octogon mathematical magazine, vol. 19, no.2, october ...432 octogon mathematical magazine, vol. 19,...

76
430 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011 Proposed problems PP. 18690. 20 If x, y, z > 0, then ( x+ z) x+y xz 6 2. Mih´alyBencze PP. 18691. If x k > 0(k =1, 2, ..., n) , then n k=1 (n - k + 1) a k - n k=2 k a 1 a 2 ...a k (n - 1) max 1i<j n n ( x i - x j ) 2 o . Mih´alyBencze PP. 18692. If x, y, z, a, b, c > 0, then x 2 ax+by+cz + y 2 ay+bz+cx + z 2 az+bx+cy x+y+z a+b+c . Mih´alyBencze PP. 18693. If x k > 0(k =1, 2, ..., n) , then p x 2 1 + x 2 2 2 n k=1 x k + 1 2 ∑( x 2 1 - x 2 2 ) . Mih´alyBencze PP. 18694. If x, y, z, a, b, c > 0, then a ax+by+cz + b bx+cy+az + c cx+ay+bz 3 ab (x+y+z) a 2 . Mih´alyBencze PP. 18695. If x, y, z, t > 0, then 1 23x 4 y+7y 4 z+11z 4 t+10t 4 x xyz 51x 2 y 2 z 2 t 2 . Mih´alyBencze PP. 18696. If x, y, z > 0, then: 1). ( x) 2 6 x 2 x 2 3x 2 +2y 2 +z 2 1 18 y+2z x 2). 1 3x 2 +2y 2 +z 2 1 6 1 xy Mih´alyBencze 20 Solution should be mailed to editor until 30.12.2013. No problem is ever permanently closed. The editor is always pleased to consider for publication new solutions or new in sights on past problems.

Upload: others

Post on 09-Feb-2021

4 views

Category:

Documents


1 download

TRANSCRIPT

  • 430 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    Proposed problems

    PP. 18690. 20If x, y, z > 0, then∑ (√x+√z)√x+y√

    xz≥ 6

    √2.

    Mihály Bencze

    PP. 18691. If xk > 0 (k = 1, 2, ..., n) , thenn∑k=1

    (n− k + 1) ak −n∑k=2

    k√a1a2...ak ≥ (n− 1) max

    1≤i 0, thenx2

    ax+by+cz +y2

    ay+bz+cx +z2

    az+bx+cy ≥x+y+za+b+c .

    Mihály Bencze

    PP. 18693. If xk > 0 (k = 1, 2, ..., n) , then∑√x21 + x

    22 ≤

    √2

    n∑k=1

    xk +12

    ∑(x21 − x22

    ).

    Mihály Bencze

    PP. 18694. If x, y, z, a, b, c > 0, thena

    ax+by+cz +b

    bx+cy+az +c

    cx+ay+bz ≥3∑ab

    (x+y+z)∑a2.

    Mihály Bencze

    PP. 18695. If x, y, z, t > 0, then∑ 1

    23x4y+7y4z+11z4t+10t4x≤

    ∑xyz

    51x2y2z2t2.

    Mihály Bencze

    PP. 18696. If x, y, z > 0, then:

    1). (∑x)2

    6∑x2

    ≤∑ x2

    3x2+2y2+z2≤ 118

    ∑ y+2zx

    2).∑ 1

    3x2+2y2+z2≤ 16

    ∑ 1xy

    Mihály Bencze

    20Solution should be mailed to editor until 30.12.2013. No problem is ever permanentlyclosed. The editor is always pleased to consider for publication new solutions or new insights on past problems.

  • Proposed Problems 431

    PP. 18697. If x, y, z > 0, then:

    1). (∑x)2∑

    x2+∑xy

    ≤∑ x2

    x2+yz≤ 14

    ∑ y+zx

    2).∑ 1

    x2+yz≤ 12

    ∑ 1xy

    Mihály Bencze

    PP. 18698. If x, y, z > 0, then 4∑ x2y

    z +∑ y3

    x + 2∑z2 ≥ 7

    ∑xy.

    Mihály Bencze

    PP. 18699. If x, y, z > 0, then 4∑x2z +

    ∑ y2z +

    ∑ z3x2

    ≥ 6∑ xz

    y .

    Mihály Bencze

    PP. 18700. If x, y, z > 0, then∑ 1

    4x3y+y3z+2z3x≤

    ∑xy

    7x2y2z2.

    Mihály Bencze

    PP. 18701. In all triangle ABC holds 32r ≥∑ 1

    ha−r ≥3R .

    Mihály Bencze

    PP. 18702. In all triangle ABC holds∑ 1

    a3+bc≤ 4s+3108sRr .

    Mihály Bencze

    PP. 18703. Solve in R the following system:1x1

    + 1√1−x22

    = 1x2 +1√1−x23

    = ... = 1xn +1√1−x21

    = 2√2.

    Mihály Bencze

    PP. 18704. Prove thatk∑p=1

    (−1)k−1(k−1p−1)n+k =

    (k−1)!(n+1)(n+2)...(n+k) .

    Mihály Bencze

    PP. 18705. In all triangle ABC holds∏r

    1hb

    + 1hc

    a ≤ (R+ r)2r .

    Mihály Bencze

    PP. 18706. In all triangle ABC holds(∑ a2+b2

    c

    )(∑ a+bwa+hb

    )≥ 8

    √3s.

    Mihály Bencze

  • 432 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18707. If x, y, z are the solution of the Diophantine equation

    x2 + y2 = z2, then x3 + y3 + z3 is a composed number.

    Mihály Bencze

    PP. 18708. If x0 =52 and xn+1 = x

    3n − 6x2n + 12xn − 6 for all n ≥ 0, then

    8 (xn − 2) = (x1 − 2)2 (x2 − 2)2 ... (xn−1 − 2)2 for all n ∈ N∗.

    Mihály Bencze

    PP. 18709. If x, y, z > 0 then(∑

    xn+3∑xn+2

    )2+(∑

    xn+1∑xn

    )2≥∑xn+3∑xn+1

    +∑xn+1∑xn−1

    for all n ∈ N∗.

    Mihály Bencze

    PP. 18710. Determine all b ≥ 2, b ∈ N and all n ∈ N for which200...00︸ ︷︷ ︸n−time

    11(b) is a perfect square

    Mihály Bencze and Béla Kovács

    PP. 18711. Prove that there exist infinitely many x, y, z different positiverational numbers such that x2n+1 + y2n + z2n−1, y2n+1 + z2n + x2n−1,z2n+1 + x2n + y2n−1 are squares of rational numbers for all n ∈ N.

    Mihály Bencze

    PP. 18712. Prove that 25F 2n − 4L2n = 5L2n+1 − 4Ln−1Ln+1 for all n ∈ N∗,where Fn and Ln denote the n

    th Fibonacci respective Lucas numbers.

    Mihály Bencze

    PP. 18713. Prove thatn∏k=0

    (2kk

    )(2n−2kn−k

    )≤(

    4n

    n+1

    )n+1.

    Mihály Bencze

    PP. 18714. Prove that the equation1320x3 = (y1 + y2 + y3 + y4) (z1 + z2 + z3 + z4) (t1 + t2 + t3 + t4 + t5) haveinfinitely many solutions in Fibonacci numbers set.

    Mihály Bencze

  • Proposed Problems 433

    PP. 18715. Prove that the equation x3+3y3+ z3 = 3t3+6u3 have infinitelymany solutions in the set of Fibonacci numbers. Solve the equation in N.

    Mihály Bencze

    PP. 18716. Determine all k, n ∈ N for which 5n − 1 is divisible by 2k.

    Mihály Bencze

    PP. 18717. If F1 = 1, F2 = 1 and Fn+2 = Fn+1 + Fn for all n ∈ N, thendetermine all p ∈ N for which Fpn is divisible by p− 1.

    Mihály Bencze

    PP. 18718. If an+1 = a2n + 5an + 1 for all n ∈ N , then determine all

    a0, k, p ∈ N for which ak = 2011p.

    Mihály Bencze

    PP. 18719. If xn =√24

    ((1 +

    √2)n − (1−√2)n), then compute

    ∞∑n=1

    1(xn;xn+1)

    2 .

    Mihály Bencze

    PP. 18720. Let ak, bk ∈ N (k = 1, 2, 3) such that a1n+ b1 and a2n+ b2 areperfect squares for n ∈ N . Determine all ak, bk ∈ N (k = 1, 2, 3) for whicha3n+ b3 is not prime numbers.

    Mihály Bencze

    PP. 18721. Solve the following system:logx+3

    (y2 − 9y − 10

    )≤ logz+3 12

    logy+3(z2 − 9z − 10

    )≤ logx+3 12

    logz+3(x2 − 9x− 10

    )≤ logy+3 12

    .

    Mihály Bencze

    PP. 18722. Solve the following system:

    2− x =

    (2− y3

    )32− y =

    (2− z3

    )32− z =

    (2− x3

    )3 .Mihály Bencze

  • 434 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18723. If p1 = 2 and pn+1 is biggest prime divisor of 1 + p1p2...pn, thenexist k ∈ N such that pk = 2011?

    Mihály Bencze

    PP. 18724. If x > e then compute∫ 1+2x2 lnx+2x2(x2−2) ln2 x+3x4 ln4 x

    (1−x2 ln2 x)2 dx.

    Mihály Bencze

    PP. 18725. Solve the equation6(x2 + 2x+ 2

    )√5− x =

    (x2 + 2x+ 12

    )√11x− 5.

    Mihály Bencze

    PP. 18726. Solve the following system:

    2√2x+ 6 = y2 − 6

    2√2y + 6 = z2 − 6

    2√2z + 6 = x2 − 6

    .

    Mihály Bencze

    PP. 18727. If x > 0 then compute∫ 1+x+2x(x+1) lnx+3x2 ln2 x

    x(1+x lnx+x2 ln2 x)dx.

    Mihály Bencze

    PP. 18728. Solve in Z the equation x3 + y3 + z3 = 9xyz + 27.

    Mihály Bencze

    PP. 18729. If a, b > 0, then(b3a +

    ba+2b +

    4a2a+b

    )(a3b +

    ab+2a +

    4b2b+a

    )≥ 4

    Mihály Bencze

    PP. 18730. In all triangle ABC (A 6= B 6= C) we have∑( sin A

    2

    sin B−C2

    )2≥ 2.

    Mihály Bencze

    PP. 18731. If a, b > 0, then√3(a+b)2a+b +

    b(a+2b)a2+ab+b2

    +√

    3(a+b)2b+a +

    a(b+2a)a2+ab+b2

    ≥ 3( √

    a2a+b +

    √b

    2b+a

    ).

    Mihály Bencze

  • Proposed Problems 435

    PP. 18732. If a, b > 0, then 2a3(2a+b) +2b

    3(2b+a) +(

    a2a+b

    )2+(

    b2b+a

    )2≤ 23 .

    Mihály Bencze

    PP. 18733. If a, b > 0, then(a2+b2)

    2

    ab(a+2b)(b+2a) ≥(

    a2a+b +

    b2

    a2+ab+b2

    )(b

    2b+a +a2

    b2+ba+a2

    ).

    Mihály Bencze

    PP. 18734. If a, b > 0, then(

    a+b5a+4b +

    a8a+b

    )(a+b

    5b+4a +b

    8b+a

    )≤ 19 .

    Mihály Bencze

    PP. 18735. If a, b > 0, then√

    13 +

    2a2

    a2+ab+b2+√

    13 +

    2b2

    a2+ab+b2≥ 3(a

    2+4ab+b2)(2a+b)(2b+a) .

    Mihály Bencze

    PP. 18736. If ak > 0 (k = 1, 2, ..., n) , then∑cyclic

    √13 +

    a21+a22

    a21+a1a2+a22≥ n.

    Mihály Bencze

    PP. 18737. If a, b > 0, then4(3a4+2a3b+2a2b2+2ab3+3b4)(3a2+2ab+b2)(3b2+2ba+a2)

    + (2a−b)2

    2a2+b2+ (2b−a)

    2

    2b2+a2≥ 2.

    Mihály Bencze

    PP. 18738. If a, b > 0, then(4ab3a+b +

    a2

    a+b

    )(4ab3b+a +

    b2

    a+b

    )≤ 14 (2a+ b) (2b+ a) .

    Mihály Bencze

    PP. 18739. If x ∈ R, then 48+sin2 x cos4 x

    + 12+3 cos2 x

    + 24+sin2 x

    ≥ 43 .

    Mihály Bencze

    PP. 18740. If a, b > 0, then2a(3b2−a2)

    (a+b)(√2a+b)

    +2b(3a2−b2)

    (a+b)(√2b+a)

    +(√

    2− 1)(a+ b) ≤ 3√

    2a+b+ 3√

    2b+a.

    Mihály Bencze

  • 436 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18741. If a, b, c, d > 0 and ab+ cd = 2, then1

    1+2a +1

    1+2b +1

    1+2c +1

    1+2d ≥12

    (2+ab)(2+cd) .

    Mihály Bencze

    PP. 18742. If a, b, c, d > 0 and a+ b+ c+ d = 2, then√a+2ba2+2b2

    +√

    b+2ab2+2a2

    +√

    c+2dc2+2d2

    +√

    d+2cd2+2c2

    ≤ 8√(a+b)(c+d)

    .

    Mihály Bencze

    PP. 18743. If a, b, c, d > 0 and a+ b+ c+ d = 4 then√4a2+ab+4b2

    (a2+2b2)(b2+2a2)+√

    4c2+cd+4d2

    (c2+2d2)(d2+2c2)≤ 4(a+b)(c+d) .

    Mihály Bencze

    PP. 18744. If a, b ∈(0, π2

    )and a ≤ b then

    2√2 ln

    (tga+3+2√2)(tgb+3−2

    √2)

    (tga+3−2√2)(tgb+3+2

    √2)

    ≤ 16b∫a

    dx(sinx+cosx)4

    ≤ sin(2b−2a)sin 2a sin 2b + 2(b− a).

    Mihály Bencze

    PP. 18745. If a, b > 0, then4(a2+b2)(2a2+ab+2b2)(3a2+ab+b2)(3b2+ba+a2)

    + a2+4ab+b2

    (2a+b)(a+2b) ≥ 2.

    Mihály Bencze

    PP. 18746. If a, b > 0, then13 ≤

    a4+2a3b+8a2b2+2ab3+b4

    (4a2+2ab+b2)(4b2+2ba+a2)+ 2a

    4+3a2b2+2b4

    (4a2+b2)(4b2+a2)≤ 12 .

    Mihály Bencze

    PP. 18747. If the equation x2 −mx+m = 0 have real roots, then20m2 + 158 ≥ 80m+ 79 |m− 2| for all m ∈ R.

    Mihály Bencze

    PP. 18748. Let be f : R→ R where f (x) = x− a [x] + [bx] where [·] denotethe integer part, and a, b ∈ Z. Prove that the points M (a, b) lie on the linex− y − 2 = 0 if and only if (f ◦ f) (x) = x for all x ∈ R.

    Mihály Bencze

  • Proposed Problems 437

    PP. 18749. If ak > 0 (k = 1, 2, ..., n), then

    1).∑ a1

    min{a2,a3,...,an} ≥ n2).

    ∑ max{a2,a3,...,an}a1

    ≥ n.

    Mihály Bencze

    PP. 18750. Let a, b be squarefree positive integers and x, y, z ∈ N∗, suchthat x

    √a+y

    √b

    y√a+z

    √b∈ Q. Prove that 1xn+yn +

    1yn+zn =

    1yn for all n ∈ N

    ∗.

    Mihály Bencze

    PP. 18751. Compute1∫

    −1arccos

    (n∑k=1

    (−1)k−1 x2k−1)dx.

    Mihály Bencze

    PP. 18752. Solve in R the equation

    x11 + 3x10 + x9 + 3x8 + x7 − 3x6 − 17x5 + 3x4 + x3 + 3x2 + x+ 3 = 0.

    Mihály Bencze

    PP. 18753. Determinen∑k=1

    ak if the sum of digits of the number

    a1a2a3 + a2a3a4 + ...+ ana1a2 is odd.

    Mihály Bencze

    PP. 18754. Let be A =

    1 7 x−x x 14 −1 −3

    . Determine all x ∈ C such thatA2011 = 31670A.

    Mihály Bencze

    PP. 18755. Compute∫ (n+2)x2+(n+1)x+nx(x2+x+1)(xn+2+xn+1+xn+1)

    dx on (0,+∞), wheren ∈ N.

    Mihály Bencze

  • 438 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18756. Solve in [−2,+∞) the following system:(y − 1)2 (x+ 2)5 = 27 (z − 1)2 (2y + 1)

    (y2 + y + 1

    )(z − 1)2 (y + 2)5 = 27 (x− 1)2 (2z + 1)

    (x2 + x+ 1

    )(x− 1)2 (z + 2)5 = 27 (y − 1)2 (2x+ 1)

    (y2 + y + 1

    ) .Mihály Bencze

    PP. 18757. If 0 < a < b, then:

    1). 54b∫a

    x2+x+1(x+2)5

    dx ≤ ln 2b+12a+1

    2). 2916b∫a

    x4+x2+1(x2+3x+2)5

    dx ≤ ln (2b−1)(2a+1)(2b+1)(2a−1) .

    Mihály Bencze

    PP. 18758. Let be a, b ∈ R∗ and denote z ∈ C\R a root of the equationz3 + az + b = 0. Prove that a |z|6 + 8b |z|4Re(z) ≥ ab2.

    Mihály Bencze

    PP. 18759. If x ≥ −1, then(x2 + 3x+ 2

    )5 ≥ 729 (4x2 − 1) (x4 + x2 + 1) .Mihály Bencze

    PP. 18760. Solve in R the following system:(x+ 1)5 ≤ 27 (2y − 1)

    (z2 − z + 1

    )(y + 1)5 ≤ 27 (2z − 1)

    (x2 − x+ 1

    )(z + 1)5 ≤ 27 (2x− 1)

    (y2 − y + 1

    ) .Mihály Bencze

    PP. 18761. If xi > 0 (i = 1, 2, ..., k) ,Fn (x, y) = x

    2n − x2n−1y + ...− xy2n−1 + y2n andSn =

    (2n+1

    1

    )+ 2(2n+1

    2

    )+ ...+ n

    (2n+1n

    ), then∑

    cyclic

    x1((x2x3)

    SnF(2n+10 )n (x2,x3)F

    (2n+11 )n−1 (x2,x3)...F

    (2n+1n−1 )1 (x2,x3)

    ) 1n2n+1

    ≥ k.

    Mihály Bencze

  • Proposed Problems 439

    PP. 18762. Prove that(2n+1

    0

    )+(2n+1

    1

    )+(2n+1

    2

    )+ ...+

    (2n+1n

    )= 4n

    2). Compute(kn+1

    0

    )+(kn+1

    1

    )+(kn+1

    2

    )+ ...+

    (kn+1n

    ).

    Mihály Bencze

    PP. 18763. If x, y, z > 0, then∑ x

    8√

    (yz)3(y2−yz+z2)≥ 3.

    Mihály Bencze

    PP. 18764. If x, y, z > 0, then∑ x

    44√

    (yz)16(x2+z2)4(y4+z4)≥ 3

    4√112 .

    Mihály Bencze

    PP. 18765. If x, y, z > 0, then∑ x64√

    (yz)25(y2−yz+z2)5(y4−y2z+y2z2−yz3+z4)≥ 3.

    Mihály Bencze

    PP. 18766. If ak > 0 (k = 1, 2, ..., n) , An (a1, a2, ..., an) =1n

    n∑k=1

    ak,

    Gn (a1, a2, ..., an) = n

    √n∏k=1

    ak, m = min {a1, a2, ..., an} ,

    M = max {a1, a2, ..., an}, then determine all n ∈ N∗ for whichAn(a1,a2,...,an)Gn(a1,a2,...,an)

    + Gn(a1,a2,...,an)An(a1,a2,...,an) ≤mM +

    Mn .

    Mihály Bencze

    PP. 18767. In all triangle ABC holds∑ (tgA2 +tgB2 )2(tg2 A2 +tg2 B2 )2

    (tg2 A2 +6tgA2tgB

    2+tg2 B

    2 )2 ≥ 14 .

    Mihály Bencze

    PP. 18768. If ak > 0 (k = 1, 2, ..., n) andn∏k=1

    ak = 1, then∏cyclic

    a21+6a1a2+a22

    (a1+a2)(a21+a22)≤ 2n.

    Mihály Bencze

  • 440 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18769. Solve in R the following system:4x6 + 7x5 + 7y + 4 = 22z3

    4y6 + 7y5 + 7z + 4 = 22x3

    4z6 + 7z5 + 7x+ 4 = 22y3.

    Mihály Bencze

    PP. 18770. Let be a, k ∈ N∗, n ∈ N . Prove that:

    1).(ka2 + 1

    )2n+1can be expressed like a sum of k + 1 perfect squars

    2).(ka2 + 1

    )2n+2can be expressed like a sum of (k + 1)2 perfect squars

    Mihály Bencze

    PP. 18771. Solve in C the following system:(x21 + 6x1x2 + x

    22

    )√x2x3 = 2 (x1 + x3)

    (x22 + x

    23

    )(x22 + 6x2x3 + x

    23

    )√x3x1 = 2 (x2 + x1)

    (x23 + x

    21

    )(x23 + 6x3x1 + x

    21

    )√x1x2 = 2 (x3 + x2)

    (x21 + x

    22

    )Mihály Bencze

    PP. 18772. Prove that 102n+5 can be expressed like a sum of 25 perfectsquars, for all n ∈ N.

    Mihály Bencze

    PP. 18773. Prove that a, b, c are in arithmetical progression if and only ifa (2b) (2b) ... (2b)︸ ︷︷ ︸

    n−time

    c = 11...1︸ ︷︷ ︸(n+1)−time

    ac.

    Mihály Bencze

    PP. 18774. Detemine all a, b, c, d ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and all n ∈ Nfor which 2n + 1 is divisible by abc and 2n − 1 is divisible by abcd.

    Mihály Bencze

  • Proposed Problems 441

    PP. 18775. Determine the integer part of the expressionn∑k=1

    √1 + 1

    k2(k+1)2+ 1

    (k2+k+1)2.

    Mihály Bencze

    PP. 18776. If xk > 0 (k = 1, 2, ..., n) , then

    n∑k=1

    √1 + x2k +

    (xkxk+1

    )2≥ n+

    (n∑

    k=1xk

    )2n+

    n∑k=1

    xk

    .

    Mihály Bencze

    PP. 18777. Let (akn)n≥1, (apn)n≥1 , (arn)n≥1 be arithmetical progressions.Determine all k, p, r ∈ C for which (an)n≥1 is an arithmetical progression.Some question for geometrical progression.

    Mihály Bencze

    PP. 18778. If a, b > 0 then solve in R the equation:√√√√√x+√x+ ...+

    √x+

    √x+ a︸ ︷︷ ︸

    n−time

    = b.

    Mihály Bencze

    PP. 18779. Let ABCD be a quadrilateral such that A = C = 90◦, andMk, Nk, Pk ∈ BD (k = 1, 2) where AM1, CM2 are altitudes; AN1, CN2 arebisectors; AP1, CP2 are medians. Prove thatAN1 + CN2 ≥ 12

    (AM1 + CM2

    )+ 2AD·AB

    (AD+AB)2AP1 +

    2CB·CD(CB+CD)2

    CP2.

    Mihály Bencze

    PP. 18780. If a, b ∈ R, then determine all z ∈ C such that|z − a|z + 1|| = |z + b|z − 1||.

    Mihály Bencze

    PP. 18781. Prove that2

    n(n+3)

    n∑k=1

    (k + 4)(k+2k+3

    )3≥ 1 ≥ 2n(n+9)

    n∑k=1

    (k + 1)(k+3k+2

    )2.

    Mihály Bencze

  • 442 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18782. If a, b, c ∈ R such that∑a ∈ Q and (

    ∑a) (∑ab) = abc, then

    3√∑

    a3 ∈ Q.

    Mihály Bencze

    PP. 18783. If a, b, c > 0, then∑a3 + 12

    ∑ 1a3

    ≥√

    6∑a3

    abc .

    Mihály Bencze

    PP. 18784. If x ∈(0, π2

    ), then

    14 +

    (1+2 sin2 x)2

    cos4 x+

    (1+2 cos2 x)2

    sin4 x≥ 24(4+sin

    4 x+cos4 x)8+sin2 x cos2 x

    .

    Mihály Bencze

    PP. 18785. In all triangle ABC holds:1). 5s

    2+r2+4Rr4s2(s2+r2+2Rr)

    ≥ 1s2+r2+4Rr

    + 14(s2−r2−4Rr)

    2). s2+r2+4Rr4s2Rr

    ≥ 1r(4R+r) +1

    2(s2−2r2−8Rr)

    3). (4R+r)2+s2

    4s2R(4R+r)≥ 1

    s2+ 1

    2(4R+r)2−4s2

    Mihály Bencze

    PP. 18786. In all triangle ABC holds∑ √cos B

    2+cos C

    2−cos A

    2√cos B

    2+√

    cos C2−√

    cos A2

    ≤ 3.

    Mihály Bencze

    PP. 18787. If a, b, c > 0 and∑ab = 3, then

    11+2abc

    ∑ 1a+1 ≥

    abc1+abc

    ∑ 11+(b+c)a2

    .

    Mihály Bencze

    PP. 18788. In all triangle ABC holds∑ sinA

    2+cosA+cos(B−C) ≤ 1−sr8R2

    .

    Mihály Bencze

    PP. 18789. If x ∈ R, then (1−√3 sinx)

    2

    1−9 sin4 x +(1−

    √3 cosx)

    2

    1−9 cos4 x ≥7−2

    √6

    35 . When holdsthe equality?

    Mihály Bencze

  • Proposed Problems 443

    PP. 18790. If a, b, c > 0 then 3∑ a

    b ≥ 7 +2∑a2∑ab .

    Mihály Bencze

    PP. 18791. If a, b, c > 0 and a2 + b2 + c2 = 1, then

    ∑√a2 +

    (b2−c2

    2

    )2+ 2

    ∑a ≤ 3

    √3.

    Mihály Bencze

    PP. 18792. Determine all x ∈ R and all n ∈ N such that(1n

    n∑k=1

    ak

    )2+ xn

    n∑k=1

    ak ≥ n√

    n∏k=1

    ak

    (1n

    n∑k=1

    √ak

    )for all ak > 0

    (k = 1, 2, ..., n) .

    Mihály Bencze

    PP. 18793. Let ABC be a triangle such that

    a+A = b+B = c+ C = 2s+π3 . Prove that aB + bC + cA ≤(2s+π3

    )2.

    Mihály Bencze

    PP. 18794. If xn+1 = xnxn−1...xn−k +k

    √(xkn − 1)

    (xkn−1 − 1

    )...(xkn−k − 1

    ),

    then determine all x1, x2, ..., xk ∈ R and k ∈ N for which k + k√k + kxn is a

    perfect k-power.

    Mihály Bencze

    PP. 18795. Determine all x ∈ R such that 0 <√2011− ab <

    xab for an

    infinitely of pairs (a, b) of natural numbers.

    Mihály Bencze

    PP. 18796. Denote S (a) the sum of digits of a in decimal notation. Provethat there exist an infinity of n such that S (pnk) ≥ S

    (pn+1k

    )when pk denote

    the k-th prime.

    Mihály Bencze

  • 444 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18797. Prove that all the terms of the sequencea1 = a2 = ... = ak−1 = 1 andan+kan+1 = an+k−1an+2 + an+k−2an+3 + ...+ an+k−[ k2 ]+1

    an+[ k2 ]are natural

    numbers.

    Mihály Bencze

    PP. 18798. In all acute triangle ABC holds 24R5s ≤∑ 1

    sinA+sinB sinC ≤6Rs .

    Mihály Bencze

    PP. 18799. Denote pn the n-th prime number. Prove that for an infinity of

    natural numbers n the numerator of the fractionn∑k=1

    1pk

    has at least two

    prime factors.

    Mihály Bencze

    PP. 18800. If Mk ={z ∈ C|zk = 1

    }, then determine all ki, r ∈ N

    (i = 1, 2, ..., n) such that Mk1 ∩Mk2 ∩ ... ∩Mkn =Mr.

    Mihály Bencze

    PP. 18801. 1). If xn =1

    (n0)+ 1

    (n1)+ ...+ 1

    (nn), then

    x3 + x4 + ...+ xn ≤ 2(n−2)(n−1)n + 4(13 +

    14 + ...+

    1n

    ).

    2). Compute limn→∞

    1n (x3 + x4 + ...+ xn) .

    Mihály Bencze

    PP. 18802. Solve on(0, π2

    )the following system:

    3√tgx+ 3

    √tgy = 29 (10− sin 2z)

    3√tgy + 3

    √tgz = 29 (10− sin 2x)

    3√tgz + 3

    √tgx = 29 (10− sin 2y)

    .

    Mihály Bencze

    PP. 18803. Solve in C the following system:|x− |y + 1|| = |z + |x− 1|||y − |z + 1|| = |x+ |y − 1|||z − |x+ 1|| = |y + |z − 1||

    .

    Mihály Bencze

  • Proposed Problems 445

    PP. 18804. In all triangle ABC holds2∑

    sin2A sin A2 cosB−C2 +

    ∑sin2A cosB cosC ≤

    ≤ (4R+r)2−s2(10R+3r)+4Rr(4R−r)

    8R3.

    Mihály Bencze

    PP. 18805. In all triangle ABC holds3(4R+r)(s2+r2+4Rr)

    4s2R≤ 5s2+r2+4Rr

    s2+r2+2Rr.

    Mihály Bencze

    PP. 18806. Let be x, y ∈ R such that x2 + y2 = 1. Determinemax

    n∑k=1

    ∣∣xk − yk∣∣ .Mihály Bencze

    PP. 18807. In all triangle ABC holds∑ √a2+bc

    b+c ≥ 36

    √2Rr

    s2+r2+2Rr.

    Mihály Bencze

    PP. 18808. Solve on(0, π2

    )the following system:

    3√tgx+ 3

    √tgy =

    √2(sin y+cos z)√

    sin 2x

    3√tgy + 3

    √tgz =

    √2(sin z+cosx)√

    sin 2y

    3√tgz + 3

    √tgx =

    √2(sinx+cos y)√

    sin 2z

    .

    Mihály Bencze

    PP. 18809. Let ABC be a triangle. Determine all λ ∈ R such that∑3

    √ctgA2 + λctg

    B2 ≤

    rs .

    Mihály Bencze

    PP. 18810. In all triangle ABC holds∑ √cos2 A

    2+cos2 B

    2−cos2 C

    2

    cos A2+cos B

    2−cos C

    2

    ≤ 3.

    Mihály Bencze

    PP. 18811. Let be k ∈ N and k ≥ 2. Prove that are infinitely many positiveintegers n such that nk + 1 has a prime divisor greather than kn+ k

    √kn.

    Mihály Bencze

  • 446 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18812. If a, b > 0 and n ∈ N,n ≥ 2, then

    1

    n n√(π2 )

    n−1

    (1a +

    1b

    )<

    n√

    π2∫

    0

    (sinxn

    a +cosxn

    b

    )dx < n

    √π2 ·√

    1a2

    + 1b2.

    Mihály Bencze

    PP. 18813. Prove that∞∑n=1

    1(n+1)

    √n> π√

    6.

    Mihály Bencze

    PP. 18814. Prove thate−1−

    n∑k=1

    1k!(

    n∑k=1

    1k!

    )n∏

    k=1(k(e−1)−1)

    ≤ 1nn+1

    .

    Mihály Bencze

    PP. 18815. If n > k ≥ 2, then there is a set of kn − 1 points in the plane,no (k + 1) collinear such that no kn form a convex kn−gon.

    Mihály Bencze

    PP. 18816. Let ABCD be a a tetrahedron inscribed in a sphere with centerO and radius R. AO meets the circumsphere of OBCD in A1, etc. Provethat OA1 ·OB1 ·OC1 ·OD1 ≥ 16R4

    Mihály Bencze

    PP. 18817. Let λ be the positive root of the equation x2 = 2011x+ 1, andbe m ∗ n = mn+ [λm] [λn] for all m,n ∈ N, when [·] denote the integer part.Prove that for all a, b, c ∈ N holds (a ∗ b) ∗ c = a ∗ (b ∗ c) .

    Mihály Bencze

    PP. 18818. Determine all integers n, k ∈ Z such that kn+1nk

    ∈ Z.

    Mihály Bencze

    PP. 18819. Find all ai, k ∈ N (i = 1, 2, ...., n) such thatk < a1 < a2 < ... < an and for which

    n∏i=1

    (ai − k) is a divisor ofn∏i=1

    ai − kn.

    Mihály Bencze

  • Proposed Problems 447

    PP. 18820. Determine all k ∈ N∗ such that∞∑n=1

    (√k +

    3

    √k + 1 + ...+ n

    √n+ n+1

    √n+ 1−

    √k + 3

    √k + 1 + ...+ n

    √n

    )<

    < e− 1.

    Mihály Bencze

    PP. 18821. If ak > 0 (k = 1, 2, ..., ...) and ak + ak+2 > 2ak+1 (k = 1, 2, ...)

    andk∑j=1

    aj ≤ 1 for all k = 1, 2, ..., then∞∑k=1

    (ak − ak+1) < π2

    3 .

    Mihály Bencze

    PP. 18822. If ai ∈ Z (i = 1, 2, ..., kn) , (ai 6= aj if i 6= j) then determine all

    x ∈ Z such thatkn∏i=1

    (x− ai) = (−1)n (n!)k for all k ∈ N∗.

    Mihály Bencze

    PP. 18823. Determine all a, b, c, d > 0 such thatloga b < logb+1 (c+ 1) < logc+2 (d+ 2) < logd+3 (a+ 3) .

    Mihály Bencze

    PP. 18824. Solve the following system:x4 − y4 = 8

    (y2 + yz + z2 + 1

    )(z − x)

    y4 − z4 = 8(z2 + zx+ x2 + 1

    )(x− y)

    z4 − x4 = 8(x2 + xy + y2 + 1

    )(y − z)

    .

    Mihály Bencze

    PP. 18825. Compute

    { ∑1≤i1

  • 448 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18827. If a0 =12 , ak+1 = ak +

    a2kn (k = 0, 1, ..., n− 1), then[

    m∑i=1

    ai

    ]= m− 1 for all m ∈ N∗, where [·] denote the integer part.

    Mihály Bencze

    PP. 18828. Find all polynomials P for which

    P (x)P(2x2)P(3x3)...P (nxn) = P

    (n!x

    n(n+1)2 + x+ 2x2 + ...+ nxn

    ).

    Mihály Bencze

    PP. 18829. Solve the following system:√2λ+ 1− x2 +

    √3y + λ+ 4 =

    √z2 + 9z + 3λ+ 9√

    2λ+ 1− y2 +√3z + λ+ 4 =

    √x2 + 9x+ 3λ+ 9√

    2λ+ 1− z2 +√3x+ λ+ 4 =

    √y2 + 9y + 3λ+ 9

    , where λ ∈ R.

    Mihály Bencze

    PP. 18830. If xij > 0 (i = 1, 2, ..., n; j = 1, 2, ...,m) then determine all

    c (n,m, k) > 0 such that 1 +n∑j=1

    (m∑j=1

    xij

    )k≤ c (n,m, k)

    m∏j=1

    (1 +

    n∑i=1

    xkij

    )for

    all k ∈ N.

    Mihály Bencze

    PP. 18831. Prove that2n+1∑k=0

    (2n+1k

    ) ((tg x2)2k

    +(ctg x2

    )2k+ (tgx)k

    ((tg x2)k

    +(−ctg x2

    )k))=

    = 1(sin x2 )

    4n+1 +1

    (cos x2 )4n+1 .

    Mihály Bencze

    PP. 18832. Determine all positive integers such that its perfect k powers isequal to kn2 + kn+ 2k + 1, when n ∈ N.

    Mihály Bencze

    PP. 18833. Let ABC be a triangle. Determine all λ ∈ R for which ABC isrectangular triangle if and only if

    (sinA)λ + (sinB)λ + (sinC)λ = λ((cosA)λ + (cosB)λ + (cosC)λ

    ).

    Mihály Bencze

  • Proposed Problems 449

    PP. 18834. Solve the following system:sin3 x+ sin3

    (2π3 + y

    )+ sin3

    (4π3 + z

    )+ 34 cos 2t =

    = sin3 y + sin3(2π3 + z

    )+ sin3

    (4π3 + t

    )+ 34 cos 2x = sin

    3 z + sin3(2π3 + t

    )+

    +sin3(4π3 + x

    )+ 34 cos 2y = sin

    3 t+sin3(2π3 + x

    )+sin3

    (4π3 + y

    )+ 34 cos 2z = 0.

    Mihály Bencze

    PP. 18835. Let ABC be a triangle such that

    2s2

    r

    (s2 + r2 + 2Rr

    )=∏

    (atgA+ btgB). Prove that ABC is equilateral.

    Mihály Bencze

    PP. 18836. If x ∈(0, π2

    ], then

    1 <(1− x22 +

    x4

    6

    )2+(1− 12

    (π2 − x

    )2+ 116

    (π2 − x

    )4)2.

    Mihály Bencze

    PP. 18837. In all triangle ABC holds

    2 + 2rR ≤∑(√

    1 + sin 2A−√1− sin 2A

    )≤ 3

    √2.

    Mihály Bencze

    PP. 18838. Solve the following system√x2 + 2λx− λ2 = 1 +

    √y2 − 2λy − λ2√

    y2 + 2λy − λ2 = 1 +√z2 − 2λz − λ2√

    z2 + 2λz − λ2 = 1 +√x2 − 2λx− λ2

    , where λ ∈ R.

    Mihály Bencze

    PP. 18839. Solve the following system:

    4x2 < (2y + 9)

    (1−

    √2z + 1

    )24y2 < (2z + 9)

    (1−

    √2x+ 1

    )24z2 < (2x+ 9)

    (1−

    √2y + 1

    )2 .Mihály Bencze

    PP. 18840. Solve the following system:

    √3− x > 12 +

    √y + 1√

    3− y > 12 +√z + 1√

    3− z > 12 +√x+ 1

    Mihály Bencze

  • 450 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18841. Let beG =

    {a+ b 5

    √n+ c

    5√n2 + d 5

    √64 + e 5

    √256|a, b, c, d, e ∈ Q

    }\ {0} . Determine

    all n ∈ N for which (G, ·) is abelian group.

    Mihály Bencze

    PP. 18842. Determine all m,n ∈ N for which (21n+4)(21m+25)(14n+3)(14m+17) isirreductibile.

    Mihály Bencze

    PP. 18843. If xk > 0 (k = 1, 2, ..., n) then

    1).∑cyclic

    (x21+x

    22

    x1+x2

    )3≥

    n∑k=1

    x3k

    2).∑cyclic

    (x31+x32)(x1+x2)3

    (x21+x22)2 ≤ 4

    n∑k=1

    x2k

    Mihály Bencze

    PP. 18844. If x, y, z ∈(0, π2

    ), then

    4 + 2 (tgxtgytgz + ctgxctgyctgz) +√2(

    1sinx sin y sin z +

    1cosx cos y cos z

    )≥

    ≥(

    1sinx sin y sin z +

    1cosx cos y cos z

    )(sinx+ cosx) (sin y + cos y) (sin z + cos z) .

    Mihály Bencze

    PP. 18845. If xk > 0 (k = 1, 2, ..., n) then

    max

    { ∑cyclic

    (x1x2+x2x3+x3x1)3

    (x1+x2)(x2+x3)2(x3+x1)

    2 ;∑cyclic

    (x1x2+x2x3+x3x1)3

    (x1+x2)2(x2+x3)(x3+x1)

    2 ;

    ∑cyclic

    (x1x2+x2x3+x3x1)3

    (x1+x2)2(x2+x3)

    2(x3+x1)

    }≤ 2732

    n∑k=1

    xk.

    Mihály Bencze

    PP. 18846. If xk > 0 (k = 1, 2, ..., n) then∑cyclic

    11+8x1x2

    < 18

    n∑k=1

    1x2k.

    Mihály Bencze

  • Proposed Problems 451

    PP. 18847. If xk > 0 (k = 1, 2, ..., n) thenn∑k=1

    1xk

    ≥n∑k=1

    11+xk

    + 4∑cyclic

    11+8x1x2

    .

    Mihály Bencze

    PP. 18848. If xk > 0 (k = 1, 2, ..., n) thenn∑k=1

    1x2k

    + 2n∑k=1

    1xk

    ≥ 2n∑k=1

    11+xk

    + 16∑ 1

    1+8x1x2.

    Mihály Bencze

    PP. 18849. Determine all n ∈ N and all prime p ≥ 3 for which both of thenumbers 2n − p and 2n + p are primes.

    Mihály Bencze

    PP. 18850. Determine all a, b, c ∈ R for which the equations

    x2 + a2x+ b3 = 0, x2 + b2x+ c3 = 0, x2 + c2x+ a3 = 0 have a common realroot.

    Mihály Bencze

    PP. 18851. Let x = 0, a1a2a3... and y = 0, b1b2b3... be the decimalrepresentations of two positive real numbers. The equality bn = akn holds forall positive integers n. Determine all k ∈ N∗ for which x is rational number ifand only if y is rational number.

    Mihály Bencze

    PP. 18852. Determine all prime p for which 3p2 + 2, 4p3 + 1, 5p3 + 6p2 + 2are prime.

    Mihály Bencze

    PP. 18853. Let ABCD be a tetrahedron, and M ∈ Int (ABCD) . DenoteAM , BM , CM , DM the centers of circumspheres of tetrahedrons MBCD,MCDA, MDAB, MABC. Determine max V ol[AMBMCMDM ]V [ABCD] .

    Mihály Bencze

  • 452 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18854. If n ∈ N, n ≥ 2, then

    (n−1)2(n2+1)2(n+1)(((n2+1)(n−1))

    n−1)n3−n2+n−2 +

    n3(n4n−1)(n+1)(n2+1)

    is divisible by n5 + 1.

    Mihály Bencze

    PP. 18855. Determine all ak ∈ Q∗ (k = 1, 2, ..., n) for whicha1 +

    1a2a3...an

    ; a2 +1

    a1a3...an; ...; an +

    1a1a2...an−1

    are integer numbers.

    Mihály Bencze

    PP. 18856. If a, b > 0, then

    ((1+a2)(1+b2)

    a+b

    )a+b≥(1 + a2

    )b (1 + b2

    )a.

    Mihály Bencze

    PP. 18857. Prove that any tetrahedron can be decomposed into ntetrahedrons which have three faces congruent isosceles triangles, for everyn ≥ 5.

    Mihály Bencze

    PP. 18858. Let ABCD be a trapezoid with AB paralell to CD andAB > CD. Let E and F be the points on the segments AB and CD,respectively, such AEEB = x

    DFFC . Let K and L be two points on the segment

    EF such that AKB] = yDCB] and CLD] = zCBA]. Determine allx, y, z ∈ R for which K,L,B,C are concyclic.

    Mihály Bencze

    PP. 18859. Let A1A2...An be a convex polygon inscribed in a circle withradius R. Denote B1, B2, ..., Bn the midpoints of sides A1A2, A2A3, ..., AnA1.Prove that

    1).n∑k=1

    1OBk

    ≥ nR cos πn

    2).n∑k=1

    OBk ≤ nR cos πn

    Mihály Bencze

  • Proposed Problems 453

    PP. 18860. If ak > 0 (k = 1, 2, ..., n) , then

    n∏k=1

    (1 + a2k

    )≥ 2n−1n

    ∑cyclic

    a1a2...an−1(1 + a2n

    ).

    Mihály Bencze

    PP. 18861. If an = k + a0a1...an−1 for all n ≥ 1, then determine alla0, k ∈ N for which (ai; aj) = 1, for all i, j ∈ N∗ (i 6= j) .

    Mihály Bencze

    PP. 18862. Let ABC be a triangle and M ∈ Int (ABC) ,CM ∩AB = {D} , D ∈ (AB) . The line segment through D perpendicularto BM intersect BC at E, the line segment through D parallel to BM meetsAC in F. Determine all points M for which E,M,F are collinear.

    Mihály Bencze

    PP. 18863. Solve in R the following equationn∑k=1

    {kx} = [x] , where [·] and

    {·} denote the integer, respective the fractional part.

    Mihály Bencze

    PP. 18864. Solve in R∗ the following equation

    (n∑k=1

    [kx

    ])( n∑k=1

    [xk

    ])= n2,

    where [·] denote the integer part.

    Mihály Bencze

    PP. 18865. Prove that 1n−

    n∑k=1

    cos(x+ kπn )+ 1

    n+n∑

    k=1cos(x+ kπn )

    ≤ 1sin2 nx

    .

    Mihály Bencze

    PP. 18866. Solve in R the following equationn∏k=1

    [xk]= x

    n(n+1)2 , where [·]

    denote the integer part.

    Mihály Bencze

  • 454 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18867. If a, b > 0 and A = a+b2 ; G =√ab, K =

    √a2+b2

    2 , then

    Gλ+Kλ

    2 ≥ Aλ ≥

    (G+K

    2

    )λfor all λ ∈ (−∞, 0] ∪ [2,+∞) .

    Mihály Bencze

    PP. 18868. Prove that5n∑k=1

    1

    sin2(

    (12k+5)π60n

    ) = 5n2.Mihály Bencze

    PP. 18869. If ak ≥ 1 (k = 1, 2, ..., n) , thenn∑k=1

    11+ak

    ≤ n−12 +1

    1+n∏

    k=1ak

    .

    Mihály Bencze

    PP. 18870. If a, b ∈ R, then∑cyclic

    (|az1 + bz2|2 + ab |z1 − z2|2

    )= (a+ b)2

    n∑k=1

    |zk|2 for all zk ∈ C

    (k = 1, 2, ..., n) .

    Mihály Bencze

    PP. 18871. Solve the following equationn∑k=1

    11+axk

    = n−12 +1

    1+n∏

    k=1axk

    , when

    ak > 0 (k = 1, 2, ..., n) .

    Mihály Bencze

    PP. 18872. Let ABCD be a convex quadrilateral. Denote O1 and O2 thecircumcenter of triangles ABC and ADC, and A1, C1 the centers ofcircumcircles of triangles BO1C and AO1B, and A2, C2 the centers ofcircumcircles of triangles CO2D and AO2D. Compute

    Area[A1A2C2C1]Area[ABCD] .

    Mihály Bencze

    PP. 18873. Let ABCD be a convex quadrilateral. Denote H1 theorthocenter of triangle ABC, and A1 is on the ray H1A such that AA1 = BCand B1, C1 is defined similar. Denote H2 the orthocentre of triangle ADC,and A2 is on the ray H2A such that AA2 = DC and C2, D2 is definedsimilar. Compute Area[A1A2B1C2C1D2]Area[ABCD] .

    Mihály Bencze

  • Proposed Problems 455

    PP. 18874. Let ABC be an acute triangle, with O the circumcenter.Denote A1, B1, C1 the circumcentres of triangles BOC,COA,AOB. ProveArea[A1B1C1]Area[ABC] =

    R2

    2(s2−(2R+r)2).

    Mihály Bencze

    PP. 18875. Let H be the orthocentre of the acute triangle ABC, with A1on the ray HA and such that AA1 = BC. Define B1, C1 similarly. Prove that2(2sr + 6Rr − 3r2

    )≤ Area [A1B1C1] ≤ 2

    (2R2 + 2sr + r2

    ).

    Mihály Bencze

    PP. 18876. If ak > 0 (k = 1, 2, ..., n) , then

    n∑k=1

    ank

    n∏k=1

    ak

    +

    n∑k=1

    ak√n∑

    k=1a2k

    ≥ n+√n.

    Mihály Bencze

    PP. 18877. If ak > 0 (k = 1, 2, ..., n) , then

    2n∑k=1

    a2k ≥∑cyclic

    (a1a2

    a1+a2+√

    2(a21+a22)

    )2.

    Mihály Bencze

    PP. 18878. In all triangle ABC holds

    1). 2sinA + sinA2 + cos

    A2 ≥ 2 +

    √2 and its permutations

    2). 3 + sR ≥∑(

    2 +√2− 2sinA

    )2Mihály Bencze

    PP. 18879. If x > 0, then shx+ 1shx +1chx + thx ≥ 2 +

    √2.

    Mihály Bencze

    PP. 18880. If x, y > 0 then(x2 + x+

    (x2 + 1

    )√x2 + 1

    )(y2 + y +

    (y2 + 1

    )√y2 + 1

    )≥

    ≥(6 + 4

    √2)xy√

    (x2 + 1) (y2 + 1).

    Mihály Bencze

  • 456 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18881. In all triangle ABC holds

    1). 3+4 sin2 A

    2√3 sinA

    +√3+2 sinA√3+4 sin2 A

    ≥ 2 +√2 and his permutations

    2). 1+4 cos2 A

    2 cosA +1+2 cosA√1+4 cos2 A

    ≥ 2 +√2 and his permutations

    Mihály Bencze

    PP. 18882. Solve in (0,+∞) the following systemx2 + x+

    (y2 + 1

    )√y2 + 1 =

    (2 +

    √2)z√z2 + 1

    y2 + y +(z2 + 1

    )√z2 + 1 =

    (2 +

    √2)x√x2 + 1

    z2 + z +(x2 + 1

    )√x2 + 1 =

    (2 +

    √2)y√y2 + 1

    .

    Mihály Bencze

    PP. 18883. Let ABCD be a convex quadrilateral with a = AB, b = BC,c = CD, d = DA, e = BD, f = AC. Prove that 4

    √3Area [ABCD] ≤

    min{

    (ab+bf+fa)2

    a2+b2+f2+ (cd+df+fc)

    2

    c2+d2+f2; (ae+ed+da)

    2

    a2+e2+d2+ (bc+ce+eb)

    2

    b2+c2+e2

    }.

    Mihály Bencze

    PP. 18884. If a0 6= 0 and a0zn + a1zn−1 + ...+ an−1z + an = 0 is apolynomial with complex coefficients and zeros z1, z2, ..., zn such that

    |zk| < R (k = 1, 2, ..., n) , thenn∑k=1

    ∑1≤i1

  • Proposed Problems 457

    PP. 18887. If ak > 0 (k = 1, 2, ..., n) andn∑k=1

    1ak

    = 1, then

    ∑cyclic

    √a1a2...an−1 + an ≥ n

    √nn−2+1

    n+√nn−1

    (n

    √n∏k=1

    ak +n∑k=1

    √ak

    ).

    Mihály Bencze

    PP. 18888. If ak > 0 (k = 1, 2, ..., n) then

    nn∑k=1

    ak ≥(n2 − 1

    )n

    √n∏k=1

    ak + n

    √1n

    n∑k=1

    ank .

    Mihály Bencze

    PP. 18889. Let be A = aa...a︸ ︷︷ ︸n−time

    bb...b︸ ︷︷ ︸m−time

    . Determine all

    a, b ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and all k ∈ N for which Ak is palindrome.

    Mihály Bencze

    PP. 18890. Let ABC be an acute triangle and M ∈ Int (ABC) . For eachof triangles ABM,BCM,CAM draw its Euler line, that is, the lineconnecting its circumcentre and its centroid. Determine all points M forthese three lines are concurent.

    Mihály Bencze

    PP. 18891. If ak > 0 (k = 1, 2, ..., n) then

    n∑k=1

    an−1k +n2(n−2)

    n∏k=1

    ak

    n∑k=1

    ak

    ≥ (n− 1)∑cyclic

    a1a2...an−1.

    Mihály Bencze

    PP. 18892. Solve in N the following system:

    σ (d (n)) = mσ (d (m)) = kσ (d (k)) = n

    .

    Mihály Bencze

    PP. 18893. In all triangle ABC holds∑( 1a2(s−a)2+s2r2

    )λ≥ 31−λ

    (4R+r

    s2r2(4R−r)

    )λfor all λ ∈ (−∞, 0] ∪ [1,+∞) .

    Mihály Bencze

  • 458 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18894. In all triangle ABC holds3

    √(4R+r)3−12s2R

    3s2r+ s√

    (4R+r)2−2s2≥ 2.

    Mihály Bencze

    PP. 18895. If xk > 0 (k = 1, 2, ..., n) , then

    n

    √√√√√ n∑k=1xnkn

    n∏k=1

    xk

    + n−1

    √√√√ ∑cyclicx1x2...xn−1n∑k=1

    xn−1k

    ≥ 2.

    Mihály Bencze

    PP. 18896. If xk > 0 (k = 1, 2, ..., n) such thatn∏k=1

    xk = 1 then

    (n− 1)√n (xx21 + x

    x32 + ...+ x

    x1n ) +

    n∑k=1

    xk ≥ n2.

    Mihály Bencze

    PP. 18897. Compute the following sum:n∑k=1

    [3k2+2k

    √k+

    3√k

    k+6

    ], when [·]

    denote the integer part.

    Mihály Bencze

    PP. 18898. If x ∈(0, π2

    ), then sin

    8 x+ctg8xcos6 x

    + cos8 x+tg8xsin6 x

    ≥ 8.

    Mihály Bencze

    PP. 18899. Prove that∞∑k=1

    (e√k4+1−k2 − 1

    )> π

    2

    12 .

    Mihály Bencze

    PP. 18900. In all triangle ABC holds 5∑tg2A2 tg

    2B2 ≤ 1 + 6

    ∑tg3A2 tg

    3B2 .

    Mihály Bencze

    PP. 18901. In all triangle ABC holds∑ sinA sin2B

    (4 sin2B−sinA sinC) sinC≥ 1.

    Mihály Bencze

  • Proposed Problems 459

    PP. 18902. In all triangle ABC holds∑ 1

    sin A2

    ≤ 2(2R−r)3r .

    Mihály Bencze

    PP. 18903. In all triangle ABC holds

    (1− sinA) (1− sinB) (1− sinC) ≤ (26−15√3)r2

    2R2,

    Mihály Bencze

    PP. 18904. If x > 0 then in all triangle ABC holds∏(sin A2 + cos

    A2

    ) (1− sin A2 cos

    A2

    )≥ (1+x

    2)(s+xr)4R(1+x3)

    .

    Mihály Bencze

    PP. 18905. In all triangle ABC holds∏(

    tg2A2 + tg2B2

    )≥ 8r

    2((4R+r)2−2s2)2

    s6.

    Mihály Bencze

    PP. 18906. In all triangle ABC holds∑ctgA2

    √1 +

    (tgB2 − tg

    A2

    )tgC2 ≤

    sr .

    Mihály Bencze

    PP. 18907. In all triangle ABC holds∑ 1

    3−tgB2tgC

    2+tg2 A

    2

    ≤ 1.

    Mihály Bencze

    PP. 18908. In all triangle ABC holds∑√

    tgA2(1− tgA2 tg

    C2

    )≤√

    2s3r .

    Mihály Bencze

    PP. 18909. If ak > 0 (k = 1, 2, ..., n) , then∑cyclic

    a1√a2+a3+...+an

    ≥√

    nn−1

    n∑k=1

    ak.

    Mihály Bencze

    PP. 18910. In all triangle ABC holds s(R+2r)R2

    +∑

    sin 3A < 9√3

    2 .

    Mihály Bencze

  • 460 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18911. If x ∈[0, π2

    ]then 2 cosx

    √sinx+

    √sinx(1 + 4 sin2 x) ≤ 3

    4√3√2.

    Mihály Bencze

    PP. 18912. If x ∈(0, π2

    ), then

    (1 + sinx) (1 + cosx)(

    1sinx +

    1cosx

    )≥ 4 + 3

    √2.

    Mihály Bencze

    PP. 18913. In all triangle ABC holds∑ √ctgA

    2

    sn−(rctgA2 )n ≥ (2n+1)

    √s 2n

    √2n+1

    2nsn√r

    .

    Mihály Bencze

    PP. 18914. In all triangle ABC holds1∑sin2 A

    + 1∑cos2 A

    ≥ 23 +∏

    sin2A+∏

    cos2A.

    Mihály Bencze

    PP. 18915. In all triangle ABC holds∑(

    3 + 16 cos4A)4

    + 256 ≥ 2048rR .

    Mihály Bencze

    PP. 18916. If ak > 0 (k = 1, 2, ..., n) , then(n∑k=1

    ank

    )(n∑k=1

    1ank

    )≥ nn−1

    ∑cyclic

    a2+a3+...+ana1

    .

    Mihály Bencze

    PP. 18917. In all triangle ABC holds∑(

    ctgA2)nctgB2 ≤

    nnsn+1

    rn+1(n+1)n+1for

    all n ≥ 2.

    Mihály Bencze

    PP. 18918. In all triangle ABC holds∑√36r2ctg2A2 +

    s2tgA2

    6(tgB2 +tgC2 )

    ≥ 3s√17

    2 .

    Mihály Bencze

    PP. 18919. In all triangle ABC holds 9 (2R+ r) ≥ 5s√3.

    Mihály Bencze

  • Proposed Problems 461

    PP. 18920. In all triangle ABC holds∑( cos A

    2

    cos B2

    )2≤ 72 .

    Mihály Bencze

    PP. 18921. If x ∈(0, π2

    ), then 1

    sin6 x+cos6 x+ 4

    sin2 2x≥ 4 + 2

    √3.

    Mihály Bencze

    PP. 18922. In all triangle ABC holds∏(tg2A2 + x

    (tg2B2 + tg

    2C2

    ))≥ (1+2x)

    √1+8x−1−6x4 for all x ≥ −

    18 .

    Mihály Bencze

    PP. 18923. If ak > 1 (k = 1, 2, ..., n) , then

    aloga2 a31 + a

    loga3 a42 + ...+ a

    loga1 a2n ≥ n n

    √n∏k=1

    ak.

    Mihály Bencze

    PP. 18924. In all triangle ABC holds∑ (ctgA2 )6

    (ctgB2 )3+(ctgC2 )

    3 ≥ s3

    18r3.

    Mihály Bencze

    PP. 18925. In all triangle ABC holds∑√ tgA

    2

    tgA2+ctgA

    2

    ≤ 32 .

    Mihály Bencze

    PP. 18926. If x ∈ R then 2 cos2 x+ 34 sin2 x

    + 54 cos2 x

    ≥ 5.

    Mihály Bencze

    PP. 18927. In all triangle ABC holds∑

    5

    √2ctgA2 + ctg

    B2 ≤ 3 5

    √sr .

    Mihály Bencze

    PP. 18928. If r ∈ (0, 1] then 1sin6 x+cos6 x

    + 1sin2 x cosx

    + 1sinx cos2 x

    ≥ 20r3 forall x ∈

    (0, π2

    ).

    Mihály Bencze

  • 462 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18929. In all triangle ABC holds∑5

    √(2ctgA2 + ctg

    B2

    ) (ctgA2 + ctg

    C2

    )ctgA2 ≤

    5

    √54(sr

    )3.

    Mihály Bencze

    PP. 18930. In all triangle ABC holds∑ tg8 A

    2

    (tg2 A2 +tg2B2 )

    2 ≥ 112 .

    Mihály Bencze

    PP. 18931. In all triangle ABC holds∑ ctgA

    2

    s3+sr2ctg2 A2+r3ctg3 A

    2

    ≤ 2713s2r

    .

    Mihály Bencze

    PP. 18932. In all triangle ABC holds∑√

    tg2A2 + tgA2 tg

    B2 + tg

    2B2 ≥

    3√3s

    4R+r .

    Mihály Bencze

    PP. 18933. In all triangle ABC holds 512s2Rr ≤(s2 + r2 + 2Rr

    )2.

    Mihály Bencze

    PP. 18934. In all triangle ABC holds∑ 1

    s−rctgA2

    ≥ 2∑ 1

    s+rctgA2

    .

    Mihály Bencze

    PP. 18935. In all triangle ABC holds∑ ctgA

    2

    rctg2 B2+sctgC

    2

    ≥ 94s .

    Mihály Bencze

    PP. 18936. In all triangle ABC holds∑ 1

    s+4rtgA2

    ≥ 2713s .

    Mihály Bencze

    PP. 18937. In all triangle ABC holds∑tg2A2 tg

    2B2 ≤

    12 −

    (2rs

    )2.

    Mihály Bencze

    PP. 18938. If ak ≥ 1 (k = 1, 2, ..., n) , then∑cyclic

    (3(a21−a22

    8

    )2+ a1a2a1+a2

    )2≥ 14

    n∑k=1

    a2k.

    Mihály Bencze

  • Proposed Problems 463

    PP. 18939. In all triangle ABC holds∑√ctgA2 − ctg

    B2 − ctg

    C2 +

    rs ≥ 6

    √rs .

    Mihály Bencze

    PP. 18940. In all triangle ABC holds∑(tg2A+ ctg2A

    )≥ 3

    3√

    (s2−(2R+r))2

    3√

    (4R2)2− 3√(s2−(2R+r)2)

    2+

    3 3√

    (sr)2

    3√

    (2R2)2− 3√

    (sr)2

    Mihály Bencze

    PP. 18941. If a, b > 0 and x ∈ R, then(a sin2 x+ b cos2 x

    ) (sin2 xa +

    cos2 xb

    )≥ 1.

    Mihály Bencze

    PP. 18942. In all triangle ABC holds∑√

    tgA2 tgB2 ≤

    s3r .

    Mihály Bencze

    PP. 18943. In all triangle ABC holds s (∑√

    a) (∑a√a) ≥ 2

    ∑a3.

    Mihály Bencze

    PP. 18944. In all triangle ABC holds(s2+r2+4Rr

    4Rr

    )2≥ 1Rr + 4

    (∑ tgA2tgB

    21+a2

    )2.

    Mihály Bencze

    PP. 18945. Compute limn→∞

    1n

    n∑k=2

    logk (k + 1) .

    Mihály Bencze

    PP. 18946. Determine all x, y > 0 such that 1n∑k=1

    1x+ak

    − 1n∑k=1

    1y+ak

    ≥ 1n .

    Mihály Bencze

    PP. 18947. In all triangle ABC holds 1 +∑tg2A2 tg

    2B2 ≥

    4r(4R+r)s2

    .

    Mihály Bencze

  • 464 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18948. In all triangle ABC holds∑ A sinB

    sinA ≤ π.

    Mihály Bencze

    PP. 18949. In all triangle ABC holds∑ A cos B−C

    2

    sin A2

    ≤ π.

    Mihály Bencze

    PP. 18950. Prove that√2 3√

    3 4√

    4... n√n+

    √1 +

    √3 +

    √5 + ...+

    √2n− 1 < 4.

    Mihály Bencze

    PP. 18951. Prove that∞∑n=1

    (4n−1∑k=1

    1(2k−1)(4n−k)

    )2< π

    2

    6 .

    Mihály Bencze

    PP. 18952. Prove thatm∏p=3

    p∏k=2

    (1− 1kp

    )> 3m+1 .

    Mihály Bencze

    PP. 18953. In all triangle ABC holds∑ tgA

    2√tg2 A

    2+ 2r

    sctgA

    2

    ≤ 4R+rs .

    Mihály Bencze

    PP. 18954. In all triangle ABC holds1). 5s

    2+r2+4Rr4s2(s2+r2+2Rr)

    ≥ 1s2+r2+4Rr

    + 14(s2−r2−4Rr)

    2). s2+r2+4Rr4s2Rr

    ≥ 1r(4R+r) +1

    2(s2−2r2−8Rr)

    Mihály Bencze

    PP. 18955. In all triangle ABC holds∑ s2+r2ctg2 A

    2

    (tgA2 +tgB2 )

    2 ≥ 5s2

    2 .

    Mihály Bencze

    PP. 18956. If a, b, c > 0, then determine all x, y > 0 such that∑(a+xba+yc

    )3≥ 3.

    Mihály Bencze

  • Proposed Problems 465

    PP. 18957. If x, y, z ∈(0, π2

    ), then

    (∑

    sinx cos y cos z) (∑

    cosx sin y sin z) ≤ (1 +∏

    sinx) (1 +∏

    cosx) .

    Mihály Bencze

    PP. 18958. In all triangle ABC holds∑ (s+3rctgA2 )ctg2 C2

    ctgA2+ctgC

    2+3tgB

    2

    ≥ 2s23r .

    Mihály Bencze

    PP. 18959. In all triangle ABC holds∑ tgA

    2

    3r2ctg2 B2+2rsctgC

    2+3s2

    ≤ 112sr .

    Mihály Bencze

    PP. 18960. In all triangle ABC holds∑ 3√tg2 A

    2tg2 B

    2√1− 3√tg2 A

    2tg2 B

    2

    ≥ 2.

    Mihály Bencze

    PP. 18961. In all triangle ABC holds∑ tgA

    2tgB

    2

    1+√tgB

    2tgC

    2−√tgA

    2tgB

    2

    ≥ 1.

    Mihály Bencze

    PP. 18962. In all triangle ABC holds∑ 1

    cos A2

    ≥ 2∑√

    tgA2 tgB2 .

    Mihály Bencze

    PP. 18963. If ak > 0 (k = 1, 2, ..., n) , then∏cyclic

    (a1+a2a3...an

    1+a1

    )≥

    n∏k=1

    ak.

    Mihály Bencze

    PP. 18964. In all triangle ABC holds∑ 1√

    s+rtgA2

    ≥ 9√10s.

    Mihály Bencze

    PP. 18965. Determine all f : R→ R for whichx7y7 (f (x+ y)− f (x)− f (y)) == 5f (x) f (y)

    (x2f (y) + y2f (x) + 2

    (x4f (y) + y4f (x)

    ))for all x, y ∈ R.

    Mihály Bencze

  • 466 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18966. If a, b ∈ R∗ and z is a strictly complex root of the equationxn + ax+ (n− 1) b = 0, then |z| ≥ n

    √|b|.

    Mihály Bencze

    PP. 18967. If p > 2 is a prime and z = cos 2πp + i sin2πp such that

    11−z = a0 + a1z + a2z

    2 + ...+ ap−2zp−2, then

    1). a0 + a1 + ...+ ap−2 =p−12

    2). 1 + pn−1a0a1...ap−2 is divisible by p

    Mihály Bencze

    PP. 18968. Solve in R the following system:sinx+ sin y + sin z = 0cosx+ cos y + cos z = 0

    tg3kx+ tg3ky + tg3kz = 2(2−

    √3) , where k ∈ N.

    Mihály Bencze

    PP. 18969. Let bexn − 1λx

    n−1 + a1xn−2 − a2xn−3 + ...+ (−1)n−1 an−2x+ (−1)n an−1 = 0, where

    ak ∈ C (k = 1, 2, ..., n− 1) and∣∣a1 + λa2 + λ2a3 + ...+ λn−2an−1∣∣ ≤ 1λ2 ,

    where λ > 0. Prove that exist at least one root x1 of the given equation forwhich |x1| ≤ 2λ .

    Mihály Bencze

    PP. 18970. The numbers z1, z2 ∈ C∗ have the property (M) if existλ ∈ [−2, 2] such that z21 + z22 = λz1z2. Prove that z

    n−k1 z

    k2 , z

    k1z

    n−k2

    (k = 0, 1, ..., n) have the property (M) too.

    Mihály Bencze

    PP. 18971. Let be az2 + bz + c = 0, where a, b, c ∈ C∗ and z1, z2 denote theroots of the given equation. If z1 · z2 = λ2, when λ > 0 then λ |b|+ |c| ≥ 3λ2.

    Mihály Bencze

    PP. 18972. Solve in C the equation2n+1∑k=0

    |z − k| = (n− 1)2 .

    Mihály Bencze

  • Proposed Problems 467

    PP. 18973. We consider the equation az2 + bz + c = 0 when a, b, c ∈ C∗ and|a| = |b| = |c| . If the equation have a root with modul r > 0 and2t ∈

    {−r4 + r2 − 1±

    √(r4 + r2 + 1) (r4 − 3r2 + 1)

    }, then b2t = (t+ 1)2 ac.

    Mihály Bencze

    PP. 18974. Solve in R the equation 2x + 5x + 20x + 50x = 4582175 · 10x.

    Mihály Bencze

    PP. 18975. Solve in R the equation8x + 27x + 125x + 343x = 30x + 42x + 720x + 105x.

    Mihály Bencze

    PP. 18976. If 1 < a ≤ 10 then solve in R the equationalg x + 100 = a2 +

    (a2 + x− 100

    ) 1lg a .

    Mihály Bencze

    PP. 18977. Solve in R the equation 3x + 2 · 5x + 7x = 92105 |x|3 .

    Mihály Bencze

    PP. 18978. Solve in R the equation 32x+1 − (x− 3) 3x = 10x2 + 13x+ 4.

    Mihály Bencze

    PP. 18979. Solve in R the following equation(3lg 10x + 5lg 10x

    )2= 34

    (9lg x + 25lg x

    ).

    Mihály Bencze

    PP. 18980. Solve in[−13 ,+∞

    )the following system:{

    43x+1 + 43y+1 + 43z+1 + 43t+1 = 1024(3x+ 1) (3y + 1) (3z + 1) (3t+ 1) = 256

    .

    Mihály Bencze

    PP. 18981. Solve in R the following equationx (x+ 2) (x+ 8) (x+ 26) (x+ 80) = 3y.

    Mihály Bencze

  • 468 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18982. Solve in (0,+∞) the following system:ex

    λ+ (λ− 1) lnx = ey

    eyλ+ (λ− 1) ln y = ez

    ezλ+ (λ− 1) ln z = ex

    , when λ ≥ 1.

    Mihály Bencze

    PP. 18983. Solve in R the following equation lg(12x

    3 + 13x2 + 16x

    )= log2 x.

    Mihály Bencze

    PP. 18984. Solve in R the following equation3x

    3+11x + x6 + 85x2 = 36x2+3 + 14x4 + 9.

    Mihály Bencze

    PP. 18985. If n ∈ N,n ≥ 2 then solve the following equation:1x + 2x + ...+ (n− 1)x = (n+ 1)x + (n+ 2)x + ...+ (2n− 1)x .

    Mihály Bencze

    PP. 18986. Solve in R the following equation 3√x2+5

    √x−3 = 18 + 6x− x2.

    Mihály Bencze

    PP. 18987. Solve in [0,+∞) the following system:x+

    √1 + nx+ (n− 1)x2 + ...+ 2xn−1 + xn = 10y−x

    y +√

    1 + ny + (n− 1) y2 + ...+ 2yn−1 + yn = 10z−yz +

    √1 + nz + (n− 1) z2 + ...+ 2zn−1 + zn = 10x−z

    when n ∈ N∗.

    Mihály Bencze

    PP. 18988. Computen∑k=0

    (n+m+p

    k

    )2n−k +

    m∑k=0

    (n+m+p

    k

    )2m−k +

    p∑k=0

    (n+m+p

    k

    )2p−k.

    Mihály Bencze

    PP. 18989. Determine all n, p ∈ N∗ for which

    n∑k=0

    k(k+1)2(nk)n∑

    k=0k(k+p)(nk)

    ∈ N.

    Mihály Bencze

  • Proposed Problems 469

    PP. 18990. Determine all n ∈ N∗ for which

    n∑k=0

    k2

    (k+1)(k+2)(nk)

    n∑k=0

    k+3(k+1)(k+2)(

    nk)

    ∈ N.

    Mihály Bencze

    PP. 18991. Solve in N the following equationn∑k=0

    (k + 1)2 (k + 2)2(nk

    )= 2m.

    Mihály Bencze

    PP. 18992. Prove that[n2 ]∑k=0

    ∣∣∣(nk)− ( nk+1)∣∣∣ ≤√

    [n2 ]+1n+1

    (2nn

    ).

    Mihály Bencze

    PP. 18993. Prove thatm∏k=0

    ((mk

    )(nk

    ))2k ≤ ( 78m+1−1

    m∑k=0

    (mk

    )(n+kn

    )) 8m+1−17.

    Mihály Bencze

    PP. 18994. Prove that

    (4n+1

    (n+1)(2n+1−1)

    n∑k=0

    (nk

    )−1)1−( 12)n+1 ≥ n+1∏k=1

    (1k

    )2−k.

    Mihály Bencze

    PP. 18995. If n,m ∈ N∗, then

    (2n+1 − 1

    )( n∏k=0

    (m+kk

    )2n−k) 12n+1−1+(2m+1 − 1

    )( m∏k=0

    (n+kk

    )2m−k) 12m+1−1 ≤≤ 2n+m+1.

    Mihály Bencze

    PP. 18996. If xn =1

    k−1 −n∑

    m=1

    1

    (k+mk ), where k ∈ N, k ≥ 2, then compute

    limn→∞

    nk−1xn and limn→∞

    n(nk−1xn − k!k−1

    ).

    Mihály Bencze

  • 470 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 18997. If Sn =1

    n+1

    n∑k=0

    1

    (nk), then

    1).n∏k=2

    Sk ≥ 2(n+2)!S2n+1

    2). 2n−1√Sn ≥ 1 +

    n−2∑k=1

    2k√

    2k+2 .

    Mihály Bencze

    PP. 18998. In all acute triangle ABC holds(∑ 1

    a

    ) (∑ a+bab−1

    )≥ 9

    José Luis Dı́az-Barrero

    PP. 18999. Compute limn→∞

    n∏i=1

    (i∑

    k=1

    3k2+9k+7(k+1)3(k+2)3

    ).

    José Luis Dı́az-Barrero

    PP. 19000. Find the values of a for which the function

    f (z) =x∫1

    (2z2

    + az4

    )sin zdz is singled-valued.

    José Luis Dı́az-Barrero

    PP. 19001. If 0 < a < b and A (x) is a polynomial with real coefficients forwhich A (a) <

    √b− a < A (b) , then show that there exist two real numbers

    λ1, λ2 ∈ (a, b) such thatb∫aA (x) dx = A (λ1)A

    2 (λ2) .

    José Luis Dı́az-Barrero

    PP. 19002. Solve in R the following system:

    5a2 = c6 + 25b2 = a6 + 25c2 = b6 + 2

    .

    José Luis Dı́az-Barrero

    PP. 19003. Let the eulerian integrals I1 =1∫

    −∞

    dxxα and I2 =

    5−0∫3

    dx(5−x)β

    . I1

    and I2 are simultan convergents if:1). α = β = 12). α > 1, β > 1,3). α > 1, β < 1

  • Proposed Problems 471

    4). α < 1, β > 1

    5). α > 0, β > 0

    Laurenţiu Modan

    PP. 19004. Solve the following equation 1 + x√

    x−1x+1 = (x+ 1)

    √xx+2 .

    György Szöllősy

    PP. 19005. Let the function sequence (fn (x))n≥0 be, where fn : R→ R forall n ∈ N, and fn (x) = x1+(nx)2 .Study the simple and the uniform convergence for (fn (x))n≥1 .

    Study the simple and the uniform convergence for the funcdtion series∑n≥0

    x1+(nx)2

    .

    Laurenţiu Modan

    PP. 19006. Find∞∑n=1

    xn2

    n for all x ≥ 0.

    Laurenţiu Modan

    PP. 19007. If the points A1, B1, C1 divides the sides BC,CA,AB oftriangle ABC in the same ratio k > 0, then

    ∑AA21 ≥ 34

    ∑a2.

    Florentin Smarandache

    PP. 19008. In a triangle ABC we draw the Cevians AA1, BB1, CC1 thatintersect in P .

    Prove that∏ PA

    PA1=∏ AB

    A1B.

    Florentin Smarandache

    PP. 19009. In triangle ABC let‘s consider the Cevians AA1, BB1, CC1 thatintersect in P (A1 ∈ BC;B1 ∈ CA;C1 ∈ AB) .Prove that

    1).∑ PA

    PA1≥ 6

    2).∏ PA

    PA1≥ 8

    Florentin Smarandache

  • 472 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 19010. Let‘s consider a polygon (which has at least 4 sides)circumscribed to a circle, and D the set of its diagonals and the lines joiningthe points of contact two non-adjacent sides. Then D contain at least 3concurent lines.

    Florentin Smarandache

    PP. 19011. In all triangle ABC holds∑ ma(1+cosA cos(B−C)) sinA ≤ R

    ∑ 1sinA cos B−C

    2

    .

    György Szöllősy

    PP. 19012. If a, b > 0 and x ∈ [0, 1], then√

    aa+xb +

    √b

    b+xa ≤2√1+x

    .

    György Szöllősy

    PP. 19013. Solve the equation (1 + lnx)2 = 49√ex2.

    György Szöllősy

    PP. 19014. Solve the equation 2x4 − 5x2 + 1 + 14(sin πx2

    )2= 0.

    György Szöllősy

    PP. 19015. If ak > 0 (k = 1, 2, ..., n) , then∑ a1√

    a2+a3+...+an≥√

    nn−1

    n∑k=1

    ak

    György Szöllősy

    PP. 19016. In all triangle ABC holds∑ a

    b +√

    1 + 3abc∑a2b

    ≥ 3 +√2.

    D.M. Milošević

    PP. 19017. If A = a+b2 , G =√ab, H = 21

    a+ 1

    b

    , then H2 ≥ A (4G− 3A) .

    D.M. Milošević

    PP. 19018. If A = a+b2 , G =√ab, H = 21

    a+ 1

    b

    , K =√

    a2+b2

    2 , then

    1). A2 ≥ KG2). A+H ≥ 2G

  • Proposed Problems 473

    3). K +G ≤ 2A4). 2K +H ≤ 3A

    D.M. Milošević

    PP. 19019. In all triangle ABC holds∑ A

    B ≥(a+b+c3√9abc

    )3.

    D.M. Milošević

    PP. 19020. Let ABC be a triangle such that C = 90◦. Prove that:1). a

    2

    m2a+ b

    2

    m2b≥ 53

    2). a2

    w2a+ b

    2

    w2b≥ 32 +

    r2R

    D.M. Milošević

    PP. 19021. In all triangle ABC holds∑ rarb

    c2≥(2− rR

    )2.

    D.M. Milošević

    PP. 19022. Let x, y, z be the distances from the centroid of triangle ABC tothe sides BC,CA,AB respectively. Show that

    √x+

    √y +

    √z ≤

    √3 (R+ r).

    D.M. Milošević

    PP. 19023. In right-angled triangle ABC holds:1). 32 <

    a2

    w2b+ b

    2

    w2a≤ 12

    (2 +

    √2)

    2). awb +bwa

    ≤√

    2 +√2

    D.M. Milošević

    PP. 19024. If 0 < x < π2 , thensin2 x1+sinx +

    cos2 x1+cosx ≤ 2−

    √2.

    D.M. Milošević

    PP. 19025. If A = a+b+c3 , G =3√abc, H = 31

    a+ 1

    b+ 1

    c

    , K =√

    a2+b2+c2

    3 , then

    K2H ≥ A(3AH − 2G2

    ).

    D.M. Milošević

    PP. 19026. If n,m ∈ N, 0 ≤ n ≤ 4, then m+ 1m +√

    2mnm2+1

    ≥ 2 +√n.

    D.M. Milošević

  • 474 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 19027. In every triangle the following equalities are valid:

    1).∑ ra+rb

    rc= 2(2R−r)r

    2).∑ ra+rb

    a+b =2s(3R+2r)s2+2Rr+r2

    D.M. Milošević

    PP. 19028. In all triangle ABC holds

    1).∑ ha

    ra−r ≥ 2(2− rR

    )22).

    ∑w2a ≥ 12

    (s2 + 12Rr + 3r2

    )D.M. Milošević

    PP. 19029. If a, b > 0, n ∈ N,n ≥ 2, then1

    n

    √n∑

    k=0(nk)

    2(ab )

    k+ 1

    n

    √n∑

    k=0(nk)

    2( ba)

    k= 1

    n

    √√√√ [n2 ]∑k=0

    ( n2k)2(

    ab

    (a+b)2

    )k . Compute

    [n2 ]∑k=0

    14k(k!)2(n−2k)! .

    György Szöllősy

    PP. 19030. If x, y, z ∈ R∗, x+ y ≥ 0, y + z ≥ 0, z + x ≥ 0, then1).

    ∑ x3x2+xy+y2

    ≥ 13∑x

    2).∑ x3+y3

    x2+xy+y2≥ 23

    ∑x

    Mihály Bencze and Ovidiu Pop

    PP. 19031. If n ∈ N,n ≥ 2, then xn+1xn+yn ≥2x−y2 for x, y ∈ R, y ≥ 0,

    xn + yn 6= 0 if and only if n = 2.

    Mihály Bencze and Ovidiu Pop

    PP. 19032. The incircle of triangle ABC touches the lines BC, CA andAB at D,E and F respectivelly.Prove that

    1). If a 6= b 6= c, then∑ AD2−BE2

    b−a =2s(R+r)

    R2). If a 6= b 6= c, then∑(

    bn−1 + bn−2a+ ...+ ban−2 + an−1)ab(AD2 −BE2

    )= 0 for all n ∈ N∗

    3). The triangle ABC is isosceles if and only if two of AD,BE,CF are equal

    4). The triangle ABC is equilateral if and only if AD = BE = CF

    Mihály Bencze

  • Proposed Problems 475

    PP. 19033. If a, b, c > 0, then∑√ 2

    a +1b +

    cab ≥

    a+b+c√abc

    +∑ 1√

    a.

    Mihály Bencze

    PP. 19034. Let be xn (xn−1 + xn+1) = 2xn−1xn+1 for all n ≥ 1. Prove thatif some terms xi of the given sequence are the k power of a rational number,then the given sequence contains an infinite number of terms xj that areeach k powers of rational numbers.

    Mihály Bencze

    PP. 19035. Let be 1 = d1 < d2 < ... < dk = n the divisors of n. Determineall n ∈ N∗ and all i ∈ {1, 2, ..., k − 1} such that d2i + d2k−i = 2n+ 1.

    Mihály Bencze

    PP. 19036. If x, y, z > 0, then 3√∑

    x3

    3xyz +3

    √∑x3y3

    3x2y2z2+√∑

    xy∑x2

    +√

    xyz∑x∑

    x2y2≥ 4.

    Mihály Bencze

    PP. 19037. Determine all functions f : R→ R such that(f (x+ y)− f (x)− f (y))x3y3 = 4

    (x2 + y2

    )f (xy) + 6xyf (x) f (y) for all

    x, y ∈ R.

    Mihály Bencze

    PP. 19038. Determine all prime p for which 5p2 + 2 and 3p3 + 2 are primetoo.

    Mihály Bencze

    PP. 19039. Solve in Z the system:

    {xy + yz + zx ≡ 1 (mod n)x2 + y2 + z2 ≡ 1 (mod n) , where

    n ∈ N,n ≥ 2.

    Mihály Bencze

    PP. 19040. If a, b, c > 0, then

    a2 + b2 + c2 ≥ ab+ bc+ ca+ 14

    ((a2−b2)

    2

    a2+b2+

    (b2−c2)2

    b2+c2+

    (c2−a2)2

    c2+a2

    ). (A

    refinement of the inequality∑a2 ≥

    ∑ab).

    Mihály Bencze

  • 476 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 19041. If ak > 0 (k = 1, 2, ..., n) , thenn∏k=1

    (1− ak + a2k

    )≥

    (12

    n

    √n∏k=1

    (1 + a4k

    )+ 12

    n

    √n∏k=1

    (1− a4k

    ))n.

    Mihály Bencze

    PP. 19042. If ak > 0 (k = 1, 2, ..., n) , then 2n

    n∏k=1

    (1 + a2k

    )3 ≥≥

    (n

    √n∏k=1

    (1 + ak)3 (1 + a3k)+ n

    √n∏k=1

    (1− ak)4(1 + ak + a

    2k

    ))n.

    Mihály Bencze

    PP. 19043. If x ∈ R, then 11+3 sin4 x

    + 11+3 cos4 x

    ≥ 87 .

    Mihály Bencze

    PP. 19044. Solve in R the following system:x61 + 11x

    22

    (x22 + 1

    )+ 1 = x3

    (5x43 + 11x

    23 + 5

    )x62 + 11x

    23

    (x23 + 1

    )+ 1 = x4

    (5x44 + 11x

    24 + 5

    )−−−−−−−−−−−−−−−−−−−−x6n + 11x

    21

    (x21 + 1

    )+ 1 = x2

    (5x42 + 11x

    23 + 5

    ) .Mihály Bencze

    PP. 19045. Solve in (0,+∞) the following system:2+x21

    (1+x1)2 +

    x2(1+x2)

    2 =2+x22

    (1+x2)2 +

    x3(1+x3)

    2 = ... =2+x2n

    (1+xn)2 +

    x1(1+x1)

    2 =34 .

    Mihály Bencze

    PP. 19046. If x ∈ R then 25−4 sin2 x cos2 x +

    14+sin2 x

    + 14+cos2 x

    ≤ 1.

    Mihály Bencze

    PP. 19047. If x ∈ R then 12(1−sin2 x cos2 x)

    + 13+sin2 x

    + 13+cos2 x

    ≤ 1511 .

    Mihály Bencze

    PP. 19048. If x ∈(0, π2

    ), then 5 sin2 x+ 32

    sin2 x≥ 37.

    Mihály Bencze

  • Proposed Problems 477

    PP. 19049. If x ∈(0, π2

    ), then

    19−sin 2x +

    17−2

    √2 sinx+cos2 x

    + 17−2

    √2 cosx+sin2 x

    ≤ 12 .

    Mihály Bencze

    PP. 19050. If x ∈(0, π2

    ), then

    (√2 sinx cosx

    )√2 (5− 2 sin2 x cos2 x

    )≤ 3.

    Mihály Bencze

    PP. 19051. If x > 0 and t ≥ 3 then xt + x−t ≥ 2t+ (t+ 1)(x+ 1x

    ).

    Mihály Bencze

    PP. 19052. If x > 0 then(23

    )x+(23

    ) 1x ≤ 43 .

    Mihály Bencze

    PP. 19053. If x ∈ R, then 2(sin6 x+ sin6 x

    )≤ 3 + 7

    (sin4 x+ cos4 x

    ).

    Mihály Bencze

    PP. 19054. If x, y, z ∈ R then2 + sin2 2x sin2 2y ≥ 6

    (sin2 x cos2 x+ sin2 y cos2 y

    ).

    Mihály Bencze

    PP. 19055. If x ∈ R, then(sin4 x+ cos2 x

    ) (cos4 x+ sin2 x

    )≥ 13 .

    Mihály Bencze

    PP. 19056. If x ∈ R, then 12+cos2 x+cos4 x

    + 16+sin2 x

    + 11+sin4 x

    ≤ 1.

    Mihály Bencze

    PP. 19057. Solve in (0,+∞) the following system:x1√

    1+8x1+ 13√x2 +

    1√8+x3

    =

    = x2√1+8x2

    + 13√x3 +1√

    8+x4= ... = xn√

    1+8xn+ 13√x1 +

    1√8+x2

    = 1.

    Mihály Bencze

    PP. 19058. If x ∈ R, then 2+sin2 x1+cos6 x

    + 2+cos2 x

    1+sin6 x≥ 269 .

    Mihály Bencze

  • 478 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 19058. If x ∈ R, then 11+sin2 x cos2 x

    + 11+2 sin2 x

    + 11+2 cos2 x

    ≥ 3.

    Mihály Bencze

    PP. 19059. If x ∈(0, π2

    ), then 5 (sinx+ cosx) + 3

    √2

    sin 2x ≥ 18− 5√2.

    Mihály Bencze

    PP. 19060. If x ∈ R, then 2+sin2 x3+cos4 x

    + 2+cos2 x

    3+sin4 x≥ 1914 .

    Mihály Bencze

    PP. 19061. If x ∈[0, π2

    ], then

    1+4√2+(2+

    √2)(sinx+cosx)

    (2+sinx)(2+cosx) +sin+x cosx

    2+√2

    ≤ 2.

    Mihály Bencze

    PP. 19062. If x ∈[0, π2

    ], then 1sinx+cosx +

    2+sin2 x√2+sinx

    + 2+cos2 x√

    2+cosx≥ 3.

    Mihály Bencze

    PP. 19063. If x ∈ R, then 12 +(9√2− 7

    )sinx cosx ≥ 7

    √2 (sinx+ cosx) .

    Mihály Bencze

    PP. 19064. If x, y ∈(0, π2

    )and t > 0 then

    (t+sinx+sin y)5

    sinx sin y +(t+cosx+cos y)5

    cosx cos y ≥ 2t(1 + t2

    ).

    Mihály Bencze

    PP. 19065. If x ∈ R, then 3√

    (sinx cosx)8 + 3√16(

    3√sin8 x+

    3√cos8 x

    )≤ 3.

    Mihály Bencze

    PP. 19066. If x ∈ R, then2+2 sin2 x cos2 x

    (1+2 sin2 x cos4 x)(1+2 cos2 x sin4 x)+ 5(1+4 sin2 x)(1+4 cos2 x)

    + 9(1+8 sin2 x)(1+8 cos2 x)

    ≥ 2.

    Mihály Bencze

    PP. 19067. If x ∈ R, then 424−sin2 2x +

    52(2+sin2 x)(2+cos2 x)

    ≤ 35 .

    Mihály Bencze

  • Proposed Problems 479

    PP. 19068. If x ∈(0, π2

    )then 5

    (sinx+ cosx+

    √2)+ 3

    √2

    sin 2x ≥ 18.

    Mihály Bencze

    PP. 19069. If x, y ∈(0, π2

    )then

    (sinx+ cosx) (1− sinx cosx) + (sin y + cos y) (1− sin y cos y) ≤ 2√2.

    Mihály Bencze

    PP. 19070. Solve the following system:(x21 + 1

    )(x1 + 1)

    2 + 7x22 = 5x3(x24 + x4 + 1

    )(x22 + 1

    )(x2 + 1)

    2 + 7x23 = 5x4(x25 + x5 + 1

    )−−−−−−−−−−−−−−−−−−−−(x2n + 1

    )(xn + 1)

    2 + 7x21 = 5x2(x23 + x3 + 1

    ) .Mihály Bencze

    PP. 19071. Solve the following system:

    x31+1

    (x1+1)3 +

    5x22(x2+1)

    2 =x32+1

    (x2+1)3 +

    5x32(x3+1)

    2 = ... =x3n+1

    (xn+1)3 +

    5x12(x1+1)

    2 =78 .

    Mihály Bencze

    PP. 19072. Solve the following system: 3√2x1 + 1 +

    3√4− x2 + 3

    √3 =

    = 3√2x2 + 1 +

    3√4− x3 + 3

    √3 = ... = 3

    √2xn + 1 +

    3√4− x1 + 3

    √3 = 0.

    Mihály Bencze

    PP. 19073. If ak > 0 (k = 1, 2, ..., n) andn∑k=1

    a5k =15√3

    , then∑cyclic

    a1a2a35√a101 + a

    102 + a

    103 ≤ 1.

    Mihály Bencze

    PP. 19074. If xk > 0 (k = 1, 2, ..., n), then∏cyclic

    1+x2(1+x21)(1+x1x2)1+x1x2+x21x2

    (1 + n

    √n∏k=1

    xk + n

    √n∏k=1

    x2k

    )nMihály Bencze

  • 480 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 19075. Solve the following system:2(2x41 + 2x

    22 − 1

    )= 3

    (x23 + x4 − 1

    )2(2x42 + 2x

    23 − 1

    )= 3

    (x24 + x5 − 1

    )−−−−−−−−−−−−−−−−2(2x4n + 2x

    21 − 1

    )= 3

    (x22 + x3 − 1

    ) .Mihály Bencze

    PP. 19076. Solve the following system:2|x1+2| =

    ∣∣2x2+1 − 1∣∣+ 2x3+1 + 12|x2+2| =

    ∣∣2x3+1 − 1∣∣+ 2x4+1 + 1−−−−−−−−−−−−−−2|xn+2| =

    ∣∣2x1+1 − 1∣∣+ 2x2+1 + 1.

    Mihály Bencze

    PP. 19077. Solve the following system:√3 sin 2x1 = 2 cos

    2 x2 + 2√2 + 2 cos 2x3√

    3 sin 2x2 = 2 cos2 x3 + 2

    √2 + 2 cos 2x4

    −−−−−−−−−−−−−−−−−√3 sin 2xn = 2 cos

    2 x1 + 2√2 + 2 cos 2x2

    .

    Mihály Bencze

    PP. 19078. Solve the following system:32x1+1 = 3x2+2 +

    √1− 6 · 3x3 + 32(x4+1)

    32x2+1 = 3x3+2 +√

    1− 6 · 3x4 + 32(x5+1)−−−−−−−−−−−−−−−−−−32xn+1 = 3x1+2 +

    √1− 6 · 3x2 + 32(x3+1)

    .

    Mihály Bencze

    PP. 19079. If xn =

    √√√√2 +√2 + ...+√2︸ ︷︷ ︸n−time

    , thenn∏k=1

    (4xk+1 − xk) < 6n.

    Mihály Bencze

  • Proposed Problems 481

    PP. 19080. Prove that for all n ∈ N∗ exist a natural number x such thatthe sum of digits of x2 is 19n.

    Mihály Bencze

    PP. 19081. In all triangle ABC holds(2a2 + 2bc− b2 − c2

    ) (2b2 + 2ca− c2 − a2

    ) (2c2 + 2ab− a2 − b2

    )≥ 256Rs2r3.

    Mihály Bencze

    PP. 19082. Let be a, b, c > 0 such that λabc > a3 + b3 + c3. If λ ∈ (0, 5]then a, b, c are the sides of a triangle.

    Mihály Bencze

    PP. 19083. Prove that for all n ∈ N∗ exist a natural number x such thatthe sum of digits of x2 is 4n.

    Mihály Bencze

    PP. 19084. Solve the following system:x21 − 20x2 + 20 = 3x3−1x22 − 20x3 + 20 = 3x4−1−−−−−−−−−−x2n − 20x1 + 20 = 3x2−1

    .

    Mihály Bencze

    PP. 19085. In all triangle ABC holds

    1). 5s2 ≥ 27r2 + 54Rr2). 4s2 ≥ 27Rr3). 27s2Rr

    (s2 + r2 + 4Rr

    )≤ 54s2R2r2 +

    (s2 + r2 + 4Rr

    )34). 27Rs2 ≤ 2 (4R+ r)35). 27 (2R− r)

    (s2 + r2 − 8Rr

    )≤ 54Rr2 + 32 (2R− r)3

    6). 27 (4R+ r)(s2 + (4R+ r)2

    )≤ 54Rs2 + 32 (4R+ r)3

    Mihály Bencze

  • 482 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 19086. If ak > 0 (k = 1, 2, ..., n) and λ ≥ 1 then∑cyclic

    aλ+11aλ2+a

    λ3+...+a

    λn≥ nn−1

    √√√√√ n∑k=1 aλ+1kn∑k=1

    aλ−1k

    .

    Mihály Bencze

    PP. 19087. If ak > 0 (k = 1, 2, ..., n) then

    nn−2(

    n∏k=1

    ak

    )(n∑

    k=1

    1ak

    )(

    n∑k=1

    ak

    )n−1 + n∑k=1

    ak ≥ (n+ 1) n+1√

    n∏k=1

    ak.

    Mihály Bencze

    PP. 19088. If ak > 0 (k = 1, 2, ..., n) and λ ≥ 0 then∑cyclic

    aλ+11aλ2+...+a

    λn≥

    nn∑

    k=1aλ+1k

    (n−1)n∑

    k=1aλk

    Mihály Bencze

    PP. 19089. If x, y ∈[0, π2

    ]then

    (sinx

    √1 + cos2 y + sin y

    √1 + cos2 x

    )2+

    +(cosx

    √1 + sin2 y + cos y

    √1 + sin2 x

    )2≤ 6− 2 cos (x− y) .

    Mihály Bencze

    PP. 19090. If xk ∈ [−1, 1] (k = 1, 2, ..., n), then

    ∑cyclic

    √1− x1x2 +

    √(1− x21

    ) (1− x22

    )≤

    √√√√2(n2 − ( n∑k=1

    xk

    )2).

    Mihály Bencze

    PP. 19091. If x ∈ R, then∣∣∣∣ n∑k=1

    {kx} − n {x}∣∣∣∣ ≤ n− ln (n+ 1) when {·}

    denote the fractional part.

    Mihály Bencze

  • Proposed Problems 483

    PP. 19092. Let ABC be a triangle and O denote his circumcentre. IfAO ∩BC = {D} , BO ∩AC = {E} , CO ∩AB = {F} , then9R2 ≤ AD +BE + CF ≤

    9R2

    4r .

    Mihály Bencze

    PP. 19093. If x, y ∈ (0, 1) then x(y2+1)

    y(y+1)2+

    y(x2+1)x(x+1)2

    ≥ 1−x1+x +1−y1+y .

    Mihály Bencze

    PP. 19094. Solve the following system:(5x21 + 5x1 − 8

    ) (21x22 + 49x2 + 22

    )=(13x23 + 27x3 + 7

    )2(5x22 + 5x2 − 8

    ) (21x23 + 49x3 + 22

    )=(13x24 + 27x4 + 7

    )2−−−−−−−−−−−−−−−−−−−−−−−−−(5x2n + 5xn − 8

    ) (21x21 + 49x1 + 22

    )=(13x22 + 27x2 + 7

    )2 .Mihály Bencze

    PP. 19095. In all triangle ABC holds∑√

    1 + ctg2A2 ≥ 6.

    Mihály Bencze

    PP. 19096. If ak, bk > 0 (k = 1, 2, ..., n) andn∏k=1

    ak ≥n∑k=1

    a1a2...ak−1bkak+1...an, thenn∑k=1

    ak ≥(

    n∑k=1

    √bk

    )2(A

    generalization of problem L.IX.214 Revista de matematica din Valea Jiului).

    Mihály Bencze

    PP. 19097. Solve the following system:(sinx1 +

    √1 + sin2 x1

    ) (cosx2 +

    √1 + cos2 x2

    )=

    =(sinx2 +

    √1 + sin2 x2

    ) (cosx3 +

    √1 + cos2 x3

    )= ...

    =(sinxn +

    √1 + sin2 xn

    ) (cosx1 +

    √1 + cos2 x1

    )= 1.

    Mihály Bencze

    PP. 19098. Solve in Z the equation x2 + y2 + z2 + t2 = u2 + v2 + w2.

    Mihály Bencze

  • 484 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 19099. Let A1A2...An be a convex polygon and M ∈ Int (A1A2...An) .Denote B1, B2, ..., Bn the midpoints of A1M,A2M, ..., AnM. Prove thatA1B2, A2B3, ..., AnB1 are the sides of a convex polygon if and only if M isthe controid of the polygon A1A2...An.

    Mihály Bencze

    PP. 19100. Determine all ak ∈ Z (k = 1, 2, ..., n) , (a1, a2, ..., an) = 1 forwhich sin akx = 0 (k = 1, 2, ..., n) .

    Mihály Bencze

    PP. 19101. Prove thatn∏k=1

    (710 −

    (1

    k+1 +1

    k+2 + ...+12k

    ))≤ 4−nn! .

    Mihály Bencze

    PP. 19102. Let ABCD be a tetrahedron and M ∈ Int (ABCD) . DenoteA1, B1, C1, D1 the midpoint of AM,BM,CM,DM. Determne all points Mfor which AB1, BC1, CD1, DA1 are the sides of a convex quadrilateral.

    Mihály Bencze

    PP. 19103. In all triangle ABC holds∏ (1−ctgA2 ctgB2 )2

    1+ctgA2ctgB

    2

    ≥ 1.

    Mihály Bencze

    PP. 19104. Determine all functions f : N∗ → N∗ for which

    f (x+ y) = f (x) + f (y) + 3 (x+ y) 3√f (x) f (y) for all x, y ∈ N∗.

    Mihály Bencze

    PP. 19105. Solve the following system:(x21 − 3x1 + 4

    ) (5x22 − 7x2 + 11

    )= 5

    (x23 − x3 + 1

    )2(x22 − 3x2 + 4

    ) (5x23 − 7x3 + 11

    )= 5

    (x24 − x4 + 1

    )2−−−−−−−−−−−−−−−−−−−−−−(x2n − 3xn + 4

    ) (5x21 − 7x1 + 11

    )= 5

    (x22 − x2 + 1

    )2 .Mihály Bencze

  • Proposed Problems 485

    PP. 19106. 1). Prove that the equation(x2 − xy + y2

    ) (z2 + zt+ t2

    )= u2

    have infinitely many solutions in Z

    2). Solve the given equation in Z

    Mihály Bencze

    PP. 19107. Let ak ∈ {0, 1, ..., 9} (k = 1, 2, ..., n) for which a1a2...a2n,a1a2...an, an+1an+2...a2n are perfect p power.

    Determine all r, n, p ∈ N for which a1a2...a2n can be expressed like a sum ofr perfect p powers.

    Mihály Bencze

    PP. 19108. Let ABC be a triangle and D ∈ (BC), E ∈ (CA) , F ∈ (AB) .

    Prove that 1 +∑√

    1 + AD2

    BD·DC ≥s2+r2

    2Rr .

    Mihály Bencze

    PP. 19109. If x > 0 and a > b > 0 then xa − xb ≥(ba

    ) aa−b −

    (ba

    ) ba−b .

    Mihály Bencze

    PP. 19110. If a, b, c ∈ (0, 1) or a, b, c > 1 and x, y, z > 0 and y + z ≥ 2xthen logaxbycz a+ logbxcyaz b+ logcxaybz c ≥ 3x+y+z (A generalization ofproblem L. 859, Cardinal, Vol. XXI, Nr. 2, 2010/2011).

    Mihály Bencze

    PP. 19111. Prove that x1 = sinπ48 and x2 = cos

    π48 are roots of the equation

    65536x16+163840x12−33768x10+103424x8−40960x6+6576x4−256x2+1 = 0.

    Mihály Bencze

    PP. 19112. Prove that x1 = sinπ40 and x2 = cos

    π40 are roots of the equation

    512x8 − 1024x6 + 640x4 − 128x2 + 3−√5 = 0.

    Mihály Bencze

  • 486 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 19113. Solve the following system:

    x41 + 1 = 2x2

    (2x23 + 7x3 + 2

    )x42 + 1 = 2x3

    (2x24 + 7x4 + 2

    )−−−−−−−−−−−−x4n + 1 = 2x1

    (2x22 + 7x2 + 2

    ) .Mihály Bencze

    PP. 19114. Prove that x1 = sinπ20 and x2 = cos

    π20 are roots of the equation

    256x8 − 512x6 + 304x4 − 48x2 + 1 = 0.

    Mihály Bencze

    PP. 19115. Prove that x1 = sinπ24 and x2 = cos

    π24 are solutions of the

    equation 256x8 − 512x6 + 320x4 − 64x2 + 1 = 0.

    Mihály Bencze

    PP. 19116. Solve the following system:2(√

    x1 + 1 +√x22 + 6x2 + 1

    )= 2x23 + 7x3 + 4

    2(√

    x2 + 1 +√x23 + 6x3 + 1

    )= 2x24 + 7x4 + 4

    −−−−−−−−−−−−−−−−−−−−2(√

    xn + 1 +√x21 + 6x1 + 1

    )= 2x22 + 7x2 + 4

    .

    Mihály Bencze

    PP. 19117. If a > b > 0 and x ≥ 1, then

    a(√x+ 2− 3

    √x+ 2

    )≥ (a− b)

    (√x+ 1− 3

    √x+ 1

    )+ b (

    √x− 3

    √x) .

    Mihály Bencze

    PP. 19118. If ak > 1 (k = 1, 2, ..., n) , then∑cyclic

    loga1((n− 2) an−11 + a2a2...an

    )≥ n (n− 1) + n2

    logn−1

    (n∏

    k=1ak

    ) (Ageneralization of problem L. 882, Cardinal, XXI, Nr. 2, 2010/2011).

    Mihály Bencze

  • Proposed Problems 487

    PP. 19119. Solve in (0,+∞) the following system:

    √x1 +

    29 =

    3√x2√

    x2 +29 =

    3√x3

    −−−−−−√xn +

    29 =

    3√x1

    .

    Mihály Bencze

    PP. 19120. If α > β > 0 then solve in (0,+∞) the following system:

    xα1 − xβ2 = x

    α2 − x

    β3 = ... = x

    αn − x

    β1 =

    (βα

    ) αα−β −

    (βα

    ) βα−β

    .

    Mihály Bencze

    PP. 19121. Solve in Z the equationn∏k=1

    (x2k + xk + 1

    )= 6y.

    Mihály Bencze

    PP. 19122. Solve in C the following system: zn−11 + (n− 1) |z2z3...zn| =

    zn−12 + (n− 1) |z3z4...z1| = ... = zn−1n + (n− 1) |z1z2...zn−1| =n∑k=1

    zn−1k .

    Mihály Bencze

    PP. 19123. Solve in (0,+∞) the following system:n∑k=1

    xk = n

    n∏k=1

    loga+1 (ax+ 1) = 1when a ≥ 1.

    Mihály Bencze

    PP. 19124. If a, b, c > 0 thena+b+c

    3 ≥3√abc+ 34

    ∣∣∣( 3√a− 3√b)( 3√b− 3√c) ( 3√c− 3√a)∣∣∣ .Mihály Bencze

    PP. 19125. 1). If a, b > 0, A (a, b) = a+b2 , G (a, b) =√ab then for all

    x, y ∈ (a, b) holds a < A(a,b)G2(x,y)−2G2(a,b)A(x,y)+G2(a,b)A(a,b)

    G2(x,y)−2A(a,b)A(x,y)+2A2(a,b)−G2(a,b) < b.

    2). Generalize for all xk ∈ (a, b) (k = 1, 2, ..., n) .

    Mihály Bencze

  • 488 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 19126. 1). If a, b, c ∈ R and abc 6= 0 then the equationsax2 + cx+ b = 0; bx2 + ax+ c = 0, cx2 + bx+ a = 0, have a common rootsthen 2 |a+ b+ c| ≤ |a|+ |b|+ |c| .

    2). What happens when a, b, c ∈ C∗?3). Generalization.

    Mihály Bencze

    PP. 19127. If x ∈[0, π2

    ]then

    (1 + 2 sin2 x

    ) (1 + cos2 x

    ·(sinx+ cosx+ 1√

    2

    )2≥ 94 (sinx+ cosx)

    2(

    1√2+ sinx

    )2 (1√2+ cosx

    )2.

    When holds the equality?

    Mihály Bencze

    PP. 19128. Solve in R the equation: (arctgx)3 +(arctg 1x

    )3= 63π

    3

    864 .

    Mihály Bencze

    PP. 19129. Prove that∞∑k=1

    ((k2+2k2+1

    )3− 1)< π

    2

    2 .

    Mihály Bencze

    PP. 19130. If x ∈[0, π2

    ]then

    (cosx+√2 sin2 x) sinx

    1+√2 cosx

    +(sinx+

    √2 cos2 x) cosx

    1+√2 sinx

    + 1+sin 2x2√2(sinx+cosx)

    ≥ (1+2√2 cos3 x) sinx

    2(cosx+√2 sin2 x)

    +(1+2

    √2 sin3 x) cosx

    2(sinx+√2 cos2 x)

    +√2(sinx+cosx)(1−sinx cosx)

    1+sin 2x .

    When holds the equality?

    Mihály Bencze

    PP. 19131. If x, y, z > 0, then 3√∑

    x3

    3xyz +3

    √∑x3y3

    3x2y2z2+√∑

    xy∑x2

    +√

    xyz∑x∑

    x2y2≥ 4.

    Mihály Bencze

    PP. 19132. If x, y, z > 0, then∑ yz

    x+y3+z2≤∑x+∑xy+3xyz

    (∑x)2

    .

    Mihály Bencze

  • Proposed Problems 489

    PP. 19133. Solve in (0,+∞) the following system:

    2n∑k=1

    2xk = 2n+2

    2n∏k=1

    log2 xk = 1

    .

    Mihály Bencze

    PP. 19134. Compute∫ x(x+sinx+cosx)dx

    (x2−1) sinx cosx+x(cos 2x+cosx+sinx)+cosx−sinx+1 for all

    x ∈(0, π2

    ).

    Mihály Bencze

    PP. 19135. Determine all f : R→ R for whichf (f (x+ 2y) + f (2x+ y)) = f (f (x+ y) + 2 (x+ y)) for all x, y ∈ R.

    Mihály Bencze

    PP. 19136. If x, y, z > 0, then(∑

    (x+ y) z3) (∑ x+y

    z2

    )≥ 4xyz (

    ∑x)(∑ 1

    x

    ).

    Mihály Bencze

    PP. 19137. If a, b, c > 0 and∑ab = 1, then 40

    √3∑ 1

    1+a2≤ 81 (

    ∑a+ abc) .

    Mihály Bencze

    PP. 19138. Solve in N the following equation:(x2n + (xy)n + y2n

    ) (y2n + (yz)n + z2n

    ) (z2n + (zx)n + x2n

    )= (xyz)n+1 .

    Mihály Bencze

    PP. 19139. Solve in C the following system:(x1 + 2) (x2 + 3) (x3 − 4) (x4 − 5) = (x2 + 2) (x3 + 3) (x4 − 4) (x − 5) = ... =(xn + 2) (x1 + 3) (x2 − 4) (x3 − 5) = 44.

    Mihály Bencze

    PP. 19140. Solve in R the following system:(1 + 3x1) (1 + 5x2) ≤ 9x23 + 10x4 + 5(1 + 3x2) (1 + 5x3) ≤ 9x24 + 10x5 + 5−−−−−−−−−−−−−−−−(1 + 3xn) (1 + 5x1) ≤ 9x22 + 10x3 + 5

    .

    Mihály Bencze

  • 490 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 19141. In all triangle ABC holds 5√3

    9 ≤2sr

    s2−(2R+r)2 < 2.

    Mihály Bencze

    PP. 19142. Solve in R the following system:x21 − x2 + [x3] = x22 − x3 + [x4] = ... = x2n − x1 + [x2] = 2, when [·] denote theinteger part.

    Mihály Bencze

    PP. 19143. If a, b, c > 0 then∑ a

    a2+ab+bc+ca≤ 94(a+b+c) .

    Mihály Bencze

    PP. 19144. Solve the following system:x+ y + z = 6x3 + y3 + z3 = 3

    (x2 + y2 + z2

    )+ 6

    x5 + y5 + z5 + 20(x2 + y2 + z2

    )= 5(x4 + y4 + z4) + 66

    .

    Mihály Bencze

    PP. 19145. If ak ∈ C (k = 1, 2, ..., n) then determine all z ∈ C for which|z − a1 + a2 + ...+ an−1| = |(n− 1) z + a1 − a2 + ...+ an−1||z − a2 + a3 + ...+ an| = |(n− 1) z + a2 − a3 + ...+ an|− − −−−−−−−−−−−−−−−−−−−−−−−−|z − an + a1 + ...+ an−2| = |(n− 1) z + an − a1 + ...+ an−2|

    .

    Mihály Bencze

    PP. 19146. 1). If z ∈ C and λ ∈ (0,+∞] ∪ [1,+∞) , thenn∑k=1

    |z − k|λ ≥ n1−2λ(n2−14

    )λ2). If λ ∈ (0, 1), then

    n∑k=1

    |z − k|λ ≤ n(n−12

    )λ.

    Mihály Bencze

    PP. 19147. If x ∈(0, π2

    )then

    1). 2sinx+cosx+

    √2 sin 2x

    ≥(3− sinx√

    cosx− cosx4√2

    )·(3− cosx√

    sinx− sinx4√2

    )2). sinx4√2+

    √cosx

    + cosx4√2+√sinx

    +√2√

    sinx+√cosx

    ≥ 32 .

    Mihály Bencze

  • Proposed Problems 491

    PP. 19148. If x ∈(0, π2

    )then

    1). sinx3+2 cos2 x

    + cosx3+2 sin2 x

    ≤ 3−sin 2x4√2

    2). 19+2 sin2 x−2

    √2 cosx

    + 19+2 cos2 x−2

    √2 sinx

    + 12(5−sin 2x) ≤38

    Mihály Bencze

    PP. 19149. If x ∈(0, π2

    )then(

    tgx+ cosx√2

    +√2

    sinx

    )(ctgx+ sinx√

    2+

    √2

    cosx

    )≥ 81

    3+2√2(sinx+cosx)+sin 2x

    Mihály Bencze

    PP. 19150. If x ∈(0, π2

    )then

    1). 42 +(18

    √2− 13

    )sin 2x ≥ 26

    √2 (sinx+ cosx)

    2). 15−sin 2x +10−2

    √2(sinx+cosx)

    25−2√2(sinx+cosx)+4 sin 2x

    ≤ 13). (2− sinx cosx)

    (√2− sinx

    ) (√2− cosx

    )≥ 12

    Mihály Bencze

    PP. 19151. Solve in R the following system:(x1 − 1)2 e2x1−2 + 4x2ex2−1 + x23 + 1 = 2

    (x4 +

    (x25 + 1

    )ex5−1

    )(x2 − 1)2 e2x2−2 + 4x3ex3−1 + x24 + 1 = 2

    (x5 +

    (x26 + 1

    )ex6−1

    )−−−−−−−−−−−−−−−−−−−−−−−−−−−(xn − 1)2 e2xn−2 + 4x1ex1−1 + x22 + 1 = 2

    (x3 +

    (x24 + 1

    )ex4−1

    ) .Mihály Bencze

    PP. 19152. If a, b, c > 0 and abc = 1 then∑ 2+(b2+3b+4a)c

    c(b+1)(b+3) ≥154 .

    Mihály Bencze

    PP. 19153. If x ∈ R, then(sin4 x+ cos2 x

    ) (cos4 x+ sin2 x

    ) (1 + sin2 x cos2 x

    )≤ 1.

    Mihály Bencze

    PP. 19154. If a, b, c > 0 and abc = 1 then

    1).∑√a(b+c)

    ab+1 ≥ 2

    2).∑√ a+c

    c(a+1) ≥ 2

    Mihály Bencze

  • 492 Octogon Mathematical Magazine, Vol. 19, No.2, October 2011

    PP. 19155. If a, b, c > 0 and abc = 1 then

    1).∑√ a

    (3a+1)c ≥32

    2).∑√ ab

    bc+3 ≥32

    Mihály Bencze

    PP. 19156. Let A1A2...An be a convex polygon. In exterior of sides, and insame direction we consider the points B1, B2, ..., Bn such thatA2B1 = A2A3;A3B2 = A3A4, ..., AnB2 = A1A2. Compute

    Area[B1B2...Bn]Area[A1A2...An]

    .

    Mihály Bencze

    PP. 19157. If x ∈ R then1). 28

    (1 + 3 sin2 x

    ) (1 + 3 cos2 x

    )≤ 125 + 262 sin2 x cos2 x

    2). 52(1 + 3 sin4 x

    ) (1 + 3 cos4 x

    )≤ 255 + 4 sin4 x cos4 x

    Mihály Bencze

    PP. 19158. Solve in R the following system:1

    1+x21− 21+x2x3 +

    11+x24

    = 11+x22

    − 21+x3x4 +1

    1+x25= ... = 1

    1+x2n− 21+x1x2 +

    11+x23

    = 0.

    Mihály Bencze

    PP. 19159. Determine all a, b, c > 0 for which∑ a

    2a2+bc≥ 3∑ a .

    Mihály Bencze

    PP. 19160. 1). Prove that exist infinite arithmetic progression, whichcontains an infinite geometric progression.2). Prove that exist infinite geometric progression, which contains an infinitearithmetic progression.

    Mihály Bencze

    PP. 19161. If ak ∈ R (k = 1, 2, ..., n) and λ ≥ 2, then solve the followingequations:

    1).n∑k=1

    sin(x+ak)λk−1

    = 0

    2).n∑k=1

    cos(x+ak)λk−1

    = 0

    Mihály Bencze

  • Proposed Problems 493

    PP. 19162. In all triangle ABC holds

    2sR + 2

    R+rR +

    ∑2sinA+sinB+cosC +

    ∑2c