oc-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... ·...

64
EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 1 Network Processor TX RX O E Network Processor O E RX TX E O E O 16 16 16 16 622Mb/s 10 Gb/s 622Mb/s Photo Diode TIA + Preamp 10 Gb/s Mod Laser 10 Gb/s 10 GHz OC-192 (10 Gb/s) transceiver 0.18 µm CMOS process OC-192 communications system block diagram

Upload: others

Post on 26-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 1

Network Processor

TX

RX

O E

Network Processor

O E

RX

TX

E O

E O

16

16

16

16

622Mb/s 10 Gb/s 622Mb/s

Photo Diode TIA + Preamp

10 Gb/s Mod Laser

10 Gb/s

10 GHz

•  OC-192 (10 Gb/s) transceiver •  0.18 µm CMOS process

OC-192 communications system block diagram

Page 2: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 2

Transceiver block diagram:

10 GHz

10 Gb/s

Page 3: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 3

Read Pointer

FIFO Control RESET

CLK16IP CLK16IN

DI0P DI0N

DI15P DI15N

REFCLKP REFCLKN

REF155EN

INP

UT

RE

GIS

TER

10/10.7 GHz CMU

SELFECB

16 X

10

FIFO

Write Pointer

16:1

MU

X

DIVIDE-BY-16

Output Retime

IFSEL VCP VCN

TSDP TSDN

TSCKP TSCKN

CLK16OP CLK16ON

LCKDET

RB_LD

LVDS Parallel

Input Bus

LVPECL Ref.

Clock

CML High- Speed Outputs

LVDS Output Clock

OVF

Transmitter Block Diagram

Page 4: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 4

Low-Frequency Input signals

Reference clock

Input clock

Input data

Input data aligned to input clock (usually jittery)

Very low jitter (~10 ppm) reference clock; used in CMU to generate 10 GHz internal clock

Reference clock and input clock are not synchronized.

T

tsh

Maximum allowable variation between Input clock & Reference clock is T − tsh

Page 5: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 5

Input clock timing domain

Reference clock timing domain

input clock

input data

16

Reference clock

High-frequency clock

16 16

Connection could exhibit varying delay Variable phasing between

input & reference clock domains can cause bit errors in MUX

Illustration of Input Timing Regimes

16:1 MUX

Page 6: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 6

We require an intermediate block to resolve timing variations between input & reference clock

First-In/First-Out (FIFO) Circuit (1)

16:1 MUX

Page 7: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 7

First-In/First-Out Circuit (2)

Din_0

Din_n

k

k

Read clock

Write clock

Read clock

Write clock

Dout_0

Dout_n

Synchronized with input clock

To serializer (signals synchronized with reference clock)

Since these signals have period k times longer than the input period, the circuit can tolerate k times larger variation between input & reference clocks.

Ref clock

Ref clock

Read clock based on input clock Write clock based on reference clock

Page 8: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 8

FIFO approach: •  Large amount of hardware (many latches) •  Significant power dissipation unless static CMOS is used •  Can handle arbitrarily large delay variations

DLL approach: •  Less hardware •  Can handle modest delay variations •  Better choice for BJT or GaAs processes

Appropriate phase chosen

Page 9: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 9

static CMOS

CML

16:1 Multiplexer Tree Structure

10 Gb/s 5 Gb/s

2.5 Gb/s 1.25 Gb/s

5 GHz 2.5 GHz 1.25 GHz

Page 10: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 10

2:1 MUX cell details

D flip-flop with extra latch

Page 11: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 11

Assume all blocks have: •  Tail current ISS •  Resistor R •  Diff pair transistor sizes W/L

ISS 5ISS 2ISS 10ISS Total current: 18ISS

f

12

f

12

f

14

f

Page 12: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 12

We can take advantage of gain/bandwidth tradeoff by appropriate scaling:

Design parameters: •  ISS •  R •  W/L ⇒ CL

LW

LW

LW

LW

f

f

12

fIdea:

τ = RCg

ISS,R,W,Cg

ISS,R,W,Cg

τ = 2RCg

12

ISS,2R, 12

W , 12

Cg

Lower bit rate allows lower power!

Page 13: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 13

f

12

f

12

f

14

f

τ = RCg

τ = 2RCg

ISS,R,W

τ = 2RCg

12

ISS,2R, 12

W

τ = 4RCg

18

ISS,8R, 18

W

Cp ≈ 10 fF GSCALE=3 → ISS = 1.2 mA

MSCALE=1/8 MSCALE=1/2 MSCALE=1/2 MSCALE=1

12

ISS,2R, 12

W

52

ISS

108

ISS

ISS

ISS

Itotal = 5.75ISS = 6.9 mA

Page 14: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 14

Clock Dividers

The operation of “real” high-speed clock dividers is more complex …

Page 15: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 15

Clock divider based on CML D flip-flop:

Divider sensitivity curve:

Vmin = minimum input clock amplitude required for correct operation.

fso = self-oscillation frequency

Vmax = maximum dc differential voltage that can be applied to the input clock for which the circuit self-oscillates.

DLW!"

#$%

&

DLW!"

#$%

&

LLW!"

#$%

&

LLW!"

#$%

&

CLW!"

#$%

&

CLW!"

#$%

&

CLW!"

#$%

&

LLW!"

#$%

&

LLW!"

#$%

&

DLW!"

#$%

&

DLW!"

#$%

&

CLW!"

#$%

&

Vmax

Page 16: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 16

Desired frequency divider operation Quasiperiodic operation Slew-rate limited operation

Region I: Region II:

Region III:

Sensitivity Curve Analysis

Page 17: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 17

Region II: Quasiperiodic behavior self-oscillating

locked fin = 11GHz

Page 18: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 18

Region III: Slew-rate limited Behavior

Sine-wave input

Square-wave input

Page 19: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 19

Effect of Transistor Sizes on Sensitivity Curve

Latch transistors

Driver transistors

Clock transistors

Page 20: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 20

Alternatives to DFF-Based Clock Dividers

•  Latches present large capacitive load ! slow

Page 21: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 21

At very high frequencies, latch transistors are not necessary and only add capacitance to the circuit:

Page 22: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 22

Ring-Oscillator-Based Divider

Behaves like a 4-stage ring oscillator with injection of full-rate frequency.

Page 23: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 23

Comparison of Sensitivity Curves

Conventional divider: Dynamic divider:

Wider frequency range; lower self-oscillation frequency Narrow frequency range; higher self-oscillation frequency

Page 24: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 24

I1 I2

I2(t)

0

ISS

I1(t)

Vout-(t)

Vout+(t)

VDD

VDD – ISSR

VDD – ISS(R+ΔR)

0

Vout+(t) – Vout-(t)

ISSR

ISS(R+ΔR)

Effect of Non-Ideal Clock Signals

Offset resistance causes deviation from 50% duty cycle in clock signal.

Page 25: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 25

Half-rate clock

MUX output

ideal

with offset

with offset ideal

Result of nonideal half-rate clock is Periodic Jitter.

Page 26: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 26

retimer

10 GHz clock

10 Gb/s retimed data 5 Gb/s

5 GHz

10 Gb/s data

Full-rate clock (could be non-50% duty cycle)

retimed output

Retimer eliminates this problem:

Page 27: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 27

10 Gb/s data output

10 GHz clock

2.5 Gb/s data input

5 Gb/s

5 GHz 2.5 MHz

tp1

tp2

tp1 & tp2 are “clock-to-Q” delays. Because the clock & data flow in opposite directions, alignment between 5 Gb/s data & 5 GHz clock is determined by the sum: tp1 + tp2 (High sensitivity to processing / temp. corners)

Internal MUX Timing

Page 28: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 28

•  50Ω back termination used to reduce reflections. •  CML blocks scaled up so that last stage drives ac load of 25Ω. •  Shunt-peaking used in second stage.

Serial Output 50Ω Line Driver

Page 29: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 29

RXDOUT0P RXDOUT0N

RXDOUT15P RXDOUT15N

RXPOCLKP RXPOCLKN

LCKDET

OUTPUT

REGISTERS

RDINP RDINN

Divide-by-16

VCP VCN

RXREFCLKP RXREFCLKN CDR

1:16 DEMUX

REF155ENB

LOSB LOS

DETECT

RATESEL0/1

RB_LD

RESETB Divide-by-4 RXMCLKP

RXMCLKN LCKREFB RXMCLKENB

9.953/10.3125/10.664/ 10.709Gbps CML

622.08/644.54/666.51/ 669.31Mbps LVDS

RSCLKP RSCLKN Test Only

9.953/10.3125/10.664/ 10.709G

Receiver Block Diagram

Page 30: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 30

Static CMOSCML

10GHz CLK

1:2

D AB

/2 /2

1:2

D AB

1:2

D AB

/2

1:2

D AB

1:2

D AB

1:2

D AB

1:2

D AB

/2 /2

8:16

10Gb/s Data

622Mb/s

4:82:41:2

311MHz

622MHz

DMUX Architecture

Page 31: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 31

1:4 DMUX Tree Structure

10 Gb/s data input 2.5 Gb/s data outputs

10 GHz clock 5 GHz 2.5 GHz

5 Gb/s

Page 32: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 32

1:2 DMUX cell details:

Page 33: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 33

10 Gb/s data input

2.5 Gb/s data output

10 GHz clock 5 GHz 2.5 GHz

tp1 & tp2 are “clock-to-Q” delays.

Because the clock & data flow in the same direction, alignment between 5 Gb/s data & 2.5 GHz clock is determined by the difference: tp1 – tp2 (Low sensitivity to processing/temp. corners)

tp1

tp2

Internal DMUX Timing

5 Gb/s

Page 34: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 34

Crosstalk in Transceivers

f1 f2

•  Capacitive coupling between VCO’s can cause “frequency pulling” •  Momentary differences in frequencies between 2 VCO’s can give rise

to additional jitter.

Page 35: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 35

Crosstalk Measurement

Serial input data 10 Gb/s

CMU reference clock

fref =10 GHz

16⋅ 1+10−4( )

recovered clock 10 GHz

output data 10 Gb/s + 100ppm

output clock 10 GHz + 100ppm

Low-frequency inputs/outputs

Low-frequency inputs/outputs

Jitter is measured at TX output clock (or data) and RX recovered clock.

Page 36: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 36

•  Sufficient physical separation between VCO’s

•  Separate supply connections to package for each block (e.g., CMU, CDR, MUX, DMUX, FIFO, etc.) •  Ample guard rings to minimize substrate coupling

Techniques for Reducing Transceiver Crosstalk

Very difficult to simulate & predict!

Page 37: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 37

SONET Jitter Specifications

1.  Jitter Generation (transmitters)

2.  Jitter Tolerance (receivers)

3.  Jitter Transfer (repeaters)

Page 38: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 38

Jitter Generation (1)

•  DJ always specified in peak-to-peak •  RJ rms jitter well-characterized •  RJ peak-to-peak jitter dependent on measurement time (increases

without bound)

SONET: JPP usually measured over a specified frequency range.

Wideband jitter (p-p or rms) can be measured directly from serial output data signal

Gigabit Ethernet & Fiber Channel: Equivalent JPP determined by measured BER.

Page 39: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 39

SONET jitter generation is specified within a certain jitter frequency range. For OC-192: 50 kHz – 80 MHz

To measure narrowband jitter generation, we can: A.  Measure the recovered clock from a “golden” CDR:

TX CDR (low jitter generation)

Ref. clock

output data

recovered clock

to jitter analyzer

Should have jitter bandwidth > 80MHz

SONET OC-192 bandpass filter

Jitter Generation (2)

10 GHz

Page 40: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 40

B.  Measure the TX output clock directly (assuming its jitter is the same as the data):

TX

Ref. clock

output data

TX output clock

to jitter analyzer

Note: ISI is usually measured separately (peak-to-peak only).

Jitter Generation (3)

10 GHz

Page 41: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 41

9.95328 GHz 10.6642 GHz

Measured at output clock; 231-1 PRBS serial data applied to input

Phase noise: -100 dBc/Hz @ 1MHz offset Jitter generation (SONET filter): 5.6mUI rms / 60mUI p-p

Phase noise: -100 dBc/Hz @ 1MHz offset Jitter generation (SONET filter): 6.2mUI rms / 65mUI p-p

Jitter Generation (4)

Page 42: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 42

Jitter Generation (231-1 PRBS): 6.44 ps pp (wide band) 0.38ps rms (within SONET band)

Closed-loop VCO phase noise (231-1 PRBS): –107 dBc/Hz @ 1 MHz offset

Jitter Generation (5) Jitter measurements from clock:

Page 43: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 43

10.6642GHz clock Wideband jitter: 7.5ps p-p / 1.2ps rms

10.6642Gb/s data Wideband jitter: 10.7ps p-p / 1.8ps rms

231-1 PRBS input data applied:

Jitter Generation (6)

Page 44: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 44

Serial data in

recovered clock

retimed data out

To DMUX retimer

Experiment: Apply serial data to CDR with jitter at a certain frequency. Increase the jitter amplitude until a bit error occurs.

If data jitter & recovered clock jitter could perfectly track, then retiming would be error-free.

Data in

Recovered clock

T

tsh

Jitter Tolerance (1)

Page 45: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 45

Given CDR open-loop characteristic

φclock

φdata

=G

1+G

fdata fclock

φdata −φclock

φdata

=1

1+G

φdata(max)(ω) = 1+G( jω) ⋅ φdata −φclock max= 1+G( jω) ⋅2π T − tsh

T

JTOL(ω) = 1+G( jω) ⋅ 1− tsh

T

%

& '

(

) * (expressed in UI)

G jω( ) = Kpd ⋅F jω( ) ⋅Kvco

^

Jitter Tolerance (2)

Page 46: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 46

Bit rate: 10.7Gb/s Pattern: 231-1PRBS BER threshold: 10-12

Jitter Frequency (Hz)"

Jitte

r Tol

eran

ce [U

Ipp]

Jitter Frequency [Hz]

Bit rate: 10.7 Gb/s Pattern: 231-1PRBS Data in: 50 mV pp BER threshold: 10-12

100 1K 10K 100K 1M 10M 100M 0.01

10

0.1

1

10

100

1000

10000

Jitter Tolerance > 40 ps pp at high frequency

Jitter Tolerance (3)

Page 47: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 47

O ⇒ E RX TX E ⇒ O

HRX ( jω)

HTX ( jω)

n repeaters:

HRX jω( ) ⋅HRX jω( )[ ]n

repeater

Jitter peaking should be minimized.

Jitter Transfer

f0

0.1dB

-20 dB/decade

Jitter Transfer Mask:

Page 48: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine

Electrical-to-Optical Interfaces (1)

Electrical to optical (TX):

MUX laser driver

IL

IL

optical output power

T

Ith ~ 10mA

laser diode or Vertical Cavity Surface Emitting Laser (VCSEL)

48

Page 49: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 49

Electrical-to-Optical Interfaces (2)

Electroabsorption modulator

Operates by making optical material more or less absorptive.

⇓Pin

⇓Pout

VM

VM Vswing~ 3V

Pout

Pin

49

Page 50: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 50

Mach-Zender modulator:

Electrical-to-Optical Interfaces (3)

Mach-Zender interferometer:

•  Invented in 1890s •  Used to precisely measure optical

phase shift of materials. •  By using constructive/destructive

interference, can be used as a laser modulator.

VM Vswing ~ 6V

Pout

Pin

50

Page 51: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 51

Electrical-to-Optical Interfaces (4)

Optical pulsewidth distortion commonly occurs due to: •  Unequal turn-on/turn-off times of laser diode •  Non-ideal bias voltage in modulators.

Electrical signal (IL or VM)

Optical output

Additional circuitry to correct pulsewidth is often added to system...

Results in DCD

51

Page 52: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 52

Electrical-to-Optical Interfaces (5)

VM

Vref

IB

laser diode monitor diode

R

Optical output control circuit:

IB =Vref

RFeedback sets

52

Page 53: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 53

Optical Receiver Block Diagram

O ⇒ E

LA CDR EQ DMUX

≈ -18 dBm ≈ 10 mV p-p ≈ 10 µA ≈ 400 mV p-p

TIA

53

Page 54: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 54

Optical-to-Electrical Interfaces (1)

p-i-n photodetector structure: circuit model:

ID = ρ ⋅Popt

CD

+

_

+

_

n

p

i

applied optical signal

resulting electrical

current

VR~5V

ρ = 0.6 ~ 0.9 A WCD ~ 400 fF

54

Page 55: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 55

Eye diagram of PRBS resulting from 96 km of single-mode fiber

and photodetector.

Optical-to-Electrical Interfaces (2)

•  DCD & ISI are evident. •  Noise is higher at logic 1 than at logic 0.

in2 = 4qρPopt ⋅ ΔfPhotodetector noise:

55

Page 56: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 56

Transimpedance Amplifier (TIA)

R

Cd

A0

Vref

Iin

from photodetector

Vout

Used to convert photodetector current into voltage.

low-impedance node maintains nearly constant detector voltage ⇒ good linearity.

56

Page 57: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 57

Transimpedance Amplifier (2)

R

Cd

A0

Vref Iin

photodetector

Vout

ZT ≡Vout

Iin= −Rf ⋅

11+ 1

A0

Zin ≡V−

Iin=

Rf

1+ A0

Transimpedance:

Input impedance:

A(s) ⋅ f (s) =A0

(1+ s p1) ⋅ (1+ s p2 ) ⋅ ⋅ ⋅⋅

11+ sRf (Cd +Cg )

Loop gain:

additional pole limits closed-loop BW

Cg

57

Page 58: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 58

Transimpedance Amplifier (3)

Noise analysis:

vni

inR

R

vout

vout2 = vni

2 + inR2 ⋅Rf

2

= ieq2 ⋅Rf

2

⇒ ieq2 =

vni2

Rf2

+ inR2

vni2 =

4kTγgm

⋅ Δf +Kf

Cg

⋅Δff

inR2 =

4kTRf

⋅ Δf

⇒ ieq2 =

4kTRf

⋅ 1+γ

gmRf

+Kf

CgRf f

%

& '

(

) * ⋅ Δf

Good sensitivity requires: •  Large Rf •  Large Cg •  Large gm

Tradeoff with BW

58

Page 59: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 59

Transimpedance Amplifier (4)

•  Cd decoupled from feedback network •  Common-gate device increases noise

Cd

Cg

R Cd

Cg LB

R

•  LB provides decoupling (series peaking); could be realized by bondwire.

59

Page 60: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 60

Limiting Amplifiers

Requirements:

•  Amplify input signal with variable amplitude (~10-30 mV) to a fixed-amplitude (~450 mV) output.

•  Sufficiently high bandwidth •  Sufficiently low noise •  Low offset voltage +

Vin −

+ Vout −

n stages

A(s)

A(s)

A(s)

A(s) =A0

1+ s p

Single stage:

An (s) =A0

1+ s p

"

# $

%

& '

nn-stage amplifier:

Overall gain:

Overall bandwidth:

A0n

p ⋅ 21 n −1

60

Page 61: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 61

7-Stage Limiting Amplifier Example (1)

Each stage uses shunt-peaked CML buffer with: A0 = 5.5 dB BW = 10 GHz

A jω( ) (dB)

100 MHz 1 GHz 10 GHz 100 GHz

1st stage output

7th stage output

61

Page 62: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 62

7-Stage Limiting Amplifier Example (2)

Input amplitude = 20 mV p-p Input amplitude = 40 mV p-p

1st stage output

7th stage output

6th stage output

1st stage output

7th stage output

6th stage output

62

Page 63: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 63

Input amplitude = 20 mV p-p

1st stage output

7th stage output

6th stage output

Input-referred offset of 5 mV applied

7-Stage Limiting Amplifier Example (3)

Offset-cancellation circuitry required!

V out ≈ A0n ⋅VOS

63

Page 64: OC-192 communications system block diagramgram.eng.uci.edu/faculty/green/public/courses/270c/... · 2016-09-19 · TX16 RX O E Network Processor O E RX TX E O E O 16 16 16 622Mb/s

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 64

Limiting Amplifier Offset Compensation

n-stage amplifier core

lowpass filter

+ vin −

offset compensation

RL RL

M1 M1 M1 M1 RF

CF

RF

CF

VOS

Vout

+ −

+ −

V1

+ Vout −

H.-Y. Huang et al., “A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback,” JSSC, May 2007, pp. 1111-1120.

⇒V out =gm1RA0

n

1+ gm1RA0n⋅VOS ≈VOS

vout = gm1RA0n ⋅vin

V1 = gm1R ⋅ vin +VOS( ) −V out[ ] ⇒V 1 = gm1R ⋅ VOS −V out( )v1 = gm1R ⋅vin

compensation circuit:

Vout = A0n ⋅V1 ⇒V out = A0

n ⋅V 1vout = A0

n ⋅v1

amplifier circuit:

64