october 21 residue theorem 7.1 calculus of residues

32
October 21 Residue theorem 7.1 Calculus of residues Chapter 7 Functions of a Complex Variable II 1 Suppose an analytic function f (z) has an isolated singularity at z 0 . Consider a contour integral enclosing z 0 . z 0 ) ( s Re 2 2 ) ( 1 , 2 ) ln( 1 , 0 1 ) ( ) ( ) ( ) ( ) ( 0 1 1 ' ' 0 1 ' ' 1 0 0 0 0 z f i ia dz z f n ia z z a n n z z a dz z z a dz z z a dz z z a dz z f C z z z z n n C n n n C n n C n n n C ient a -1 =Res f (z 0 ) in the Laurent expansion is called the residue of If the contour encloses multiple isolated singularities, we have the residue theorem : n n C z f i dz z f ) ( s Re 2 ) ( z 0 z 1 Contour integral =2i ×Sum of the residues at the enclosed singular points

Upload: beaumont-dilan

Post on 31-Dec-2015

85 views

Category:

Documents


4 download

DESCRIPTION

Chapter 7 Functions of a Complex Variable II. October 21 Residue theorem 7.1 Calculus of residues. Suppose an analytic function f ( z ) has an isolated singularity at z 0 . Consider a contour integral enclosing z 0. z 0. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: October 21 Residue theorem 7.1 Calculus of residues

October 21 Residue theorem

7.1 Calculus of residues

Chapter 7 Functions of a Complex Variable II

1

Suppose an analytic function f (z) has an isolated singularity at z0. Consider a contour integral enclosing z0 .

z0

)( sRe22)(

1 ,2)ln(

1 ,01

)(

)(

)()()(

01

1

'

'01

'

'

10

0

00

zfiiadzzf

niazza

nn

zza

dzzza

dzzzadzzzadzzf

C

z

z

z

z

n

n

C

nn

nC

nnC

n

nnC

The coefficient a-1=Res f (z0) in the Laurent expansion is called the residue of f (z) at z = z0.

If the contour encloses multiple isolated singularities, we have the residue theorem:

n

nCzfidzzf )( sRe2)(

z0 z1

Contour integral =2i ×Sum of the residuesat the enclosed singular points

Page 2: October 21 Residue theorem 7.1 Calculus of residues

2

Residue formula:

To find a residue, we need to do the Laurent expansion and pick up the coefficient a-1. However, in many cases we have a useful residue formula(Problem 6.6.1):

)()(lim)!1(

1)(sRe

)!1())(2()1)((lim)(lim

)(lim)!1(

1)()(lim

)!1(

1

:Proof

.)()(lim)(sRe

,pole simple afor ly,Particular

)()(lim)!1(

1)(sRe

,order of pole aFor

01

1

01

11

1001

1

01

1

01

1

00

01

1

0

0

00

00

0

0

zfzzdz

d

mzfa

mazznmnmnazzadz

d

zzadz

d

mzfzz

dz

d

m

zfzzzf

zfzzdz

d

mzf

m

mm

m

zz

n

nn

zzmn

mnnm

m

zz

mn

mnnm

m

zz

mm

m

zz

zz

mm

m

zz

Page 3: October 21 Residue theorem 7.1 Calculus of residues

3

.0 ,)()(lim!

1

:tscoefficien theall find way toa is e that therprovedactually We

.)()(lim)!1(

1 us gives 1 upPick . Also

.)()(lim!

1 ,)()()(

expansionTaylor by analytic, is )()( Because

)()()(

)()(

:#2 Method Proof

0

01

1

1

000

0

0

00

0

0

0

0

kzfzzdz

d

ka

a

zfzzdz

d

mamkab

zfzzdz

d

kbzzbzfzz

zfzz

zzazfzz

zzazf

mk

k

zzmk

mm

m

zzmkk

mk

k

zzk

k

kk

m

m

mn

mnn

m

n

mnn

Page 4: October 21 Residue theorem 7.1 Calculus of residues

4

.1 of residue a with 0at polse simple a has 1

1 therefore,1

1

1lim

.2

1 of residue a with at polse simple a has

1

1 therefore,

2

1

1

1)(lim

:Examples

.)()(lim)(sRe

.at pole simple a has )(

0)()(lim

.2for 0

0 and exists )(lim)()(lim

then,)()(Let

:Proof

.)()(lim)(sRe)2

.at pole simple a has )( 1)

then0, toequalnot is and exists )()(lim If

:Fact

0

22

00

0

10

100

0

00

0

0

00

00

0

0

zee

z

iiz

ziziz

zfzzzf

zzzf

azfzz

na

zzazfzz

zzazf

zfzzzf

zzzf

zfzz

zzz

iz

zzzz

n

n

nn

zzzz

nn

nn

zz

zz

Page 5: October 21 Residue theorem 7.1 Calculus of residues

5

Residue at infinity:Stereographic projection:

Residue at infinity:Suppose f (z) has only isolated singularities, then its residue at infinity is defined as

nn

CC

zf

dzzfi

dzzfi

f

)( sRe

)(2

1)(

2

1)( sRe ~

Another way to prove it is to use Cauchy’s integral theorem. The contour integral for a small loop in an analytic region is

)( sRe)( sRe20)(

0

fzfidzzfn

nCz

C~

.1)( sRe ,1

)( :Example fz

zf

One other equivalent way to calculate the residue at infinity is

.0at 11

Res11

2

1)(

2

1)( sRe

22

/1let

~0

ZZZ

fdZZZ

fi

dzzfi

fC

Zz

C

By this definition a function may be analytic at infinity but still has a residue there.

Page 6: October 21 Residue theorem 7.1 Calculus of residues

6

Read: Chapter 7: 1Homework: 7.1.1Due: October 28

Page 7: October 21 Residue theorem 7.1 Calculus of residues

.1 ,

even ,1

2

.1odd ,0

)1(

1

)1()1(

)(

)(let )()(

0. )( )(

0

0000

0

0

0

0

0

0

0

)1(

)1()1()1())(1()1(

)1(

)1(1

00

)(

n

nen

i

n

ni

ee

ni

ee

ni

ede

deiadeiea

ezzdzzzadzzf

dzzfdzzf

ni

ninininini

ni

nin

nn

ini

nn

i

S

n

nnS

SC

7

Cauchy principle value:

Suppose f (z) has an isolated singularity z0 lying on a closed contour C. The contour integral is then not well defined. To solve this problem, we can remove a small segment of the contour for a distance of on each side of the singularity and create a new contour C(). We define the Cauchy principle value of as

C dzzf )(

C dzzf )(

exists.)limit the(If )(lim)()(0

CC

dzzfdzzfP

October 24 Cauchy principle value

z0

C()

S C

Let us first see on what condition this limit exists. We draw a semicircle path S with radius around z0. Suppose contourC=C()+S does not enclose any singularity, then

Page 8: October 21 Residue theorem 7.1 Calculus of residues

8

).(Res22

1)(Res )(lim)(

condition, Under this

.even negativefor 0 then isexist to)(limfor condition The

1

2 )( )(

001)(0

)(0

)1(1

even1)(

0

zfizfiaidzzfdzzfP

nadzzf

en

aaidzzfdzzf

CC

nC

nin

nnSC

2) We assumed that the contour is smooth at z =z0. If not the value should be3) It is easy to remember: when the singularity is on the contour, it contributes half as if it were inside the contour.4) Similar definitions exist for open contour integrals. Example:

Also for infinity integration limits. Example:

).(Res 0zfi

.)(sRe2)(sRe)(1

0

n

iiC

zfizfidzzfP

0

0

)()(lim)(0

x

a

b

x

b

adxxfdxxfdxxfP

a

aadxxfdxxfP )(lim)(

More about Cauchy principle values:1) If C originally encloses isolated singularities, then

Page 9: October 21 Residue theorem 7.1 Calculus of residues

9

Example:

dx

xxP

)1)(1(

12

.24

12

2

1

.4

1)()(lim)( Res

,2

1)()1(lim)1( Res

)( Res2)1( Res

.)even negativefor 0(

)1)(1(

1

)1)(1(

1

)1)(1(

1

)1)(1(

1lim

)1)(1(

1lim

1

2

222

2

iiiI

izfizif

zfzf

ififi

na

dzzz

P

dzzz

dzzz

dxxx

P

dxxx

PI

iz

z

n

C

R

RR

R

RR

1

Ci

-iR

Page 10: October 21 Residue theorem 7.1 Calculus of residues

10

Read: Chapter 7: 1Homework: 7.1.4Due: November 4

Page 11: October 21 Residue theorem 7.1 Calculus of residues

11

Cauchy’s integral theorem and Cauchy’s integral formula revisited:

(in the view of the residue theorem):

.!

)()(

)!11(

1lim

is at residue its formula, residue the toAccording

1.order of pole a isIt .)(')()(

)'3

!

)(22

)()(

)( )3

)(2)(

)(')()(

)2

0)(Res2)( )1

))((')()()( :function Analytic

0)(

10

101)1(

1)1(

0

0

01

0

01

0

0)(

100

101

0

00

00

0

0

0

0000

0

0 n

zf

zz

zfzz

dz

d

n

zz

nzz

zf

zz

zf

zz

zf

n

zfiiadz

zz

zfzza

zz

zf

zifdzzz

zfzf

zz

zf

zz

zf

zfidzzf

zzzfzfzzazf

n

n

n

n

n

zz

nnn

n

nC nm

nmmn

C

C

m

mm

October 26 Evaluation of definite integrals -1

7.1 Calculus of residues

Page 12: October 21 Residue theorem 7.1 Calculus of residues

12

L’Hospital’s rule:

exsists.limit theuntil )(

)(lim

)(''

)(''lim

)('

)('lim

)(

)(lim ,Repeatedly

.)('

)('lim

)(

)(lim then exists,

)('

)('lim and ,or 0)(lim)(lim If

)(

)(

)or ()or ()or ()or ()or (

0000

00000

zg

zf

zg

zf

zg

zf

zg

zf

zg

zf

zg

zf

zg

zfzgzf

n

n

zzzzzzzz

zzzzzzzzzz

.2

1

2lim

2

1lim

1lim

:Example

0020

z

z

z

z

z

z

e

z

e

z

ze

I. Integrals of trigonometric functions :

2

0)cos,(sin df

.1

2

/1,

2

/1 Res2

2

/1,

2

/1)cos,(sin

.2

/1cos ,

2

/1sin , , ,

circle.unit thearound integralcontour a usingby done becan This

circleunit

2

0

iz

zz

i

zzfi

iz

dzzz

i

zzfdf

zz

i

zz

iz

dzddiedzez

C

ii

C

r=1

Page 13: October 21 Residue theorem 7.1 Calculus of residues

13

.3

2

32

122

32

111lim)(Res

circle). theof(out 32

,circle) the(inside 32014

142

2/1

2

1

cos2

1

:1 Example

2

2

2

0

iiI

zzzzzzzzzf

z

zzz

zz

dzi

iz

dzzz

dI

zz

CC

C

r=1z+z-

.224

121

4

1

12

4

1

2

/1course) (of cos

:2 Example

3

3

2422

0

2

ii

dzzzzi

dzz

zz

iiz

dzzzdI

C

CC

C

r=1

Page 14: October 21 Residue theorem 7.1 Calculus of residues

14

.1

2

1

1

22

2

.1

1

2

1

))((

1lim)( Res

circle. theofout is circle, in the is |||| ,1||

.111

01/2 poles, simple 2 have We

))((

2

12

2

2/1

1

1

ok.)our textbo (From 1.|| and real is ,cos1

:3 Example

22

2

22

2

2

0

ii

I

zzzzzzzzzf

zzzzzz

zzz

zzzz

dz

izz

dz

iiz

dzzz

I

dI

zz

CCC

C

r=1z+z-

Page 15: October 21 Residue theorem 7.1 Calculus of residues

15

2222

2

22

2

22

2

22

2

0

220

2

2

2

2

2

0

111

2

1112

1 ,

111

12

11

)1(1

)(

1111)( Res )0( Res

.)(

1

))((

1lim)( Res

.1

))((

1lim)0( Res

circle. theofout is circle, in the is |||| ,1||

.1101/2 ,0 poles, simple 3 have We

)1/2(

11

2

111

2//11

2//1

1.|| and real is ,sin1

sin

:4 Example

aa

a

aa

ai

iaI

aa

a

aa

ia

aizzz

zz

zz

z

zzzff

zzz

z

zzzzz

zzzzf

zzzzzzz

zzf

zzzzzz

aa

izaizzz

dzaizzz

z

iadz

aizazz

z

iiz

dz

izza

izzI

aaa

dI

zz

z

CCC

C

r=1

z+

z-

z0

Page 16: October 21 Residue theorem 7.1 Calculus of residues

16

Read: Chapter 7: 1Homework: 7.1.7,7.1.8,7.1.10Due: November 4

Page 17: October 21 Residue theorem 7.1 Calculus of residues

17

October 31 Evaluation of definite integrals -2

7.1 Calculus of residues

II. Integrals along the whole real axis:

dxxf )(

Assumption 1: f (z) is analytic in the upper or lower half of the complex plane, except isolated finite number of poles.

R

Condition for closure on a semicircular path:

dzzfdzzfdzzfdzzfdzzfdxxf

RCR

R

RR)(lim)(lim)()()(lim)(

.0 ,1

~)(lim0lim) (lim

) (lim ) (lim)(lim

1max0

00

zzfRfRdeRf

deiReRfdeiReRfdzzf

RR

i

R

ii

R

ii

RR

Assumption 2: when |z|, | f (z)| goes to zero faster than 1/|z|.

Then, plane. halfupper on the )( of esiduesR2)(lim)( zfidzzfdxxfCR

Page 18: October 21 Residue theorem 7.1 Calculus of residues

18

.arctan1

Or

.))((

1lim2)( Res2

plane halfupper on the 1

1 of esiduesR2

1

:1 Example

2

2

2

xx

dx

iziziziifi

ziI

x

dxI

iz

.

2'

)()(

1lim2)( Res2

plane halfupper on the 1

of esiduesR2

.0 ,

:2 Example

322

2

222

222

aaizaiziaziiafi

aziI

aax

dxI

aiz

Page 19: October 21 Residue theorem 7.1 Calculus of residues

19

III. Fourier integrals: .0 ,)(

kdxexf ikx

Assumption 1: f (z) is analytic in the upper half of the complex plane, except isolated finite number of poles.

dzezfdzezfdxexf ikz

RC

ikz

R

ikx )(lim)(lim)(

Jordan’s lemma:

.0)(lim number,given any becan Since

)1(/2

1222

)(

then,Let .)( have we that whenso exists there0given any For

:Proof

0. with 0)(lim then ,0)(lim If

2/

0

/22/

0

sin

0

sin

0

sincos

dzezf

ke

kkR

eRdeRdeR

deRdeiRedzedzezf

MRzfMzM

kdzezfzf

ikz

R

kRkR

kRkR

kRikRikRikzikz

ikz

Rz

plane. halfupper on the )( of esiduesR2)(lim)( Then,

.0)(lim :2 Assumption

ikz

C

ikz

R

ikx

z

ezfidzezfdxexf

zf

R

Page 20: October 21 Residue theorem 7.1 Calculus of residues

20

.))((

lim2)( Res2

plane halfupper on the of esiduesR2

.0,0 ,

:1 Example

22

22

kaikz

iaz

ikz

ikx

eaiaziaz

eiaziiafi

az

eiI

akax

dxeI

Question: How about

Answer: We can go the lower half of the complex plane using a clockwise contour.

?0)( ,)(

kdxexf ikx

plane. halflower on the )( of esiduesR2)(lim)( ikz

C

ikz

R

ikx ezfidzezfdxexf

.))((

lim2)( Res2

plane halflower on the of esiduesR2

.0,0 ,

:2 Example

22

22

kaikz

iaz

ikz

ikx

eaiaziaz

eiaziiafi

az

eiI

akax

dxeI

Page 21: October 21 Residue theorem 7.1 Calculus of residues

21

Question: How about

Answer:

?0)( ,sin)( ,cos)(

kkxdxxfkxdxxf

.)(2

1sin)( ,)(

2

1cos)(

.)(Imsin)( ,)(Recos)(

dxeexfi

kxdxxfdxeexfkxdxxf

dxexfkxdxxfdxexfkxdxxf

ikxikxikxikx

ikxikx

.Re

.0,0 ,cos

:3 Example

22

22

kaikx

eaax

dxeI

akax

kxdxI

.2

.lim)0(Res

,Im2

1

.sin

:4 Example

0

0

Iix

exifi

x

dxeP

x

dxePI

dxx

xPI

ix

x

ix

ix

Page 22: October 21 Residue theorem 7.1 Calculus of residues

22

Read: Chapter 7: 1Homework: 7.1.11,7.1.12,7.1.13,7.1.14,7.1.16Due: November 11

Page 23: October 21 Residue theorem 7.1 Calculus of residues

23

November 2 Evaluation of definite integrals -3

7.1 Calculus of residues

IV. Rectangular contours: Exponential and hyperbolic forms

is a periodic function. We may use rectangular contours and hope that the integral reappears in some way on the upper contour line.

ixx ee 2

ae

eiI

eie

eiziifi

e

eiIe

e

dxee

e

dxe

e

idye

e

dxe

e

idye

e

dxe

e

dze

ae

dxeI

ia

ai

aiz

az

iz

z

aziaR

R x

axiaR

R x

ax

R

iyR

iyRaR

R ix

ixa

iyR

iyRaR

R x

ax

Rz

az

R

x

ax

sin1

2

)(21

lim2)( Res2

rectangle in the 1 of esiduesR2)1(

11lim

1111lim

1lim

.10 ,1

:1 Example

2

22

0

2

)(

)2(

)2(2

0

)(

R

i

Page 24: October 21 Residue theorem 7.1 Calculus of residues

24

)2/cosh(1

)(2

)(2)(2

cosh2

3lim

cosh2lim2

)2

3( Res)

2( Res2

rectangle in the cosh

of esiduesR2

)1(coshcosh

lim

)cosh()2cosh()cosh(coshlim

coshlim

.0 ,cosh

:2 Example

2

2/32/

2/32/2/32/

2

3

2

22

0

2

)()2(2

0

)(

ae

eeI

eeieiei

z

eiz

z

eizi

if

ifi

z

ei

Iex

dxee

x

dxe

iyR

idye

ix

dxe

iyR

idye

x

dxe

z

dze

ax

dxeI

a

aa

aaaa

iaz

iz

iaz

iz

iaz

aR

R

iaxaR

R

iax

R

iyRiaR

R

ixiaiyRiaR

R

iax

R

iaz

R

iax

R

ii3

This integral can also be done by using the line y=i and the fact .cosh)cosh( ziz

Page 25: October 21 Residue theorem 7.1 Calculus of residues

25

V. Sector contours

For functions involving we may use sector contours and hope that the integral reappears in some way on the upper radius of the sector.

,)( because , /2 nninn xexx

)/sin(1

2

21

lim2 Res2

sector in the 1

of esiduesR2

)1(lim

)() (

limlim

2. andinteger an is 0, ,

:1 Example

1/2

1

/

1

///

/20/2

0

0

/2

/2/2

00

0

/

nnae

nae

i

I

na

ei

azaeziaefi

azi

Iear

dre

ax

dx

are

dre

aeR

deiR

ax

dx

az

dz

nnaax

dxI

nni

n

ni

n

ni

nnni

aez

ni

nn

ni

R nnniR

nnR

R nnni

nin

nni

iR

nnRnnR

nn

ni

R

2/n

Page 26: October 21 Residue theorem 7.1 Calculus of residues

26

VI. Contours avoiding branch points

When the integrands have branch points and branch cuts, contours need to be designed to avoid the branch points and the branch cuts.

contour in the of esiduesR22

.limlimlim

.0limlim

. when 1

~ because ,0lim

lim

cut.branch theas axis positive theuse Wepoint.branch a is 0

0. ,

:1 Example

22showncontour 22

22

0

22

0

22

0

0

2 222

2/

0220

2/32222

22222222

0showncontour 22

0 22

az

ziI

az

dzz

Iar

drr

ar

drer

ax

dxx

ae

deie

az

dzz

Rzaz

z

az

dzz

ax

dxx

ax

dxx

az

dzz

az

dzz

az

dzz

xz

aax

dxxI

R

RR

i

RRR

i

ii

C

CR

R

RCCR

C L+

L-

ia

-ia

Page 27: October 21 Residue theorem 7.1 Calculus of residues

27

aI

aa

i

a

ii

az

ziaz

az

ziazi

iafiafiaz

ziI

az

dzz

iaziaz

2

2

22

1

22

12

limlim2

Res Res2

contour in the of esiduesR22

2222

22showncontour 22

C L+

L-

ia

-ia

Page 28: October 21 Residue theorem 7.1 Calculus of residues

28

Read: Chapter 7: 1Homework: 7.1.17 (b),7.1.18,7.1.19,7.1.21,7.1.22,7.1.25,7.1.26Due: November 11

Page 29: October 21 Residue theorem 7.1 Calculus of residues

29

Reading: Dispersion relations

7.2 Dispersion relations

00

00

000

00

00

0000

)(1)(

)(1)(

)()()()(

)()(

0

) (lim

)(lim

)()()(

lim)(

lim

xx

dxxuPxv

xx

dxxvPxu

xivxuixx

dxxivxuPxif

xx

dxxfP

xeR

deiReRf

xz

dzzf

xifxz

dzzf

xx

dxxfP

xz

dzzfP

i

ii

RR

R

RRCR

Suppose f (z) = u(z)+iv(z) is analytic, and in the upper half plane, then

0)(lim||

zfz C

Rx0

These are the dispersion relations. u(z) and v(z) are sometimes called a Hilbert transform pair.

Page 30: October 21 Residue theorem 7.1 Calculus of residues

30

Symmetry relations:

0 20

20

00

00

00

0

000

0 20

2

00

00

00

0

000

*

)(2

)()(1)()(1)(1)(

)(2

)()(1)()(1)(1)(

).()( ),()(then

function), real a of ransform(Fourier t )()( Suppose

xx

dxxuxP

xx

dxxu

xx

dxxuP

xx

dxxu

xx

dxxuP

xx

dxxuPxv

xx

dxxxvP

xx

dxxv

xx

dxxvP

xx

dxxv

xx

dxxvP

xx

dxxvPxu

xvxvxuxu

xfxf

Page 31: October 21 Residue theorem 7.1 Calculus of residues

31

In optics, the refractive index can be chosen to be a complex number where its real part is the normal refractive index, determined by the electric permittivity (), and its imaginary part is responsible for absorption, determined by the electric conductivity ():

)()(4

)()(2 fin

0 20

20

0

0 20

20

0 20

20

0

0 20

20

)(Re2)(Im

)(Im2)(Re

)(2)(

)(2)(

df

Pf

dfPf

xx

dxxuxPxv

xx

dxxxvPxu

These are the Kramers-Kronig relations. These relations state that knowledge of the absorption coefficient of a material over all frequencies will allow one to obtain the (normal) refractive index of the material for any frequency, and vise versa.

Page 32: October 21 Residue theorem 7.1 Calculus of residues

32

Hi, Everyone:

My previous student Mahendra Thapa brought to me this problem, which may be in Arfken 3rd edition:

It is used in the black body radiation:

If you can crack this integral (using contour integral on the complex plane) by yourself, please come to show me.

0

3

1dx

e

xx