oce421_lec6

23
OCE421 Marine Structure Designs Lecture #6 (Short-term Wave Statistics)

Upload: jiji-gopan

Post on 28-Oct-2014

120 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: oce421_lec6

OCE421 Marine Structure Designs

Lecture #6 (Short-term Wave Statistics)

Page 2: oce421_lec6

Reading Material

• Coastal Engineering Manual – Part II– Chapter 1: pp. 59-76

Page 3: oce421_lec6

Nonbreaking Design Wave

• If breaking in shallow water does not limit wave height, a non-breaking wave condition exists.

• For non-breaking waves, the design height is selected from a statistical height distribution.

Page 4: oce421_lec6

Wave Statistics

• Long-term wave statistics (a few years, 20 years, etc) – Fisher-Tippet II distribution, etc.

• Short-term wave statistics (20 minutes, 3 hours, etc.) – Rayleigh (wave height) distribution etc.

Page 5: oce421_lec6

Long-term vs. Short-term

A 20-min record may have been recorded (and statistics of each record computed) every 3 hr for 10 years (about 29,000 records) and the statistics of the set of 29,000 significant wave height compiled.

If we have measured the waves for 20 min and found that the significant wave height is 2 m, what is the chance that a wave of 4 m may occur?

a common short-term question:

If the mean significant wave height may be 2 m with a standard deviation of 0.75 m, what is the chance that once in 10 years the significant wave height will exceed 4 m?

a common long-term question:

Page 6: oce421_lec6

Recording Period and Interval

recording interval

recorder on

20 minutes

3 hours

t

(t)

recorder on

20 minutes recording

period

Page 7: oce421_lec6

Wave Identification: zero-crossing technique

H1

H2

H3

T1 T2 T3

zero-upcrossing technique

individual wave height

H1, H2, H3, …

T1, T2, T3, …

individual wave period

Page 8: oce421_lec6

Zero-crossing Wave Height Identification

2 blue waves, 1 red wave

Page 9: oce421_lec6

Matlab Code: zerocrs.m (I)

function [H,T]=zerocrs(t,eta);%-----------------------------------------------------------%% function [H,T]=zerocrs(t,eta)%% Perform zerocrossing method to identify individual wave % height and wave period%% H = Wave heights of individual waves% T = Wave periods of individual waves%% H is a 1 by (number of waves) array% T is a 1 by (number of waves) array%%-----------------------------------------------------------

Page 10: oce421_lec6

Matlab Code: zerocrs.m (II)

nstep=length(eta);eta1=[eta(2:nstep),0]; % a shift of eta by 1 steptem=eta.*eta1; % negative when a zero-crossing takes placecrs_ind=find(tem<0); % index of wave elevation at zerocrossingnum_crs=length(crs_ind); % number of zerocrossings%num_wave=fix(num_crs/2); % number of waves%H=zeros(1,num_wave-1); % initialization, % for simplicity, drop the last waveT=H;%for n=1:(num_wave-1), start=crs_ind(2*n-1); % starting index for the n-th wave endd=crs_ind(2*n+1); % ending index for the n-th wave peak=max(eta(start:endd)); valley=min(eta(start:endd)); H(n)=peak-valley; T(n)=t(endd)-t(start);end;

Page 11: oce421_lec6

Representative Wave Heights

The 1/nth wave height, denoted as H1/n is defined as theaverage wave height of the highest 1/nth waves.

For n=3, H1/3 termed as the significant wave height, Hs.

For n=1, it represents the mean wave height,

H1/10 , H1/100 and H1/250 are defined accordingly

Hrms is defined as: Hrms=

vuut 1N

NX

i=1

H2i

1

if N individual wave heights are given.

Page 12: oce421_lec6

Fundamental Probability Functions

PH (h) =Prob[H <h]

2

_

Cumulative distribution function (cdf):

PH (h) =Z h

0pH (x)dx

1

pH (h) =dPH (h)dh

3

Probability density function (pdf):

Probability of exceedance (poe):

QH (h) =Prob[H >h]

4

P +Q =1

1

H = random variable

h = fixed number

Page 13: oce421_lec6

Relationships among pdf/cdf/poe

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

pdf

cdf

poe

area

Page 14: oce421_lec6

Theoretical Models

• Wave elevation : Gaussian distribution (due to central limit theorem)

• Wave height : Rayleigh distribution (narrow band assumption)

Page 15: oce421_lec6

Gaussian

Page 16: oce421_lec6

Normal (Gaussian) Distribution

¡ 1 < x <1

1

f (x) =1

¾p2¼exp

(

¡12

µx ¡ ¹¾

¶2)

1

Probability density function (pdf)

Cumulative distribution function (cdf)

F (x) =1

¾p2¼

Z x

¡ 1exp½¡12

µv¡ ¹¾

¶¾2dv

2

2

Page 17: oce421_lec6

Rayleigh

Page 18: oce421_lec6

Rayleigh Distribution

f (h) =2hµ2exp

"

¡µhµ

¶2#

; h ¸ 0

1

F (h) =1¡ exp

"

¡µhµ

¶2#

; h ¸ 0

2

Q(h) =1¡ F (h)

3

=exp

"

¡µhµ

¶2#

; h ¸ 0

4

f (h) =dF (h)dh

1

F (0) =0, F (1 ) =1

2

a monotonically increasing function

cdf

pdf

poe

Page 19: oce421_lec6

Root-Mean-Square Value

E[H2]=Z 1

0h2f (h)dh

1

=µ2

2

f (h) =2hµ2exp

"

¡µhµ

¶2#

; h ¸ 0

1

=Hrms

2

(mean-square value)

root-mean-square (rms) value

second moment

pdf

µ=qE[H2]

1

substitute in

notation for the rms of H

Page 20: oce421_lec6

Rayleigh Distribution in RMS Value

f (h) =2hµ2exp

"

¡µhµ

¶2#

; h ¸ 0

1

f (h) =2hH2rms

exp

"

¡µh

Hrms

¶2#

; h ¸ 0

F (h) =1¡ exp

"

¡µh

Hrms

¶2#

; h ¸ 0

Q(h) =exp

"

¡µh

Hrms

¶2#

; h ¸ 0

1

f (h) =2hH2rms

exp

"

¡µh

Hrms

¶2#

; h ¸ 0

F (h) =1¡ exp

"

¡µh

Hrms

¶2#

; h ¸ 0

Q(h) =exp

"

¡µh

Hrms

¶2#

; h ¸ 0

1

Page 21: oce421_lec6

Matlab Display: Rayleigh

hrms=1; h=0:0.01:4;psd = 2*h/hrms^2 .* exp(-(h/hrms).^2);cdf = 1 - exp(-(h/hrms).^2);subplot(211); plot(h,psd); grid;subplot(212); plot(h,cdf,'r-'); grid

pdf

cdf

Page 22: oce421_lec6

Rayleigh Distribution in Mean Value

E[H]=¹H =H =Z 1

0hf (h)dh

1

=p¼2Hrms

2

f (h) =2hH2rms

exp

"

¡µh

Hrms

¶2#

; h ¸ 0

3

Hrms=2¹p¼

1

(drop subscript H from H for simplicity)

f (h) =¼h2¹ 2

exp

"

¡¼4

µh¹

¶2#

; h ¸ 0

2

pdf in terms of mean value (change of parameter)

Page 23: oce421_lec6

Histogram to pdf

average probability “density” for H