RL = 2kOSwing RL = 2000

Slew Rate SR RL = 2kO

Supply Current 'Sy No load

OBSOLETEOBSOLETE

Page 6: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

OP-64;

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT OFFSET VOLTAGEvs TEMPERATURE

0.7

0.6:;-.E.w" 0.5<[~0>I- 0.4wen......0~ 0.3Q.g

0.2

0.1-75 -50 -25 0 25 50 75

TEMPERATURE ("C)

100 125

SLEW RATE vsTEMPERATURE

0-75 -50 -25 0 25 50 75

TEMPERATURE ("C)

100 125

OPEN-LOOP GAIN,PHASEvsFREQUENCY

100

80

iD 60~z

~ 400.0g 20:i:wQ.0

-20

-401k 100k 1M

FREQUENCY (Hz)

10M10k 100M

2- 706 OPERA TIONAL AMPLIFIERS

45iiJww

90 a::"wB

135 ~<[:z:Q.

180

INPUT BIAS CURRENTvs TEMPERATURE

0.5

1 0.4\!wa::a::::JCJ 0.3enSIDI-::JQ.Z- 0.2

0.1-75 -SO -25 0 25 50 75

TEMPERATURE ("C)

100 125

SETTLING TIMEvs STEP SIZE

10

iiJI-<5 4>W 2N(jj

i1; 0I-enI- -2::J

~-40

--6

-<I

-100 25 50 75

5ETTLING TIME (ns)

100

SMALL SIGNAL OVERSHOOTvs CAPACITIVE LOAD

100

80

T. = .25"CVS=.,5V'-IN =20mVp-p

Ay = .5NEGATIVE EDGE

~;:- 6000:z:'"a::w> 400

20

00 20 40 60 80

CAPACITIVE lOAD (pF)

1 0.3\!wa::a::::J

~ 0.2enIt0I-

~ 0.1

125

100

INPUT OFFSET CURRENTvs TEMPERATURE

0.4

~=:l:15VCM=OV

0-75 -50 -25 0 25 50 75

TEMPERATURE ("C)

100 125

140

120-:!!~I-

100g00a::

80 ~Q;:Q

60 ~ID:i:;;:

40 "

20100 125

10M

REV. A

-- ---~

GAIN-BANDWIDTH PRODUCT, PHASEMARGIN vs TEMPERATURE

70

65

Vs =:l:15VAy=+5Rl = 2000

iiJ

~60"wB

§ 55,a::<[~w~ 50:z:Q.

<l>m

45

40-75 -50 -25 0 25 50 75

TEMPERATURE ("C)

CLOSED-LOOP OUTPUTIMPEDANCEvsFREQUENCY

50

T.=+25"CVs=:l:15V

40

a-w 30CJz<[0

~ 20

10

01k 10k 100k 1M

FREQUENCY (Hz)

I IVs=t15V

/V

/'

.........-- i-""'"-

250

200

a'> 150W I I -SR!;;:a::

100u:

50

T. =+25"CVsd:15V J +10mVAy =+5

7/

I\.\\ -10mV,

OBSOLETEOBSOLETE

Page 7: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

OP-64

TYPICALPERFORMANCE CHARACTERISTICS Continued

CLOSED-LOOP GAINvs FREQUENCY

50

40

~30z:;;:" 208....'" 10w(I)g0 0

AVCL ; +5

-10

-201k 100k 1M

FREQUENCY (Hz)

10M 100M10k

SUPPLY CURRENTvs TEMPERATURE

7

:;;:-§.!i: 6wa:a:::>0

~ 5Q.::>(I)

3-75 -50 -25 0 25 50 75 100 125

TEMPERATURE ('C)

MAXIMUMOUTPUT VOLTAGEvs LOAD RESISTANCE

Vs =:f:15V16

14

-12~0~ 10..::>Q.!; &0

1!i 6:E)(~:E 4

0100 1k

LOADRESISTANCE(n)

1Ok

VOLTAGE NOISE DENSITYvs FREQUENCY

100

If~w(I)(5 10zw'"~6>

110 100 Ik

FREQUENCY (Hz)

SUPPLY CURRENTvs SUPPLY VOLTAGE

6.&

6.6NOLOAD

6.4

:;;:-6.2§.!i: 6.0wa:g; 5.&0~ 5.6Q.

~5.4

5.2

5.0

4.&0 :t5 :t10 :tIS

SUPPLY VOLTAGE (VOLTS)

%20

MAXIMUMOUTPUT VOLTAGEvs LOAD RESISTANCE

Vs =:f:5V3.0

2.9

ii)~ 2.&0~!; 2.7

~0:E 2.6::>:E)(;! 2.5

2.4

2.3100 1k

LOADRESISTANCE(n)

~-- -

tf<8w(I)(5 10z

!i:wa:a:::>0

10k

10k

CURRENT NOISE DENSITYvs FREQUENCY

100 .110 100 Ik

FREQUENCY (Hz)

10k

Isy DISABLE vsTEMPERATURE

1.00

Vs ; tl5VDISABLE =OV

0.75

:;;:-§.!i:wa:a: 0.50::>0~Q.Q.::>(I)

0.25

0-75 -50 -25 0 25 50 75

TEMPERATURE ('C)

100 125

Vs;:t15VNOLOAD

L..- -,.........

TA;+25'CVs;:t15V

/ +VOM-I-YOMI

/

TA-+25'CVs %15V

I'-

100..

I I

TA; +25'C

+VOM-I-YOM I

/"

TA;+25'CVs;%15V

'\

.......

OPEN-LOOP GAIN

vs SUPPLY VOLTAGE60

I ITA=+25'CRL;2kn

50

:;;E

z 40:;;:'"Q.00-I 30zWQ.0

20

100 :t5 :t10 :t15 :t2O

SUPPLY VOLTAGE (VOLTS)

OBSOLETEOBSOLETE

Page 8: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

OP-64

TYPICAL PERFORMANCE CHARACTERISTICS Continued

BURN-IN CIRCUIT

OPEN-LOOPGAINvs SUPPLYVOLTAGE

25

TA=+25'CRL=2000

20

:>E~z 15;;"Q.00~ 10zWQ.0

00 :5 :10 :15

SUPPLY VOLTAGE (VOLTS)

%20

POWERSUPPLYREJECTIONRATIOvs FREQUENCY

140

m120:!!.0

~100z0t; 80wUJa:>- 60~Q.::>UJ 40a:w3:~ 20

0

100 1k 10k 1ook

FREQUENCY(Hz)

1M 10M

DISABLE

2-708 OPERATlONALAMPLlFIERS

- -- ~~

COMMON-MODEREJECTIONvs FREQUENCY

140

120

m:!!.1ooz0t; 80w.,wa: 60w00=i' 40z0:::: 200OJ

-201k 10k 100k 1M

FREQUENCY (Hz)

10M

INPUTBIASCURRENTvsCOMMON-MODEVOLTAGE

0.8

0.7

- 0.6~~ 0.5wa:

a 0.4UJ'"iii 0.3...::>Q.;!: 0.2

0.1

0-12.5 -10.0 -7.5 -5.0 -2.5 0 2.5 5.0 7.5 10.0 12.5

COMMON-MODE VOLTAGE (VOLTS)

REV. A

~-

10kQ,;w.-

+15V

-A

3 7+ I

100122

1:"-=- -15V

111111111 r-TA=+2S'CVs=:1SV- I-

- -.......

- -

- "-

-

-

'--

,, TA=+2S'C

1\Vs=:1SV-

\.\

\"

........-

OBSOLETEOBSOLETE

Page 9: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

OP-64

LARGE SIGNAL RESPONSE (Vs =:t15V)

OUTPUT

INPUT

SMALL SIGNAL RESPONSE (Vs =:t15V)

LARGE SIGNAL RESPONSE (V s = :t5V)

APPLICATIONS INFORMATION

POWER SUPPLY BYPASSING ANDLAYOUT CONSIDERATIONS

Proper power supply bypassing is critical in all high-frequencycircuit applications. For stable operation of the OP-64, thepower supplies must maintain a low impedance-to-ground overan extremely wide bandwidth. This is most critical when drivinga low resistance or large capacitance, since the current requiredto drive the load comes from the power supplies. A 10llF andO.1IlF ceramic bypass capacitor are recommended for eachsupply, as shown in Figure 1, and will provide adequate high-frequency bypassing in most applications. The bypass capaci-tors should be placed at the supply pins of the OP-64. As with allhigh frequencyamplifiers,circuit layout is a critical factor in

LARGE AND SMALL SIGNAL RESPONSETEST CIRCUIT

+v

VIN

200U

-=-DISABLE

IIVOUT

1.6kU

400n

10~,+

0.1~F~

~-=- AV = +5

-=-

-=- -v

obtaining optimum performance from the OP-64. Proper highfrequency layout reduces unwanted signal coupling in the cir-cuit. When breadboarding a high frequency circuit, use directpoint-to-point wiring, keeping all lead lengths as short as pos-sible. Do not use wire-wrap boards or "plug-in" prototypingboards.

During PC board layout, keep all lead lengths and traces asshort as possible to minimize inductance. The feedback andgain-setting resistors should be as close as possible to the in-verting input to reduce stray capacitance at that point. To further

V+

V- I 0.1~F

FIGURE 1: Proper power supply bypassing is required to obtainoptimum performance with the OP-64.

reduce stray capacitance, remove the ground plane from thearea around the inputs of the OP-64. Elsewhere, the use of asolid unbroken ground plane will insure a good high-frequencyground.

OBSOLETEOBSOLETE

Page 10: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

OP-64

v+

DISABLE

OUT

RpOT =20kn TO 100kn

v-

FIGURE 2: Input Offset Voltage Nulling

OFFSET VOLTAGE ADJUSTMENTOffset voltage is adjusted with a 2OkQpotentiometer as shownin Figure 2. The potentiometer should be connected betweenpins 1 and 5 with its wiper connected to the V- supply. The typi-cal trim range is :t4mV.

OP-64 DISABLE AMPLIFIER SHUTDOWN

Pin 8 of the OP-64, DISABLE, is an amplifier shutdown controlinput. The OP-64 operates normally when Pin 8 is left floating.When greater than 250J.lA is drawn from the DISABLE pin, theOP-64 is disabled. The supply current drops to 1mA and theoutput impedance rises to 2kQ. To draw current from the DIS-ABLE pin, an open collector output logic gate or a discrete NPNtransistor can be used as shown in Figure 3. An internal resistor

v+

V,N

VOUT6

2V nov~ L

5kU2N2222

-=-V-

FIGURE 3: Simple circuits allow the OP-64 to be shut down.

2-710 OPERA TIONALAMPLIFIERS

+15V

10~F

:!iF-,

0.1~~ J1.6kn-

VOUT

200n

10~F

=1~

0'1~ -=-

-=-

-15V

FIGURE 4: DISABLE Turn-On/Turn-Off Test Circuit

limits the DISABLE current to around 500J.lA if the DISABLE pinis grounded with the OP-64 powered by :t15V supplies. Theselogic interface methods have the added advantage of level shift-ing the TTL signal to whatever supply voltage is used to powerthe OP-64.

Figure 4 shows a test circuit for measuring the turn-on and turn-off times for the OP-64. The OP-64 is in a gain of 5 with a +1V DCinput. As the input pulse to the 74LSO4 rises its output falls,

V+

VIN

VOUT

LOGIC GATEWITH OPEN

COLLECTOR/DRAINOUTPUT V-

REV.A

-------

OBSOLETEOBSOLETE

Page 11: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

OP-64

drawing current from the DISABLE pin and disabling the ampli-fier. The output voltage delay is shown in Figure S and takesSOOflSto reach ground due to the extra current supplied to theamplifier by the 10flF electrolytic bypass capacitors. The turn-on time is much quicker than the turn-off time. In this situation asthe input to the 74LS04 falls its output rises, returning the OP-64to normal operation. The amplifier's output turns on in 2S0ns.

(a)

lOGIC INPUT

OUTPUT

(b)

lOGIC INPUT

OUTPUT

FIGURE5: (a) OP-64 turn-onand turn-offperformance. (b)Expanded scale showing turn-onperformance of the OP-64.

OVERDRIVERECOVERYFigure 6 shows the overdrive recovery performance of the OP-64. Typical recovery time is 270ns from negative overdrive and80ns from positive overdrive.

VIDEO AMPLIFIERITERMINATED LINE DRIVERThe OP-64 can be used as a video amplifier/terminated linedriver as shown in Figure 8. With its high output current capabil-ity, the OP-64 eliminates the need for an external buffer.

." .

-$$TTL) ...

.

!~Fi! ..-

.mt~-i~~VON1V/DIVISION

FIGURE6: OP-64 Overdrive Recovery

The 7sn cable termination resistor minimizes reflections from

the end of the cable. The 7Sn series output resistor absorbs anyreflections caused by a mismatch between the 7sn terminationresistor and the characteristic cable impedance. In this circuit

the output voltage, VOUT' is one-half of the OP-64's output volt-age due to the divider formed by the 7Sn terminating resistors.

The output voltage at the end of the terminated cable, VOUT'spans -1 V to +1V. The differential gain and phase for the videoamplifier is summarized in Table1.

IITABLE 1: Differential Gain and Phase of Video Amplifier/LineDriver

~:t1SV:t12V

Differential Gain3.58MHz 5MHz

0.008dB 0.016dB0.008dB 0.018dB

Differential Phase3.58MHz 5MHz

0.03° 0.03°0.03° 0.03°

+15V

1~S.:!:1VSQUARE WAVE

VIN

IO~F

:i4f-= 1

0.1~ JYour

200>2

-=-

FIGURE7: Overdrive Recovery Test Circuit

50>2

6

-=-0.1~F

10~F~

_.~ -=-

DISABLE

VOUT

75>2

-=-

FIGURE8: VideoAmplifier/Terminated Line Driver

-=-

-15V

+15V

VON

R,

R2400>2

1.6k>2

-=-~_1 RVOUT-2(~+1)2

-15V

---

OBSOLETEOBSOLETE

Page 12: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

OP-64R3

400kO

,I ~~~DANCE 1Mn

ISOURCE

I ~ :

I I II -=- I1_____-

Iin-G

-5V

C,

1pF

R. VOUT

3000

R,soon

-15V R22000

-=-

FIGURE 9: Fast Transimpedance Amplifier

-=-

FAST TRANSIMPEDANCE AMPLIFIERThe circuit shown in Figure 9 is a fast transimpedance amplifierdesigned to handle high speed signals from a high impedancesource such as the output of a photomultiplier tube. The inputcurrent is amplified and converted to an output voltage by thetransimpedance amplifier.

A JFET source-follower input is used to reduce the input biascurrent of the amplifier to 100 pA and lower the input currentnoise. Transimpedance of the amplifier is:

VOUT=(B1+1 )A3hN R2

and for the values shown equals

VOUT =(800il + 1)400kil = 2VfllAhN 200il

Figure 10 shows the output of the transimpedance amplifierwhen driven from a 1Mil source impedance. The input signal of101lA- is convertedinto an outputvoltageof (1GIlA)2VfIlA=20V ~:Output slew rate is 1OOVfJls.The slew rate is limited bythe 66mbination of the capacitance of the JFET gate with the1Mil source impedance. For best performance, the stray inputcapacitance should be kept as small as possible. The OP-97 isused in an integrator loop to reduce the total amplifier offsetvoltage to under 25JlV.

2- 712 OPERA TIONAL AMPLIFIERS

FIGURE10: Output of the Fast Transimpedance Amplifier

OP-64 SPICE MACRO-MODEL

Figure 11 shows the node and net list for a SPICE macro-model ofthe OP-64. The model is a simplified version ofthe actual device and

simulates important DC parameters such as Vos' los. Ie' Avo' CMR.V0 and ISY.AC parameters such as slew rate, gain and phase re-sponse and CMR change with frequency are also simulated by themodel.

The model uses typical parameters for the OP-64. The poles andzeros in the model were determined from the actual open and closed-loop gain and phase response of the OP-64. In this way the modelpresents an accurate AC representation of the actual device. Themodel assumes an ambient temperature of 25°C (see followingpages).

-

REV. A

OBSOLETEOBSOLETE

Page 13: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

OP-64

99

@PM11989 j

RJ ~. 1°. ~G' iR7 lCJ ~GJ iR> :::= c.

C2

IN-~Q, Q 6. 9 D,

2

R, 67 8

11 Ml II'os ::;: CON 13 R. 4 R.

R2 ~

Eos rbG ~R. ..LC4 >4>{G4 ~R,O1

IN+ -+2

I, .-+ Y I I I I ::;: C.

~ r L-

(8) (b) (e)

99

l, R,> L,

GJ ~- G7 $.' ~." f" $.0 ~.. !', ~." k !~,R17

16 1 1.9 1 H I ~ I I 124R18

'. ,," frt' ~G,O ~R22 :::=C. >4>{G'2 ~R24 :::=c,O >4>{G'4 ~R26 :::=C'2l.o Roo l.

50~ -(d) (e) (I) (g) (h)

99 V.

.D7 D. G23

G17 .27 ~G,> ~RJ2 ~C,. ~RJ4 ~R36

D. V.

R.. L H f32 34+-

26 1

~D. V7 I '--038 OUT35

G,. .:~ ~GOO iR~ lc,. iRJO

-+

I ~G24 :::>R37

50 V--(I) (J) (k)

FIGURE 11a: OP-64 SPICE Macro-ModelSchematic and Node List

. PSpice is a registered trademark of MieroSim Corporation.

.. HSPICE is a tradename 01Meta-Software, Inc.

OBSOLETEOBSOLETE

Page 14: OBSOLETE - Analog Devices · V/mV Voltage Gain Avo RL = 2000, Vo = t5V 12.5 18 10 16 10 16 Output Voltage RL = 2k12 t11 t12.5 t11 t12.5 t11 t12.5 Vo V Swing RL = 20012 t10 t11.7 t10

OP-64

OP-64 MACRO-MODEL I/:)PMI1989*

**POLE AT 159 MHz*. subckt OP-64 1 2 38 99 50*

3399997826502129

r23 23 99r24 23 50c9 23 99c10 23 50911 99 2391223 50*

INPUT STAGE & POLE AT 39.8 MHz*r1 2r2 1r3 5r4 6r5 4r6 4Gin 1c2 5i1 4ios 1aos 9q1 5q2 6** SECOND STAGE & POLE AT 3.8 kHz*

78

5E115E11474.86474.86423.26423.265E-124.2106E-121E-31E-7poly(1) 26 32 4E-4 1qxqx

*POLE AT 159 MHz*

r7 11 99r8 11 50c3 11 99c4 11 5091 99 1192 11 50v2 99 10v3 12 50d1 11 10d2 12 11** POLE AT 39.8 MHz*r9 13 99r10 13 50c5 13 99c6 13 5093 99 1394 13 50*

1E61E61E-151E-1522 32 1E-632 22 1E-6

r25 24 99r26 24 50c1124 99c1224 50913 99 24914 24 50**COMMON-MODEGAINNETWORKWITHZEROAT 20kHz*

7.1229E67.1229E65.88E-125.88E-12poly(1) 5 6 4.31E-3 2.1059E-3poly(1) 6 5 4.31E-3 2.1059E-32.252.25dxdx

r29 26 27r30 26 2815 27 9916 28 50917 99 26918 26 50** POLE AT 159 MHz*r32 31 99r33 31 50c15 31 99c1631 50919 99 3192031 50*1E6

1E64E-154E-1511 32 1E-632 11 1E-6

* OUTPUT STAGE*r34 32 99r35 32 50r36 33 99r37 33 5017 33 3892136 50922 37 5092333 9992450 33v6 34 33v7 33 35d5 31 34d6 35 31d7 99 36d8 99 37d9 50 36d10 50 37*

* ZERO-POLE PAIR AT 26.5 MHz 1159MHz*r13 16 17r14 16 18r15 17 99r16 18 5011 17 9912 18 5095 99 1696 16 50*

1E61E65E65E65.005E-35.005E-313 32 1E-632 13 1E-6

* ZERO-POLE PAIR AT 31.8 MHz 139.8 MHz*r17 19 20r18 19 21r19 20 99r20 21 5013 20 9914 21 5097 99 1998 19 50** POLE AT 100 MHz*r21 22 99r22 22 50c7 22 99c8 22 5099 99 22910 22 50

1E61E62.5157E52.5157E51.006E-31.006E-316321E-632 161E-6

* MODELS USED*

1E61E61E-151E-1523 32 1E-632 23 1E-6

1E61E67.95757.95753332 1E-1132 33 1E-11

1E61E61E-151E-1524 32 1E-632241E-6

20.0E320.0E360602.9E-731 3333 3199 3131 501.71.7dxdxdxdxdydy

16.6666667E-316.6666667E-316.6666667E-316.6666667E-3

.model qx NPN(BF=2500)

.model dx D(IS=1E-15)

.model dy D(IS=1E-15 BV=50)"ends OP-64

1E61E61.59E-151.59E-1519 321E-632 19 1E-6

FIGURE 11b: OP-64 SPICE Net-List

2-714 OPERA TIONAL AMPLIFIERS

-~

REV. A

~-- ~ ~

OBSOLETEOBSOLETE